Luận án Sự tồn tại nghiệm của bao hàm thức vi phân dạng cực biên

SỰ TỒN TẠI NGHIỆM CỦA BAO HÀM THỨC VI PHÂN DẠNG CỰC BIÊN NGUYỄN KIỀU DUNG Trang nhan đề Lời cảm ơn Mục lục Lời mở đâu Chương1: Kiến thức chuẩn bị. Chương2: Các bao hàm thức vi phân thường có giá trị không lồi trong không gian Banach. Chương3: Bao hàm thức vi phân có chậm dạng cực biên. Kết luận Tài liệu tham khảo

pdf24 trang | Chia sẻ: maiphuongtl | Lượt xem: 1870 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Luận án Sự tồn tại nghiệm của bao hàm thức vi phân dạng cực biên, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
~2 CACBAOHAMTHOCVI PHRNTHUONGc6 GIA TAlKHONGLal TRONGKHONGGIAN BANACH. Phan1.KHAo SAT SU TON TAl NGHIEM CUA BAO. . . HAM THUC VI PHAN THUONG DANG CUC BIEN. . . ChoE Ia mQtkhonggianBanachthl;tc,kha1y,phanx~vaF 1amQthamda . triduQcdinhnghlatrenmQtt~pconmd,khacr6ngcuaRxE vaoE co giatri 16i,compacvakhacr6ng. Phffnnaytrlnhbaysl;t6nt~inghi~md6ivoibaahamthucvi phanthuong d~ngqic bien. { X1EExt F(t,x) xeD)=Xo Y tUdngsad\lngph~mtrUBairechocacbaahamthucviphantrenR duQc Cellinaduaradffutienvaonam1980.Saudocorfftnhi€u k€t quaUrn duQC dl;t~.trendiM 1:9ph(;lmtrUnay.Nhungk€t quathuduQcsau1~inhovaomQtleY thu~tmoiIa sad\lngphanho(;lchtrenmi€n t~oanhcuaF, saudoapd\lngthich hQpdinh1:9ph~ngiaokhacr6ngcuamQtdaygiamcact~pcompackhacr6ng. Fhatbilu kit quachfnh: Niu F compacva lient~c(haytangquath{fn: niu F compacvathoadiiu ki~nCaratheodory)thit{jpnghi~mcuabailoan Ia khacrang.Kit quatlt{fngt1/niu F lalf1r;mga-Lipschitz,a Ia kj hi~udQdo khongcompacKuratowski. ~ ~ 14'cO' I ?;:, 1. MO'dau: I ! X6tmQthamdatri: ;p : I xX ~ WeE) -10- ddayI =[0,T] ;X =BE (xo.r) ;XoE ~(E);r>0 TanoiF thoa(H)neu: (Hi) F falient1J.ctrenI xX (H2)tQ,pA =F(l xX) facompactrongE (H3)0h (A,0) Voi F thoa(H),va XoE Xo,taxetcaebai toanCauchysail : { X'E F(t,x) xeD)=Xo (2.1) { X'E ext F(t,x) xeD)=Xo (2.2) Cho XoE Xo, kY hi~u: SF ={x:I ~E/x zanghi~mci'ta(2.1)} SextF={x:I ~E/x langhi~mci'ta(2.2)} SFIa compac,khacr6ngtrongCE(I)nenkhonggianSFtrangbi metrichQi tvd€u Ia duo f)~t9JF={f:IxX~ E /f latatcatlientlJCci'taF} Lty f E .9'lp,xetthembai toanCauchy: { x'=f(t,x) xeD)=Xo NSu d~tPf={x: I ~E/x la i nghi~mci'ta(2.3)} (2.3) thlPf Ia mQtt~pconcompac,khacr6ngcuaSF. Lty mQtday {In}C E* co Illnil= 1trUm~ttronghlnhc~udonvi cuaE. Ta dinhnghIatheoChoquetham<PF:I xX xE ~ [0,+oo[nhu'sail: <PF(t,x,v)= f (In(v)J n=l 2n V E F(t,x) +00 vEE\F(t,x) .G9iQ1/Ia t~pttt ca.caehamaphintuE vaoR. Tieptheoxayd1,1'ngham ip; : IxXxE ~ ] -00,+00[: IPF(t,x, v) = inf (a(v)/ a E Q1/vaa(z)> C{JF(t,x z) vdiz E F(t, x)} -------------------------- -=-~r~~~~;i;~i~~;----------- BaygiOtadinhnghla: dF: IxXxE ~ ]-00, +00[ dF(t,x, v) =iYF(t,x, v) -qJF(t,x, v) thltacocacke"tquadu<;cnha:cl<;litrongm<$nhdS sau: M~nhd~2.1 ChoF thoa(H),taco.. (i) Vaim6i(t,x) E I xX vav EF(t,x),taco0 :s;dF(t,x,v):s;M2.HCInniia d~t,x,v)=0khivachikhiv EExtF(t,x). . (ii) Vaim6i(t,x) E lxX,dF(t,x,0)ia lOmng(ittrenF(t,x) valOmtrenE. (iii) dFianllalientl;lctrentrenIxXxE. (iv) Vaim6ix E SF,hamt -f dF(t,x(t),x'(t))ia kh6ngam,giainQivakhd richtrenI. (v) Ntu day{xn}CSF hQitl;ld~utaix E SFthi taco.. fdF (t,x(t),x'(t))dt;:: Jim supfdF (t,x(t),x'(t))dt I n~oo I 2. Phanho~chtrenmi~nt~oanh Ta selamquellvOimQtphanho<;lchtrenmiSnt<;lOanhcuahamF vathie"t l~pffiQtsf)tinhcha'tcuacaephepphanho<;lchnayd€ sadl:mgtrongph~nsau. 'ChoF thoa(H).f)~t:C=Xo +Vet-a) coA tel thl c c X VaC E «?f(E) (2.4) Dinh nghia: QI\f={x..I -f C/ x iaLipschitzvaihling<M} Ql\flamQtt~pcon16i,compaeeuaCE(I)chuaSF. ~inhnghia2.1: :Cho F thoa (H) Va}i E E* ; IIIJ =1,i =1,...d ; a> 0 Cho{Ik}Z:\lamQtphanho<;lcheuaI cobuckp. ------------------- ___om----- ----- ---------- -12 --- Vdik=1,...kovah=(hI....,hd)E Zd,d~t: R: = {(t,x) E IxC It Elk, hia ~IiCx)-2Mt<(hi+ l)a, i =1, ...d}, (j dayM Iah~ngs6trong(H).HQm tfftcacact~pkhacr6ngR: duQcgQiIa IDQtphanho~~htrenmi€n t~oanhcuahamF tuonglingvdi {Ii}~=1va {Ik}~:1 cuabudckhonggiana vabuocthaigian~.DuongkinhIOnnhfftcuacact~p R: khiR: thayd6itrenm duQckyhi~uIa v(m)vaduQcdinhnghlaIa chu§:n cuapll.(Luuyr~ng,m Ia phanho~chuuh~ncuaIxC nghlaIa mIamQt hQ hii'llh~ncact~pdoimQtgiaonhaukhacr6ngvacohQpb~ngIxC ). 'BaygiataIffy9;={ldc E*, II Ii II =1Ia mQtdaytritm~tronghinhc~u donvi cuaE*.Voi m6in E N, IffyRn={R: (n)}Ia mQtphanho~chtrenmi€n t~oanhIxC cuaF, tuonglingvoi {Ii}:l va ~:tn=lcuabuockhonggianan,va budcthaigian~md dayan->0,~n->0khin ->00. F.S.DeBlasivaG.Pianigianidachirar~ngconoE N saGcho'v'n>nothi tacov(plln)<A.HonmIa,concob6d€ quailtrQngsau: B6d~2.1 Cho F thoa(H). Lily 8> 0 vaa > 0 thi c6 mQtphan hOc;lChmcho mi~n IxC,cuaF tu<JnglingveJi{IJ~=1va {Ik}::1 cuabu(Jckh6nggiana vabu(Jcthai gianj3, 0 <P<min{8II I, 813M};wYichudnv(m)<AsaGcho m(!!.;J<8 /1/ K ={l,...,ko} WJi mQix E QJ\f trongd6 va Kx={kEK:c6h EZsaochograph xlkcR:, R: Em}. Tub6d€ nay,dethffyKxIakhacr6ngntu0<E<1. Chopll={R:} Ia mQtphanho~chtrenmi€n IxC cuaF thoacactinhchfft da neu trongb6 d€ 2.1. Voi m6i R: E pll, hay xet mQtphanho~ch ~J~=lE @(Ik) (d dayp =p(R:), vaIkIakhoangthaigiancuaR:. h h" D~t Rk,j =Rk n(JjxE) j=I,...p --------------- -- -- ----------------------- -13- GQiJj 1akhoangthaigiancuaR:,j. La"yg(' 1ahQta"tcacact~pkhacr6ng R:,j nhu'trenkhi R: thayd6i tren g(.R6 rang g(' cling1amN phanhot;lch euaIxC va g(' 1amQtst;lammillcua g( . { C a E111 }Ti€p thea,d~tPo=mill -:;-, 2M' 2koPo voi Co=mill{I Jj 1/ R:. E g('},j Po=max{p(R:)/ R: E g(}.va 'La"y0<~<~o.Voi m6iR:,j E g(',dinhnghia: h h Rk .(fl) ={(t,X)ERk. /tE Ij(fl), hia+flM slJx)-2Mt 5{hi+l)a-flM,J J i =1,...d} (2.5) . trongdoJj(~)=[tj+~,tj+l- ~]; haidiSmtj <tj+l1acaediSmd~uva cu6icua khoangthaigianJj cuaR: ..,j Dinhnghiatreneonghiakhi 0 <~<mill{Co/ 2,a / (2M)}. Ky hi~ug('~1ahQta"tca cact~pkhacr6ng R:,j (~) khi R~,jthayd6i treng(', vad~t A~= U R:./,u) R;'j(ll)e!r{, (2.6) TITxaydt;lngtren,cothSchungminhk€t quasau: B6d~2.2 ChoF thoa(H).Diy 0 O.Chog( la m(Jtphtinho(fchtren mi~nt(fOanhIxC cuaF vaicaetfnhchtltdll(Jcneutrongb6d~2.1.Vdi g(', g('Jl vaAJlnhllJ trenthitaco.. m(I\Ix)<2 &/1/ ttxE cYV trongdoIx={tE1/ (t,x(t))EA~. H(fnriTlaAJlla tqpconcompackhacr6ngcuaIxc. .. 3. Caeke'tquaerunh ---------------------- --- -- ----- -----_n_n_-n_n_n--- -14- Baygiotasel~n1U<;ftxemxetcacb6d~chinhtruockhid~c~pWidinh1,9 t6nt(;lichobii loanCauchy(2.2)- mQtke'tquad\l'atrendinh1,9ph(;lmtrll Baire. ChoF thoa(H)vi 8>O. D~tSe={~ESF/ fdF (t,x(t),x'(t))dt<8} I K€t quad~uliendSsuydU<;fcngaytuvi~capdlfngm~nhd~2.1(v),doIi: :.B6d~2.3 Cho F thoa(H), V(yim6i ()>0,ttJpSBIa miJ trongSF' - B6d~2.4 ChoF thoa(H).LtJyf E.9Pva()>0,5>othicomQthamg EgpsaDcho VxE Q.I'\I;ta co .. fdF (t,x(t),g(t,x(t))< () I (2.7) va I supII f[g(s,x(s)) - f(s, x(s))]ds II<6 leI 0 (2.8) "Chungminh: La'y f E .9F,8 >0,8>0,. ChonEsaocho0 <E <mill { e 2 I I' 0 I I' I} , trongdoM Ii . 4(1+M ) I 2(1+4M) I h~ngs6trong(H). D~tZ=IxX Bl/fJc1 : XtJpxl dtaphuongf biJi cachamcogill trtgdnvdicacdiimq(Cbien cuaF. .ta'y (s,u) E IxC, (C du<;fcchotrong(2.4)).Do f(s, u) E F(s, u) nen theo dinh1,9Krein - Mil'man's,co mQts6Ps,uEN; co cac di~mv~u E extF(s, u),, , '- 1 " , "",\j . 0 ,\j <1 '- I h? ,\1 ~Ps,u_ 1J - , ...,PsU vacacso '" . <'" -, J - , ...,Psu t oa '" + ... + /\,s U -, s,U s,U 's,U' saocho: -- --- - ----------- -15 --- P"u" 8III AJs,u V~,u - res,u)11<- j=l 3 (2.9) Theom~nhd~2.1(i va iii) thldFla u.s.eva dFtri~ttieut~i(s,u, v~,u), VI v~yco 0<p;,u <~ sac ehovoi m6i (t, x) E Bz((s,u),p~,u)va m6i v E BE(V~,u'P~,u),j =1,"'Ps,u,tacodF(t,x,v)<E. (2.10) VI F lientlfet~i(s,u) va vj E F(s,u)nenco 0 < pI < pO sacehovoiS,u S,u s,u m6i(t,x) E Bz'(s,u),pI ), taco:F(t,x)n BE(Vj , pO ):f:.0,j =1,...Psu., ~ s,u s,u s,u ' .Theodinhly Michael,secoPs,uhamlienlientlfe: zj :Bz,(s,u),pI )~ E sacehovoi m6i (t,x) E Bz,(s,u),pI )taco :s,u ~ s,u ~ s,u j - (j 0 )Zs,u(t,x) E F(t,x) n BE vs,u' pS,u . . Ke'th<;$pvoitinhlientlfeeuaf t~i(s,u)vatu(2.10),suyfaco 0 < pS,u < P~,u sac ehovoim6i(t,x) E Bz'(s,u),p ), taco:~ S,u II f(t,x)-res,u)II < ~3 (2.11) IIZ~,u(t,X)-v~,ull<~ dF(t,x, zj (t,x» <ES,u j=l,...,ps,u (2.12) j =1,...,Ps,u (2.13) Theoeachxaydvngtrenthlcaehamz~,unh~ncaegiatrig~nnhungdi&m evebieneuaF(s,u)vaxa"pXlg~ndunghamf (theo2.13,2.9,2.11,2.12). B1iuc2: Xayd1!ngmQt[atcdtr khonglient1jCcuaF trenIxc. HQ {Bz((s,u),ps,u)l(s,u)ElxC}la mQtphumdeuat~peompaeIxC, VIthe' nocophilconhUllh~n: {BJSn' Un),P'n'"n)::,} (2.14) .GQi A.>0IamQts6Lebesgueeuaphilconnay.Theob6d~2.1,ehoEvaA., secomQtphanho~eh:97l={R~}theemi~nt~oanhIxC euaF, tudnglingvoi {lJ ~=Iva {Ik}::0 ..eua buoe khong gian a va buoe thai gian p. 0<P<min{EI I I , a / (3M)},thGav(:~)<A.sacehoba"td~ngthlietrongb6 d~ -------------- - - - n_---- Un------- n -- --- -16- . 2.1dU<;fethoa.R6 rangm6i R~ E fill d€u dU<;feehliatrongit nha'tmQthinhe~u euahQ(2.14).DoeachxaydlfngnenR~coduangldnhnhohonhin 'A. BaygiGtal~y<D: fill ~ N la mQthameholingvoim6i R~E fillmQtva emffiQts6nguyene6dinhtheomQtquit5etuyy giuacaes6 tlf nhien n, 1~n ~nosaGeho Rkh C Bz(smun),Pn), (ky hi~uPn= P )Sn'Un R: E fillvagiasa <D (R:)=nthi(2.15)thoa. (2.15) La'y Theobuoe1,comQtPn= pEN; coPns6 'Aj='Aj voi 0 <'Aj ~ 1, Sn'Un n Sn'Un n 'AI+'A2+A +'APn= 1; va co Pn di~m vj = vj E ext F(sn, un) saGeho n n n n sn'Un Pn . . II 8" '\ J VJ - f(s U) <.- L.../"nn n' n 3j=1 D6ng thai co Pn lat e5t lien tve z~ = Z~n,Uneua F dinh nghIa tren Bz((smun),Pn)saGehovoi m6i (t,x) E Bz ((sn,un),Pn),taco: "f(t,x)- f(sn'un)"<~3 (2.17) Ilz~(t,x) - v~II <~, j =1,..Pn (2.18) dp(t,x, z~(t,x))<8 , j =1,..Pn (2.19) BaygiGtaxaydlfngmQtlate5ty coth~khonglientveeuaF trenI x C. La'y R~ E fill ba'tkY va (R~)=n. La'yPmJJn,v~va z~,j =1,..Pn,tuonglingnhutren.GQilkla khoangthai gianeuaR~.xaydlfngphanho<;leh{Jj }~~1E @{lK) co dQdai IJjl =JJn Ilkl j =1,...Pn. (2.20) vad~t R~,j= R~n (Jj x E),j =1,...Pn, tasecophanho<;lchfill' la hQ~~et~pRL khaer6ng. DiM nghIay : I x C ~ E bdi Y (t,x) = Z~(t,x)n€u (t,x) E R~,j' -- - ------ - - -- ---- -17- . thldinhnghlanayIa xacdinh.Honm1adocachamz~,j =1,..Pn, 1acac1at dt lientt;[cuaF trenBz((sn,un),Pn)::) R~,jneny 1amQt1atcatco thSkhong lientt;[cuaF trenI x C nhu'ngthuhypcuano trenm6it~pRL Ia lien t1;lC, Blluc3 : Caetinnchatcuahamr Tircachxc1ydltnghamy voi m6ix E Q/V,tacodu'<;5C: Jd F (t,x(t), y(t, x(t)) dt<() I 2 (2.21) 'va I sup II J[y(s,xes))- I(s, xes))]ds ll <5 leI 0 2 (2.22) Tasechungminhtinhcha'tnay. Do-mdu<;5cxftydltngthoab6d€ 2.1nentaco: m ( ulk ) <E I I I keK\K" (2.23) trongdo K ={I, ..,ko}' vaKx={kE K / coh E ZdsaochographXlkC R~,R~E p/(.} VI 0 < E < 1 nenKx Ia khacr6ng,suyra co mQtR~ E p/(saocho graphXlkC R~,vavdi 1::;;n ::;;no,(2.13)dU<;5cthoa.Honnua,1u'uycuaBu'oc2, taco: graph XI C R~J' C BzC(sn,un),Pn)j = 1,..Pnk ' (cac {Jj};~1va RL du<;5cxftydltngtrongBu'oc2) (2.24) vay(t,x(t))=Z~(t,x(t)), t E Jj, j = 1,..Pn. Truoche't,voik E Kx,taco: * Jdp(t,x(t),y(t,x(t)))dt < Ellkl Ik * IIJ[y(t,x(t))-f(t,x(t))]dtll<Ellkl Ik .. Th~tv~y,vdik E Kx thl: ---------- ---------------------------------------------------------------------------------- -18 - Pn . * Jdp(t,x(t),yet,x(t))dt=I Jdp (t,x(t), z~(t,x(t)))dt lk . j=lJj <8 IIJjl =81Ikl, j=l theo(2.19va2.20) * "/fr(t,X(t»- !(t, x(t»]dtll=II~Jrz~(t,x(t» - f(t,x(t))]dtJ '~I J[llz~(t,x(t))-V~11+ Ilf(t,x(t))-f(sn'Un)IIJdt+ I J[v~-f(sn,un)]dt j=l J. j=l J.J J < t(~+~)IJ;I + t(v~-f(Sn,Un»)IJ;1 = = ~"II,I++ II~AJnv~- f(sn'Un)IIII,1 < 81Ikl theo(2.24,2.18,2.17,2.20,2.16) Lffyx E QJ\f.SadvngcaekStquatren,taco: 01<JdF(t,x(t),y(t,x(t))) dt I = I Jdp(t,x(t),y(t,x(t))}dt+ I Jdp(t,x(t),y(t,x(t)))dt keKxlk keK\Kxlk < I81Iki+ IM21Iki <8III+8M2III keKx keK\Kx . e e < - (do8< 2 II ), suyra(2.21) 4 4(1+M )I t * lIJ[y(S,X(S))-f(s,X(S))]ds ll ~ I II J[y(s,x(s))-f(s,x(s))]dsl!+ 0 keKx lk + I II J[y(s,x(s))- f(S,X(S))]dS II + ]1 y(s,x(s))- f(s,x(s))llds keK\Kx lk lie .. Nho l<;tiding IIiel=~<8 III, kSthQpvoi (2.23)taduQc -------------------------------------------------------------------------------------------------- -19 - tI[Y(S,X(S»-f(S,X(S»]dsll<k~x8lIkl+kEt~MIIkl +2M81I1 <8 III+28MI~+28M I~< ~ (dO8<2(1+~MJIIIJ Vl t E I tuyy nensuyra(2.22). Bu:fjc4 : Xfiy d1!ngmf)t[at cdt lien tIJCg cua F biing xdp xl 1- ThuhvphamylenmQtt~pcompacthichh<;1pAll c I x C SeHimchoytrd t4allhmQthitdt lientl,lccuaF trenAwTheodinhly MichaelthiycomQtmd rQnglient\lCgclingIa mQtlatcfitcuaF. Ta seth1ydinghamgnhu'v~ythoa cactinhch1tdilneutrongb6d~. L1yg{vag{'nhu'dtrongBu'dc2. D~t~o=mill {co/2, a / (2M),8111/ (2kopo)}, trongdo Co=mill{IJjl/ RL E 9['}, Po=max{Pn/ 1::::; n ::::;no}. co'dinh0 <~<~o. f!ll;la hQt1tca cac t~pR~,j(~)khacr6ngchobdi (2.5)khi R~,jthayd6i tre1).,g{' va All du'<;1cdinh nghlabdi (2.6).Theo b6 d~2.2 thi All Ia t~pcon compackhacr6ngcuaI x C.DoythuhvptrenAllIa mQtlatcfitlient\lCcuaF nentheodinhly MichaelcomQtlatcfitlientl,lcgcuahamF saocho: get,x)=yet,x) vdi m6i (t, x) E All Ta l1yx E <2/Vtuyvad~tIx={tE 1/ (t,x(t)E All}thitheob6d~2.2: m(I \ Ix)<28 I IJ . (2.25) fdp(t,x(t),g(t,x(t»)dt::::;fdp(t,x(t),y(t,x(t»)dt+ I I Taco + ~dp(t,x(t),g(t,x(t»)- df(t,X(t),y(t,x(t»~dt I\Ix 8 8 <- +M2m(I\ Ix)<- +28M21I!<8 2 2 .. theo(2.21va2.25) Nhu'v~y(2.7)dil du'<;1Cchungminhxong..---------------------------------------------------------------------------------------------------- -20- vOim6itEl, taco: t l[g(S,X(S»- f(s,x(s»]dSII~ flg(S,X(S»- y(S,X(S»11ds+ t + lIf[y(S,x(s»-f(s,x(s»]ds D < ~lg(s,x(S»- y(S,X(S»11ds+ () I\I 2x () () < 2Mm(I\ Ix)+- <4EMIII+- <() 2 2 theo(2.23va2.22). Suyra (2.8)clingduQcchungminhKong. B6 d~2.4duQcchungminhhoantoan. B6d~2.5 ChoF thoa(H),! E 9Fva B> 0 thzco 5 =5jB) > 0 saDcho v<Jix E SF btitkY: I sup II f[x'(S)- !(s,x(s»]dsll < 5suy TaX E BSF(Pfi B) leI C (2.26) Chungminh: Giii sa phat biSu tren khongdung thl co f E SF , E > 0 va mQtday {xn}C SF\ BSF(Pt, E) thoa sup 'I S[X1n(S)-f(S,Xn(S»]ds ll < l}n EN tel 0 n Do SFla compac,COmQtdayconcua {xn}hQitlJ d~uWi mQtdiSmx E Pi, VI v~yvdi n du lOn,ta co XnE BsF(Pt, E),mall thu~ngiii thie't.B6 d~duQc chungminh. .. .------------------------------------------------------------------------------------------------------- - 21- B6d~2.6 ChoF thoa(R). Chof E SFva Ii> 0, e> 0 thicomQthamg E SFsaGcho Pg c::San BSF (Pfi Ii). Chungminh. Lffy f E SF,E >0,8>O.Tli b6d~2.5suyraco8>0 d~(2.26)xayravoi x E SF.Khi do,theob6d~2.4thlcog E .9F(tudngungvOif, 8,8)saDchovoi m6ix E <2/Vtaco: fdF(t,X(t),g(t,x(t)))dt<8 I (2.27) va t sup II J[g(S,X(S))- f(s,x(s))]dsll<8 tel 41 (2.28) Voi m6ix E Pgtuyy,dox'(t)=get,x(t)),tEl nenke'th<;1p(2.28)va(2.26) tasuydu<;1cx E BSF(Pf,E).Con (2.27)suyra x E So.V~yx E Sen BSF(Pf, E). . Doxtuyy nenPgc Sen BSF(Pf,E).B6d~duQcchungminh. Bay gia chungta chuy~nsangchungminhdinhly 2.1,clingla ke'tqua chinhcuaph~n ay. .DinhIf 2.1 ChoF thoa(H),f E.9},Ii> 0thiSex!F n BsF(PftIi)~0, vadij.chi?t,hai loanCauchy(2.2)conghi?m. Chungminh: ~ 1Bat 8 =- n E N. n , n Tli b6 d~2.6,voi 81> 0 da choco g1 E .9}: Pg!C BSF(Pf, E).Do Pg! Ia compacnenco0 <111<81saDchoBs (Pg ,111)c Bs (Pf,E) (2.29)F! F . Tudngtl,l'co g2E .9}: Pg2c So!n BsF(Pg!' 11)'So!md theob6 d~2.3. B6hg thai Pg2Ia compacnen l~ico 0 < 112< 82saDcho Bs (Pg2,112)cF So! n BSF(Pg!,111)'Tie'pt\lCthvchi~nta dU<;1cmQtday thong tangcac t~p --------------------------------------------------------------------------------------------------------- -22- compackhac r6ng BSF(Pgn' Tln)cua SF voi gn E 9F va 0 <Tln <en, thoa Bs (Pg , Tln+l)CSa nBs (Pg , Tln),n ENF n+! n F n La"yx E SFIa mQtdi~mthuQCvaom6i t~pBs (Pg , Tln)thlx E BsF (Pf, 8). F n theo(2.27).Hqnnlla,dox E Sanvoim6in ENnen fdF(t,x(t),x'(t))dt=0 I Yl v~y,nhomt$nhde2.1(i),suyra x'(t) E ExtF(t,x(t))h.k.n,tucIa bai loanCauchy(2.3)conghit$m. 4. Md rQng Tuynhien,k€t quavesvt6nt<:iivatrum~tchobailoanCauchyd<:ingqtc bien(2.2)moiduQcchungminhduoigiathi€t hamF la lient1,lc.Cac lacgia damdrQngk€t quachinhvuatimduQcchotrttonghQpt6ngquathan: F thoa . mangiathi€t Caratheodory. TanoihamdatriF (dachotrongph~nmdd~u)thoa(H')n€u (H'1)vfJimtiitEl, hamdatrix --+F(t,x) ia lientlJctrenX, vavfJimtii x EX, hamdatri t --+F(t,x) ia dodllf/Ctren1. (H'2)tfjpA =F(l xX) zacompactrongE (H'3)0h(A,0) ChoF thoa(H') va SF,SextF,Sava GVVduQcdinhnghIanhud ph~ntrUoc. T~pSFIacompac,khacr6ngtrongkhonggianCE(I),suyraSFvOimetrichQi1\1 deula khonggiandu. Lat c~tf cuaF duQcgQiIa latc~tCaratheodorycuaF n€u vOim6itEl, hamx -+f(t,x)Ia lien1\1ctrenX, vavoim6ix E X, hamt -+f(t,x)Ia doduQc Bochnertren1.Voi F thoa(H'),d~t 9'F ={f:I xX -+E / f Ialatc~tCaratheodorycuaF} Theocacdinhly cuaScorzaDragonivaMichael,t~p9'F la khacr6ng. .Lu'uY dingF thoa(H')thlcactinhcha"t(i)(ii)(iv)(v)trongmt$nhde2.1 deuduQcthoa.Hannlla,khithayhQSFthanhS'Ftuangungthltaco duQCta"t cacack€t quatrongb6de2.3-+2.6voi ly lu~nchungminhtuangtV.Rieng ph~nchungminhb6"de2.4sad1,lngdinhly ScorzaDragonid~thuhypcua hamF vaf trent~pJ x X Ia lient1,lc,voi t~pJ c I thoamQts6dieukit$n;sau dosad1,lngmQtdinhly mdrQnglient1,lcuahamdatrid~comQthamdatq ----------------------------------------------------------------------------------- -23- . compac,lien t1;IcF : I x X ~ '$tE)va leitGifttu'dngling f. K€t hc;fPvdi b6 d€ 2.4va m~nhd€ 2.1,ta thudu'c;fCke'tquac~ntim.Tli'cac ke'tquanay,19lu~n tie'ptheotudngtl!taclingthudu<Jcke'tquasau: DinhIy2.2 ChoF thoG;(R') thibili toanCauchy(2.2)conghifm. HayxetthemmQtmdfQngd6ivoihamF.Tan6ihamF thoa(K) ne'u: .(Kj) F Ia lientlJCtrenI xX (K2) TijpA =F(I xX) Ia gifJinl)i,tacIa h(A,0)<M, vacoml)thlingso" L >0saochoa(F(I x Y)) 5{La(Y)vfJim{JiY eX (Kj) 0<T <min{riM,l/L} Cacb6d€ 2.3~ 2.6v~ncondungne'uthaygiathie't(H)bdi(K).Tli'd6su d1;Ingdinh192.1c6th~chungminhdinh19sau: Dinh Iy 2.3: ChoF thoa(K) thibili toanCauchy(2.2)conghifm. Cu6iclingtaxetthemmQtke'tquaungd1;Ing .Voi XoE Xova tEl, d~t : (filp(xo,t)=(x(t)/ x..I ~ E litnghifmcua(2.1)} c£f1extF(Xo>t)=(x(t)/ x..I ~ E litnghifmcua(2.2)} DinhIy 2.4 ChoF thoa(R'). Ntu coa thoa0 a) cXo WYim6i XoEX thibititoangiatrtbien:' { X(t)EExtF(t,x) x(a)=x(O) (2.30) coitnhfftmQtnghifm. .Chungminh:Lty f E !}J'F Trudehe'ttachungminhbai toansauc6 nghi~m: { x'=j(t,x)" x(O)=x(a) (2.31) ---------------------------- --------------- -24- Tit dinhIy ScorzaDragoni,c6 mQtday {In}cact~pcompackhacr6ng Inc I, InC In+bnE N, vam(I \ In)--+0 khin --+00,saorhothuhypcuaf Ien InX X lientl,lC.Vdi m6in E N, Iffy<Pn: I x X --+E Ia mQthamLipschitzdia phuongc6giatritrongcoA saorho . 1 sup l<Pn(t,x)- f(t,x)1< - (t,x)elnxX n TheoCellina,vdi m6i8>0 c6 mQtnoE N saoeho~n (Xo,a) c BE(Xo,8), \in .;?: no' Tti d6 xay dvng day con {<Pnk}eua {<Pn}sao rho nxI, (Xo,a)c B(Xo,lIk), kEN. TheodinhIy Kakutani& Fan,vdi m6ikEN,1nk hamdatri u --+P4 (~nk (u,a), Ilk) n Xo e6mQtdi~me6dinhUk.Suyra vdi m6i kEN, e6mQtnghi~mXkcuabai loan x' = rpm(t,x); xiO) =Uk sao eho IIXk(O)-Xk(a)II< ~.Doday{xdc SFIa compae,e6mQtdayconhQit\1d@uWi x naod6 E SF. R6 rangx(O)=x(a) E Xo.Honnuax Ia mQtnghi~mcua(2.31), . VIvdi m6it E I, tac6 : t X(t)-X(O)-!f(s,X(S))dsll ::;;CK+!llf(s,X(S))-<Pnk(S,Xk(S)~1ds (2.32) trongd6 Ck=sup Ilx(t)-Xk(t)II+ Ilx(O)-Xk(O)II, tel VavfSphaicua(2.32)--+0 khi k --+00. TifSpthea,sird\1ngcacb6 d@(2.6),(2.3)va Iy Iu~ncuadinhIy 2.1,taxay dvng mQt day giam cac t~p con compackhae r6ng Bsp (Pgn+l' TJn+1) c Selln Bsp(Pgn' TJn),n E N. Vdi m6i n E N, Iffy XnIa mQtnghi~meuabai loan x' = git, x); x(O)=x(a). Do {xu}compacnenmQtdayconhQit\1d@u tdi x nao d6 E SF'R6 rangx(O)=x(a),va x E SextF do x n~mtrongm6i t~p Sa 'n n E N. V~yx Ia mQtIoi giaieuabailoangiatrievebien(2.30).DiM Iy du<;Jc chungminh. Chziy: 'DinhIy khongcondungnuanfSuthaygiathifSt(H'l) bdi"F Ia niralient\1C trenlIenI xX". .. ----------------------- --------- -25 - ... -- ? Phan II. MQT TINH CHAT D.L).CTRUNG CUA NGHI~M BM ToAN CVC BIEN M\lc dichchinhcuaph~nnayla tlmmQtd~ctru'ng2,(x)chonghi~mcua baitmlnqic bien: x' E ExtcoF(t,x); x(O)=xo, d dayF lahamdatriU.s.C.,cogiatqcompac. (2.33) Chox lamQtloi gi~Hcuabaitoan: x' E coF(t,x) " x(O)=Xo. (2.34) Ta da:bitt dingnSuF la Lipschitzthl t~pnghi~mcua(2.23)la trUm~t trongt~pnghi~mcua(2.34).TasedinhnghIa" tu'ongthichmetric"cuax qua mQtsO'2,(x) kh6ngam,va se chi ra r~ngcacnghi~mcua (2.33)chinhla nghi~mcua(2.34)matu'ongthichcuanob~ngzero.Tir do chuy€nbai toan timnghi~mqic bienvemQtbaitoankhactu'ongdu'ong. v ChoI =[0, T] ,D =I xB(xo,r) ,T,r>0vac6dinh1~P <00. ..Choala mQtdQdokh6ngcompactrenLP(I,RN). Ta li~tkecacgiatruStsail: (Hi) F.. D ~RN za9:""Bdodllf/CvUicacgiatridong. (H2)VUi tEl h.k.n,vUim(Jix, //F(t,x)/ :5:let),11day1(.)E LP va T f let)dt<r. 0 v (H3) VO'itEl h.k.n,anhx{lx ~ F(t,x)la U.s.C. ChoF: D ~ RNla mQthamdatrioVoi m6iE >0,dinhnghIaanhX(;lFe: Fe (t,x): =F (t,x(t)+EB)+EB, B lahinhc~udonvimdtrongRN. KStquaxa'pxl saillac6ngC\lIcythu~tcmnhcuaph~nay. .. ----- -26- M~nhd~2.2: ChoF: D ~ R!'ia m()tanhXfldatrj thoa(Hi) va(H2),thiwJi m6iE> 0, hailoan: { XI(tJ.EFc(t,X(t)),tEl x(o)=Xo conghifm. (2.35) HCInnila, (i) V6'im6inghifmxcuahailoan: { XI(tJ E coF(t, X(t)), tEl x(0)=xa (2.36) vam6i E > 0, co m()tnghifmXecua(2.35)saochoxJT) =x(T)va //Xe-X//< E. (ii) Ntux thoa(2.36)nhLtngx'(t)~ExtcoF(t,x(t))v6'imQit trongm()thIP d()dodllClng1hzcothi xdydl/ngm()tday{xn},n~1, XnE SFlIncotfnh chd'tia khongco day con nao cua no h()i tlj mflnht6'ix trong W1.p(I, R!'). Chungminh: Chia I thanhM khoangconIj =[jT/M , (j+I)T/M], j =O,...,M-I , saocho fl(t)d(t)<E.L~y~(.)Ia hitc~tdodu'<;1ctuanhX(;lt ~ F(t,x(jT/M))trenIj. D~t:J . t x(O)=xo,x(t)=xo+ f£(s)ds, tElj' 0 thlx lien t\lctuy~td6i vax'(t) E F(t,x(jT/M)), t E Ij h.k.n. TacoI x(t)-x(jT/M) I < fl(t)d(t)<E , nen x'(t) E FE(t,x(t))h.k.n.J Bai loan(2.35)conghi~m. i) GiastYxIa m<)tnghi~mcua(2.36). Anhx(;l: / N+l N+l t ~ {(Ai'U) E [O,It+lxF(t,X(t))N+l :~:)'i=1,x'(t)=LAiUi} i=l i=l co giatri dongva dodu'<;1Ctheo(HI). Vi v~yco d.c hamdodu'<;1cA/.), u/.) saocho: .. N+l x'(t)= "A.(t)U.(t),~ 1 1 i=l voi tEl h.k.n -- ------ ---- --- -27 - Chia I thanhhuuh:;mcackhoangIj=[tj-l,tj],(to==0) sao cho voi m6i j: 2 Jl(t)d(t)<E. ) Voi m6ij, gQi (E~).- IamQtphanho~chdodu</ccuaIj saocho:1-1,...N+1 fu.(t)dt=fA.(t)u.dtr 1 1. Ei I.j J (2.37) ~act~pnayt6nt~itheoh~quacuadinhly 16iLjapunov. .'Binhnghla: N+l ug(t)=LLXEi. (t)uJt), j i=l ) x (t)=x + ~u (s)dsE o.b E Bftu tientahIDyr.~ng,voimQij :xE(tj)=x(tj). . Th~tv~y:XE(0) =xeD) , vagiasan€u XE(tj-1)=X(tj-l) thitu (2.37): N+l { \ Xg (tj)- x(tj)=f(Ug(t)-x'(t)dt)=L f\XEi (t) - Ai(t)Pi (t)dt=0 I. i=l I. ) ) ) Yi v~y, n€u tE Ij : N+ltj I ~ Ixg(t)-x(t~~~f XE\(t)-Ai(t~IUi(t)ldt< 2fl(t)dt<81=1t. 1 I.~ ) Hon nua,dox'E(t)E F(t,x(t))nensuyra : x'E(t)E F(t,x(t)- xE(t)+xE(t))c FE(t,xE(t)) V~ytadachangminhiI. ii) La'yx langhi~mcua(!;.,'56)saochox'it) fiE xtcoF(t,xlt)), VtEE, m(E)>O. Bi~udi~n N+1 N+I x'(t)=LA/t)Vi(t), AiE[o,11LA/f)=1 vaViEF(.,x(.)). i=l i=l Khongma'tinht6ngquat,giasar~ngco 11>0saocho: IVi(t)- x'(t)J~17,VtEE,Vi =1, ,N +1 (2.38) ----------- -28 - Xay dV'ngday {xn}tuongtV'nhutren : voi m6i n21,chia I thanhhUllh(;ln ImmingmakhonggiaonhauI~ saocho2I~l(t)dt<Yn.J Voi m6in,j thl (E~(n)L IamQtphanho(;lchdo du<;5Ccua I~saochol-l,...N+l (2.37)khong~6i(voiE~(n)thayvl Ej ) .Tadinhnghla: N+l Vn(t)=I IXEi(n)(t)Vi(t) j i=l } t Xn(t)=xo+ fUn (s)ds 0 NhaKaydV'ngIIXn-xii <Yn, bonnuanha(2.38), N+l ~p Ilx'n-x'll:2 fl~~XEj(n)(tXUi(t)- x'(~)1dt = N+l I I fluj (t)- x'(t~Pdt 2 m(E)t,P>0 j i=l EnEJ(n) DoclU<;5ngtrenrorangkhongphl;!thuQcvaon,nenmQidayconcua{xn} d~u,khongth6hQitl;!m(;lnhv~x. ,Tachungrninhdu<;5cii/. Bay gio ta dinhnghIamQts6 kh,Hni~mse du<;5cstYdl;!ngtrongtoanbQ ph~ntie'ptheo. X6tcacbaitoansauvoiF Ia hamdatritu D vaoRN: { X' (t)eF(t,x(t)) x(O)=Xo { X'(t)eco F(t, x(t)) x(O)=Xo { xl(t)e Ext co F(t,x(t)) x(O)=Xo tel tel (2.39) tel tel (2.34) tel tel (2.33) Ta leYhi~uSF,ScoP,SextcoPl~nlu<;5tla cact~ph<;5pnghi~m,Rp(T),RcoF(T) va Rextcop(T)Ia cac t~pd(;ltdU<;5ct(;lithai di6mT cuacacbai toantuongling (2.39,2.34, 2.33).(Nh~cl(;li : Rp(T) ={x(T) / x Ia nghi~mcua(2.39)}. Ta dinhnghIa" tuongthiGh" cuax E SpIa s6 : ----------------- -- - ------- -29- cf; (x) := UmaLP({u'/ UESF n WI,p,Ilu- xii0 Tudngtv, taco cacdinhnghIasauvdi x E ScoF: .2:oF(X):= UmaLP({u'/UEScoFnWI'P,/lu-xll0 21;,(x) := !~a£p({u'/UESF, nWI'P,llu-xll<E}} trongdoa Ia mQtdQdokhongcompac. 'CacdinhnghIanayconghIakhicacbailoantudngling(2.39,2.34,2.33) conghi~m. M~nhd~2.3 ChoF..D ~ ~ lam(Jtanhxt;lthoa( Hi ), (H2),(H3)vax E ScoFthi.. J1(x) ~ ~F(X) ~ Jt(x) (2.40) Han nT1antu F( t, ~ ) laLipschitzthi.. J1(x) = ~F(X) = Jt(x) (2.41) Chungminh: Bit d&ngthucd~uIa hiennhien. D€' chungminhbit d&ngthucthu2 , liy x E ScoFva £ >0 chotrudc,xet hai t~psau: K& ={u' / uEScOF,/iu- x II <E } H&={u'/uEsF"llu-xll<E} Theom~nhd~ 2.2,KE duqcchuatrongbaadongyeutheoLPcuaHE, ta co: ~~F(X)=lim a(K&) ~ lim a(clwHJ = lim a(HJ = 21;,(x) &~O + &~O + &~O + ChoF( t,.) laLipschitz,liy k(.)E LPsaDcho: H( F(t,u), F(t,v)) ~ k( t) I u - v I, tEl h.k.n., \iu,v. 'B~t G& = { u'/ uESF , II u - v II < E } Va p ~ R k(t) 1el.k(""(1+k(S))ds+1+k(t)}t .. = {u'/u'(t)EF(t,u(t)+6B)+iB,u(to)=xo,llu-xll<E} C {u'/u'(t)EF(t,u(t)+E(l+k(t)))B,u(to)=xo,lIu-xll<E} Thl Hs -- ------------------------------ -30- C Ge +&pBp (theob6deGronwall) VI V?y, theodinhnghiacuaa, tasur du'<;5C: .2;(x)= lima (HJ ~ lim [a(GJ+a(&pBp)] = l':(x)e~o+ e~o+ M~nhdedffdu'<;5Cchungminh. SaudaytaxetthemmQtvi d\l dgminhhQachoke'tquacuam~nhde:ne'uF khongphaiLipschitzthltakhongco(2.41). Vi d\l3.1 ChoF Ia viphandu'OicuaI x I , { -I F(x).= [~l,l] ne'ux <0 ne'ux=0 ne'ux >0 F Ia U.s.C.T?p cac nghi~mcua x' E F(x) ,.x(O) =0 la compactrong W1,p( 0,1;R ) , VI V?y hamtu'dngtmch ~~F la d6ngnha'"tb~ng0 tren ScoF. Nhu'ngm~tkhac,vi phancuanghi~mx ==0khongla Cvcbien,nentheodinhly (2.5) C1ph~nsauthl cft(x) >0, tucIa ~F(X) < Jt(x). Khaosatthemcacham"tu'dngthich",taconcoke'tquasail: M~nhd~2.4 ChoF thoa(Hi) - (H3) thicacanhX(l ~" 2:, va~ fa mla lien t{tC A ' s ' R+trenta coFvaG . Be}d~2.7 ChoF..D -)oJ?Vfamtjthamdatrjthoa(Hi) -( H3),vacho~E RcoF(T). Cacphat bilu (1a) va (1b) , (2a)va(2b)saudayfanhtr;ltU:ClngdU:Clngnhau.. (1a) V(ji m6i x E WI,P( I, J?V ), m6i day ( Xn}n2:1trang ScoFsaD cho xiT) -)0 ~vaXn-)0 wXGangfa htji t{tmr;mhtrong WI,P(I,J?V) tai x. (lb) ~~~(~) = 0 --------------- --- - ------------ - 31- (2a) Cho 8n J 0 . Vai m6iXE W1,P(/, JtV ), vai m6iday ( Xn}n~lsaDcho XnESPe ' xnrT)~;; va xn~wx ciing fa hQi t1;lmc;mhtrong W1,P(/, JtV )n , taix. (2b) .£1;,(q) = 0 Ntu F(t,.) fa,Lipschitzthi ta con co (1) va (2) cung tuangduangvai ~P(~)=O Chungminh: Truoc tien, hill y ding ~~F(;;)=0 tu'ongdu'ongvoi tinhchit : m6i day {xn}I2IC ScoFhQit1,1y€u Wi x trongWI,P(I, RN ) cling hQit1,1mg.nh.Th~tv~y : Cho~~F(x)=0 va xn~ X, {Xn}C ScoF' Tu a({X'nIn~l})=a({X'n In~k })~a({u'IUEScoF,llu-xll<&}) , voi k du lOn,day {Xn}n~11acompactu'ongd6i mg.nhtrongWI,P( I, RN ). L~p lu~nnaydungvoi mQidayconcua {xn}nenroanbQdayhQitv toi x. Ngu'Qc19.i,n€u m6iday {xn}EScoFhQitv y€u Wi x d6uco mQtdayconhQitl;! mg.nhtrongWI,P(I, RN ), du'CJngkinh ( rheadQdo kh6ngcompact) cua t~p {u;;UE ScoF'Ilu- xii<s}dffnWi0khic~ O.Suyfa ~~F(x)=O. Tachungminh(la) (lb) : la::::>lbl L{yx E ScoFsaochox(T)=~.Theonh~nxettrenthl .2P (x)=0,nen.2P (;;)=0coP coP lb::::>lal Tu Xn~wx,theomQtdpmlyhQitvcuaCellinavaAubin,x E ScoF vax(T)=~. Chungminh(2a)(2b)b~ngeachly lu~ntu'ongtl;(. N€u F(t, .)1aLipschitzthltUmt$nhd6 (2.3)taco du'Qc (1)~(2)~~(;;)=o. Tachuy~nsangchungminhk€t quachinhcuaphffnnay: DinhIy2.5 Cho F :D ~ gvJa meltham da trj thoa (Hi) - (H3). Ltfy x E ScoFthi .2JF(x)=0 khi va chl khi x E SextcoF' Chungminh: ------------------------------------------------------------------- - 32- ~/ La'yx E ScoF,ghl sa x ~ SextcoF'Theom~nhde (2.2), co mQtday {xn}n ~ 1,XnESPlin'XnhQit1,1deuWi x, nhu'ngkhongco dayconnaGcuano hQit1,1m<;inhtoi x trongW1,p(I,RN).Theochungminhcuab6 de (2.7)thl 2:F ph:Hdu'dng, matithu~ngia thie't.Suyra XE SextcoF. La'yXE SextcoF,va {Xn}n ~ 1Ia mQtdaytrongSFc ' £n~0,hQit1,1, n ye'utrongW1,P(I,RN)toix.Tathuanh~ndingXnclinghQit1,1m<;inhtoi x. (Theo mQtk€t quacuaRzezuchowski).Do {xn}du'Qcla'ytuyy, tuchungminhcuab6 de(2.7)suyra 2~(x)=o. Nhijnxet: <;:::::./ Dinhly naychIradingvi~ctImnghi~mcuabaitoanqtcbien(2.33)cling gi6ngnhu'vi~ctImcacgiatqminimize(t<;iib~c0)cuahamu.S.C.2:F trent~p compactScoF. Ta connoi dinghamtu'dngthich2:F la d:ftctru'ngchocac nghi~mqtc bien.TrencdsadatrInhbay,ngu'ditaconKaydl;tngdinhnghIa tu'dngthichcuacacph~nta thuQcVaGt~pd'<ltdu'QC,d@tirdoxetcactinhcha't . t~pnghi~mcuabaitoanqtcbien.

Các file đính kèm theo tài liệu này:

  • pdf5.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf2.pdf
  • pdf3.pdf
  • pdf4.pdf
  • pdf7.pdf
  • pdf8.pdf
  • pdf9.pdf
Tài liệu liên quan