Luận văn Hidden topic discovery toward classification and clustering in vietnamese web documents master thesis hanoi -

Table of Content Introduction 1 Chapter 1. The Problem of Modeling Text Corpora and Hidden Topic Analysis .3 1.1. Introduction .3 1.2. The Early Methods 5 1.2.1. Latent Semantic Analysis .5 1.2.2. Probabilistic Latent Semantic Analysis 8 1.3. Latent Dirichlet Allocation 11 1.3.1. Generative Model in LDA 12 1.3.2. Likelihood .13 1.3.3. Parameter Estimation and Inference via Gibbs Sampling 14 1.3.4. Applications 17 1.4. Summary 17 Chapter 2. Frameworks of Learning with Hidden Topics 19 2.1. Learning with External Resources: Related Works 19 2.2. General Learning Frameworks 20 2.2.1. Frameworks for Learning with Hidden Topics 20 2.2.2. Large-Scale Web Collections as Universal Dataset .22 2.3. Advantages of the Frameworks .23 2.4. Summary 23 Chapter 3. Topics Analysis of Large-Scale Web Dataset 24 3.1. Some Characteristics of Vietnamese .24 3.1.1. Sound 24 3.1.2. Syllable Structure .26 3.1.3. Vietnamese Word .26 3.2. Preprocessing and Transformation 27 3.2.1. Sentence Segmentation .27 iv 3.2.2. Sentence Tokenization 28 3.2.3. Word Segmentation 28 3.2.4. Filters 28 3.2.5. Remove Non Topic-Oriented Words .28 3.3. Topic Analysis for VnExpress Dataset .29 3.4. Topic Analysis for Vietnamese Wikipedia Dataset 30 3.5. Discussion 31 3.6. Summary 32 Chapter 4. Deployments of General Frameworks 33 4.1. Classification with Hidden Topics 33 4.1.1. Classification Method .33 4.1.2. Experiments 36 4.2. Clustering with Hidden Topics 40 4.2.1. Clustering Method 40 4.2.2. Experiments 45 4.3. Summary 49 Conclusion 50 Achievements throughout the thesis .50 Future Works 50 References 52 Vietnamese References 52 English References .52 Appendix: Some Clustering Results .56

pdf67 trang | Chia sẻ: maiphuongtl | Lượt xem: 1955 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Luận văn Hidden topic discovery toward classification and clustering in vietnamese web documents master thesis hanoi -, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
President) 0.0084 Đất nước (Country) 0.0070 Quyền lực (Power) 0.0069 Dân chủ (Democratic) 0.0068 Chính quyền (Government)0.0067 Ủng hộ (Support) 0.0065 Chế độ (System) 0.0063 Kiểm soát (Control) 0.0058 Lãnh thổ (Territory) 0.0058 Liên bang (Federal) 0.0051 Động vật (Animal) 0.0220 Chim (Bird) 0.0146 Lớp (Class) 0.0123 Cá sấu (Crocodiles) 0.0116 Côn trùng (Insect) 0.0113 Trứng (Eggs) 0.0093 Cánh (Wing) 0.0092 Vây (Fin) 0.0077 Xương (Bone) 0.0075 Phân loại (Classify) 0.0054 Môi trường (Environment)0.0049 Xương sống (Spine) 0.0049 Topic 8 Topic 9 Topic 17 Nguyên tố (Element) 0.0383 Nguyên tử (Atom) 0.0174 Hợp chất (Compound) 0.0172 Hóa học (Chemical) 0.0154 Đồng vị (Isotope) 0.0149 Kim loại (Metal) 0.0148 Hidro (Hidro) 0.0142 Phản ứng (Reaction) 0.0123 Phóng xạ (Radioactivity) 0.0092 Tuần hoàn (Circulation) 0.0086 Hạt nhân (Nuclear) 0.0078 Điện tử (Electronics) 0.0076 Trang (page) 0.0490 Web (Web) 0.0189 Google (Google) 0.0143 Thông tin (information) 0.0113 Quảng cáo(advertisement)0.0065 Người dùng(user) 0.0058 Yahoo (Yahoo) 0.0054 Internet (Internet) 0.0051 Cơ sở dữ liệu (database) 0.0044 Rss (RSS) 0.0041 HTML (html) 0.0039 Dữ liệu (data) 0.0038 Lực (Force) 0.0487 Chuyển động (Move) 0.0323 Định luật (Law) 0.0289 Khối lượng (Mass) 0.0203 Quy chiếu (Reference) 0.0180 Vận tốc (Velocity) 0.0179 Quán tính (Inertia) 0.0173 Vật thể (Object) 0.0165 Newton (Newton) 0.0150 Cơ học (Mechanics) 0.0149 Hấp dẫn (Attractive) 0.0121 Tác động (Influence) 0.0114 3.5. Discussion The hidden topics analysis using LDA for both VnExpress and Vietnamese Wikipedia datasets have shown satisfactory results. While VnExpress dataset is more suitable for daily life topic analysis, Vietnamese Wikipedia dataset is good for scientific topic 32 modeling. The decision of which one is suitable for a task depends much on its domain of application. From experiments, it can be seen that the number of topics should be appropriate to the nature of dataset and the domain of application. If we choose a large number of topics, the analysis process can generate a lot of topics which are too close (in the semantic) to each others. On the other hand, if we assign a small number of topics, the results can be too common. Hence, the learning process can benefits less from this topic information. When conducting topic analysis, one should consider data very carefully. Preprocessing and transformation are important steps because noise words can cause negative effects. In Vietnamese, focus should be made on word segmentation, stop words filter. Also, common personal names in Vietnamese should be removed. In other cases, it is necessary to either remove all Vietnamese sentences written without tones (this writing style is quite often in online data in Vietnamese) or do tone recovery for them. Other considerations also should be made for Vietnamese Identification or Encoding conversions, etc., due to the complex variety of online data. 3.6. Summary This chapter summarized major issues for topics analysis of 2 specific datasets in Vietnamese. We first reviewed some characteristics in Vietnamese. These considerations are significant for dataset preprocessing and transformation in the subsequent processes. We then described each step of preprocessing and transforming data. Significant notes, including specific characteristics of Vietnamese, are also highlighted. In the last part, we demonstrated the results from topics analysis using LDA for some dataset in Vietnamese. The results showed that LDA is a potential method for topics analysis in Vietnamese. 33 Chapter 4. Deployments of General Frameworks This chapter goes further into details of the deployments of general frameworks for the two tasks: classification and clustering for Vietnamese Web Search Results. Evaluation and Analysis for our proposals are also considered in the next subsections. 4.1. Classification with Hidden Topics 4.1.1. Classification Method Figure 4.1. Classification with VnExpress topics The objective of classification is to automatically categorize new coming documents into one of k classes. Given a moderate training dataset, an estimated topic model and k classes, we would like to build a classifier based on the framework in Figure 4.1. Here, we use the model estimated from VnExpress dataset with LDA (see section 3.3. for more details). In the following subsections, we will discuss more about important issues of this deployment. a. Data Description For training and testing data, we first submit queries to Google and get results through Google API [19]. The number of query phrases and snippets in each train and test dataset are shown in Table 4.1 Google search results as training and testing dataset. The search phrases for training and test data are designed to be exclusive. Note that, the training and testing data here are designed to be as exclusive as possible. b. Combining Data with Hidden Topics The outputs of topic inference for train/new data are topic distributions, each of which corresponds to one snippet. We now have to combine each snippet with its hidden topics. 34 This can be done by a simple procedure in which the occurrence frequency of a topic in the combination depends on its probability. For example: a topic with probability greater than 0.03 and less than 0.05 have 2 occurrences, while a topic with probability less than 0.01 is not included in the combination. One demonstrated example is shown in Figure 4.2. Table 4.1 Google search results as training and testing dataset. The search phrases for training and test data are designed to be exclusive Training dataset Testing dataset Domains #phrases #snippets #phrases #snippets Business 50 1.479 9 270 Culture-Arts 49 1.350 10 285 Health 45 1.311 8 240 Laws 52 1.558 10 300 Politics 32 957 9 270 Science – Education 41 1.229 9 259 Life-Society 19 552 8 240 Sports 45 1.267 9 223 Technologies 51 1.482 9 270 c. Maximum Entropy Classifier The motivating idea behind maximum entropy [34][35] is that one should prefer the most uniform models that also satisfy any given constraints. For example, consider a four-class text classification task where we told only that on average 40% documents with the word “professor” in them are in the faculty class. Intuitively, when given a document with “professor” in it, we would say it has a 40% chance of being a faculty document, and a 20% chance for each of the other three classes. If a document does not have “professor” we would guess the uniform class distribution, 25% each. This model is exactly the maximum entropy model that conforms to our known constraint. Although maximum entropy can be used to estimate any probability distribution, we only consider here the classification task; thus we limit the problem to learning conditional distributions from labeled training data. Specifically, we would like to learn the conditional distribution of the class label given a document. 35 Figure 4.2 Combination of one snippet with its topics: an example Constraints and Features In maximum entropy, training data is used to set constraints on the conditional distribution. Each constraint shows a characteristic of the training data and the class should be present in the learned distribution. Any real-valued function of the document and the class can be a feature: . Maximum Entropy enables us to restrict the model distribution to have the same expected value for this feature as seen in the training data, . Thus, we stipulate that the learned conditional distribution (here, c stands for class, and d represents document) must have the below form: ),( cdfi D )|( dcP ( ) ( )⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛= ∑ i ii cdfdZ dcP ,exp1)|( λ (4.1) Where each is a feature, ( cdf i , ) iλ is a parameter which needs to be estimated and ( )dZ is simply the normalizing factor to ensure a proper probability: ( ) ( )∑ ∑= c c ii cdfdZ ,exp λ There are several methods for estimating maximum entropy model from training data such as IIS (improved iterative scaling), GIS, L-BFGS, and so forth. 36 Maximum Entropy for Classification In order to apply maximum entropy, we need to select a set of features. For this work, we use words in documents as our features. More specifically, for each word-class combination, we instantiate a feature as: ⎩⎨ ⎧ == otherwise 0 contains d and ' if 1 ),(', wcc cdf cw Here, c’ is a class, w is a specific word, and d is current document. This feature will check whether “this document d contains the word w and belongs to the class c’ ”. The predicate which states that “this document d contains the word w” is called the “context predicate” of the feature. 4.1.2. Experiments a. Experimental Settings For all the experiments, we based on hidden topics analysis with LDA as described in the previous chapter. We then conduct several experiments: one for learning without hidden topics and the others for learning with different numbers of topic models of the VnExpress dataset which are generated by doing topic analysis for VnExpress dataset with 60, 80, 100, 120, 140 and 160 topics. For learning maximum entropy classifier, we use JMaxent [39] and set the context predicate and feature thresholds to be zero; the other parameters are set at defaults. b. Evaluation Traditional Classification use Precision, Recall and F-1 measure to evaluate the performance of the system. The meanings of such measures are given below: Precision of a classifier with respect to a class is the fraction of the number of examples which are correctly categorized into that class over the number of examples which are classified into that class: c class as classified examples# c class as classifiedcorrectly examples#Precisionc = Recall of a classifier with respect to a class is the fraction of the number of examples which are correctly categorized into that class over the number of examples which belong to that class (by human assignment): c class tobelong examples all# c class as classifiedcorrectly examples#Recallc = 37 To measure the performance of a classifier, it is usually used F-1 measure which is the harmonic mean of precision and recall: cc cc c RecallPrecision RecallPrecision2 1-F + ××= c. Experimental Results and Discussion 62 64 66 68 70 72 74 Wi tho ut To pic s 60 to pic s 80 to pic s 10 0 t op ics 12 0 t op ics 14 0 t op ics 16 0 t op ics Precision Recall F1-measure Figure 4.3. Learning with different topic models of VnExpress dataset; and the baseline (without topics) 62.02 70.86 72.45 72.25 71.91 72.26 65.94 66.41 67.08 66 56 58 60 62 64 66 68 70 72 74 1.3 5 2.7 4.0 5 5.3 52 6.5 52 7.7 52 8.8 59 9.9 09 10 .72 11 .13 Size of labeled training data (x1000 examples) F1 m ea su re (% ) w ith hidden topic inference baseline (w ithout topics) Figure 4.4. Test-out-of train with increasing numbers of training examples. Here, the number of topics is set at 60topics 38 Table 4.2. Experimental results of baseline (learning without topics) Class Human Model Match Pre. Rec. F1-score Business 270 347 203 58.50 75.19 65.80 Culture-Arts 285 260 183 70.38 64.21 67.16 Health 240 275 179 65.09 74.58 69.51 Laws 300 374 246 65.78 82.00 73.00 Politics 270 244 192 78.69 71.11 74.71 Science 259 187 121 64.71 46.72 54.26 Society 240 155 106 68.39 44.17 53.67 Sports 223 230 175 76.09 78.48 77.26 Technologies 270 285 164 57.54 60.74 59.10 Avg.1 67.24 66.35 66.79 Avg.2 2357 2357 1569 66.57 66.57 66.57 Table 4.3. Experimental results of learning with 60 topics of VnExpress dataset Class Human Model Match Pre. Rec. F1-score Business 270 275 197 71.64 72.96 72.29 Culture-Arts 285 340 227 66.76 79.65 72.64 Health 240 256 186 72.66 77.5 75 Laws 300 386 252 65.28 84 73.47 Politics 270 242 206 85.12 76.3 80.47 Science 259 274 177 64.6 68.34 66.42 Society 240 124 97 78.23 40.42 53.3 Sports 223 205 173 84.39 77.58 80.84 Technologies 270 255 180 70.59 66.67 68.57 Avg.1 73.25 71.49 72.36 Avg.2 2357 2357 1695 71.91 71.91 71.91 39 50 55 60 65 70 75 80 85 90 95 100 Bu sin es s Cu ltu re -A rts He alt h La ws Po liti cs Sc ien ce So cie ty Sp or ts Te ch no log ies Av er ag e F1 -M ea su re Without Topics With Hidden Topics Inference Figure 4.5 F1-Measure for classes and average (over all classes) in learning with 60 topics Figure 4.3 shows the results of learning with different settings (without topics, with 60, 80, 100, 120, 140 topics) among which learning with 60 topics got the highest F-1 measure (72.91% in comparison with 66.57% in baseline – see Table 4.2 and Table 4.3). When the number of topics increase, the F-1 measures vary around 70-71% (learning with 100, 120, 140 topics). This shows that learning with hidden topics does improve the performance of classifier no matter how many numbers of topics is chosen. Figure 4.4 depicts the results of learning with 60 topics and different number of training examples. Because the testing dataset and training dataset are relatively exclusive, the performance is not always improved when the training size increases. In any cases, the results for learning with topics are always better than learning without topics. Even with little training dataset (1300 examples), the F-1 measure of learning with topics is quite good (70.68%). Also, the variation of F-1 measure in experiments with topics (2% - from 70 to 72%) is smaller than one without topics (8% - from 62 to 66%). From these observations, we see that our method does take effects even with little learning data. 40 4.2. Clustering with Hidden Topics 4.2.1. Clustering Method Figure 4.6. Clustering with Hidden Topics from VnExpress and Wikipedia data Web search clustering is a solution to reorganize search results in a more convenient way for users. For example, when a user submits query “jaguar” into Google and wants to get search results related to “big cats”, s/he need go to the 10th, 11th, 32nd, and 71st results. If there is a group named “big cats”, the four relevant results can be ranked high in the corresponding list. Among previous works, the noticeable and most successful clustering system is Vivisimo [49] in which the techniques are kept unknown. This section considers deployment issues of clustering web search results with hidden topics in Vietnamese. a. Topic Inference and Similarity For each snippet, after topic inference we get the probability distribution of topics over the snippet. From that topic distribution for each snippet, we construct the topic vector for that snippet as following: the weight of a topic will be assigned zero if its probability less than a predefined ‘cutt-off threshold’, and be assigned the value of its probability otherwise. Suppose that weights for words in the term vector of the snippet have been normalized in some way (tf; tf-idf; etc), the combined vector corresponding to snippet i- th has the following form: { }||121 ,...,,,...,, VKi wwtttd = (4.2) 41 Here, ti is the weight for topic i-th in K analyzed topics (K is a constant parameter of LDA); wi is the weight for word/term i-th in vocabulary V of all snippets. Next, for 2 snippets i-th and j-th, we use the cosine similarity to measure the similarities between topic-parts as well as between term-parts of the 2 vectors. ∑∑ ∏ == = × =− K k kj K k ki K k kjki ji tt tt partstopicsim 1 2 , 1 2 , 1 ,, , )( ∑∑ ∏ == = × =− || 1 2 , || 1 2 , || 1 ,, , )( V t tj V t ti V t tjti ji ww ww partswordsim We later propose the following combination to measure the final similarity between them: ( ) parts)-word(1)partstopic(),( simsimddsim ji ×−+−×= λλ (4.3) Here, λ is a mixture constant. If 0=λ , we calculate the similarity without the support of hidden topics. If 1=λ , we measure the similarity between 2 snippets from hidden topic distributions without concerning words in snippets. b. Agglomerative Hierarchical Clustering Hierarchical clustering [48] builds (agglomerative), or breaks up (divisible), a hierarchy of clusters. The traditional representation of this hierarchy is a tree called dendrogram. Agglomerative algorithms begin with each element as a separate cluster and merge them into successively larger clusters. Cutting the tree at a given height will give a clustering at a selected precision. In the example in Figure 4.7, cutting after the second row will generate clusters {a} {b c} {d e} {f}. Cutting after the third row will yield clusters {a} {b c} {d e f}, which is a coarser clustering, with a smaller number of larger clusters. The method builds the hierarchy from the individual elements by progressively merging clusters. In our example, we have six elements {a} {b} {c} {d} {e} and {f}. The first step is to determine which elements to merge in a cluster. Usually, we want to take the two closest elements, according to the chosen similarity. Optionally, one can construct a similarity matrix at this stage, where the number in the i- th row j-th column is the similarity/distance between the i-th and j-th elements. Then, as 42 clustering progresses, rows and columns are merged as the clusters are merged and the similarities updated. This is a common way to implement this type of clustering, and has the benefit of catching distances between clusters. Figure 4.7. Dendrogram in Agglomerative Hierarchical Clustering Suppose that we have merged the two closest elements b and c, we now have the following clusters {a},{b,c},{d},{e}, and {f}, and want to merge them further. To do that, we need to measure the similarity/distance between {a} and {b c}, or generally similarity between two clusters. Usually the similarity between two clusters A and B can be calculated as one of the following: - The minimum similarity between elements of each cluster (also called complete linkage clustering): ( ){ }ByAxyxsim ∈∈ ,:,min - The maximum similarity between elements of each cluster (also called single linkage clustering): ( ){ }ByAxyxsim ∈∈ ,:,max - The mean similarity between elements of each clusters (also called average linkage clustering): ( )∑∑ ∈ ∈Ax By yxsim BA , |||| 1 Each agglomerative occurs at a smaller similarity between clusters than the previous agglomeration, and one can decide to stop clustering either when the clusters are too far apart to be merged (similarity criterion) or when there is a sufficiently small number of clusters (number criterion). 43 c. Labeling Clusters Given a set of clusters for a text collection, our goal is to generate understandable semantic labels for each cluster. We now state the problem of cluster labeling similarly to the problem of “topic labeling problem” [27] as follows: Definition 1: A cluster ( ) in a text collection has a set of “close” snippets (here, we consider snippets are small documents), each cluster is characterized by an “expected topic distribution” Cc∈ cθ which is the average of topic distributions of all snippets in the cluster. Definition 2: A “cluster label” or a “label” l for a cluster Cc∈ is a sequence of words which is semantically meaningful and covers the latent meaning of cθ . Words, phrases, and sentences are all valid labels under this definition. Definition 3 (Relevance Score) The relevance score of a label to a cluster cθ , ( )cls θ, , measures the semantic similarity between the label and the topic model. Given that both and are meaningful candidate labels, is a better label for c than if 1l 2l 1l 2l ( ) ( cc lsls )θθ ,, 21 > With these definitions, the problem of cluster labeling can be defined as follows: Let be a set of N clusters, and },...,,{ 21 NcccC = { }siiii lllL ,2,1, ,...,,= be the set of candidate cluster labels for the cluster number i in C. Our goal is to select the most likely label for each cluster. Candidate Label Generation Candidate label is the first phrase to label clusters. In this work, we generate candidates based on “Ngram Testing” which extract meaningful phrases from word n-grams based on statistical tests. There are many methods for testing whether an n-gram is meaningful collocation/phrase or just co-occur by accidence. Some methods depend on statistical measures such as mutual information. Others rely on hypothesis testing techniques. The null hypothesis usually assumes that “the words in an n-gram are independent”, and different test statistics have been proposed to test the significance of violating the null hypothesis. For the experiments, we use the n-gram hypothesis testing (n <=2) which depend on chi- square test [11] to find out meaningful phrases. In other words, there are two types of label candidates: (1) non-stop words (1-gram); and (2) a phrase of 2 consecutive words (2-grams) with its chi-square value calculated from a large collection of text is greater than a threshold - the “colocThreshold”. 44 Table 4.4. Some collocations with highest values of chi-square statistic Collocation (Meaning in Enlish) Chi-square value TP HCM (HCM city) 2.098409912555148E11 Monte Carlo (Monte Carlo) 2.3750623868571806E9 Thuần_phong mỹ_tục (Habits and Customs) 8.404755120045843E8 Bin Laden (Bin Laden) 5.938943787195972E8 Bộ Vi_xử_lý (Center Processing) 3.5782968749839115E8 Thép_miền_nam Cảng_Sài_gòn (a football club) 2.5598593044043452E8 Trận chung_kết (Final Match) 1.939850017618072E8 Đất_khách quê_người (Forein Land) 1.8430912500609657E8 Vạn_lý trường_thành (the Great Wall of China) 1.6699845099865612E8 Đi_tắt đón_đầu (Take a short-cut, Wait in front) 1.0498738800702788E8 Xướng_ca vô_loài 1.0469589600052954E8 Ổ cứng (Hard Disk) 9.693021145946936E7 Sao_mai Điểm_hạn (a music competition) 8.833816801460913E7 Bảng xếp_hạng (Ranking Table) 8.55072554114269E7 Sơ_yếu lý_lịch (Curiculum Vitae) 8.152866670394194E7 Vốn điều_lệ (Charter Capital) 5.578214903954915E7 Xứ_sở sương_mù (England) 4.9596802405895464E7 Windows XP (Windows XP) 4.8020442441390194E7 Thụ_tinh ống_nghiệm (Test-tube Fertilization) 4.750102933435161E7 Outlook Express (Outlook Express) 3.490459668749844E7 Công_nghệ thông_tin (Information Technology) 1587584.1576983468 Hệ_thống thông_tin (Information System) 19716.68246929993 Silicon Valley (Silicon Valley) 1589327.942940336 Relevance Score We borrowed the ideas of simple score and inter-cluster score from [27]. Simple score is the relevance of a label and a specific cluster without concerning the other clusters. Inter- cluster score of a label and a cluster, on the other hand, look at not only the interesting cluster but also other clusters. As a result, the labels chosen using inter-cluster score discriminate clusters better than simple score. In order to get relevance between a label candidate (l) and a cluster (c) using simple score, we use 3 types of features including the topic similarity (topsim) between topic- distribution of the label candidate and the “expected topic distribution” of the cluster, the length of candidate (lenl), number of snippets in the cluster c containing this phrase (cdfl,c). More concretely, given one candidate label lwwwl ...21= , we first inference the 45 topic distribution lθ for the label also by using the estimated model of the universal dataset. Next, the simple relevance score of l is measured with respect to a cluster cθ by using cosine similarity for topic similarity [48]: (4.4) lclclc lencdflsplscore θ ×+×+×α θ βθ= ,|(cosine),( ) γ A good cluster label is not only relevant to the current cluster but also help to distinguish this cluster to another. So, it is very useful to penalize the reference score of a label with respect to the current cluster by the reference scores of that label to other clusters ( and ). Thus, we get the inter-cluster scoring function as follows: c 'c Cc∈' cc ≠' ∑ ≠∈ ×−= ccCc ccc lsplscorelsplscorelscore ',' ' ),(),(),( θμθθ (4.5) The candidate labels of a cluster are sorted - in descending order - by its relevance and the 4 most relevant candidates are then chosen as labels for the cluster. d. Ranking within Cluster We reorganize the order of documents in each cluster by the relevance between its topic distribution and the “expected topic distribution” of the cluster. If the relevant measures of 2 snippets within one cluster are the same, their old ranks in the complete list determined by Google are used to specify the final ranks. In other words, if the 2 snippets have the same relevant score, the one with higher old rank has higher rank in the considered cluster. 4.2.2. Experiments a. Experimental Settings For experiments, we first submit 10 ambiguous queries to Google and get back about 200 search result snippets [Table 4.5]. The reason why we choose these queries is that they are likely to contain multiple sub-topics. Thus, we will benefit more from clustering search results. Table 4.5. Queries submitted to Google Types Queries General Terms Sản phẩm (products), thị trường (market), triển lãm (exhibition), công nghệ (technology), đầu tư (investment), hàng hóa (goods) Ambiguous Terms Ma trận (matrix), tài khoản (account), hoa hồng (rose/money), ngôi sao (star) 46 For each query, we cluster search results using HAC and hidden topics which are discovered from the collection of Vnexpress and Wikipedia data (see previous chapter) with 200 topics. Parameters for clustering are shown as in the following table. Table 4.6. Parameters for clustering web search results Parameters Meaning Values Normalized Method for constructing word-part vector of the snippet TF Similarity between Clusters How to calculate similarity between 2 clusters based on similarites between pair of snippets Average Linkage Cut-off A topic with its probability less than this value will be weighted as zero in topic-part vector of the snippet 0.01 Lamda Mixture of topic-part and word-part in the vector of the snippet 0.4 mergeThreshold The smallest similarity with which two clusters can be merged (similarity criterion) [see 4.2.1. b. ] 0.13 Anpha Weight of topic-similarity feature in the simple scoring method [Eq.4.4] 10 Beta Weight of the “cdf” feature in the simple scoring method [Eq.4.4] 2 Gama Weight of the “len” feature in the simple scoring method [Eq.4.4] 2 Muy Parameter in the inter-cluster scoring method [Eq.4.5] 0.35 colocThreshold The smallest chi-square value that 2-grams can be get to form a collocation (a meaningful phrase for labeling) 2500.0 b. Evaluation In order to evaluate the clustering method, for each query, we specify “good clusters”, which are clusters with snippets telling us about a coherent topic. We count the number of snippets in good clusters for each query and calculate the ‘coverage’ as following: query for this snippets ofnumber clusters" good" selectedover snippets ofnumber cov =erage (4.6) For each good cluster of some query, we evaluate both the quality of the cluster as well as the ranking policy by calculating P@5, P@10 and P@20 which are the precision at top 5, top 10, and top 20 snippets respectively. c. Experimental Results and Discussions 47 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 công nghệ đầu tư hàng hóa hoa hồng Ma trận Ngôi sao sản phẩm tài khoản thị trường triển lãm queries pr ec is io n P@5 P@10 P@20 Figure 4.8 Precision of top 5 (and 10, 20) in best clusters for each query 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 công nghệ đầu tư hàng hóa hoa hồng ma trận ngôi sao sản phẩm tài khoản thị trường triển lãm queries co ve ra ge (% ) Top 5 Coverage Top 10 Coverage Figure 4.9 Coverage of the top 5 (and 10) good clusters for each query Figure 4.8 shows the precision of top 5 (and 10, 20) in best clusters for each query. Although the performance depends heavily on search results returned by the Web search engine, the overall quality is satisfactory (the precision is above 80% on average). For some queries such as “công nghệ” (technology), the returned snippets focus mostly on the topic of “information technology”, thus making the clustering system depends heavily on the word similarities to determine clusters. As a result, the clustering quality is not as good as for other queries. For queries such as “ma trận” (matrix), the search results vary in multiple domains (movie, game, mathematics, technology – like matrix in cameras) making topic information become really beneficial, the performance for them is quite good (for “ma trận”, P@5, P@10 and P@20 are of 100%, 98%, and 96% respectively). 48 The coverage of the best 5 (and 10) clusters for each query is demonstrated in the figure 4.9. From this figure, we can see that the coverage of 10 best clusters for each query is around 40 – 50 % (of about 250 snippets). This means that these clusters can help users to navigate efficiently through about 10 pages returned from Google (suppose that the number of snippets per page is 10 – the default number of snippets per page of Google). 0 0.5 1 1.5 2 2.5 3 3.5 Phát hiện hành tinh mặt trời nhà khoa học quỹ đạo sao Hải vương trắng trạng thái vũ trụ vật chất lùn khối lượng Snippet 3 Snippet 2 Snippet 1 \ 0 5 10 15 20 25 30 35 40 Topic 107 Topic 141 Topic 9 Topic 185 W ei gh t ( sc al ed a nd ro un de d) Snippet 3 Snippet 2 Snippet 1 Topic 107 (astronomy):mặt_trời trái_đất hành_tinh quỹ_đạo vệ_tinh quan_sát quay mặt_trăng ngôi_sao vũ_trụ vật_thể thiên_thể thiên_văn khối_lượng Although there is still a lot of work to verify our method, these results have partly proved its effect. The most advantage of our clustering method is that not only snippets which share a lot of word choices are considered similar, but also those sharing the hidden topics. As a result, it goes beyond the limitations of different word choices (see Figure 4.10). Snippet 3 = Bên_trong các sao lùn trắng vật_chất ở trạng_thái siêu_đặc như_vậy Snippet 2 = Sao lùn cực nhẹ là những có khối_lượng nhỏ hơn 0,3 lần khối_lượng mặt_trời Trong vùng lân_cận mặt_trời hiện còn vô_số sao lùn có khối_lượng cực Snippet1 = Phát hiện 28 hành_tinh mới ngoài hệ mặt_trời Tin_tức sự_kiện Trong_số 28 hành_tinh mới các nhà_khoa_học phát_hiện một hành_tinh ố Figure 4.10. Word and Topic sharing among 3 snippets of the same cluster about astronomy 49 4.3. Summary This chapter describes details of the deployments of general frameworks in classification and clustering in Vietnamese. From experiments, good results have been observed in both tasks. We can get the improvement of about 8% for the task of classification with sparse data. The topic-oriented clustering method has shown its efficiency in both improving the quality of clustering search results, labeling and re-ranking clusters. These results can be seen as practical evidences for our arguments in the previous chapters. 50 Conclusion Achievements throughout the thesis The main contributions of this thesis lie in the following folds: - Chapter 1 summarize some major text modeling and hidden topic models with particular attention to LDA which has recently shown its success in many applications such as entity resolution, classification, feature selection and so on. These models are milestones for our proposals in the subsequent chapters. - In chapter 2, two general frameworks have been proposed for learning with the support of hidden topics. The main motivation is how to gain benefits from huge sources of online data in order to enhance quality of the Text/Web clustering and classification. Unlike previous studies of learning with external resources, we approach this issue from the point of view of text/Web data analysis that is based on recently successful latent topic analysis models like LSA, pLSA, and LDA. The underlying idea of the framework is that for each learning task, we collect a very large external data collection called “universal dataset”, and then build a learner on both the learning data and the rich set of hidden topics discovered from that collection. - In chapter 3, we discuss important issues and results of topic analysis with LDA for two datasets: VnExpress (199MB) and Wikipedia (270M). Significant considerations about preprocessing and transformation in Vietnamese as well as topic analysis have been highlighted. From the experimental results, we see that LDA is a suitable method for topic analysis in Vietnamese. - Chapter 4 describes two deployments of general frameworks for 2 tasks which are classifying and clustering search results in Vietnamese. Significant improvement for classification and clustering has shown the success of our proposed methods. Future Works Topic Analysis is attractive to many researchers because of its widespread applications in various areas as well as it potentially contains different research trends. In the future, the following research directions could be taken into considerations: - Deployments of general frameworks for Page Rank and Summary in Search Engine. In the task of Page rank, we consider a query as a short document and infer topic distribution for it. Based on the topic distributions of returned pages, we then order them with respect to their relevance to the topic distribution of the query, 51 thus providing user with topic-oriented ranking. In the Summary problem, for each page result, we can take sentences which are closest in topic-distribution with the query and contain keywords as the summary for that page. For the implementations, the topic inference can be done offline for all the web pages stored in the search engine so that reduce the online computations. - Tracking Online News over time using Dynamic Topic Models: DTM is an extension to Latent Dirichlet Allocation and has proposed by Blei et. al. (2006). This is a useful tool for tracking and visualizing the development of topics over time. One application of this is to track news about business so that one can answer the questions like “during which time, attentions will be paid to some business field”. This can help much for stockbroker to make their investment decisions. 52 References Vietnamese References [1]. Mai, N.C., Vu, D.N., Hoang, T.P. (1997), “Cơ sở ngôn ngữ học và tiếng Việt”, Nhà xuất bản Giáo dục English References [2]. Andrieu, C., Freitas, N.D., Doucet, A. and M.I. Jordan (2003), “An Introduction to MCMC for Machine Learning”, Machine Learning Journal, pp. 5- 43. [3]. Banerjee, S., Ramanathan, K., and Gupta, A (2007), “Clustering Short Texts Using Wikipedia”, In Proceedings of ACL. [4]. Bhattacharya, I. and Getoor, L. (2006), “A Latent Dirichlet Allocation Model for Entity Resolution”, In Proceedings of 6th SIAM Conference on Data Mining, Maryland, USA. [5]. Blei, D.M., Ng, A.Y. and Jornal, M.I. (2003), “Latent Dirichlet Allocation”, Journal of Machine Learning Research 3, pp.993-1022 [6]. Blei, D. and Jordan, M. (2003), “Modeling annotated data”, In Proceedings of the 26th annual International ACM SIGIR Conference on Research and Development in Information Retrieval 127–134. ACM Press, New York, NY. [7]. Blei, M. and Lafferty, J. (2006), “Dynamic Topic Models”, In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA. [8]. Blei, M. and Lafferty, J. (2007), “A Correlated Topic Model of Science”, The Annals of Applied Statistics. 1, pp. 17-35 [9]. Blum, A. And Mitchell, T. (1998), “Combining Labeled and Unlabeled Data with Co-training”. In Proceedings of COLT. [10]. Bollegala, D., Matsuo, Y., And Ishizuka, M. (2007), “Measuring Semantic Similarity between Words using Web Search Engines”. In Proceedings of WWW. [11]. Christopher, D.M., Hinrich, S. (Jun, 1999), Foundations of Statistical Natural Language Processing. [12]. Chuang, S.L., and Chien, L.F. (2005), “Taxonomy Generation for Text Segments: a Practical Web-based Approach”, ACM Transactions on Information Systems. 23, pp.363-386. [13]. Deerwester, S., Furnas, G.W., Landauer, T.K., and Harshman, R.(1990), “Indexing by Latent Semantic Analysis”, Journal of the American Society for Information Science. 41, 391-407. [14]. Dhillon, I., Mallela, S., And Kumar, R. (2002), “Enhanced Word Clustering for Hierarchical Text Classification”, In Proceedings of ACM SIGKDD 53 [15]. Erosheva, E., Fienberg, S. and Lafferty, J. (2004). Mixed-membership models of scientific publications. Proc. Natl. Acad. Sci. USA 97 11885–11892. [16]. Gabrilovich, E. and Markovitch, S. (2007), “Computing Semantic Relatedness using Wikipedia-based Explicit Semantic Analysis”, In Proceedings of IJCAI [17]. Girolami, M. and Kaban, A. (2004). “Simplicial mixtures of Markov chains: Distributed modelling of dynamic user profiles”. In Advances in Neural Information Procesing Systems 16 9–16. MIT Press, Cambridge, MA. [18]. Griffiths, T., Steyvers, M., Blei, D. and Tenenbaum, J. (2005), “Integrating topics and syntax”, In Advances in Neural Information Processing Systems 17 537–544, MIT Press, Cambridge, MA. [19]. Google Search, 2007. [20]. Heinrich, G., “Parameter Estimation for Text Analysis”, Technical Report. [21]. Hofmann, T., “Probabilistic Latent Semantic Analysis”, In Proceedings of UAI [22]. Hofmann, T., (2001), “Unsupervised Learning by Probabilistic Latent Semantic Analysis”, Machine Learning. 42, pp. 177-196 [23]. Lawrie, D. J. and Croft, W.B. (2003), “Generating Hierarchical Summaries for Web Searches”, In Proceedings of ACM SIGIR. [24]. Letsche, T. A. and Berry, M. W. (1997), “Large-Scale Information Retrieval with Latent Semantic Analysis”, Information Science. 100, pp. 105-137 [25]. Liu, B., Chin, C. W., and Ng, H. T., “Mining Topic-Specific Concepts and Definitions on the Web”, In Proceedings of WWW [26]. Latent Semantic Analysis, [27]. Mei, Q., Shen, X., And, Zhai, C., “Automatic Labeling of Multinomial Topic Models”. In Proceedings of ACM SIGKDD, 2007 [28]. Modha, D.S. and Spangler, W.S., “Clustering Hypertext with Applications to Web Searching”, In Proceedings of the 11th ACM on Hypertext and Hypermedia [29]. Mccallum, A., Corrada-emmanuel, A. And Wang, X. (2004). “The author– recipient–topic model for topic and role discovery in social networks: Experiments with Enron and academic email”, Technical report, Univ. Massachusetts, Amherst. [30]. Nigram, K., McCallum, A., Thrun, S., and Mitchell, T., “Text Classification from Labeled and Unlabeled Documents using EM”, Machine Learning. 39, pp. 103-134 [31]. Nguyen, C.T., Nguyen, T.K, Phan, X.H., Nguyen, L.M. and Ha, Q.T., “Vietnamese Word Segmentation with CRFs and SVMs: An Investigation”, In Proceedings of the 20th Pacific Asia Conference on Language, Information and Compuation (PACLIC20), pp.215-222, Wuhan, China, 1-3 November 2006 [32]. Nguyen, C.T., “JVnSegmenter: A Java-based Vietnamese Word Segmentation Tool”, 2007 54 [33]. Nguyen, C.T., Tran, T.O., Ha, Q.T., Phan, X.H, “Named Entity Recognition in Vietnamese Free-Text and Web Documents Using Conditional Random Fields”, The Workshop on Asian Applied NLP and language resource development, Sirindhorn International Institute of Technology, Pathumthani, Thailand, March 13, 2007. [34]. Nguyen, V.C., Nguyen, T.T.L., Ha, Q.T.., Phan, X.H. (2006), “A Maximum Entropy Model for Text Classification”, In Proceeding of International Conference on Internet Information Retrieval, pp. 143-149, Korea. [35]. Nigam, K., Lafferty, J., McCallum, A. (1999), “Using Maximum Entropy for Text Classification”, In Proceeding of the International Joint Conference on Artificial Intelligence. [36]. Nutch: an open-source search engine, [37]. Phan, X.H, “JWebPro: A Java-based Web Processing Toolkit” 2007 [38]. Phan, X.H, “GibbsLDA++: A C/C++ and Gibbs Sampling based Implementation of Latent Dirichlet Allocation (LDA)”, 2007 [39]. Phan, X.H, “JTextPro: A Java-based Text Processing Toolkit”, [40]. Papadimitriou, C., Tamaki, H., Raghavan, P., and Vempala, S., “Latent Semantic Indexing: A probabilistic analysis”, pages 159-168, 1998 [41]. Popescul, A., Ungar, L., Pennock, D., and Lawrence, S., (2001) “Probabilistic Models for Unified Collaborative and Content-based Recommendation in Sparse- data environments”, In Uncertainty in Artificial Intelligence, Proceeding of the Seventeenth Conference. [42]. Rosen-zvi, M., Griffiths, T., Steyvers, M. and Smith, P. (2004), “The author-topic model for authors and documents”, In AUAI’04: Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence 487–494. AUAI Press, Arlington, VA. [43]. Sahami, M., and Heilman, T.D. (2006), “A Web-based Kernel Function for Measuring the Similarity of Short Text Snippets”, In Proceedings of WWW [44]. Sato, I. and Nakagawa, H., “Knowledge Discovery of Multiple-Topic Document using Parametric Mixture Model with Dirichlet Prior”, In Proceedings of ACM SIGKDD, 2007 [45]. Schonofen, P., “Identifying Document Topics using the Wikipedia Category Network”, In Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence, 2006 [46]. Sivic, J., Rusell, B., Efros, A., Zisserman, A. and Freeman, W. (2005), “Discovering object categories in image collections” Technical report, CSAIL, Massachusetts Institute of Technology [47]. VnExpress: the online Vietnamese news, [48]. Vector Space Model, 55 [49]. Vivisimo Web Search, [50]. Wikipedia: the free encyclopedia, 2007 [51]. Zamir, O. and Etzioni, O., “Grouper: a Dynamic clustering interface to Web search results”, In Proceedings of WWW. [52]. Zeng, H.J., He, Q.C., Chen, Z., Ma, W.Y., And Ma, J., “Learning to Cluster Web Search Results”, In Proceedings of ACM SIGIR, 2004 56 Appendix: Some Clustering Results Clustering results for the query “ma trận” (matrix) 1 hệ_phương_trình(18) tuyến_tính, đại_số, định_thức, số_phức, bài_toán, thuần_nhất, lượng_giác, số_ảo, khả, 1. Bửu_bối giúp đậu mấy môn toán đại_cương phương_pháp tính hŕm ... lấy giới_hạn ma_trận số_thực ma_trận số_ảo lượng_giác thực lượng_giác ảo 2. Đại_số Diễn_Đàn Sinh_Viên Quy_Nhơn Bài_4 Cho ma_trận vuông có các phần_tử trên đường_chéo chính là 2007 các phần_tử Giải hệ_phương_trình tuyến_tính thuần_nhất với là ma_trận cột 3. Đề_cương môn_học Biết cách biểu_diễn các đồng cấu bởi ma_trận đồng_thời biết sử_dụng các phép_toán trên ma_trận và biết cách giải một hệ_phương_trình đại_số tuyến_tính ứng 2 phim(12) bộ phim, diễn_viên, vai diễn, điện_ảnh thế_giới, ngôi_sao điện_ảnh, phim ăn_khách, phim_truyện, ngôi_sao, diễn, 1. phim truyen han_quoc ma tran tai_hien dvd Những khách_hàng mua Phim_Truyện Hàn_Quốc Ma_Trận Tái_Hiện DVD HQ_Pro cũng mua những món_hàng sau_đây 2. 24h.com.vn Giới_thiệu các ngôi_sao điện_ảnh thế_giới và Việt_nam Với vai diễn Neo trong The_Matrix Ma_trận 1999 Reeves đã đưa bộ phim trở thành_bộ phim ăn_khách và được nhiều người săn_lùng 3. Ma_Trận I Ii Iii Tổng_Hợp 3 Phần Của_Phim VN Zoom_forum Phim The_Matrix quả_là một phim_hay không_chỉ bởi diễn_viên bởi kỹ_xảo hình_ảnh âm_thanh 3 game(8) game, game trực_tuyến, game nhập_vai, trò_chơi, game online, picachu, phiêu_lưu, tải game, giải_trí trực_tuyến, chơi game, 1. Game Online Cuộc Chiến Ma_Trận Cuộc Chiến Ngoài Hành_Tinh Cuộc Phiêu_Lưu Của Chó_Con Cướp_Biển_Caribê Dap_Tho Đi Tìm Cún_Con Lau_Kính 2. Giới_thiệu các trò_chơi mới hướng_dẫn chơi game Thất_bại vẫn tiếp_tục đeo_bám Ma_Trận khi The Matrix_Online game nhập_vai trực_tuyến đầy tham_vọng 3. game_online tải game game_flash game_mini game hay game trực_tuyến Tên_Game Ma_trận Description Chúng_ta đang ở trong ma_trận hãy tiêu_diệt hết bọn nhân_bản nào 4 led(5) led, máy_ảnh, cảm_biến, nét, tat ca, kiểu ma_trận, linh_kiện, tu van, đo, sáng, 1. ĐIỀU_KHIỂN MA_TRẬN LED VÀ BÀN_PHÍM HEX LED MATRIX_ 2. Nội_dung các con chíp_LED nguyên_vật_liệu đèn phát_quang các thiết_bị năng_lượng cao linh_kiện điện_tử có độ_phân_giải cao điểm ma_trận 3. Nikon D2Xs Máy_ảnh chuyên_dụng tốt nhất DIỄN_ĐÀN CÔNG_NGHỆ VIỆT_NAM Nikon còn trang_bị mạch đo sáng kiểu ma_trận 3D 5 máy_in(2) máy_in, đòi_hỏi, ứng_dụng rộng_rãi, hóa đơn, http, môi_trường, series, tốc_độ, in_nhanh, raovat, 1. MÁY_IN HÓA ĐƠN POSIFLEX_PP 5600_SERIES Mua_ban rao_vat Raovat Tốc_độ in_nhanh in theo phương_pháp ma_trận điểm 2. Các máy_in ma_trận dòng_T6212 T6215 và T6218 là những máy_in tốc_độ cao phù_hợp trong môi_trường đòi_hỏi in_ấn với số_lượng lớn Tốc_độ tương_ứng 57 Clustering results for the query “ngôi sao” (star) 1 điện_ảnh(23), ngôi_sao điện_ảnh, điện_ảnh thế_giới, phim, bộ phim, nữ diễn_viên, ngôi_sao phim, thế_giới điện_ảnh, diễn_viên, thế_giới,, 1. Giới_thiệu các ngôi_sao điện_ảnh thế_giới và Việt_nam Khi công_bố nữ diễn_viên chính sẽ đóng cặp với ngôi_sao điện_ảnh xứ_Hàn Bae_Yong_Joon là Lee_Ji_Ah khiến ai cũng ngỡ_ngàng 2. Hai ngôi_sao võ_thuật của Trung_Quốc góp_mặt trong bộ phim mới Hai ngôi_sao võ_thuật của Trung_Quốc góp_mặt trong bộ phim mới King of_Kungfu 3. phim nhiều thể loại thế_giới điện_ảnh với các thông_tin nóng_hổi Phim đời_tư các ngôi_sao điện_ảnh của thế_giới và việt_nam Phim bình_luận về các bộ phim hay Lịch chiếu_phim trên_HBO CINEMAX STAR_MOVIE 2 ca_nhạc(12), ngôi_sao ca_nhạc, ban_nhạc, nhạc pop, thể_thao, yêu_mến, mariah, mariah_carey, nhạc_sĩ, pop, 1. Các ngôi_sao ca_nhạc ban_nhạc nổi_tiếng Trang chân_dung nghệ_sĩ ca_sĩ nhạc_sĩ và ban_nhạc nổi_tiếng 2. Năm 2005 Eva ký hợp_đồng với Oréal hãng mỹ_phẩm nổi_tiếng của Pháp hợp_đồng đã đưa cô lên ngang_hàng với các ngôi_sao như ca_sĩ da_màu Beyonce 3. Các ngôi_sao ca_nhạc ban_nhạc nổi_tiếng Mariah Tuy_nhiên lợi_thế trẻ_trung của teen_star vẫn chưa đủ_sức làm lu_mờ một số ngôi_sao gạo_cội trong_đó có Mariah_Carey Người_ta gọi cô là Diva quên tuổi 3 bóng_đá(10) sân_cỏ, ngôi_sao sân_cỏ, premiership, vòng chung_kết, vòng thi, trung_tâm, tphcm, giải, ronaldo, 1. Milan chưa từ_bỏ ý_định mua_Ronaldinho Chủ_tịch Milan Silvio_Berlusconi cho_biết ông sẵn_sàng nối_lại đàm phám với Barca về trường_hợp của Ronaldinho khi đội_bóng chủ sân 2. Tin nhanh bóng_đá Ngôi_sao sân_cỏ Cháy_mãi Ronaldo 24h.com.vn Tin nhanh bóng_đá 3. 24h.com.vn Tin nhanh bóng_đá Ngôi_sao sân_cỏ Premiership 24h.com.vn Tin nhanh bóng_đá Ngôi_sao sân_cỏ Các tin khác của mục Ngôi_sao sân_cỏ Tổng_hợp 24H 4 mặt_trời(5) quỹ_đạo, quanh, thiên_hà, địa_cầu, hành_tinh, get the, lùn, single_network, vietnamkhoa_học, 1. Phot hiện 28 hành_tinh mới ngoài hệ mặt_trời 2. Người góp_chìa Sao lùn cực nhẹ là những ngôi_sao có khối_lượng nhỏ hơn 0,3 lần khối_lượng mặt_trời 3. an binh hanh_phuc Kích_thước của các ngôi_sao vŕ khoảng_cách của chúng đối_với trái_đất vượt Mặt_trời của chúng_ta lŕ ngôi_sao gần chúng_ta nhất cách địa_cầu độ_chừng 5 mặc đẹp(3) mặc, thời_trang, mot so, nhat, beyonce knowles, tạp_chí life, biên_tập_viên, knowles, nữ_ca_sĩ, 1. VnExpress Anh 10 ngoi sao thoi trang nhat the_gioi Nữ_ca_sĩ Beyonce Knowles được các biên_tập_viên của tạp_chí Life Style Mỹ bầu chọn là ngôi_sao mặc đẹp và cá_tính nhất năm_nay 2. 10 Ngôi_Sao Quyến_Rũ Nhất Trung_Quốc eVietBay 10 Ngôi_Sao Quyến_Rũ Nhất Trung_Quốc Tin_Tức về Thời_Trang Điện_Ảnh 58 Clustering results for the query “thị trường” (market) 1 otc(29) thị_trường otc, niêm_yết, cổ_phiếu otc, cổ_phiếu, một_số cổ_phiếu, công_ty niêm_yết, 1. Chứng_khoán Ngân_hàng THÔNG_TIN THỊ_TRƯỜNG NGHIÊN_CỨU PHÂN_TÍCH TIN VCBS 2. Vietstock Vietnam Stock Market News and_Information Thong_tin Thị_trường bất_động_sản Cơ_hội vàng cho các nhà đầu_tư 3. Chứng_khoán Biển_Việt Báo_Cáo Tổng_Quan Thị_Trường Cổ_Phiếu 2 kinh_tế thị_trường(20) nền kinh_tế, tăng_trưởng kinh_tế, tốc_độ tăng_trưởng, tăng_trưởng mạnh_mẽ, động_thái, , 1. Làm điếm trong nền kinh_tế thị_trường H-A O 2. Các chuyên_gia phân_tích thị_trường nhận_định thị_trường ĐTDĐ trong năm_nay sẽ không duy_trì được tốc_độ tăng_trưởng hai con_số như trong quý_IV 3. Chính_phủ và thị_trường Diễn_đàn X cafe Vận_hành nền kinh_tế thị_trường có_nghĩa là nhiều vấn_đề sẽ 3 đất(17) đất, thị_trường bất_động_sản, bất_động_sản, căn_hộ chung_cư, đất dự_án, từ_liêm, quy_hoạch, lô_đất, giá đất, nhà_ở, 1. Saigon bất_động_sản Bất_động_sản Nhà_đất Địa_ốc Xây_dựng Bước vào quý_ 2. Thị_trường bất_động_sản Thành_phố Hồ_Chí_Minh vẫn đang sôi VietNamNet_Bridge 3. hị_trường BĐS TP.HCM Vùng ven lên_giá Cotec Group Website Đất các quận_huyện vùng ven_như Thủ_Đức Cần_Giờ Bình_Chánh 4 điện_thoại di_động(11) điện_thoại di_động, fpt, viễn_thông di_động, công_nghệ cdma, dịch_vụ điện_thoại 1. MOBILENET Mobile Online Magazine Cú đột_phá trên thị_trường điện_thoại Năm 2006 khi E Com dịch_vụ điện_thoại cố_định 2. Thị trường viễn thông di động sẽ có sự thay đổi lớn kể từ năm 2006 3. Thị trường di động Việt Nam nửa đầu năm 2007

Các file đính kèm theo tài liệu này:

  • pdfMSc08_Nguyen_Cam_Tu_Thesis_English.pdf
Tài liệu liên quan