Tổng quan về hệ thống 2G và 3G

Mục lục: I. Mạng GSM và giải pháp nâng cấp lên 3G 1. Mạng GSM 2. Giải pháp nâng cấp lên 3G II. GPRS và EDGE 1. GPRS ( General Packet Radio Services ) 2. EDGE ( Enhanced Data rate for GSM Evolution ) III. CÔNG NGHỆ DI ĐỘNG THẾ HỆ BA W-CDMA 1. Tổng quan 2. Cấu trúc mạng W-CDMA 3. Các giao diện vô tuyến 4. Trải phổ trong W-CDMA 5. Truy nhập gói 6. Các phương pháp lập biểu gói

doc23 trang | Chia sẻ: banmai | Lượt xem: 3241 | Lượt tải: 4download
Bạn đang xem trước 20 trang tài liệu Tổng quan về hệ thống 2G và 3G, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Môn: Thông tin di động Đề tài: Tổng quan về hệ thống 2G và 3G GVHD: Nhóm thực hiện: Nguyễn Quốc Dũng 0620008 Hồ Quốc Hưng 0620015 Trần Anh Tuấn 0620097 Mục lục: Mạng GSM và giải pháp nâng cấp lên 3G Mạng GSM Giải pháp nâng cấp lên 3G GPRS và EDGE GPRS ( General Packet Radio Services ) EDGE ( Enhanced Data rate for GSM Evolution ) CÔNG NGHỆ DI ĐỘNG THẾ HỆ BA W-CDMA Tổng quan Cấu trúc mạng W-CDMA Các giao diện vô tuyến Trải phổ trong W-CDMA Truy nhập gói Các phương pháp lập biểu gói MẠNG GSM VÀ GIẢI PHÁP NÂNG CẤP LÊN 3G MẠNG GSM Vì cấu trúc tổng quan về mạng GSM đã được nói rõ trong các bài giảng của thầy nên nhóm em xin phép không đề cập đến phần GSM mà cnhoms em chỉ nói đến 2.5G ( GPRS ) , 2.75G ( EDGE ) , 3G và các goải pháp nâng cấp từ 2G lên 3G GIẢI PHÁP NÂNG CẤP LÊN 3G Sự cần thiết nâng cấp mạng GSM lên 3G Để đáp ứng được các dịch vụ mới về truyền thông đa phương tiện trên phạm vi toàn cầu đồng thời đảm bảo tính kinh tế, hệ thống GSM sẽ được nâng cấp từng bước lên thế hệ ba. Thông tin di động thế hệ ba có khả năng cung cấp dịch vụ truyền thông multimedia băng rộng trên phạm vi toàn cầu với tốc độ cao đồng thời cho phép người dùng sử dụng nhiều loại dịch vụ đa dạng. Việc nâng cấp GSM lên 3G thực hiện theo các tiêu chí sau : - Là mạng băng rộng và có khả năng truyền thông đa phương tiện trên phạm vi toàn cầu. Cho phép hợp nhất nhiều chủng loại hệ thống tương thích trên toàn cầu. - Có khả năng cung cấp độ rộng băng thông theo yêu cầu nhằm hỗ trợ một dải rộng các dịch vụ từ bản tin nhắn tốc độ thấp thông qua thoại đến tốc độ dữ liệu cao khi truyền video hoặc truyền file. Nghĩa là đảm bảo các kết nối chuyển mạch cho thoại, các dịch vụ video và khả năng chuyển mạch gói cho dịch vụ số liệu. Ngoài ra nó còn hỗ trợ đường truyền vô tuyến không đối xứng để tăng hiệu suất sử dụng mạng (chẳng hạn như tốc độ bit cao ở đường xuống và tốc độ bit thấp ở đường lên). - Khả năng thích nghi tối đa với các loại mạng khác nhau để đảm bảo các dịch vụ mới như đánh số cá nhân toàn cầu và điện thoại vệ tinh. Các tính năng này sẽ cho phép mở rộng đáng kể vùng phủ sóng của các hệ thống di động. - Tương thích với các hệ thống thông tin di động hiện có để bảo đảm sự phát triển liên tục của thông tin di động. Tương thích với các dịch vụ trong nội bộ IMT-2000 và với các mạng viễn thông cố định như PSTN/ISDN. Có cấu trúc mở cho phép đưa vào dễ dàng các tiến bộ công nghệ, các ứng dụng khác nhau cũng như khả năng cùng tồn tại và làm việc với các hệ thống cũ. Giải pháp nâng cấp Có hai giải pháp nâng cấp GSM lên thế hệ ba : một là bỏ hẳn hệ thống cũ, thay thế bằng hệ thống thông tin di động thế hệ ba; hai là nâng cấp GSM lên GPRS và tiếp đến là EDGE nhằm tận dụng được cơ sở mạng GSM và có thời gian chuẩn bị để tiến lên hệ thống 3G W-CDMA. Giải pháp thứ hai là một giải pháp có tính khả thi và tính kinh tế cao nên đây là giải pháp được ưa chuộng ở những nước đang phát triển như nước ta. vì thời gian truy cập. Dịch vụ GPRS tạo ra tốc độ cao chủ yếu nhờ vào sự kết hợp các khe thời gian, tuy nhiên kỹ thuật này vẫn dựa vào phương thức điều chế nguyên thuỷ GMSK nên hạn chế tốc độ truyền. Bước nâng cấp tiếp theo là thay đổi kỹ thuật điều chế kết hợp với ghép khe thời gian ta sẽ có tốc độ truyền dữ liệu cao hơn, đó chính là công nghệ EDGE. EDGE vẫn dựa vào công nghệ chuyển mạch kênh và chuyển mạch gói với tốc độ tối đa đạt được là 384Kbps nên sẽ khó khăn trong việc hỗ trợ các ứng dụng đòi hỏi việc chuyển mạch linh động và tốc độ truyền dữ liệu lớn hơn. Lúc nay sẽ thực hiện nâng cấp EDGE lên W-CDMA và hoàn tất việc nâng cấp GSM lên 3G GPRS và EDGE. GPRS ( General Packet Radio Services ) 1.1 Kiến trúc mạng GPRS GPRS được phát triển trên cơ sở mạng GSM sẵn có. Các phần tử của mạng GSM chỉ cần nâng cấp về phần mềm, ngoại trừ BSC phải nâng cấp phần cứng. GSM lúc đầu được thiết kế cho chuyển mạch kênh nên việc đưa dịch vụ chuyển mạch gói vào mạng đòi hỏi phải bổ sung thêm thiết bị mới. Hai node được thêm vào để làm nhiệm vụ quản lý chuyển mạch gói là node hỗ trợ GPRS dịch vụ (SGSN) và node hỗ trợ GPRS cổng (GGSN), cả hai node được gọi chung là các node GSN. Node hỗ trợ GPRS dịch vụ (SGSN) và node hỗ trợ GPRS cổng (GGSN) thực hiện thu và phát các gói số liệu giữa các MS và các thiết bị đầu cuối số liệu cố định của mạng số liệu công cộng (PDN). GSN còn cho phép thu phát các gói số liệu đến các MS ở các mạng thông tin di động GSM khác. 1.2 Node hỗ trợ GPRS dịch vụ (SGSN) SGSN có các chức năng chính sau : - Quản lý việc di chuyển của các đầu cuối GPRS bao gồm việc quản lý vào mạng, rời mạng của thuê bao, mật mã, bảo mật của người sử dụng, quản lý vị trí hiện thời của thuê bao v.v… - Định tuyến và truyền các gói dữ liệu giữa các máy đầu cuối GPRS. Các luồng được định tuyến từ SGSN đến BSC thông qua BTS để đến MS. - Quản lý trung kế logic tới đầu cuối di động bao gồm việc quản lý các kênh lưu lượng gói, lưu lượng nhắn tin ngắn SMS và tín hiệu giữa các máy đầu cuối với mạng. - Xữ lý các thủ tục dữ liệu gói PDP (Packet Data Protocol) bao gồm các thông số quan trọng như tên điểm truy nhập, chất lượng dịch vụ khi kết nối với một mạng dữ liệu khác bên ngoài hệ thống. - Quản lý các nguồn kênh tài nguyên BSS. - Cung cấp các file tính cước dành cho dữ liệu gói. - Quản lý truy nhập, kiểm tra truy nhập các mạng dữ liệu ngoài bằng mật mã và sự xác nhận. 1.3 Node hỗ trợ GPRS cổng (GGSN) Để trao đổi thông tin với mạng dữ liệu ngoài SGSN phải thông qua node hỗ trợ GPRS cổng là GGSN. Về mặt cấu trúc GGSN có vị trí tương tự như gate MSC. Thông thường GGSN là một Router mạnh có dung lượng lớn. Chức năng chính của GGSN là : - Hỗ trợ giao thức định tuyến cho dữ liệu máy đầu cuối. - Giao tiếp với các mạng dữ liệu gói IP bên ngoài . - Cung cấp chức năng bảo mật mạng. - Quản lý phiên GPRS theo mức IP, thiết lập thông tin đến mạng bên ngoài. - Cung cấp dữ liệu tính cước . 1.4 Mạng Backbone Mạng Backbone kết hợp một số giao diện chuẩn dữ liệu chuẩn dùng để kết nối các giữa node SGSN, GGSN và các mạng dữ liệu bên ngoài. Có hai loại mạng backbone : - Mạng intra-backbone : Kết nối các phần tử trong cùng một PLMN như các node SGSN, GGSN. - Mạng inter-backbone : Dùng để kết nối giữa các mạng intra-backbone của hai PLMN khác nhau thông qua cổng BG (Border Gateway). Như vậy mạng Backbone giải quyết vấn đề tương tác giữa các mạng GPRS. Lý do chính mà hệ thống hỗ trợ vấn đề tương tác giữa các mạng GPRS là để cho phép roaming giữa các thuê bao GPRS. Các thuê bao roaming sẽ có một địa chỉ PDP được cấp phát bởi mạng PLMN chủ, một router chuyển tiếp giữa mạng PLMN chủ và mạng PLMN mà thuê bao di chuyển đến. Định tuyến này được dùng cho cả thuê bao đã hoàn thành hay bắt đầu truyền dữ liệu. Thông tin được truyền đi thông qua các cổng biên BG. 1.5 Cấu trúc BSC trong GPRS Để nâng cấp mạng GSM lên GPRS, ngoài việc nâng cấp phần mềm ta cần bổ sung vào trong BSC một phần cứng gọi là khối kiểm soát gói (PCU). PCU có nhiệm vụ xữ lý việc truyền dữ liệu gói giữa máy đầu cuối và SGSN trong mạng GPRS. PCU quản lý các lớp MAC và RLC của giao diện vô tuyến, các lớp dịch vụ mạng của giao diện Gb (giao diện giữa PCU và SGSN). Nó bao gồm phần mềm trung tâm, các thiết bị phần cứng và các phần mềm vùng (RPPs). Chức năng của RPP là phân chia các khung PCU giữa các giao diện Gb và A-bis, chúng có thể được thiết lập để làm việc với một giao diện A-bis hay với cả hai giao diện A-bis và Gb. Giải pháp bổ sung PCU vào BSC là một giải pháp hiệu quả về mặt chi phí hệ thống. Về truyền dẫn thì giao diện A-bis được sử dụng lại cho cả chuyển mạch kênh và chuyển mạch gói trên GPRS, nhưng giao diện giữa BSS và SGSN lại dựa trên giao diện mở Gb. Thông qua A-bis, các đường truyền dẫn và báo hiệu hiện tại của GSM được sử dụng lại trong GPRS nên đem lại hiệu suất hệ thống cao và hiệu quả trong giá thành. Giao diện Gb mới là một đề xuất mới nhưng nó có thể định tuyến lưu thông Gb một cách trong suốt thông qua MSC. 2. EDGE (Enhanced Data rate for GSM Evolution) 2.1Tổng quan Giải pháp nâng cấp mạng GSM lên GPRS đã tăng tốc độ truyền dữ liệu lên đến 170Kbps nhưng vẫn chưa đáp ứng được yêu cầu của các dịch vụ truyền thông đa phương tiện. Dịch vụ GPRS tạo ra tốc độ cao chủ yếu nhờ sự kết hợp của các khe thời gian. Tuy nhiên do vẫn sử dụng kỹ thuật điều chế nguyên thuỷ GMSK nên tốc độ truyền dữ liệu còn hạn chế. Công nghệ EDGE sẽ kết hợp việc ghép khe thời gian với việc thay đổi kỹ thuật điều chế GMSK bằng 8PSK, điều này sẽ giúp tăng tốc độ truyền dữ liệu trong mạng GPRS lên 2 đến 3 lần. 2.2 Kỹ thuật điều chế trong EDGE Để tăng tốc độ truyền dữ liệu trong EDGE người ta sử dụng kỹ thuật điều chế 8PSK thay thế cho GMSK trong GSM. I Q I Q GMSK 8PSK - Cấu hình đài t nh đài trạm. Hình 3.1212. Giản đồ tín hiệu hai loại điều chế Sử dụng điều chế 8PSK có tốc độ bit gấp ba lần tốc độ bit của điều chế GMSK, do đó tốc độ truyền dữ liệu của EDGE gấp ba lần so với GSM. Tuy nhiên điều chế 8PSK trong EDGE thay đổi theo thời gian nên việc thiết kế các bộ khuếch đại rất phức tạp. Hiệu suất công suất của điều chế 8PSK chỉ bằng 4/7 của điều chế GMSK nên công suất của máy thu phát EDGE phải lớn gần gấp đôi so với GSM. Điều này ảnh hưởng đến việc chế tạo thiết bị đầu cuối và các trạm thu phát công suất nhỏ như Micro BTS, Pico BTS... Do phần lớn các dịch vụ tốc độ cao đều nằm ở đường xuống nên đế hạn chế tính phức tạp cho máy máy đầu cuối, người ta đã đưa ra giải pháp : đường lên sẽ phát tín hiệu sử dụng điều chế GMSK nhằm hạn chế tính phức tạp cho máy đầu cuối còn đường xuống sử dụng điều chế 8PSK. 2.3 Giao tiếp vô tuyến Trong công nghệ EDGE ngoài việc thay thế kỹ thuật điều chế, các thông số vật lý khác của giao diện vô tuyến tương tự như trong GSM. Thủ tục vô tuyến của EDGE chính là các thủ tục được sử dụng trong GSM/GPRS. Điều này hạn chế tối thiểu việc xây dựng thêm các thủ tục mới cho EDGE. Tuy nhiên để hỗ trợ cho việc truyền dữ liệu tốc độ cao, một vài thủ tục sẽ được thay đổi cho phù hợp. Có hai dạng truyền dữ liệu của EDGE cần xem xét là : truyền chuyển mạch gói và truyền chuyển mạch kênh 2.4 Truyền dẫn chuyển mạch gói EDGE – EGPRS Hiện tại GPRS cung cấp tốc độ truyền dữ liệu từ 9,6Kbps đến 21,4Kbps cho một khe thời gian. EDGE sẽ cho phép truyền với tốc độ từ 11,2Kbps đến 59,2Kbps cho một khe thời gian và nếu ghép nhiều khe sẽ cho tốc độ truyền tối đa là 384Kbps. Để đảm bảo tốc độ truyền cũng như bảo vệ thông tin, thủ tục kiểm soát kênh vô tuyến LLC trong EDGE sẽ có một số thay đổi cơ bản xoay quanh việc cải tiến mẫu RLC về sự tương hợp đường kết nối và gia tăng tốc độ dự phòng. Sự tương hợp đường kết nối là việc lựa chọn mô hình điều chế và mã hóa để phù hợp với chất lượng đường truyền vô tuyến. Sự gia tăng tốc độ dự phòng cũng là một biện pháp đảm bảo chất lượng dịch vụ. Tương ứng với mỗi mẫu mã hóa, thông tin sẽ được thiết lập và gởi đi với mã hóa ít nhất để đạt tốc độ cao nhất. Tuy nhiên nếu ở bộ phận giải mã bị sai, nhiều bit mã sẽ được thêm vào và gởi cho đến khi nào việc giải mã thành công. Dĩ nhiên, việc thêm mã sẽ làm cho tốc độ truyền giảm và trễ truyền dẫn tăng. EGPRS cung cấp mẫu tương hợp kết nối và gia tăng dự phòng để làm cơ sở cho việc đo lường chất lượng đường truyền nhằm đảm bảo việc khai thác dịch vụ truyền dẫn với độ trễ ngắn hơn và giảm yêu cầu bộ nhớ. 2.5 Truyền dẫn chuyển mạch kênh EDGE – ECSD Chuẩn GSM hiện tại có thể cung cấp truy nhập vô tuyến truyền dẫn trong suốt và không trong suốt. Truyền trong suốt yêu cầu tốc độ bit cố định hàng dãy từ 9,6 đến 64 Kbps, còn truyền không trong suốt thay đổi từ 4,8 đến 57,6Kbps. Tốc độ thực tế của truyền không trong suốt phụ thuộc vào chất lượng kênh và kết quả của việc truyền lại khi sai sót. EDGE không ảnh hưởng gì đến việc truyền này trong hệ thống chuyển mạch GSM nên tốc độ bit cũng không thay đổi. Tuy nhiên các thành phần trong mã hóa kênh sẽ có một số thay đổi để có tốc độ cao hơn. Trong tương lai khi EDGE sử dụng dịch vụ thời gian thực thông qua giao thức internet thì sẽ có tác động mạnh không những trên truy nhập vô tuyến mà cả trên trường chuyển mạch truyền thống. 2.6 Các kế hoạch cần thực hiện khi áp dụng EDGE trên mạng GSM EDGE chủ yếu tác động đến phần truy xuất vô tuyến của mạng GSM cụ thể là ở trạm thu phát vô tuyến gốc BTS, đài kiểm soát gốc BSC nhưng không ảnh hưởng đến các ứng dụng và giao tiếp dựa vào chuyển mạch kênh và chuyển mạch gói. Các giao tiếp đang tồn tại được giữ lại thông qua trung tâm chuyển MSC và các node hỗ trợ GPRS (SGSN, GGSN). Trong EDGE tốc độ bit sẽ được tăng lên đến 384Kbps. Tốc độ này chủ yếu ảnh hưởng đến giao tiếp không gian cụ thể là làm giảm khả năng phân tán thời gian và vận tốc di chuyển của máy đầu cuối. Mặt khác giao tiếp A-bis giữa trạm thu phát và BSC trong GSM chỉ đạt tốc độ 16Kbps, với EDGE tốc độ này phải đạt đến 64Kbps nên phải gán nhiều khe thời gian cho kênh thoại. Để giải quyết vấn đề này ta có thể sử dụng mã hóa kênh CS3, CS4 cho phép đạt đến tốc độ 28,8Kbps. Trong giao tiếp giữa MSC và BSC tốc độ cho phép là 64Kbps nên MSC không cần có sự thay đổi. Các node chuyển mạch gói của GPRS là SGSN và GGSN sử dụng các giao thức chuyển mạch gói sẽ không ảnh hưởng đến tốc độ cao của EDGE nên cũng không cần thay đổi cả phần cứng lẫn phần mềm. Tóm lại, do thay đổi cách điều chế để tăng tốc độ truyền nên việc thay đổi các phần tử trong mạng GSM để tương thích với EDGE chủ yếu xảy ra ở các máy đầu cuối, trạm thu phát gốc BSS. Các hệ thống chuyển mạch kênh, chuyển mạch gói như MSC, SGSN, GGSN sẽ không cần phải thay đổi. Để có thể thực hiện EDGE trên mạng GSM hiện tại, việc cần thiết là phải tiến hành từng bước thông qua các kế hoạch phủ sóng, kế hoạch tần số, quản lý kênh, điều khiển công suất … để không làm ảnh hưởng đến việc khai thác. 2.7 Kế hoạch phủ sóng (Coverage Planning) Trong EDGE, nếu tỷ lệ sóng mang trên nhiễu thấp sẽ không làm rớt mạch như trong GSM mà chỉ làm giảm tạm thời tốc độ truyền dữ liệu EDGE. Một tế bao EDGE sẽ đồng thời phục vụ cho nhiều người sử dụng với tốc độ yêu cầu khác nhau. Tốc độ bit trong trung tâm tế bào sẽ cao và bị giới hạn ở biên tế bào. 2.8 Kế hoạch tần số (Frequency Planning) Hiện nay mạng GSM đang dùng mẫu sử dụng lại tần số 4/12. Tuy nhiên việc áp dụng các tính năng nhảy tần, mẫu đa sử dụng lại tần số MRP và truyền không liên tục DTX thì thông số sử dụng lại có thể thấp hơn hoặc là 3/9. Đối với EDGE nhờ kỹ thuật tương hợp đường kết nối nên vẫn có thể sử dụng mẫu tần số 3/9 vì việc ảnh hưởng tỉ số nhiễu cùng kênh không tác động lớn đến chất lượng mạng. 2.9 Điều khiển công suất Các hệ GSM hiện nay đang sử dụng tính năng điều khiển công suất tự động ở máy đầu cuối và trạm thu phát vô tuyến gốc BTS. Tính năng này cho phép giảm công suất khi thuê bao tiến lại gần trạm và tăng công suất khi thuê bao rời xa trạm hay có vật cản giữa máy đầu cuối và trạm BTS. Việc tự động điều chỉnh công suất sẽ làm tăng tuổi thọ hệ thống và pin máy đầu cuối đồng thời nâng cao chất lượng cuộc gọi do cân bằng công suất đường lên và đường xuống cũng như hạn chế nhiễu giao thoa giữa hai kênh kế cận. EDGE cũng hỗ trợ chức năng này mặc dù có thể có một số điểm khác biệt so với GSM. 2.10 Quản lý kênh Sau khi đưa vào sử dụng EDGE, một số tế bào sẽ bao gồm hai kiểu thu phát : GSM chuẩn và EDGE. Mỗi kênh vật lý trong tế bào có thể là : - Thoại GSM và dữ liệu chuyển mạch kênh. - Dữ liệu gói GPRS. - Dữ liệu chuyển mạch kênh EDGE ECSD. - Dữ liệu gói EDGE, cho phép hỗn hợp giữa GPRS và EGPRS. III. CÔNG NGHỆ DI ĐỘNG THẾ HỆ BA W-CDMA Tổng quan W-CDMA (Wideband CDMA) là công nghệ thông tin di động thế hệ ba (3G) giúp tăng tốc độ truyền nhận dữ liệu cho hệ thống GSM bằng cách dùng kỹ thuật CDMA hoạt động ở băng tần rộng thay thế cho TDMA. Trong các công nghệ thông tin di động thế hệ ba thì W-CDMA nhận được sự ủng hộ lớn nhất nhờ vào tính linh hoạt của lớp vật lý trong việc hỗ trợ các kiểu dịch vụ khác nhau đặc biệt là dịch vụ tốc độ bit thấp và trung bình. W-CDMA có các tính năng cơ sở sau : - Hoạt động ở CDMA băng rộng với băng tần 5MHz. - Lớp vật lý mềm dẻo để tích hợp được tất cả thông tin trên một sóng mang. - Hệ số tái sử dụng tần số bằng 1. - Hỗ trợ phân tập phát và các cấu trúc thu tiên tiến. Nhược điểm chính của W-CDMA là hệ thống không cấp phép trong băng TDD phát liên tục cũng như không tạo điều kiện cho các kỹ thuật chống nhiễu ở các môi trường làm việc khác nhau. Hệ thống thông tin di động thế hệ ba W-CDMA có thể cung cấp các dịch vụ với tốc độ bit lên đến 2MBit/s. Bao gồm nhiều kiểu truyền dẫn như truyền dẫn đối xứng và không đối xứng, thông tin điểm đến điểm và thông tin đa điểm. Với khả năng đó, các hệ thống thông tin di động thế hệ ba có thể cung cấp dể dàng các dịch vụ mới như : điện thoại thấy hình, tải dữ liệu nhanh, ngoài ra nó còn cung cấp các dịch vụ đa phương tiện khác. Cấu trúc mạng W-CDMA Hệ thống W-CDMA được xây dựng trên cơ sở mạng GPRS. Về mặt chức năng có thể chia cấu trúc mạng W-CDMA ra làm hai phần : mạng lõi (CN) và mạng truy nhập vô tuyến (UTRAN), trong đó mạng lõi sử dụng toàn bộ cấu trúc phần cứng của mạng GPRS còn mạng truy nhập vô tuyến là phần nâng cấp của W-CDMA. Ngoài ra để hoàn thiện hệ thống, trong W-CDMA còn có thiết bị người sử dụng (UE) thực hiện giao diện người sử dụng với hệ thống. Từ quan điểm chuẩn hóa, cả UE và UTRAN đều bao gồm những giao thức mới được thiết kế dựa trên công nghệ vô tuyến W-CDMA, trái lại mạng lõi được định nghĩa hoàn toàn dựa trên GSM. Điều này cho phép hệ thống W-CDMA phát triển mang tính toàn cầu trên cơ sở công nghệ GSM. — UE (User Equipment) Thiết bị người sử dụng thực hiện chức năng giao tiếp người sử dụng với hệ thống. UE gồm hai phần : - Thiết bị di động (ME : Mobile Equipment) : Là đầu cuối vô tuyến được sử dụng cho thông tin vô tuyến trên giao diện Uu. - Module nhận dạng thuê bao UMTS (USIM) : Là một thẻ thông minh chứa thông tin nhận dạng của thuê bao, nó thực hiện các thuật toán nhận thực, lưu giữ các khóa nhận thực và một số thông tin thuê bao cần thiết cho đầu cuối. UTRAN (UMTS Terestrial Radio Access Network) Mạng truy nhập vô tuyến có nhiệm vụ thực hiện các chức năng liên quan đến truy nhập vô tuyến. UTRAN gồm hai phần tử : - Nút B : Thực hiện chuyển đổi dòng số liệu giữa các giao diện Iub và Uu. Nó cũng tham gia quản lý tài nguyên vô tuyến. - Bộ điều khiển mạng vô tuyến RNC : Có chức năng sở hữu và điều khiển các tài nguyên vô tuyến ở trong vùng (các nút B được kết nối với nó). RNC còn là điểm truy cập tất cả các dịch vụ do UTRAN cung cấp cho mạng lõi CN. CN (Core Network) - HLR (Home Location Register) : Là thanh ghi định vị thường trú lưu giữ thông tin chính về lý lịch dịch vụ của người sử dụng. Các thông tin này bao gồm : Thông tin về các dịch vụ được phép, các vùng không được chuyển mạng và các thông tin về dịch vụ bổ sung như : trạng thái chuyển hướng cuộc gọi, số lần chuyển hướng cuộc gọi. - MSC/VLR (Mobile Services Switching Center/Visitor Location Register) : Là tổng đài (MSC) và cơ sở dữ liệu (VLR) để cung cấp các dịch vụ chuyển mạch kênh cho UE tại vị trí của nó. MSC có chức năng sử dụng các giao dịch chuyển mạch kênh. VLR có chức năng lưu giữ bản sao về lý lịch người sử dụng cũng như vị trí chính xác của UE trong hệ thống đang phục vụ. - GMSC (Gateway MSC) : Chuyển mạch kết nối với mạng ngoài. - SGSN (Serving GPRS) : Có chức năng như MSC/VLR nhưng được sử dụng cho các dịch vụ chuyển mạch gói (PS). - GGSN (Gateway GPRS Support Node) : Có chức năng như GMSC nhưng chỉ phục vụ cho các dịch vụ chuyển mạch gói. Các mạng ngoài - Mạng CS : Mạng kết nối cho các dịch vụ chuyển mạch kênh. - Mạng PS : Mạng kết nối cho các dịch vụ chuyển mạch gói. Các giao diện vô tuyến - Giao diện CU : Là giao diện giữa thẻ thông minh USIM và ME. Giao diện này tuân theo một khuôn dạng chuẩn cho các thẻ thông minh. - Giao diện UU : Là giao diện mà qua đó UE truy cập các phần tử cố định của hệ thống và vì thế mà nó là giao diện mở quan trọng nhất của UMTS. - Giao diện IU : Giao diện này nối UTRAN với CN, nó cung cấp cho các nhà khai thác khả năng trang bị UTRAN và CN từ các nhà sản xuất khác nhau. - Giao diện IUr : Cho phép chuyển giao mềm giữa các RNC từ các nhà sản xuất khác nhau. - Giao diện IUb : Giao diện cho phép kết nối một nút B với một RNC. IUb được tiêu chuẩn hóa như là một giao diện mở hoàn toàn. Giao diện vô tuyến Giao diện UTRAN – CN, IU Giao diện IU là một giao diện mở có chức năng kết nối UTRAN với CN. Iu có hai kiểu : Iu CS để kết nối UTRAN với CN chuyển mạch kênh và Iu PS để kết nối UTRAN với chuyển mạch gói. Cấu trúc IU CS IU CS sử dụng phương thức truyền tải ATM trên lớp vật lý là kết nối vô tuyến, cáp quang hay cáp đồng. Có thể lựa chọn các công nghệ truyền dẫn khác nhau như SONET, STM-1 hay E1 để thực hiện lớp vật lý. - Ngăn xếp giao thức phía điều khiển : Gồm RANAP trên đỉnh giao diện SS7 băng rộng và các lớp ứng dụng là phần điều khiển kết nối báo hiệu SCCP, phần truyền bản tin MTP3-b, và lớp thích ứng báo hiệu ATM cho các giao diện mạng SAAL-NNI. - Ngăn xếp giao thức phía điều khiển mạng truyền tải : Gồm các giao thức báo hiệu để thiết lập kết nối AAL2 (Q.2630) và lớp thích ứng Q.2150 ở đỉnh các giao thức SS7 băng rộng. - Ngăn xếp giao thức phía người sử dụng : Gồm một kết nối AAL2 được dành trước cho từng dịch vụ CS. Cấu trúc IU PS Phương thức truyền tải ATM được áp dụng cho cả phía điều khiển và phía người sử dụng. - Ngăn xếp giao thức phía điều khiển IU PS : Chứa RANAP và vật mang báo hiệu SS7. Ngoài ra cũng có thể định nghĩa vật mang báo hiệu IP ở ngăn xếp này. Vật mang báo hiệu trên cơ sở IP bao gồm : M3UA (SS7 MTP3 User Adaption Layer), SCTP (Simple Control Transmission Protocol), IP (Internet Protocol) và ALL5 chung cho cả hai tuỳ chọn. - Ngăn xếp giao thức phía điều khiển mạng truyền tải IU PS : Phía điều khiển mạng truyền tải không áp dụng cho IU PS. Các phần tử thông tin sử dụng để đánh địa chỉ và nhận dạng báo hiệu AAL2 giống như các phần tử thông tin được sử dụng trong CS. - Ngăn xếp giao thức phía người sử dụng Iu PS : Luồng số liệu gói được ghép chung lên một hay nhiều AAL5 PVC (Permanent Virtual Connection). Phần người sử dụng GTP-U là lớp ghép kênh để cung cấp các nhận dạng cho từng luồng số liệu gói. Các luồng số liệu sử dụng truyền tải không theo nối thông và đánh địa chỉ IP. Giao diện RNC – RNC, IUr IUr là giao diện vô tuyến giữa các bộ điều khiển mạng vô tuyến. Lúc đầu giao diện này được thiết kế để hỗ trợ chuyển giao mềm giữa các RNC, trong quá trình phát triển tiêu chuẩn nhiều tính năng đã được bổ sung và đến nay giao diện IUr phải đảm bảo 4 chức năng sau : - Hỗ trợ tính di động cơ sở giữa các RNC. - Hỗ trợ kênh lưu lượng riêng. - Hõ trợ kênh lưu lượng chung. - Hỗ trợ quản lý tài nguyên vô tuyến toàn cầu. Giao diện RNC – Node B, IUb Giao thức IUb định nghĩa cấu trúc khung và các thủ tục điều khiển trong băng cho các từng kiểu kênh truyền tải. Các chức năng chính của IUb : - Chức năng thiết lập, bổ sung, giải phóng và tái thiết lập một kết nối vô tuyến đầu tiên của một UE và chọn điểm kết cuối lưu lượng. - Khởi tạo và báo cáo các đặc thù ô, node B, kết nối vô tuyến. - Xữ lý các kênh riêng và kênh chung. - Xữ lý kết hợp chuyển giao. - Quản lý sự cố kết nối vô tuyến. Trải phổ trong W-CDMA Giới thiệu Trong các hệ thống thông tin việc sử dụng hiệu quả băng tần là vấn đề được quan tâm hàng đầu. Các hệ thống được thiết kế sao cho độ rộng băng tần càng nhỏ càng tốt. Trong W-CDMA để tăng tốc độ truyền dữ liệu, phương pháp đa truy cập kết hợp TDMA và FDMA trong GSM được thay thế bằng phương pháp đa truy cập phân chia theo mã CDMA hoạt động ở băng tần rộng (5MHz) gọi là hệ thống thông tin trải phổ. Đối với các hệ thống thông tin trải phổ (SS : Spread Spectrum) độ rộng băng tần của tín hiệu được mở rộng trước khi được phát. Tuy độ rộng băng tần tăng lên rất nhiều nhưng lúc này nhiều người sử dụng có thể dùng chung một băng tần trải phổ, do đó mà hệ thống vẫn sử dụng băng tần có hiệu quả đồng thời tận dụng được các ưu điểm của trải phổ. Ở phía thu, máy thu sẽ khôi phục tín hiệu gốc bằng cách nén phổ ngược với quá trình trải phổ bên máy phát. Có ba phương pháp trải phổ cơ bản sau : - Trải phổ dãy trực tiếp (DSSS : Direct Sequence Spreading Spectrum) : Thực hiện trải phổ bằng cách nhân tín hiệu nguồn với một tín hiệu giả ngẫu nhiên có tốc độ chip cao hơn rất nhiều so với tốc độ bit - Trải phổ nhảy tần (FHSS : Frequency Hopping Spreading Spectrum) : Hệ thống FHSS thực hiện trải phổ bằng cách nhảy tần số mang trên một tập các tần số. Mẫu nhảy tần có dạng mã ngẫu nhiên. Tần số trong khoảng thời gian một chip TC được cố định không đổi . Tốc độ nhảy tần có thể thực hiện nhanh hoặc chậm, trong hệ thống nhảy tần nhanh nhảy tần thực hiện ở tốc độ cao hơn tốc độ bit của bản tin, còn trong hệ thống nhảy tần thấp thì ngược lại. - Trải phổ nhảy thời gian (THSS : Time Hopping Spreading Spectrum) : Thực hiện trải phổ bằng cách nén một khối các bit số liệu và phát ngắt quảng trong một hay nhiều khe thời gian. Mẫu nhảy tần thời gian sẽ xác định các khe thời gian được sử dụng để truyền dẫn trong mỗi khung. Trong hệ thống DSSS, tất cả các người sử dụng cùng dùng chung một băng tần và phát tín hiệu của họ đồng thời. Máy thu sử dụng tín hiệu giả ngẫu nhiên chính xác để lấy ra tín hiệu bằng cách nén phổ. Các tín hiệu khác xuất hiện ở dạng nhiễu phổ rộng, công suất thấp giống tạp âm. Trong các hệ thống FHSS và THSS mỗi người sử dụng được ấn định một mã ngẫu nhiên sao cho không có cặp máy phát nào dùng chung tần số hoặc khe thời gian, như vậy các máy phát sẽ tránh bị xung đột. Nói cách khác DSSS là kiểu hệ thống lấy trung bình, FHSS và THSS là kiểu hệ thống tránh xung đột. Hệ thống thông tin di động công nghệ CDMA chỉ sử dụng DSSS nên ta chỉ xét kỹ thuật trải phổ DSSS. Truy nhập gói Tổng quan về truy nhập gói trong W-CDMA Truy nhập gói trong W-CDMA cho phép các vật mang không phải thời gian thực sử dụng động các kênh chung, riêng và dùng chung. Việc sử dụng các kênh khác nhau được điều khiển bởi bộ lập biểu gói PS (Packet Scheduler). Bộ lập biểu gói thường được đặt ở RNC vì tại đây việc lập biểu gói có thể thực hiện hiệu quả cho nhiều ô, ngoài ra ở đây cũng xem xét các kết nối chuyển giao mềm. Bộ lập biểu gói có các chức năng chính sau : - Phân chia dung lượng của giao diện vô tuyến giữa các người sử dụng. - Phân chia các kênh truyền tải để sử dụng cho truyền dẫn số liệu của từng người sử dụng. - Giám sát các phân bổ gói và tải hệ thống. Lưu lượng số liệu gói Truy nhập gói sử dụng cho các dịch vụ không theo thời gian thực, nhìn từ quan điểm giao diện vô tuyến nó có các thuộc tính điển hình sau : - Số liệu gói có dạng cụm, tốc độ bit yêu cầu có thể biến đổi rất nhanh. - Số liệu gói cho phép trễ lớn hơn các dịch vụ thời gian thực. Vì thế số liệu gói là lưu lượng có thể điều khiển được xét theo quan điểm mạng truy nhập vô tuyến. - Các gói có thể được phát lại bởi lớp điều khiển kết nối vô tuyến (RLC). Điều này cho phép sử dụng chất lượng đường truyền vô tuyến kém hơn và tỷ số lỗi khung cao hơn so với các dịch vụ thời gian thực. Lưu lượng gói được đặc trưng bởi các thông số sau : - Quá trình đến của phiên. - Số cuộc gọi đến phiên. - Thời gian đọc giữa các cuộc gọi. - Số gói trong một cuộc gọi gói. - Khoãng thời gian giữa hai gói trong một cuộc gọi gói. - Kích thước gói. Các phương pháp lập biểu gói Chức năng lập biểu gói là phân chia dung lượng giao diện vô tuyến khả dụng giữa các người sử dụng. Bộ lập biểu gói có thể quyết định tốc độ bit phân bổ và thời gian phân bổ. Thuật toán lập biểu gói trong W-CDMA được thực hiện theo hai phương pháp : phân chia theo mã và phân chia theo tần số. Trong phương pháp phân chia theo mã, khi có nhu cầu tăng dung lượng thì tốc độ bit phân bổ cho người sử dụng sẽ giảm đi. Trong phương pháp phân chia theo thời gian biểu dung lượng được dành cho một số ít người theo từng thời điểm, như vậy người sử dụng có thể có tốc độ bit cao nhưng chỉ có thể sử dụng trong thời gian ngắn. Trong trường hợp số người sử dụng tăng thì phải đợi truyền dẫn lâu hơn. Thực tế quá trình lập biểu gói là sự kết hợp của hai phương pháp trên. Lập biểu phân chia theo thời gian Khi bộ lập biểu phân chia thời gian phân bổ các tốc độ gói, cần xét đến hiệu năng vô tuyến. Thông thường các dịch vụ tốc độ bit cao đòi hỏi ít năng lượng bit hơn, vì thế phân chia theo thời gian có ưu điểm là Eb/No thấp hơn. Ngoài ra thời gian trễ trung bình trong phương pháp này là ngăn hơn so với phương pháp phân chia theo mã. Nhược điểm chính của phương pháp phân chia thời gian là : - Thời gian truyền dẫn ngắn trong khi việc thiết lập và giải phóng kết nối đòi hỏi thời gian dài thậm chí đến vài khung. - Việc sử dụng phân bổ theo thời gian bị hạn chế bởi dải tốc độ cao do hạn chế công suất của MS ở đường lên. - Phương pháp này sử dụng các tốc độ bit cao và tạo ra lưu lượng dạng cụm, điều này dẫn đến sự thay đổi cao ở các mức nhiễu so với lập biểu phân chia theo mã. Lập biểu phân chia theo mã Trong lập biểu phân chia theo mã tất cả người sử dụng được ấn định một kênh khi họ cần chúng. Nếu nhiều người sử dụng gói yêu cầu lưu lượng thì tốc độ bit phải thấp hơn ở lập biểu theo thời gian. Các ưu điểm chính của phương pháp này là : - Trong lập biểu phân chia theo mã, việc thiết lập và giải phóng sẽ gây ra ít tổn thất dung lượng hơn do tốc độ bit thấp và thời gian truyền dẫn lâu hơn. Do tốc độ bit thấp việc phân bổ tài nguyên ở lập biểu gói phân chia theo mã đòi hỏi nhiều thời gian hơn ở lập biểu gói phân chia theo thời gian. Điều này cho phép dự báo được mức nhiễu. - Lập biểu phân chia theo mã có thể là tĩnh hoặc động. Trong lập biểu tĩnh, tốc độ bit được phân bổ duy trì cố định trong suốt thời gian kết nối. Trong lập biểu độngs, tốc độ bit có thể thay đổi để phù hợp với lưu lượng gói. - Phương pháp lập biểu này đòi hỏi các khả năng của MS thấp hơn.

Các file đính kèm theo tài liệu này:

  • docQuoc Dung.doc