Luận văn Phương pháp bayes và ứng dụng trong mạng nơron

PHƯƠNG PHÁP BAYES VÀ ỨNG DỤNG TRONG MẠNG NƠRON ĐÀO HỒNG NAM Trang nhan đề Mục lục Phần mở đầu Chương1: Tổng quan. Chương2: Mạng Nơron xác suất. Chương3: Mạng Nơron nhân tạo. Chương4: Bài toán ứng dụng. Chương5: Kết luận. Phụ lục Tài liệu tham khảo

pdf53 trang | Chia sẻ: maiphuongtl | Lượt xem: 2184 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Luận văn Phương pháp bayes và ứng dụng trong mạng nơron, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Op,n6chiia nhanto'dambaat6ngxacsu1th~unghi<$mb~ng1.Vi v~y, c6th@vie'tlu~tphanlOpBayesvoivi dl)hailOpdu'Oid(;lngtu'dngdu'dng: Quye'tdinh lOp Cl ne'u P(XICI)P(CI)> P(XIC2)P(C2)va quye'tdinh lOp C2 ne'u P(XIC2)P(C2)>P(XICl)P(Cl) Trang 10 Vi cacxac sufftP(XICi)va P(cDco th€ tinhdu'<Jctu m§:udffcho,lu~tBayes(j trencoi nhu'dc,lllgthlfchanhcuabai toantho'ngke phanlOp.Ta thffyca hai xac sufftP(XICi) vaP(Cj)la quailtrQngtrongbai toantho'ngke phanlOpdambaaclfcti€u xacsufft cuasaiso'phanlOp. Vi du 1.1:X6tbaitoanphanlOploaichimvoiP(CI)=P("d~ibang")=0.8vaP(C2) ~ =P("di~uhau") =0.2va dffbie"tcachamm~tdQxacsufftP(XICI),P(XIC2)'Gia sa do'ivoi mQtloai chimmoi,dffdodu'<Jckichco cuano la x =45cm.Ta tinh du'<Jc p(45Ici)=2.2828X 10-2va p(45IC2)=1.1053X 10-2.Vi v~ylu~tphanlOpdt!doanla thuQclOpci("d~ibang")vi P(XICI)P(CI)>P(XIC2)P(C2)'Giasadffbie"txacsuffthong di~uki~nrex)co gia tr~la p(45)=0.3.Xac sufftcuasai so'phanlOpla : P(classification_errorlx)=mill {P(CI,x), P(C2,x)} =min { P(X Ic\)P(c\), p(x IC2)P(C2) } = {0.0754,0.07}=0.07 p(x) p(x) 1.4.Bai tminphanlopBayest6ngquat Chungta se t6ngquathoa lu~tphanlOpBayestrongtru'ongh<Jpcacdo'i tu'<JngthuQcv~nhi~uhonhai lOpva cacd~ctinhdodu'<Jccuacacdo'itu'<Jngco nhi~uhonmOtbie"nd~ctru'ng 1.4.1.Di;}ctrling bQi- vectordi;}ctrting X6tcacd~ctru'ngiatr~thlfc.Tathaythe"cacd~ctru'ngiatr~thlfccuamOt do'itu'<Jngla mOtvectorcOtn chi~ux ERn x\ X2 (1.18)x= Xn Trang 11 voi Xi E R laph~nta thli i cuavectord~ctning.MQtvectord~ctningx (mQtmftu trongkh6nggian d~ctru'ng)thaythe'cho mQtd6i tu'Qngva du'QCcoi la mQtdiSm trongkh6nggianEuclide n chi~u.Sv th6hit%ncv thS cuavectorx baog6mcacdQ docuad6i tu'Qng.Vi dv, d6i voi d<;libangva di~uhall co thSdo du'Qchai d~ctru'ng cuachunglakichcovadQnhanhnhyn(d<;lngvectord~ctru'ng2chi~uX E R2) ~ [ Xl ] [ kiChco ]X = X2 = de)nhanhnhyn (1.19) 1.4.2.Lu~tphanlopBayeschocaed6itu'Q'ngdalop,dad~ctr1ing Cacd6itvongco thSdu'Qcphanvaonhi~ubonhaildpphanbit%t(cactr<;lng thaitv nhien).Nhinchung,cothSgiasamQtd6itu'Qngcoth6thuQCv~Ildp phan bit%t(1tr<;lngthaitvnhienkhacnhau) C={Cj,C2,...,Cj} (1.20) Vi dV,cothSphancacloaichimthanh4 ldp.Ky hit%uP(Cj)la xacsuftti~nnghit%m mad6itu'Qngtie'ptheosethuQcv~ldpCj.XacsufttP(Cj)(i=l,2, ...,I) tu'onglingvoi ty It%cacloai chimtrongldp thli i tronggiOih<;lncuavo so'cac loai chimdaquailsat du'Qc. Hamm~tdQxacsufttco di~ukit%n(tr<;lngthaicuahamm~tdQxacsufttco di~u kit%n)du'Qcky hit%uchungchotfttcacacldpla p(xlcj)(i=l,2, ...,I). Hamm~tdQxac sufttdiSmky hit%ula p(Cj,x) la m~tdQxacsufttmad6i tu'QngtrongldpCjva co vectorgiatrid~ctru'ngla x.Hamm~tdQxacsufttcodi~ukit%nP(cjlx)(i=l,2,1)xac dinhmQtd6itu'Qngldpla Cjdachomagiatridodu'Qcuavectord~ctru'ngla x,xac sua'tP(cjlx)la xacsuftth~unghit%mvataco: I Ip(Ci Ix)=1 i=1 (1.21) Trang 12 Tli 1;'thuye'txacsua'tadabie'tcacquailh~saudayv6i xacsua'tiennghi~mva xacsua'th~unghi~m: p(Cj,x)=p(cjlx)p(x),i=l, 2 p(Cj,x)=p(xlcj)p(cD,i=l, 2 (1.22) trongdorex)la hamm~tdQxacsua'tkhongdieuki~ncuabie'nd?ctrlingx.Tabie't rang: , p(x)=LP(x Ic;)P(c;)=p(x ICl)P(Cl)+"'+p(x Ic,)P(c,) i=1 (1.23) vdi i =1,2, ...,1.Theo dinh1;'Bayes P(XICi)P(Ci) . 1suyra P(Ci Ix) = ,1=1,2,..., p(x) (1.24) , Vi p(x)=LP(x Ic;)P(c;) nen ta co: i=1 P(ei I x) = p(x Ic;)P(c;) .~ ( ,1=1,2,...,1 f:tp x Ic;)P(c;) (1.25) D6i vdi cac d6i tliQngnhieu Wp vdi vectord?c trling nhieu chieu, lu~tphanWp Bayesla: "ChotrlidcmQtd6i tliQngv6i vectorgia tri d?c trlingtlidngling la x, gall d6i tliQng vaomQtWpCjvdi xac sua'th~unghi~mco dieuki~nWnnha'tP(cjlx)" ho?c: "ChotrlidcmQtd6itliQngvdivectorgiatri d?ctrlingdachox,gan d6itliQngvao WpCjkhi : P(c)x) >P(cjlx),i =1,2,...,1;i:;t:j" (1.26) Trang 13 Vi xacsua'tc6di@uki~np(cilx)kh6xacdinh,dungdinhly Bayesc6th~diSntaxac sua'tnay du'oid<;tngP(XICi),P(Ci)vap(x).Khi d6lu~tphanlOpBayesdu'Qcvi€t du'oi d<;tngthl,l'chanhnhu'sail : "Voi mQtd6i tu'Qngcho tru'ocva dffbi€t vectorgia tri d~ctru'ngx, gall d6i tu'Qng vaolOpCjkhi : p(x ICj)P(c) >p(x IcJP(cJ , i = 1,2, ...,1;i;>tj" p(x) p(x) (1.27) Bop(x)dm~uso'cua2v€ ba'tphu'ongtrlnhtrentac6lu~tphanlOpBayes: "Voi mQtd6i tu'Qngchotru'ocva dffbi€t vectorgia tri d~ctru'ngx, galld6itu'Qng vaolOpCjkhi : p(x Ic)P(Cj) >p(x IcJP(cJ, i =1,2, ...,1;i;tj" (1.28) 1.5.Ctfcti~uhoarui ro tronghili tminphanlOp TrongmQts6lingdvng~hu'chfindoany khoa,chungtathu'ongmongmu6n lamcl,l'cti~uh6asai so'chfindoan. Gia sU',mQtquy€t dinhphanlOpdl,l'atrenvectord~ctru'ngdffchox xacdinhd6i tuQngthuQclOpCjtrongkhid6itu'Qngthl,l'csl,l'thuQcv~lOpCi. Hamthi€u hvttrong truonghQpnay du'Qcxacdinhnhu'sau: Lij=L(decision_classjltrue_classD (1.29) D6ivoibaitoanphanlOpc61lOp,cacphffntU'thi€u c6d<;tngmatr~nvuongL Lll L12'" Lll I L2l Ln ...L2lL= (1.30)... ... ...... Lll LI2...Lll Trang 14 Xet svphanlOpcuamQtdO'itli<;5ngvOivectorgia tri d~ctIling x dffbi€t. Ta kh6ng bi€t lOp thvc Sv cua dO'itli<;5ngnay, no co th~la mQttrong sO't~ph<;5pcac lOp {Cl, C2,...,cd. GiasaP(Ci,x) Ia xac sua'tco di~ukit%nmadO'itli<;5ngthuQCv~lOpthvcSVCivoi di~ukit%nx. Ta sexacdinhky vQngco di~ukit%nthi€u lien quaildenvit%cquy€t. dinhdO'itli<;5ngthuQcv~lOpCj,trongkhi dO'itli<;5ngay thuQcv~lOpCj i =1,2, ...,1; i:;t:jla : I R(cj Ix) =IL(decision - classj Itrue- classJP(c/ Ix) /=1 (1.31) ho~cd d(;lngng~nhon : I Rj =I LijP(c/ I x) j=1 (1.32) Ky vQngthi€u Rj =R(Cj Ix) dli<;5cgQila di€u kit%nrui rooBi€u kit%nrui ronayco lien quail den quy€t dinh Cjdli<;5cquy€t dinhbdi vectord~ctIling x. N€u dffbi€t vectord~ctIling la x thl co th~lam cvc ti~udi~ukit%nrui ro Rj bftngvit%cdlia ra quy€t dinhphanlOpCj(jE {1,2, ...,I}) Lu~tphanlOp(quy€t dinhphanlOp)gallmQtlOpchom6i vectord~ctIling.Co th~ Xclcdinhrui ro toanbQla ky vQngthi€u co lienquaildenquy€t dinhphanlOpdff bitt,xetta'tcacacd(;lngcoth~cocuax cuakh6nggianvectord~ctIlingnchi~utli Rx I R =J R(cjIx)dx=J ILijP(c/ Ix)dx Rx Rx /=1 (1.33) Rui ro toaDbQR dli<;5ccoi nhlimQtlieu chufinphanlOp lam cvc ti~uhoa rui ro co lienquaildenquy€t dinhphanlop. Tli dinhnghlacua rui ro R ta tha'yrftngquy€t Trang 15 dinhphan lOp CjduQcduara dS dambaa di~ukit%nflU ro Rj =R(cj [x)cangnho dng tBtdBivoi m6id(;lngcuavectord~ctIlingx. UBi voi bai tminphanlOpt6ngqmlthall,taco lu~tphanlOpBayesnhusau: "UBi voi mQtdBi tuQngco vectorgia tri d~ctIling x dffbie't,UOCluQngta'tca di~u kit%nrui ro chota'tca caclOpco thSduQcCjU =1,2, ...,1) I R(cj Ix) =I LijP(cl Ix), U =1,2, ...,1) 1=1 (1.34) vachQnmQtquye'tdinh(mQtlOp)Cjsaochodi~ukit%nruiro R(cj Ix) lanhonha't: R(Cj[x)<R(ckIx),k= 1,2,...,I;k;t:j" (1.35) Rlii ro toanbQR d(;ltduQccl,l'ctiSu la ke'tquacuaquye'tdinhphanlOpBayesduQc gQila ruiroBayes. Dl;(avaodinhnghiadi~ukit%nrui ro R(ciIx), lu~tphanlOpBayesduQcvie'tduoi d~ng: "UBi voi mQtdBi tuQngco vectorgia tri d~ctIling x dffbie't,chQnmN quye'tdinh (mQtlOp)Cjsaocho I I I LijP(c;[x)<ILlkP(CI [x), k =1,2, ...,I; k;t:j" ;=1 ;=1 (1.36) Tli dinh19Bayes, P(CI Ix)=p(x IcJP(cJ p(x) (1.37) CothSvie'tl~ilu~tBayesnhusau: "ChQnmQtquye'tdinh(mQtlOp)Cjsaocho f L p(xlc;)P(c;) ~L p(xJcJP(cJ k =1 2 I.k ."L Ij <L Ik " ,..., , :;i:J 1=1 p(x) 1=1 p(x) (1.38) Bop(x)(j cahaive'cuaba'tphuongtrlnhtren,tacolu~tphanlOpBayesnhusau: Trang 16 "ChQnmOtquy€t d~nh(mOtlOp)Cjsaocho I I I Lijp(x IcJP(cJ<LLikP(X IcJP(cJ, k =1,2, ...,1;k:;t:j" iz] iz] (1.39) 1.5.1.Ctfcti~uhoariii ro trongbili tminphanlopBayes Thongthu'ong,mOtbairoanphanlOpcolienquaild€n vi~cquy€td~nhlOpCj (i=I,2,...,1)mamOtdo'itu'QngmoithuOcv€ lOpnay.Giasacacquy€Cd~nhphanlOp saitrongh~uh€t caclOp.VI v~y,n€u mOtdo'itu'Qngdu'QcphanlOpthuOcv€ lOpCj trongkhi thvct€ la lOpCjthl khi j=i, SvphanlOpIa dung,ngu'Qcl~ikhi i;t:jta co sai s6phanlOp. Ta d~nhnghlad.;mgdo'ixung0 - 1cuahamthi€u : { o i=j Lij =L(decision- classj Itrue- classi)= 1'. ., 1"*} (1.40) Hamthi€u (j tren du'Qcgall 0 khi phanlop dungva gall 1 khi phanlOpsai.Tfit ca cacsaiso'h~u nhu'la nhu'nhau. Taco: I I R(cjIx)=LLijP(Ci Ix)= LP(Ci Ix)=1- P(CjIx) iz] iz],i..j (1.41) P(CiIx)la xacsufitcodi€u ki~nmaquy€td~nhphanlOpCjla dungdo'ivoix dffchao Tli (1.36)ta dffbi€t lu~tphanlOpBayesdu'ara mOtquy€t dinhphanlOpcvc ti€u hoa di€u ki~n rui ro P(Cj Ix). Trong (1.41),d€ cvc ti€u di€u ki~nrui ro phai tlm quy€t d~nhphanlOpCjsaocho 1- P(Cj Ix) (1.42) nhonhfit,nghlala xacsufith~unghi~mcodi€u ki~nP(CjIx)IOnnhfit.Tli dotaco lu~tphanlOpBayescvcti€u xacsufittrungblnhcuasaiso'phanlOpnhu'sail: "ChQnmOtquy€t dinh(mOtlOp)Cjsaocho Trang 17 P(Ci IX»P(Ck Ix),k= 1,2,...,I;kt:j" (1.43) Theacachtrlnhbay nay, co th~timduQclu~tphanlOpdambaa cl;t'cti~uxac sua't trungbinhcuasai s6phanlOp.MQtxacsua'trungbinhcuasai s6phanlOpduQccai nhula mQttieuchuffnqtc ti~ud~h;l'achQnquy€t dinhphanlOpt6tnha't. Ne'uma tr~nthi€u L duQcchQnrheacachgall gia tri 1 ehata'tea caequy€t dinh ~ phanlOpkhongchinhxac va gall gia tri 0 ehaquy€t dinhphanlOpehinhxac(Ljj)=O (1.44) thilu~tphanlOpBayesqtc ti~urui ro clinggi6ngnhulu~tphanlOpBayescl;t'cti~u xacsua'trungbinhcuasai s6phanlOp. 1.5.2.T6ngquathoas1/phanloptheotieuchuftnhqply c1/cd~i D6i vOicacd6ituQngnhi6ulOp,nhi6ud~etrung,coth~dinhnghlamQtcach t6ngquattys6hQpIy ehalOpCjvaej p(xIe) . . - 1 2 I .",J,I-, ,..."J*1 p(x Ic;) (1.45) vagiatringuongt6ngquat (L - L )P(c. ) eoo = lJ II , lJ (Loo -Loo)P(c.).I' .1.1 .I (1.46) vi v~yrui ra nh6nha'tronglu~tphanlOprheatieuchuffphQpIy el;t'cd(;lico th~ du'Qcgiai thichla chQnmQtlOpsaGehaty s6 hQpIy IOnhonta'tea caegia tri ngu'ongkhacd6ivoicaelOpkhaenhau: "Quy€tdinhlOpCjn€u voimatrn thiu : 0 1 1 1 .1 0 1 1 L= I .... .... .... .... 1 1 1 0 Trang 18 p(xlei) >e. , i =1, 2, ...,1;i:;t:j"Jl p(x IeJ (1.47) D6i voi cachamthie'ud6i KungLjj =Ljj voi Ljj =0,tacolu~tphanlOpsauday: "Quye'td~nhlOpCjne'u p(x Ie) >P(eJ , i =1, 2, ...,1;i:;t:j" p(x IeJ pee) (1.48) 1.6.Quye't~nhmi~n,xacsua'tsais6 MQtquye'td~nhphanlOpchiakh6nggiand~ctIlingthanh1mi€n quye'td~nh roi nhau(kh6nggianquye'td~nhcon)RI, R2,...,RI' Mi€n Rj la kh6nggianconma m6i vector gia tri d~c tIling x rdi vao trong mi€n nay dliQc gall vao lOp Cj (Xemhlnh 1.2) Xacxua't P(XICI)P(CI) Quye'td~nhbien (j t6i1fu 1c:'"Quye'td~nhbien kh6ng t6i u'u EE 7~ RI R2 Hinh 1.2 : Quye'tdinh bien 3;.x Nhln chung,mi€n Rj (i =1,2, ...1)kh6ngc~nk€ nhauva co th~dliQcchia thanh nhi€umi€n conroi nhau,tuynhienta'tcacacvectortrongcacmi€n naysethuQcv€ lOpgi6ng nhau Cj. Cacmi€n giaonhauvacacbiengiuacacmi€n k€ nhaudliQcgQila quye'td~nhbien, VIcacquye'tdinhphanlOpcothayd6iquam6ibien. Trang 19 Cong vi~cphan lOp 1atim cac 1u~tphanlOp dam baa vi~cchia khonggian d~c tIlingvao cac miSn quye'tdinht6i uu R1,R2,...,Rl (voi cacquye'tdinhbien t6i uu). Cacquye'tdinhbient6iuucoth€ khongdambaavi~cphanlOpkhongco sail~m nhlingdambaasaisO'trungbinhnhonhfittheolieuchu§:nCVcti€u dffchQn. Ta segiaiquye'tkhokhantrongbai loanphanlOpnay d€ timcacmiSnva cac ~ quye'tdinhbient6i uub~ngcachphantichmQtphanlOphai lOpvoi vectord~c tIlingx,n chiSu.Gia sukhonggiand~ctningdliQcchia (coth€ khongt6iuu)thanh haimiSnkhacnhau,Rl tlidngling voi lOpCl va R2tlidngling voi lOpC2.Co hai SV ki~nlam xufithi~nsai sO'phanlOp. D~ulien, sai sO'xufithi~nkhi mQtvectord~c tIlingx do dliQcrdi vao miSnRl dliara quye'tdinhCl trongkhi do lOpthvcsv 1aC2. Thli hai, vectord~ctIling x rdi vaomiSnR2trongkhi lOpthvcsv 1aCl.Vi cahai sai s6naylo~itf\llin nhau,tacoth€ tinhxacsufitt6ngcQngcuacacsaisO'phanlOp khacnhau(DudaandHart, 1973;Bishop,1995) P(classification- error)=P(x E Rl ,c2) +P(x E R2,C1) (1.49) =P(x E Rl I C2)P(C2)+P(x E R2 IC1)P(C1) Sadl;lngdinh1;'Bayestaco: P(classification- error) = r p(x Ic2 )P(c2)dx + r p(x Ic1)P( c1)dx JRI JR2 (1.50) BaygiGtacoth€ dliafa bailoanphanlOpt6iuu1avi~cchQn1vaquye'tdinhmiSn Rt, R2 (vi v~y xac dinh dliQc lu~t phan lop) lam cvc d~i xac sufit P(c1assification_error)(j lIen (la mQtlieu chu§:nt6i uu). Xet mQtd6i tliQngvoi vectord~c trling x dff chaoXac sufit cua sai sO'phan lOp dliQc cvc ti€u ne'u p(xlct)P(ct)>P(XIC2)P(C2),tasechQnmQtmiSnRl vaR2saochox thuQctrongmiSn R1,vi diSunaydambaasaisO'phanlOpnhohdn(tieuchu§:ncvcti€u). DiSunay 20 tu'dngdlidngvoi lu~tphanlop Bayeslamct!cti€u xacsuc1tcuasais6trungblnh b~ngcachchQnmQtlOpvoixacsuc1th~unghi~mIOnnhc1t. MQtcongthucphanlOpt6iuudt!alIenvi~cct!cti€u xacsuc1tsais6phanlOpc6th€ du'<;lct6ngquath6ad6ivoi d6itli<;lngnhi€u lOpnhi€u d~ctIling.B6i voibailoan nhi€u lOp,vi~cxacdinhxacsuc1tquyetdinhphanlopdungd6hall.Cacd6itli<;lng du'<;lcphanlOpthanhI lOpphanbi~tCbC2,...,c],voivectord~ctIlingnchi€u KERn,ta coXaCsuc1ttrungblnhphanlOpdungcuacacd6i tli<;lngmOidt!alIen vectord~c tIlingx : I I P(classification_correct) =Ip(x ER;,cJ =Ip(x E R; IcJP(cJ ;=1 ;=1 (1.51) I =I JR p(x IcJP(c;)dx;=1 I trongd6Rj la mi€n quyetdinhc6 lienquaildenlopCj Nhu'v~ybai loan phan lOp la chQnIDQtquyetdinh mi€n Rj lam ct!cd(;lixac suc1t reclassification_correct)la mQtlieuchuffnt6iuu.Tieuchuffnnaydli<;lcct!cd(;libdi vi~cchQnmi€n Rj saochom6ivectorgiatri d~ctIlingx dli<;lcgallvaomQtlOpma tichphan t;p(x Ic;)P(c;)lact!cd(;li(d6ivoimQix) 1.7.Caehambi~tthue MQttrongnhl1'ngd(;lngc6di€n nhc1tcuavi~cphanlOpladi6ntad(;lngbailoan htachQnlOpdt!alIenvectorgiatrid~ctIlingx trongd(;lngkinhdi€n sad\lngt~ph<;lp rad€ xacdinhcachambi~thuc diCK),i =1, 2, ...,I (1.52) Trang 21 M6i bi~t thuc c6 lien quail de'nmOtlOp C1,1th~dii du'Qcnh~nd£;lngCj (i=I, 2, ...,1). B~titmin phan lOp sa d1,1ngcac ki~ubi~tthuc niiy gall mOt d6i tu'Qngvoi vector gia trid~ctIlingx dii bie'tcholOpCjne'u dj(x)>dj(x),voi mQii = 1,2, ...,1,i:;t:j. (1.53) N6i cachkhac,biii toanphanlOpgall mOtd6i tu'Qngviio mOtlOpsaochobi~tthuc tu'ongling c6 gia tri IOnnha't. Bi~tthucphanlOpdu'Qcthie'tke'Iii mOth~th6ng(Xem hlnh 1.3)chuat~phQpcac bi~tthucdj(x)(i =1,2, ...,1)c6 lien quailvoi m6i lOpCj(i =1,2, ...,1)clingvoi vi~c IvachQncacbi~tthucc6giatri IOnnha't dj(x), i =1,2, ...,1 (1.54) max(diCx»,i =1,2,...,1 Lu~tphanlOpdu'Qcdi~ntanhu'sau: Chotru'ocmOtd6itu'Qngvdivectorgiatrid~ctIlingx: 1.Tinhgiatrib~ngsO'cuata'tcacachambi~tthuctheox dj(x),i =1,2, ...,1 (1.55) 2. ChQnlOpCjIii mOttien doancua lOpth1;l'cs1;l'saocho gia tri cua hiimbi~tthuc dj(x)Iii IOnnha't,tucIii l1;l'achQnmOtlOpCjsaochod/x) =max(dj(x»,i =1,2,...,1 Hambi~tthucc6th~xacdinhb~ngnhieucachd1;l'atrentieuchucfnphanlOpt6iUu. Ch~ngh£;lnta xac dinh cac hambi~tthucchos1;l'phanlOpBayes c1;l'cti~uxac sua't cuasai sO'phanlOp.D6i voi bai toanBayes,s1;l'l1;l'achQncac hiim bi~tthucIii xac sua'th~unghi~mc6 dieuki~nP(cjlx) diCx)=P(cjlx), i =1,2, ...,1 (1.56) Sad1,1ngdinhly Bayes,xacdinhd£;lngth1;l'chiinhcua hiimbi~tthuc 22 d ( )=p(x ICj)P(cJ .=1 2 IiX, 1 " ..., p(X) di(x)=p(xlci)P(Ci),i= 1,2,...,1 (1.57) (1.58) Tatha'yding,chicogiatq cuahambi~tthlicla quailtrQngtrongvi~cxacdinhlOp. VI v~y,cachamdondi~utangf(dj(x))cuadj(x)sedu'aramQtquy€tdinhphanlOp d6ngnha't.Coth~tlmd~ngtu'ongdu'ongcuabi~thlicBayesb~ngcachiffylogaritt! nhiendiCx)cuahambi~tthlic. di(x) =Inp(x ICi)+InP(Ci)' i =1,2, ...,I (1.59) Lu~tphanlOpdu'<;1cxacdinhb~ngcachchQncachambi~tthlicdiCx)chom6ilOpCj. Tucla, khonggiand~ctru'ngdu'<;1cchia thanhI mi€n khacnhauRj (i =1,2, ..,I).M6i mi€n co lienquaild€n quy€t dinhphanlOp,n€u vectorgiatri d~ctru'ngx roi vao mi€n Rj thl mQtd6i tu'<;1ngdu'<;1cphan lop thuQcv€ lop Cj. Hlnh1.3 NghIala,n€u chotru'ocvectorgiatrid~ctru'ngx cod/x) >dj(x),i =1,2, ...,I, i:t:j,thl x seroi vao mi€n tu'ongling Rj va quy€t dinhphan lOpgallmQtd6i tu'<;1ngmoi vao Bit thlic d)(x) Lop, cholOpc) It!a chQn Bit thlic dz(x) Max.... cho lOpCz d)(x) Bit thlic ..... .... cholOpc) Trang23 lOpC}Cachambi<$tthucnayxacdinhcacquy€t dinhbien.Cac quy€t dinhbien xacdinhmQtb~m~trongkh6nggiand~ctntng,d d6cacquy€t dinhphanlOpthay d6i.D6ivoicacmi~nk~nhauRjvaRj,quy€tdinhbienchiacacmi~nd6c6th~tim du'Qcbdi phu'ongtrlnh quail h<$ham bi<$tthuc. d/x) =dj(x) (1.60) ~ Cacquy€tdinhbienkh6ngbianhhu'dngbdicachambi<$tthucdondi<$utang. T6ngquat,nli ro nhonha'trongphanlOpBayesd1,iatrencachambi<$tthucdu'Qc xacdinhla dj(x)=- R(cjlx), i =1, 2, ...,1 (1.61) 7.1.1.Hambi~tthucGausstrongbaitminnh~nd~nghailOp D6i voi bai loanphanlOphailOpClva C2,tadffxacdinhhaihambi<$tthuc d1(x)va dz(X)c6 lienquaild€n m6ilOp.Cachambi<$tthucnayxacdinhhaimi~n Ri vaRz trongkh6nggiand~ctru'ngdu'Qchiabdiquy€t dinhbiend d6cacham bi<$tthucb~ngnhau di(x)=dz(x) (1.62) vaquy€t dinhphanlOpthayd6i tITlOpCl sanglOpC2.MQt d6i tu'Qngvoi vectord~c tru'ngx du'QcphanlOpvao lOpCl (thuQcv~mi~nquy€t dinh R1)n€u d1(x)> dz(x) vangu'Qcl£,tid6itu'Qngd6du'QcphanlOpvaolOpCz(thuQcmi~nquy€tdinhRz).Ta tha'yrangtrongbai loanphanlOp2 lOp,kh6nggiand~ctru'ngdu'Qchiathanhhai mi~nphanbi<$t,vi v~ytac6th~xayd1,ingmQthamgQila hamphand6ivoiham bi<$tthucdon d(x)=di(x) - dz(x) (1.63) Voi x chotru'oc,tinhgia tri phand6icuahambi<$tthucdond(x)va gallvaomQtlOp d1/atrenda'ucuagia tri nay. 24 B6ivoicachambi~thucduQcilIachQnd1!avaolu~tBayes,tacoth€ xacdinhduQc hamphandoi voibailoannh~nd~.mg2lOp d(x)=P(CIIx)- P(C2Ix) d(x)=p(x ICI)P(Cl) - p(x IC2)P(C2) (1.64) (1.65) ho~cd(x)=Inp(x ICI) +In P(CI) p(x IC2) P(C2) (66) 1.7.2.Bi~tthucd~ngtoimphtidngvatoytn tinhtheolo~UBayes Trongcacphfintruoctada:cod;;mgsaildaycuahambi~tthucBayes di(x)=lnp(x IcJ+ InP(cJ, i=1,2,...,1 (1.67) BailoanphanlOpd1!atrencacbi~thucnaygallmQtd6ituQngvoivectord~ctrung x cholOpCjvoi hambi~tthucla IOnnha't.Ghl savectord~ctrungx cophanph6i chu£n hi€u chi€u Gausstrongph(;lmvi m6ilOp.VI v~ym6ithanhphfincuavector d~ctrungcophanph6ichu£nnhi€u chi€u ho~cphanph6iGausstrongph(;lmvi m6i lOp.D(;lngvectorcuaphanph6ichu£nho~cphanph6iGausscuahamm~tdQxac sua'tp(xICj)d6ivoivectord~ctrungxtrongph(;lmvi lOpCjduQc hobdibi€u thuc I 1 [ IT ,,-I ]p(x Ci)= /2 1 1 1/2 exp- 2(x-pJ "-i (x-pJ(271Y Ii (1.68) voiPiIatrungbinhcuavectord~ctrUnglOpthui, Ii la matr~nhi~pphuongsaicua vectord~ctrunglOpthui, IIi Ila dinhthuccuamatr~nhi~pphuongsai,n Ia sO' chi€ucuakhonggianvectord~ctrungx. Thayphuongtrinh(1.68)vaophuongtrinh(1.67),tacod(;lngsaildaycuahambi~t thuc di(x)=In 1 1/2exp[ - !(x - pJT I~I(x- PJ ] +lnP(cJ, i =1,2, ...,1 (27l"r/2IIil 2 (1.69) Trang25 d;(x)=-~lnIL;I-~(X- JiJT L~l(X- JiJ-; In(27l")+lnP(e;),i =1,2,...,1 (1.70) Io~itrll %In(27l"), taco d;(x)=_! InIL;I- !(x - JiJT L~l(x - Ji;) +InP(eJ, i =1,2, ...,12 2 (1.71) Bi~tthuc(j tren1amOtd~nghamb~chaicuavectord~ctIlingx d6ivoi P(eJ va I;. No duQCgQi1abi~tthucb~chai.Cacquye"tdinhbiengiii'acaclOpi vaj co diCK)=d/x) 1ahamsieub~chaitrongkh6nggiand~ctIlingn chi~u. Bai toanphanlOpdlfatrenbi~tthucb~chaiBayesduQcKaydlfngnhusau: rho m~ux, gia tri m~tdOxacsua"tco di~uki~np(xlcj) va xacsua"tti~nnghi~m P(cDd6i voi ta"tCelcac lOp i =1, 2, ...,1 1. Tinh gia tri cua vectortrungbinh Ji; va matr~nhit%phuongsai L; chota"tCel caclOpi =1,2, ...,1dlfatrent~phua"n1uy~n 2. Tinh cacgia tri hambi~tthucchota"tCelcaclOp d;(x)=- ~In[L;I-k(x- Ji;f L~l(X- JiJ +InP(eJ, i =1,2,...,1 (1.72) 3. ChQnlOpCj1amOtdlfdoancualOpthlfcslf saochogiatri cuahambi~tthuc d/x) 1aIOnnha"t Tilc la, chQnlOpCjsaochod/x) =max(diCx)),i =1,2, ...,1 Ke'tqua:Lop daduQCdlfdoan - 1.7.3.Bi~tthuctuye'ntinh : DiingthuctronglOpmatri.inhiepphuongsai Gielsli'cachi~pphuongsaib~ngnhautrongta"tCelcaclOpL; =L (i =1, 2, ...,1). TrangtruonghQpnay,tronghambit%tthucb~chai,ph~ntli' InIL;!=ILlla lOpdOc I~p,vi V?yco th~vie"thambit%tthuc(j d,;mg Trang26 d;(x) =-~(x- f.1;f 2:-I(X- f.1;)+InP(c;), i =1,2,...,12 (1.73) Taco: I ( )T"'-I ( ) 1 T,,-I 1"'-1 1 T,,-I 1 T",-I- X-II. L.. X-II. =-x L.. X--L.. 11.--11. L.. X+-II. L.. II. 2 r, r, 2 2 r, 2r, 2r, r, VI 2:1ad6i Kungnen 2:-1clingd6i Kungva d day ~XT2:-1f.1i=~f.1r2:-1x, hdnnil'a,2 2 ~ ph~n tlY ~XT2:-1X 1alOpdQCl~p,VI the"no co th€ bi lot;litIll, khi do taco dt;lngham bi9tthuc 1 d;(x)=f.1r2:-1X--f.1r 2:-1f.1i+InP(ci), i = 1,2, ...,12 (1.74) Bi9tthucd tren1amQthamtuye"ntinhcuavectord~ctIlingx, nodliQcgQila ham bi9tthuctuye"ntinh.Quye"tdinhbiengiualOpi valOpj saochodiCK)=dj(x)la mQt ph~ncuasieuph£ngtrongkhonggiand~ctIlingnchi~u. D6ivoi bai tmlnphanlOphai lOpvoi vectord~ctIlinghaichi~u,quye"tdinhbien giil'acaclOp1adliongth£ng(Xemhlnh1.4) QuatrlnhphanlOpslYd\lngbi9tthuctuye"ntinhdliQcKayd\l'ngnhlisau: 1.Voi x dffcho,Hnhgiatrib~ngso'cuacachambi9tthucchota'tcacaclOp di (x) =f.1r 2:-1X - ~f.1r2:-1 f.1i+1nP(cJ, i =1,2, ...,12 (1.75) 2. ChQnmQtlOpCjsaochogiatri cuahambi9tthucd/x) 1aIOnnha't. Tuc la, chQnmQtlOpCjsaochod/x) =max(diCx)),i =1,2,...,1 Trang27 X2 :7 Xl Hlnh 1.4 Vi du1.2 Gia sam~u2 d~ctIling x E R2 tu hai lOpCl=0 va C2=1com~tdQphanph6ichu§'n Gauss(Xembang1.1) Bantll : T~phu~nluy<%ndffduQcchia thanh2 lOpkhacnhau Tli t~phQpm~unay,tinhvectortrungblnhvamatr~nhi<%pphuongsaichom6ilOp. GiatritrungblnhduQcuocluQngla: ~ 1 5 [/11="5L:>LdPl,i = 2.2]1=1 .0 (1.76) 0 Ham phan d6i 0 dl(x) =d2(x) 0 0 0 x 0 /x-lOP 10 x 0/ 0 0 - lOp 2 x 0 x x Lop 1 Xl X2 Lop 1 2 0 2 2 0 2 3 0 3 1 0 3 2 0 Lop 2 Xl X2 Lop 6 8 1 7 8 1 8 7 1 8 8 1 7 9 1 Trang28 ~ 1 5 [Jl2 ="5LXLdP 2,i = 7.2]l~ 8.0 (1.77) voi xLdpj,iky hi~um~uthui tu lOpj. Doc luQngmatr~nhi~pphuongsaieholOp11a t =5~1t(XLdp l,i - 111)(XLdP l,i - 111)T= (1.78) 1 [ 1- 2.2 ] [ 2- 2.2 ] [ 2- 2.2 ] -[ [1-2.2,2-2]+ [2-2.2,2-2]+ [2-2.2,3-2]+ ~ 4 2-2 2-2 3-2 [ 3- 2.2 ] [ 3- 2.2 ] 1 [ 2.8 -1.° ] [ 0.7 - 0.25 ] [3- 2.21- 2]+ [3- 2.22- 2]=- = 1- 2 ' 2- 2 ' . 4 -1.0 2.00 - 0.25 0.5 Tu'ong tl;l', I2 = [ 0.7 - 0.25 ]- 0.25 0.5 (1.79) Ta tha'y, caeuoe luQngeuama tr~nhi~pphuongsai d6i xungla nhunhau, II =f2 =fi, VIv~yd<;lngtuye'ntinhdongianhoneuacaebi~tthueduQesadvng di(x)=I1rf-l x-~l1r f-l l1i+lnP(cJ, i=l, 22 (1.80) Ta tinh I-I = [ 1.73913040.8695652 ]0.8695652 .4347826 (1.81) ftr f-I =[5.5652174,607826087] ft~f-l =[19.478261,25.739130] (1.82) (1.83) l~T~-I~ 1 "2JlI L, JlI =2x25.808696 (1.84) 1 ~ T ~-I ~ 1 2. Jl2 L, Jl2 =2x 346.15652 (1.85) Trang29 va InP(cl) =InP(cz)=InO.5=-0.6931 Cachambil$thuctuye'ntint la dj(x)=5.5652174xj+6.7826087x2- 22.9043- 0.6931 d2(x)=19.478261xj+25.739130X2- 173.0833- 0.6931 (1.86) (1.87) Hamphand6i trongbai toanphanlOphai lOpthaychoquye'tdint bienBayesgiua hailOpdu'Qcmint hQad Hinh 1.5 d(x)=dj(x) - d2(x)=0 d(x)=-13.9130xj- 18.9565x2+150.1790=0 (1.88) ho~c X2=-0.7339xj+7.9219 D5thihamphand6iHimQtdu'ongth~ngchiadamdulil$ucuacacm~uthuQcv~hai lOp.Quye'tdint phanlOpm~u"tren"(d(x)<O)thuQcv~lOpC2va quye'tdint phan lOpm~u"du'oi"(d(x»O)thuQcv~lOpCj Tatha'ydingcacm~udulil$ukh6ngch5ngcheolennhauvaytu'dngphanlOpcua m~uhua'nluyl$nnaycoth~th\fchi~ndu'Qcbdicacbi~tthuctuye'ntinhvacacquye't dinhbien tuye'ntint. D€ xay d\fngbi~tthuctuye'ntinhchovi~cphanlOpm~umoi Xli =[4, I]T tatinhcac gia tri cua hambi~tthucchohai lOpdj([4, I]T) =5.4461va d2([4,I]T)=-51.3416, gallm~unayvaolOpCjVIdj([4,I]T)>d2([4,I]T). Voi m~uxj2=[6,7]T, tacodj([6,7]T)=57.2722vad2([6,7]T)=123.2671,gall m~u nayvao lOpC2VI dj([6,7]T)<d2C[6,7f) X2 X f.!l /?X . X . It x x d(x)>0 0 11 Trang 30 0 0 0 . 0 f.!? 0 Quye'"tdinhbien d(x)=dl(x) - d2(x)=0 d(x)<0 Xl Hlnh 1.5 Ta co th~sa dl;[nghamphand6i chobai loanphan!dp,vOiXll =[4, If, d([4, I]T)= 75.5705> 0, khi do gall m§:unay thuQcv€ !dp CI va Xl2=[6, 7]T , d([6,7]T)=- 65.9945<0, khi do gallm§:unaythuQcv€ !dpC2. Hambi<$tthuctuye'"ntinhclingco th~trlnhbayd:;mg"M~ngnorontuye'"ntinh" di(x)=w;x+u';o,i= 1,2, ...,1 voivectortrQngluQngduQcdinhnghIala ,,-1 W. =L..., II.I r, vanguongduQCxacdinhbdi WiD=-fl; I-I fli +InP(ci) (1.89) (1.90) (1.91) D6ivoi cacmi€n k€ nhauRj vaRjcho!dpi vaj, quye'"tdinhbiengifi'acac!dpnay quailh<$voinhautheophuongtrlnhtuye'"ntinh di(x) - dj(x) =bx+U'ijD voi b=(Wi- W)T =(fli I-I -flj I-I)T (1.92) (1.93) WijD=WiD - WiD=-fl; I-I fli +InP(cJ +f1~I-I flj -lnP(c) (1.94) 31 Sieuph~ngchialOpi valOpj nhinchungkhongtn!cgiaovoidu'ongth~ngdiquacac trungbinhJiiva Jij (DudaandHart,1973). Neugiasamatr~nhi~pphu'ongsaivacacxacsua"ttiennghi~mb~ngnhaud6ivoi ta"tcacaclOp,tucla Ii =I (i =1,2, ...,I) vaP(Ci)=P thi co th€ boquaso"h~;lllg InP(Cj),khi dobi~tthuccodl.lng T ,,-lIT ,,-1 . 1 2 Id;(x)=Jii L., x--Ji; L., Ji;, 1= , , ...,2 (1.95) Tatha"yr~ng,vi~cphanlOpd\l'atrendinhthucdtrenIagallmQtd6itu'Qngvoivector giatrj d~ctru'ngx vaolOpj saochobinhphu'ongkhoangcach(x - Ji;)T I-I (x - Jii) cuax denvectortrungbinhJij la nhonha"t.Noi cachkhac,vi~cphanlOpd dayla h!achQnlOpCj saochogiatri x g~nnha"ttheonghlakhoangcachMahalanobis, tlfonglingvoi vectortrungbinh Jij . Bai toanphanlOpnaydu'QcgQilaphanlOptheo khoangcachnhonha"tMahalanobis. Ta co th€ till dl.lngtuyentinhcuabi~tthuctrongbai toanphanlOptheokhoang cachnhonha"tMahalanobis(khaitri€n khoangcachb~chaiMahalanobis) d;(x)=Jir I-I x - ~Jir I-I Jii , i =1,2,...,I2 (1.96) f)~ngthuctrencodl.lnghamtuyentinhcuavectord~ctru'ngx Thu~ttoancuabaitoanphanloptheokhoangcachnhonha"tMahalanobisdu'Qcxay dtfngnhu'sau: Cho trtioc : Vectortrungbinhchota"tcacaclOp Ji j , i =1,2,...,I vachotru'ocgiatri cuavectord~ctru'ngx. 1.Tinhgiatq b~ngso"cuakhoangcachMahalanobis(x - JiJT I-I (x - JiJ giuax vavectorgiatritrungbinh Trang32 2.ChQnlOpCjla d1,1'dmlncualOpth1,1'cS1,1'saochokhoangcachMahalanobisnho nha't (x- f.1JT 2:-1(x- f.1i)=min(x- f.1if2:-1(x-f.1J, i = 1,2, ...,1I (1.97) Ke'tqua: Lop daduQCd1,1'doan Hambi~tthucse trd nen don gianne'ugia sa ding ma tr~nhi~pph~ongsai b~ng nhautrongta'tca caclOpva cacd~ctIlingla nhl1ngmftuth6ngke dQcl~p.Trong truonghQpnay,m6i mftud6uco phuongsaia2va matr~nhi~pphuongsaitrd thanhmatr~nduongcheo I =a21 (1.98) voi I Ia matr~ndonvi dip nxnva IIil =O'2n,I~l =I-2 I , khi do taco di~mgbi~t thucdongianhon Ilx- f.1i112 . dj(x) = 2 +InP(cJ, 1=1,2, ...,1 20' (1.99) voi 11.IIIaky hi~ucuachuftnEuclide Ilx - f.1ill =~(x - f.1i)T(x - f.1i) (1.100) Taco: (x - f.1i)T(X - f.1i) =xTx - 2f.1{x+ f.1{f.1i (1.101) 1 T T T ~ dj (x) =---dx x - 2f.1ix +f.1if.1i]+InP(cJ20' VI s6h"mgxTx lanhunhautrongta'tcacaclOpnennoduQcboqua,khido (1.102) 1 TIT . di (x) =2 f.1iX - z f.1if.1i+In P( c,.), 1= 1, 2, ...,1a 20' (1.103) Bi~tthuctuye'ntinhnaycothSduQcvie'tduoidqng"mqngnoron" di (x) = w{x + WiD (1.104) Trang33 vectortrQnglu'Qngdu'Qcdinhnghiala 1 Wi =~ f.1ia- (1.105) vangu'ongtrQnglu'Qngla 1 T WiD=- 2a-2f.1if.1i+lnP(cJ (1.106) Quye'tdinhbien la nhungph~nsieuph£ngdu'Qcxac dinhboi phu'dngtrlnhdiCx)- dix). D6i vdi cacmi€n k€ nhauRj va Rj cualOpi va j vdi xac suffth~unghi~mIOn nhfft,cacquye'tdinhbiengiuacaclOpdu'Qcxacdinhtheophu'dngtrlnhtuye'ntinh di(x)-dj(x)=bx+wijO (1.107) voi TIT b =(Wi - W j ) =_2 2 (f.1i- f.1j ). a- (1.108) va 1 T T wijO=-~(f.1i f.1i-f.1jf.1j)+lnP(cJ-lnP(c j .)2a- . (1.109) 1.7.4.B~litoaDphan lOptheokhoangeachEuclide nho nha't Ne'ugia sa cac matr~nhi~pphu'dngsai b~ngnhaud6i vdi tfftca cac lOpva cacd~ctIlingla nhungth6ngke dQcl~pthltaco I =a-2I. Hdnnua,ne'ucacxac sufftti€n nghi~mb~ngnhau P(cD =P trongtfftca cac lOpthl co thSbo quaso'h<;lllg InP(cj).Til do,tacod<;tngddngianhdncuacacbi~tthuc Ilx - f.1i112 . di(x)=- 2 ,1=1,2,...,12a- (1.110) voi Ilx - f.1ill=~(x - f.1JT(x - f.1J (1.111) Trang34 Ta tha'yding, vi~cphanlOpdlfa tren cac dinhthlic (J tren gall mQtdO'itu'Qngvoi vectorgia tri d~ctru'ngx dffbie'tvitolOpj saochoImmingcachEuc1ideIlx- ,ujlltux Wi vectortrungblnh ,uj Ia nho nha't.N6i cachkhac,vi~cphanlOpchQnlOpCjsao chogia tri x Ia g~nnha'tvoi vectortIlingblnh ,uj tu'dngling.CachphanlOpnay du'QcgQiIaphanlOpdlfatrenImmingcachEuc1idenhonha't. D~ngtuye'ntinhcuadinhthlicphanlOpdlfatrenImmingcachEuc1idenhonha'tIa: di (x) =,urx - ,ur,ui' i =1,2, ...,I (1.112) Thu~troanphanlOpdlfatrenImmingcachEuc1idenhonha't Chotnioe : VectortrungblnhcuacaclOp,ui(i =1,2, ...,1)va giatrix cuavector d~ctru'ng 1.Tinhgiatri bangsO'cuakhoangcachEuc1idegiuax va trungblnh ,uichota't ca cac lOp n Ilx- ,uill= JL)Xk- ,uk,i)2 , i =1,2,...,I k=l (1.113) 2.ChQnlOpCjIa giatri tiendoanlop thlfcslf saochogiatri cuakhoangcach Euc1ideIanhonha't: IIx- ,uj II =minllx- ,uiII, i =1,2, ...,I (1.114) Ke'tqua: Lop dffdu'Qcdlf doan 1.8.Doc hiQngm~tdQxaesua't C6 th~xay dlfngthutl;lCphanlOpto'iu'uBayessaochoxacsua'tcuasaisO' phanlOpla nhonha'tkhidffbie'tcacxacsua'ti~nnghi~mP(Ci)valOpm~tdQxac sua'tc6di~uki~np(xlcj)voi ta'tcacaclOpCj (i =1,2, ...,1).Trongthlfcte',chungta Trang35 h~unhukhongbie"the"tcacd~cHnhxacsua'tcuacacm~u,cacd6itu<Jngmasl!hi€u bie"tnaykhongd~ydu,moh6 £)@uoclu<Jngcacxacsua'ti~nnghi~m,chungtadungcongthuc A nc.. P(cJ =---'-,1= 1,2, ...,1N (1.115) voi nCila s6d6i tu<JngtranglOpthu i cuam~ugiOih~n,N la tangs6~cacd6i tu<Jng trongmau. TrangquatrlnhBayes,c~nph.Huoclu<Jngm~tdQxacsua'tcodi~uki~np(xlcj).Co 3phuongphapg~ndungdu<Jcs\i'd\lngd€ doclu<Jngm~tdQxacsua't(Dudaand Hart,1973;Bishop,1995) I.Phuongphapthamso'(voi gia thie"tC\lth€ v~d~nghamcua hamm~tdQxac sua't) 2.Phuongphap phi thamso'(khongco gia thie"tC\lth€ v~d~nghamcuaham m~tdQxacsua't) 3.Phuongphap mJ'athamso'(ph6i h<Jpgiua phuongphap thamso'va phuong phap phi thamso') - Phuongphapthamso'gias\i'd~nghamC\lth€ cuahamm~tdQxacsua'tvoi mQtso'C\lth€ cacthamso'.Vi~cdoclu<Jngtrongphuongphapthams6la uoc lu<Jngcacgiatrit6iu'ucuacacthamso'. - Phuongphapphithamso'khonggias\i'd~nghamC\lth€ cuahamm~tdQxac sua'tmaphaixacdinhhamnaydl!avaocacdli li~udffchao - Phuongphapn\i'athamso'ph6ih<Jpgiuaphuongphapthamso'vaphuongphap phi thamso'.Phuongphapnay gia s\i'd~nghamtangquatcua hamm~tdQ xac sua'tva so'cacthamso'co th€ co. 36 Ngoaira, phlidngphapm~ngndrondIng dliQcdungd~lidc lliQnghamm~tdQxac sua't(DudaandHart, 1973;Bishop,1995) 1.8.1.Phu'dngphap thams6 Gia sa da:co cac quail satv€ cac d6i tliQngva mftutlidngling co N phffnta thuQcv€ 1lOp Cj (i =1, 2, ...,1) x ={xl,x2,...,xN} (1.116) CacmftudliQcd~ttentheocaclOp,coth~chiat~phQpta'tcacacmftuX theolOp thanh1t~phQproinhau XCt,XC2""'XC/' UXi=X i~I.2 c/ (1.117) i M6it~phQpXcchuaNjphffntathuQcv€ lOpCjtlidngling,giasacacmftutITt~phQp I Xc dQcl~pvdinhauvacohamm~tdQxacsua'tcodi€u ki~np(xlcj),(i =1,2, ...,1). I Giasad~nghamm~tdQxacsua'tla p(xIci,BJ (1.118) voiBi=(BipBi2,...,BimflamQtvectorthams6mchi€u cualOpthui. Vi d\l,ne'uham m~tdQxacsua'tcod~ngGausschu~n I 1 [ IT ,,-I ]p(x c;)= /2 1 " 1 1/2 exp-_2(x- pJ L...i(x- pJ(2nY L...i (1.119) thivectorthamsO'coth~dliQct~othanhvdivectortIlingbinhPi vacacphffntacua matr~nhi~pphlidngsaiLi °i=(P{,LiI'Li2,...,Linf (1.120) voi Lij la phffntahang thu i cua ma tr~nhi~pphlidngsai Li' Trong phanph6i chu~n,vectorthams6mQtchi€u chuatIlingbinhvaphlidngsai Trang37 0,=[::,] (1.121) VI oagiasacacm~utrongm6ilOpHioQcl~ptoanbQnenvi<$cUDCluQngcactham s6cuahamm~toQxacsufitouQctinhtudngtt;l'.U@odngian,taky hi<$up(xI0) thayVI p(x ICi,Oi)' Bai toanUDCluQngcacthams6t6i uuco th@ouQcthie'tl~pnhusau:Gia sacho truDcm~ug8mN ph~ntaXi oQCl~ptoanbQ X={X1,X2,...,XN} (1.122) Taclinggiasacacthams6di;mgp(xI0) cuahamm~toQxacsufitcooi€u ki<$noa bie't.C6ngvi<$cUDCluQngla tlmgiatrit6iuucuavectorthams6 0 mchi€u. VI cacph~ntaXi oQCl~p theo phan ph6i p(x I0) nenxacsufitoi@mcuaHitcacac m~utut~pdii'li<$uX ouQcvie'tdUDid(;lngtichcacxac sufit N L(O)=p(X I0)=TIp(Xi 10) i=l (1.123) Hamm~toQxacsufitL(O)la hamtheovectorthams6 0 d6ivDit~phQpm~uX oa cho,noouQcgQilahamhQply cua0 o6ivDit~phQpm~uX Ham L(0) ouQcchQnla mQttieu chugno@HmUDCluQngt6i uu cua 0, UDCluQng naygQila UDCluQnghQply ct;l'co(;licua thams6 O. Trongky thu~tnay,gia tr!t6i uu e cuavectorthams6 ouQcchQno@lamct;l'co(;liham L(O). £)@tinhtoanouQcd€ danghdn,lfiy logarittt;l'nhien cua ham hQply L(O) va UDC lu'Qngt6i UUouQcchQnb~ngcachtlmct;l'cti@ucuaham J(O) (tudngling vDivi<$ctlm evco(;licuaham L(0)) N J(O) =-lnL(O) =-z)np(xi 10) i=! (1.124) Trang38 Bai toanuocluQngthamsf)tf)iu'uhQply qic d::tiduQcphatbi~unhusau.Gia sti' chotruocmQtt~phQpduQcgiOih::tng6mN phffntti'dQcl~ptoanbQdf)ivoi lOpdff cho x ={xl,X2,...,XN} (1.125) Cling gia sti'dffbie'td::tngthamsf) p(x Ie) cuahamm~tdQxacsua'tcodi~uki~n. Ml,lcdichcuabaitoanuocluQngla tlmgiatritf)iu'ucuavectorthamsf)e mchi~u theotieuchu:1nqic ti~u N l(e) =- I)np(xi Ie) i=l (1.126) Giatriqic ti~uhamkhavi cuae duQctlmtut~phQpmphuongtrlnh al(e) ael al(e) ~l(e) = I ae: I =~ [ - i)np(xi Ie) ]ae ae ~ (1.127) al(e) aem a[-I:lln p(xiIe)1 ael a[-I:lln p(XiIe)) ae2 =0= a[- tlnP(X' 10)] aem Trang39 Do'ivoid<;lngehu§'nN(I',L) euahamm~tdOxaesufftvoi tham§'nI' vaL, dStlm vectorthamso'8 taco thSHmmOte6ngthued<;liso'ehou'oelu'c;1nghc;1ply eved<;li (DudaandHart, 1973;Bishop,1995) ~ 1 ~ .I'=- L,.x' N ;=1 (1.128) ~ 1~( i A )( i A )TL.=- L,. x -I' x -I' N i=1 (1.129) Doc lu'c;1nghc;1ply eved<;lif1 do'ivoi trungblnh I' la trungblnhm~uva u'oelu'c;1ng hc;1ply eved<;liI euamatr~nhi~pphu'dngsaiL latrungblnhso'hQeeuaN matr~n (Xi - f1)(xi- f1)T Doc lu'c;1ngd<;lngehu§'neuahamm~tdOxaesufft 1 [ 1 2 ]p(x) = 2 1/2 exp -~(x-I')(2nD-) 20" (1.130) Do'ivoi m~uvectorx mOtehi~uvoi 2 §'n 8]=I' va 82=0"2ta co d<;lngvectord;:ie tru'ng8 haiehi~u e=[:'] (1.131) Tieu ehu§'nu'oelu'c;1nghc;1ply eve d<;litrong tru'onghc;1Pnay co thS vi€t nhu'sail 1 NIl. J(8)=- L[-ln2n-B2 +-(x' -8])2] N i~12 282 (1.132) Lffy d<;lohameuahamlieu ehu§'nnay theo 8, ta co k€t quau'oelu'c;1nghc;1ply eve d<;liehocaethamso' ~ 1 ~ .8,=f1=- L,.x' N i~1 (1.133) Trang40 eA A2 1~( ; )22 =(5 =- L..x -J1 N ;=1 (1.134 ) Ke'tquanay co th~mdrQngtudngtVd6i voi trudnghQpnhi€u chi€u. Doc luQnghQply qic d(;licuamatr~nhi~pphudngsai L la uoc luQngch~ch.Tilc la giatriky vQngcuai: khongb~ngL, vi d\ld6ivoim~umQtchi€u, giatrikyvQng cua(5 Ia E[a-]=N -1 (52N (1.135) dayla uoc luQngch~ch,khi N ~ 00 thluocluQngtrdthanhuocluQngkhongch~ch. DocluQngkhongch~chcoth~tinhtheocongthilc ~ 1 ~( ; A )( ; A )TL,=-L.. X -J1 X-J1 N -1 ;=1 (1.136) 1.8.2.Phu'ongphap phi thalli 86 Trong cacbai toanthlfcte",d(;lnghamm~tdQxac sua"tkhongduQcbie"ttruoc. Cac phudngphaptangquathdnd~tlmuoc luQngm~tdQxac sua"thoantoandlfa trenduli~udaco,d(;lnghamm~tdQxacsua"tclingnhugiatqb~ngsO'cuacactham s6.Phudngphapm(;lngndronclingduQcdungd~uocluQnghamm~tdQxacsua"t. NhungphudngphapnayduQcgQila phudngphapphi thamsO'(DudaandHart, 1973;Bishop,1975;HolmstrometaI.,1996) Y tu'dngt6ngquatv~phu'ongphapphi thalli 86 Gia sU't~phQpm~uduQcgioi h(;lng6m N phffn tU'x ={Xl,X2,...,xN} dQC l~p toan bQ d6ivoi lOpdachotheohamm~tdQxacsua"tfinp(x).CffnxacdinhmQtUOCluQng flex)cuam~tdQxacsua"tthlfcp(x) Trang41 D\,iatrenykhainit$mcuahamm~tdQxacsua"t,coth~tlmduQcxacsua"tmam~u mdix roi VaGtrongmi~nR duQCchobdi p =f- p(x)diXER (1.137) Coth~vie'tgiatrig~ndungcuaxacsua"t p =f- p(x)di ~ p(x)VXER (1.138) vDiV Ia th~tichcuami~nR (V =J ifi). D\iatrenxa"pxi nayco th~UDClu'Qngp(x)XER d6iVDix dacho,bie'txacsua"tP laxacsua"tmax seroiVaGmi€n R. f)~tinhP, d~utientinhxacsua"tmak ph~ntU'tuN ph~ntU'trongm~useroi VaG mi~nR duQcchobdi lu~tnhi thuc p, - N! pk (1- P) N-k ktuN - k!(N -k)! (1.139) Trungblnhty so'cuacacph~ntU'roiVaGmi~nR laE[kIN]=P vDibie'ndQngquanh trungblnhla E[(kIN - p)2]=P(1-P)/N. VI phanph6i nhi thucPktirN co dC;lnghlnh chopquanhtrungblnhkhi N -+ 00 vi v~ycoth~giasU'dng ty so'kIN la u'DClu'Qng K hK ? ~ K P k totn at cuaxacsuat : p~- N Tll (1.138)va(1.140)taco,p(x)=p=~NV (1.140) (1.141) D~dambaam~tdQxacsua"tmi~ncobantrensehQitl,1v~p(x)th\icdoihoiquye't dinhmi~nR phaidungd~n.S\,il\,iachQnmi~nR duQccoi la t6i uune'uthoacac di~ukit$nmallthu~n.D~utien,d~dambaadingxa"pxi la P ~ ~thl mi~nR c~n phailOn,tu do dam baaxftpxi P =p(x)VIa dunghon ne'uR (dodoV) Ia nhobon, Trang42 khid6rex)h~unhuc6d~nhtn3nmi~ntichphan.Docluejngt6tnhfitdoihoiphaitim mQts6mi~nt6iu'uR. C6 haiky thu~tco band€ uocluejnghamm~tdQxacsufitdlfatn3nslfh,tachQn mi~nvatinhs6ph~ntttcuam~uroivaomi~n,d6la cacphuongphap: . Phuongphapnhanco sd(Kernel-based) . PhuongphapIan c~ng~nnhfit( K-nearestneighbors) Trangphuongphapnhanco sa,mi~nRIa c6 d~nh(va VIv~ymi~nV clingc6d~nh) vas6cacph~ntttcuam~uroi vaotrongmi~nduejcde-mtu t~phejpdli lit%u TrongphuongphapIanc~ng~nnhfit,k ph~ntttcuam~uduejcxacd~nhvadlfatren giatr~naymQtmi~nduejcxacd~nhtudli lit%uvoi th€ tichtuongling. Phuongphap naydaduejcDuda,Hart,1973duafa. Cahaiky thu~tnay,m~tdQxacsufitsehQit\lv~rex)thlfckhiN --+CX) mienla mi~nth€ tichnhol~ikhin tangva k tangtheoN. 1.8.2.1.Phu'dngphapKernel- based.ParzenWindow MQttrongnhlingky thu~tdongiannhfitd€ uocluejngm~tdQxacsufitrex)cho m~umoix dlfatrent~phufinluyt%nTtrachliaN ph~ntttduejcgQila phuongphap Kernel- based. Phuongphapnayc6 d~nhvectorx trenmi~nR va tinhs6ph~ntttcuam~uhufin luyt%nroivaomi~nnaybangcachsttd\lnghamnhandi:icbit%tc6quailht%voimi~n nay.Hamnay duejcgQila hamParzenwindow(Parzen,1962;Duda,andHart, 1973). LvachQnmi~nc6d~nhchom~un chi~ula hinhsieul~pphuongn chi~uc6dQdai qnh bangh t~ptrungKungquanhdi€m x.Th€ tichcuahinhsieul~pphuongnayla V =hn (1.142) Trang 43 C6ngthlic tinhs6 k ph~ntil'cuam§:utu t~phuffnluy~nroi vao tronghlnh sieul~p phuongnhusau: _ { I IYil::::;1/2,i=1,2,...,n ~(y) - 0 N . kh'01 ac (1.143) Hamnhannaytuonglingvdihlnhsieul~pphuongdonvi (codQdaiq.nhb~ng1) macacph~ntU't~ptrungtc;tig6c.Di€u dochophepxacdinhm§:udiichocoroivao tronghlnhsieul~pphuongdonvi kh6ng.Quye'tdinhnayco th~ma.rQngchohlnh sieul~pphuongcodQdaicc;tnhla h. Co th~thffydng d6i vdi ph~ntU'Xi,hamnhan ~((x - Xi)/h)=1 ne'uXi roi vao trong hlnhsieul~pphuongcodQdaiq.nhIaht~ptIlingtc;tidi~mx, giatrihamnhanb~ng 0tc;tinoi khac. Vdi t~phQpm§:ug6mN ph~ntU',t6ngs6 ph~ntU'cuam§:uroi vao tronghlnhsieu l~pphuongt~ptrungxungquanhdi~mx duQcchobai ( i J N x-x k=t;~ ~ (1.144) Thaythe'phuongtrlnh(1.144)vaophuongtrlnh(1.141),taco ~ 1 N 1 [ X_Xi ) 1 N ( X_Xi ]p(x) =Nt;Jlf ~ =N hnt;1f/ ~ (1.145) D€ co udcluQngtrailcuahamm~tdQxacsufft,tadungmQtdc;tngkhaccuaham nhan~(x).Hamnhanthoahaidi€u ki~n ~(y)~0 Ivy~(y)dy =1 (1.146) C6 th€ chQnnhanGaussnhi€u chi€u d6i xlingtam Trang44 IjI(Y) = 1 [ exp_llif ](2nr/2 2 (1.147) i voi Ilyll=~yTY , Y =x ~x chotruoctronguocluQngsau A 1 N l -llx-XiI12 )p(x)=(2nr/2hnNt; exp 2h2 = (1.148) 1 N ((2nr/2hnNLexp -(x-xif(x-Xi) ]1=1 2h2 sO'h<;lngIlx- xiii =((x - Xi)T (x - Xi))1/2 Ia ImmingcachEuclidegiii'ax vaXi Ky hi~usO'ph~nta lOp thli k la Nk va ph~nta thli i tu t<%phua'nluy~n tu lOp CkIa Xk,i khido,lOphamm<%tde)xacsua'tcodi~uki~nla ( k' J 1 Nk 1 x - X ,1 jJ(XICk)= Ni t;h; IjI hk (1.149) voihkIa thamsO'trail lOpphl;lthue)c.£>6ivoi nhanGausstaco A 1 Nk [ -llx-xk,iI12 )p(xICk) =(2nr/2h;Nkt;exp 2hf (1.150) Vi du1.3 Sa dl;lngl<;libe)dii'li~utuvi dl;l1.2,t<%p hQphua'nluy~ndii duQcchiathanhcac lOpkhacnhaunhutrongbang1.2 Tangso"ph~ntacuat<%phua'nluy~nlaN =10,voi N1=5ph~nta tronglOpClvaN2 =5 ph~nta tronglOpC2.Xacsua'ti~nnghi~mchom6ilOpduQcuocluQngla A N, P(CI) =~ =0.5(i=l,2)N Trang45 Ban~ :T~phua'nluy~ndffdu<jchiathanh2 lOpkhacnhau XetmOtm~uvaoX=[8,6]Td6ki6mtra.ChQnthams6trollla h =0.5chocahai lOp,gii trj cuahamnhiin \"(x-t') d6ivdi mlluhua'nluy~n xI.i tir Wpc[ (0) Iii: ( 1,1 JVOixU =[1,2]\ If/ x-hx =1f/(([8,6]T- [1,2]T)/0.5)=5.54E-58 (1.151) ( 1,2 JVoi XI,2=[2,2]T, If/ x -hx =If/ (([8,6]T- [2,2]T)/0.5)=1.084E-46 ( 1,3 JVoi XI,3 =[2,3]T,If/ x-; = If/(([8,6]T- [2,3]T)/0.5)=1.304E-40 ( 1,4 JVoi XI,4=[3,I]T, Ij/ x-; =1j/(([8,6]T- [3,I]T)/0.5)=5.92IE-45 [ 1,5 JVoi XI,5 =[3,2f, If/ x-hx =1f/(([8,6]T- [3,2]T)/0.5)=3.888E-37 Lop 1 Xl X2 Lop 1 2 0 2 2 0 2 3 0 3 1 0 3 2 0 Lop2 Xl X2 Lop 6 8 1 7 8 1 8 7 1 8 8 r 7 9 1 Trang46 Doc luQngcua m~tdQ xac sua'tvoi m~ux =[8, 6]T cua lOp Cl (0) la ~ 1 N, [ -llx-XI,iI12 )p(x [CI) =(2nr/2htN1~exp 2hl2 = (3.48111E-57+6.81356E-46+8.19401E-40+3.72008E-44+2.4426E-36)/7.85= =3.1111E-37 V~y jJ(x[c])=3.1111E-37 Tu'ongtV,tatinhduQcgiatrinhanvam~tdQxacsua'tchom~uthli'x =[8,6]T voi m~uhua'nluy~nX2,i tu lOpC2(1) ( 2,1 JVoi X2,1=[6,8]T,IJI x-: = IJI(([8,6]T- [6,8]T)/0.5)=7.1642E-08 ( 2,2 JVoi X2,2=[7,8]T,IJI x-; = 1JI(([8,6]T- [7,8]T)/0.5)=2.8902E-05 ( 2,3 JVoiX2,3=[8,7]T, IJI x-: = IJI(([8,6]T- [8,7]T)/0.5)=8.6200E-02 [ 2,4 JVoi X2,4=[3,1]T,IJI x-: = 1JI(([8,6]T- [8,8]T)/0.5)=2.1356E-04 [ 2,5 JVoi X2,S=[7,9]T, IJI x-: = IJI(([8,6]T- [7,9]T)/0.5)=1.3122E-09 Doc luQngcua m~tdQ xac sua'tvoi m~ux =[8, 6]T cua lop C2(1) Ia ~ 1 N2 [ -llx-X2,iI12 ) p(x[c2)= (2 r/2hn Iexp 2 =0.0173n 2N2 1=] 2h V~y jJ(xlc])=0.0173 Ta tha'ym~tdQxacsua'tcualOpC2IOnhonm~tdQxacsua'tcualOpCl(0.0173> 3.1111E-37) Trang47 TuongtV,ta tinhduQcm~tdQxac sua'tchom~unh~px =[2, I]T dO'ivoi lOpclla jJ(x ICj)=0.0392va dO'ivoi lOpC2la fl(x IC2)=4.4323E-58. Com~tdQxacsua'tvabiStuocluQngxacsua'ti~nnghil$mP(cJ (i =1,2)tacoth€ tinhduQCbil$thucBayesvasaudophanlOpm~unh~pdljatrenlu~tBayes. Bil$thucdO'ivoim~ux=[8,6]TcualOpclla T A d] (x) =d]([8,6] ) = fl(x I c] )P(c\) =3.1111E-37xO.5=1.5555E-37 (1.152) vacualOpc2la T A d2(x)=d2([8,6]) =fl(x IC2)P(C2)=0.0173xO.5=8.6399E-3 (1.153) VI d2([8,6f) >d]([8,6f) (8.6399E-3 >1.5555E-37)nenrhealu~tto'iu'uBayes,m~u vaox=[8,6]T seduQcgallcholOpC2 Bil$thucdO'ivoim~ux=[2, I]T cualOpclla T A dj (x)=d\ ([2,1] ) = fl(x Ic])P(c\) =0.0392xO.5=0.00196 (1.154) vacualOpC2la T A d2 (x) =d2([2,1] ) =fl(x IC2)P(C2) =4.4323E-58xO.5=2.2161E-58 (1.155) VI dj([2,lf) >d2([2,lf) (0.00196>2.2161E-58)nenrhealu~tto'iu'uBayes,m~u nh~px=[2, I]T seduQcgall cholOpCl 1.8.2.2.Phu'dngphapHinc~ngdnnha't: K - nearestNeighbors MQtphuongphapdongiand€ tiocluQngm~tdQxacsua'tmadQIoncuacac mi~ncoth€ thayd6iduQcdoIa phuongphapK - nearestNeighbors.Trangphuong phapnay,sO'm~uk trongmi~nduQccO'dinhnhungnguQcl(;lidQIOncuami~n(va th€ richV cuami~n)co th€ thayd6iphl,lthuQcvaodii'lil$u.Trangky thu~tuoc h.iQngm~tdQxacsua'tdO'ivoi m~umoichotruocx, dljatrent~phua'nluyl$nTtra g6mN ph~ntti'duQcthljchil$nrheacachsau.D~utien,mQthinhc~un chi~uduQc Trang48 xacd~nhtrongkhonggianm~ut~ptrungt~idi~mx. Saudo,bankinhcuahinhc~u nayduQcmarQngd@nkhihinhc~unayv~nconchuamQtsacad~nhk m~utut~p huffnIuy~ndffchaoDocIuQngm~tdQxacsufftjJ(x) duQctinhIa k jJ(x)=NV (1.156) PhuongphapK - nearestNeighborschotruocmQtUOCIuQngm~tdQric sufftnhung m~tdQxacsufftnaykhongdungVItichphancuahamm~tdQxacsu(tkhonghQitv v~khonggianm~u. Luluphan[upK - nearestNeighbors Gia sU'chotruoct~phuffnIuy~nTIra g6mN ph~ntaXl, X2, ..., XN duQc d~t ten theo 1 lOp va lOpCjchuaNj ph~nta(i =1,2, ...,1;I:Nj =I). Voi x dffcho,k Ianc~ng~n nhffttu t~phuffnIuy~nHmduQcd1;1'av o mQtm~udffxac d~nhdu'QcdQdo khoang cachoSaudo, k Ian c~ng~nnhfftdu'Qc11;1'achQn,sa nithuQCv~lOpCicuam~uduQc tinh.LopduQctiendoanCjduQcgallchox tu'dnglingvoilOpmanjIa IOnnhfft. C6th~lienh~giuaphuongphapk Ianc~ng~nnhfftvoi Iu~tphanlOpGauss,gall chox mQtlOpmaxac suffth~unghi~mco di~uki~nP(cjlx)Ia IOnnhfft.Sa dvng phuongphapk Ianc~ng~nnhffttac6uocIuQng(xffpxl) m~tdQxacsufftc6di~u ki~ncualOptrongmi~nchuak Ianc~ng~nnhfft. nj p(x IcJ =NVI (1.157) vam~tdQxacsufftkhongdi~uki~n nj p(x) =N (1.158) Chungtaclingcoth~HmduQcxffpXlxacsuffti~nnghi~m Trang49 n. ~ I P(c;) =N (1.159) Tli dinhIy Bayestaco: P(Ci Ix) =p(x Ic;)P(c;) ~ ni p(x) ~ k (1.160) * Luljtphanlap[ancljngUnnhfli( NearestNeighbor) TrangIu~tphanlOpk Ianc~ngftnnhtt,s6 Ianc~nk b~ng1.Lu~tphanlOpnay rung duejcgQiIa Iu~tphanlOpIan c~ngftnnhtt, gall rho mQttr,!ngthaimai x mQt lOp cuam~uIan c~ngftnnhtt tli t~phutn Iuy<$nXl, X2,...,XN.Thu~ttoancuaIu~t phanlOpIanc~ngftnnhttduejcxaydl;(ngnhusau: Chotru'oc: MQtt~phutnIuy<$nTtrag6mN phftntii'Xl,x2,...,XNduejcdc1ittentheo caclOpvarhotruacmN m~umaix. I.Tinh Ianc~ngftnnhttXjcuax dii rhotli t~phutnIuY<$ndftydudl;(atrenm~u dii xac dinhdQdokhoangcach(x,Xl) 2. Gan rho x lOpCjIa Ian c~ngftnnhtt rho x Ke'tqua: Lop dii duejctien Joan 1.8.3.Phu'dngphap miathams6 Trangcacphftntruacchungtadii xetcacphuongphapuacIuejngm~tdQxac StittdoIa phuongphapthams6vaphithams6.Phuongphapthams6giasii'diibie't d~ngcuahamm~tdQxacStittcuatoanbQt~pdftli<$uva nhi<$mV\lcuavi<$cuac IuejngIa Hmcacthams6tincuahamdl;(avaot~pdftli<$udii rho.Mc1ith,!nche'cua phuongphapthams6Ia vi<$cchQnhamm~tdQxacStitt cuatoanbQt~phejpdft li<$u(trangkh6nggiandc1ictIling)co khanangkh6ngphilhejpvai mQts6vilngdft li<$udc1icbi<$t.Phuongphapphithams6rhophept6ngquathoacacd,!nghamm~t Trang50 de)xacsua'tnhungh~nchS'cuaphuongphapnayla cacthams6cos6chi~uIOndVa trenco cuadfi'li~u,ngoairaphuongphapnaycondoi hoi sVco m~tcuatoanbe) t~pdfi'li~utrongvi~cuaclu<;1ngm~tde)xacsua'tcuam~umai.B6i vaim~uIOnthl kythu~tnaykhongkhathivabi chiph6ibaithaigian. SVlienkS'tgifi'aphuongphapthams6va phuongphapphi thams6la co sacua phuongphapmYathams6 1.8.3.1.Xa'pxi ham Phuongphapnay gia s\i'xa'pXlm~tde)xac sua'tb~ngquailh~tuyS'ntint cuam hamcosacjJi(X)(Bow, 1992) m jJ(x)=g(x,a)=LaicjJi(X) i=1 (1.161) vai ai(i=l, 2, ...,m) la cacphftnt\i'cuavectorthams6aERffi Me)tvi dl,lv~hamco sa la hamdo'ixungxuyentam cd sd (RadialBasisFunction- RBF)saochome)txa'pXlcuam~tde)xacsua'tcodu<;1cb~nghamtrailvahuanglien tl,lCdu<;1cdintnghlatrongR m g(x,a) = LaicjJi(llx -xiii) =alcjJl(11x-XIII) +a2cjJ2(11x-x211)+...+amcjJm(11x- xmll) i=1 (1.162) vai Ilx-xill la khoangcachgiuahaivectortrongRil.Ta tha'ydng, me)txa'pXlham g(X,a) la me)tquailh~tuyS'ntint cuahamd6i xungxuyenHimco sa cjJi(llx-Xill) (i=l,2,...,m)t~ptrungxungquanhvectorXi. X6tme)thamxuyentamcosatrailva huang(me)tnhan)cjJc(llx-xcll)du<;1cxacdint trongkhoang[0, 1]va t~ptrungxung quanhdi€m xcERn.Hamnayla d6ixungxuyentamcosa. C6nhi~uxa'pXlkhacnhaud€ IVachQnhamcosanhungthongthuangIa s\i'dl,lng hamcosabankinhGauss(nhanGauss) 51 ~c(llx- xcii)=~c(llx- xcll,O"c)=exp [ - (x _XJT (x - Xc) ]20"2c (1.163) voihaithams6: Xcla HimcuahambanldnhGaussva 0";la thams6chu~nhoacua nhanGaussva Ilx - xcll2 =(x- xcf (x- xJ la blnhphuongkhofmgcachEuclidegiua haivectorX va Xc.Tham s6 chu~nhoa 0"la dQl~chchu~ncuaphuongphapchu~n ~ Gaussm~cdlinoduQcuocluQngtheocachkhac,giatrinhanGaussla Immingtit0 toi1.Tilc la Ianc~ncuavectorx latamXccuanhanGaussIOnhongiatricuaham. Ml;lCdichcuavi~cxtp Xlhamm~tdQxacStittla tlmmQtgiatri t6iuucua vector thams6theotieuchu~nt6iuudiixacdinh,vi dl,l lea)= r [p(x)- jJ(x)]2dxJvx (1.164) Thaythe'mQtxtpxi hamg(x,a)chojJ(x) taco: m lea) =Iv [p(x)+Iai~i(x)] x i=1 (1.165) D~tlmcacthams6t6iuu,c~nphiiiqtcti~utieuchu~nJ(a),chodC;lOhamriengtheo ab~ngO. ol(a) =0 oa (1.166) ho~c ol(a) =O,j =1,2, ...,mGa. 1 (1.167) Taco m o~~~)=2Iv)p(x) - ~ai~i(x)]~/x)dx=0I (1.168) m ~ Ivx~j(x)p(x)dx= Ivx~/x)[~ai~i(x)]dx (1.169) Trang52 Theod~nhnghla, Lxq)/x)p(x)dxla mQtgia tr~ky v<;mgE[q)/x)] cuahamq)/x) Sapx€p l~icacphuongtrlnhlIen,t~phQpmphuongtrlnhtuy€n tinhcuacactham s6t6i u'uaI, a2,...,am m 1>; Lxq)/X)q);(x)dx=E[q)/x)], j =1,2,...,m i=1 (1.170) ~ f)~tlmnghi~mcuah~phuongtrlnhlIencgnphaibi€t m~tdQxacsua'tp(x).Co th~ lingdvngxa'pXlsailday E[q)/x)]=Lxq)j(x)p(x)dx~ ~q)j(Xk),j= 1,2,...,m (1.171) Voi N la s6cacphgntucuam~u,taco m 1 m LP; fvxq)/x)q);(x)dx=- Lq)/Xk), j =1,2, ...,m;=1 N k=1 (1.172) T~phQpmphuongtrlnhtuy€n tinhcoth~giaiduQcd6ivoi m hamcobanq)/x). N€u hamcosatn,1'cchuc1nduQcsudvng,thoadiSuki~nsail { li=i r q)(x)q);(x)dx= '. . Jvx J 0, 1::f::.J (1.173) thltaco uocluQngto'iu'ucuacacthamso' aj =~Iq)/Xk),j =1,2,...,m N k=1 (1.174) ~N- ~ [M~N ,j, ( N+1)]a. - 1Va. +'f. X J N+l J J (1.175) voia; va at! la cach~so'to'iu'ud~tduQcchoN vaN +1phgntum~utuongling. Bi€t duQcgiatr~cuathamso'to'iu'uvahamcosatacoxa'pXlhamm~tdQxacsua't m flex) =La;q);(x) ;=1 (1.176) 53 ThuatloanxdJ2..xl hammatdoxacsudt Ch t '~(j~ T" h ,.:' 1 " T ;, N h;, ? 1 2 N b ' ki h h' ?0 ru, c: <;lpuan uy~n ITagom P an tux , x , ...,x . m an n amcoso tnjcchu~ntPi(X),i =1,2,...,m vacacthams6 1.Tinh u'dclu'<;jngcuacacthams6~n Gj =~ftPj(Xk), j =1,2,...,m N k=! (1.177) 2.D;;mgmahinhcuahamm~tdQxacStittlahamxtpXl m jJ(x)=LGitPi(X) i=! (1.178) Ke'tqua:C6m~tdQxacStittcuacacm~u *M6hinhh6nh(Jp Mahinhh6nh<;jpdu'<;jcdl;(atrenquailh~tuye'ntinhcacthams6cuahamm~tdQxac Stittdii bie't(vi dl,lm~tdQxac Stittchu~n)du'<;jcphanvungtrongmQtvungcuadii' li~u(Hinltonetat. , 1995;HastieandTibshirani,1994,1996).MQtmahinhh6nh<;jp coth€ laphanph6ih6nh<;jptuye'ntinhsauday(Duda,Hart,1973) m p(x)=p(x I0) =p(x IB,P) =LPJx IBJ~ i=! (1.179) voiPi (X IBJ la thanhph~nm~tdQthlii voivectorthams6Bp mla s6thanhph~n m~tdQ vaPi la thams6h6nh<;jpthlii. B vaP la kyhi~uthanhph~nm~tdQvector thams6vavectorthams6h6nh<;jptu'ongling.0 lakyhi~uvectorthams6baog6m ()vaP. B€ dongiantrongky hi~u,tasematamahinhh6nh<;jpla m p(x)=LPJx)~ i=! (1.180) Trang54 Phanph6ih6nhQptuye'ntinhd trentu'ongtt;(dinhnghlacuam~tdQxac sua'tkhong di~uki~n.Th~tv~y,taxetPi la xac sua'ti~nnghi~mma m~ux du'Qct6ngquathoa bdithanhph~nm~tdQthil i Pi(X).Hon mIa,taco thS1t;(achQnPi thoa m IF; =1 ;=1 (1.181) O-s,P-s,l I vagiasacacthanhph~nm~tdQdu'Qchu5nhoa LxPi (x)dx =1 (1.182) khidoco thSsosanhvoi lOpm~tdQxacsua'tco di~uki~n.MQtcacht6ngquat: £)~utien,mQtthanhph~nm~tdQthil i du'Qc1t;(achQnng~unhienvoi xacsua'tPi. Saudom~ux du'Qct6ngquathoatheost;(1t;(achQnm~tdQxac sua'tPi (x) H~uhe'tmo hinh h6n hQpm~tdQchu5nGaussdu'Qcsa d\lngcho mo hinhm~tdQ xacsua't.Mo hinhh6nhQpdongvaitrc>quailtrQngtrongvi~cthie'tke'bankinhco sdcuacacm~ngnoronvast;(h6nhQpcuacach~chuyengia. 1.8.3.2.Khoang each giua cae m~t d{)xac sua't.Khoang each Kullback- Leibler M\lc dich cua cac thut\lc u'oc1u'Qngm~tdQ1atim mQtmo hinhm~tdQcang g~nm~tdQ tht;(ccang t6t. Ta co d~ngdinh nghla chinh xac cua khoangcach d(p(x),jJ(x))giua hai m~tdQ: m~tdQxac sua'tht;(cp(x) va u'oc1u'Qngxa'pXl flex) cuano. La'y logaritW nhiencuahamhQp1y L =p(X) =IT:1P(Xi) d6i voi N ph~n . 1 2 N 1,tux,x,...,x a' N -till =- Ilnp(xi) ;=1 (1.183) Trang55 D6ivoimahlnh fl(x),trungblnhcualogaritcuahamh<jply du<jcoinhula giatri kyvQng E[-lnL]=-lim~ flnfl(xi)=- i p(x)lnfl(x)dx N-->ooN i=] Vx (1.184 ) D6ivoim~tdQxacsua'td6ngnha'tp(x)=fl(x),giatqkyvQngla - r p(x)lnp(x)dxJvx (1.185) laentropycuap(x) Thaythe'entropynaytubiguthucky vQngE[-InL] taco dQdokhoangcachgiua p(x) va flex) d(p(x),flex))=- r p(x) In flex)dx Jvx p(x) (1.186) du<jcgQilakhodngeachKullback- Leibler(Kullback,1959)

Các file đính kèm theo tài liệu này:

  • pdf3.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf2.pdf
  • pdf4.pdf
  • pdf5.pdf
  • pdf6.pdf
  • pdf7.pdf
  • pdf8.pdf
  • pdf9.pdf