3g evolution hspa and lte for mobile broadband

Contents List of Figures xiii List of Tables xxiii Preface xxv Acknowledgements xxvii List of Acronyms xxix Part I: Introduction 1 Background of 3G evolution 3 1.1 History and background of 3G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 Before 3G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 Early 3G discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.3 Research on 3G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.4 3G standardization starts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Standardization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.1 The standardization process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.2 3GPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.3 IMT-2000 activities in ITU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3 Spectrum for 3G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 The motives behind the 3G evolution 17 2.1 Driving forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.1 Technology advancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.2 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.3 Cost and performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 3G evolution: two Radio Access Network approaches and an evolved core network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.1 Radio Access Network evolution . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.2 A evolved core network: System Architecture Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Part II: Technologies for 3G Evolution 3 High data rates in mobile communication 31 3.1 High data rates: fundamental constraints . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.1 High data rates in noise-limited scenarios . . . . . . . . . . . . . . . . . . 33 v vi Contents 3.1.2 Higher data rates in interference-limited scenarios . . . . . . . . . . 35 3.2 Higher data rates within a limited bandwidth: higher-order modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.1 Higher-order modulation in combination with channel coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2.2 Variations in instantaneous transmit power . . . . . . . . . . . . . . . . . 38 3.3 Wider bandwidth including multi-carrier transmission . . . . . . . . . . . . . 39 3.3.1 Multi-carrier transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4 OFDM transmission 45 4.1 Basic principles of OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 OFDM demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 OFDM implementation using IFFT/FFT processing . . . . . . . . . . . . . 48 4.4 Cyclic-prefix insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.5 Frequency-domain model of OFDM transmission . . . . . . . . . . . . . . . 53 4.6 Channel estimation and reference symbols . . . . . . . . . . . . . . . . . . . . . . 54 4.7 Frequency diversity with OFDM: importance of channel coding. . . . . 55 . 4.8 Selection of basic OFDM parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.8.1 OFDM subcarrier spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.8.2 Number of subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.8.3 Cyclic-prefix length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.9 Variations in instantaneous transmission power . . . . . . . . . . . . . . . . . . 60 4.10 OFDM as a user-multiplexing and multiple-access scheme . . . . . . . 61 4.11 Multi-cell broadcast/multicast transmission and OFDM . . . . . . . . . . 63 5 Wider-band ‘single-carrier’ transmission 67 5.1 Equalization against radio-channel frequency selectivity . . . . . . . . . 67 5.1.1 Time-domain linear equalization . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.1.2 Frequency-domain equalization . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.1.3 Other equalizer strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.2 Uplink FDMA with flexible bandwidth assignment . . . . . . . . . . . . . . 73 5.3 DFT-spread OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.3.1 Basic principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.3.2 DFTS-OFDM receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3.3 User multiplexing with DFTS-OFDM . . . . . . . . . . . . . . . . . . . . 79 5.3.4 DFTS-OFDM with spectrum shaping . . . . . . . . . . . . . . . . . . . . 80 5.3.5 Distributed DFTS-OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6 Multi-antenna techniques 83 6.1 Multi-antenna configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.2 Benefits of multi-antenna techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3 Multiple receive antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.4 Multiple transmit antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Contents vii 6.4.1 Transmit-antenna diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.4.2 Transmitter-side beam-forming . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.5 Spatial multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.5.1 Basic principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.5.2 Pre-coder-based spatial multiplexing . . . . . . . . . . . . . . . . . . . . 102 6.5.3 Non-linear receiver processing . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7 Scheduling, link adaptation and hybrid ARQ 107 7.1 Link adaptation: Power and rate control . . . . . . . . . . . . . . . . . . . . . . . . 108 7.2 Channel-dependent scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.2.1 Downlink scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.2.2 Uplink scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 7.2.3 Link adaptation and channel-dependent scheduling in the frequency domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 7.2.4 Acquiring on channel-state information . . . . . . . . . . . . . . . . . . 117 7.2.5 Traffic behavior and scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.3 Advanced retransmission schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 7.4 Hybrid ARQ with soft combining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Part III: HSPA 8 WCDMA evolution: HSPA and MBMS 129 8.1 WCDMA: brief overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 8.1.1 Overall architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 8.1.2 Physical layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 8.1.3 Resource handling and packet-data session . . . . . . . . . . . . . . . 139 9 High-Speed Downlink Packet Access 141 9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 9.1.1 Shared-channel transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 9.1.2 Channel-dependent scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . 142 9.1.3 Rate control and higher-order modulation . . . . . . . . . . . . . . . . 144 9.1.4 Hybrid ARQ with soft combining . . . . . . . . . . . . . . . . . . . . . . 144 9.1.5 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 9.2 Details of HSDPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 9.2.1 HS-DSCH: inclusion of features in WCDMA Release 5. . . . . 146 9.2.2 MAC-hs and physical-layer processing . . . . . . . . . . . . . . . . . . . 149 9.2.3 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 9.2.4 Rate control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 9.2.5 Hybrid ARQ with soft combining . . . . . . . . . . . . . . . . . . . . . . 155 9.2.6 Data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 viii Contents 9.2.7 Resource control for HS-DSCH . . . . . . . . . . . . . . . . . . . . . . . . . 159 9.2.8 Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 9.2.9 UE categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 9.3 Finer details of HSDPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 9.3.1 Hybrid ARQ revisited: physical-layer processing . . . . . . . . . . 164 9.3.2 Interleaving and constellation rearrangement . . . . . . . . . . . . 168 9.3.3 Hybrid ARQ revisited: protocol operation . . . . . . . . . . . . . . . . 170 9.3.4 In-sequence delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 9.3.5 MAC-hs header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 9.3.6 CQI and other means to assess the downlink quality . . . . . . . 175 9.3.7 Downlink control signaling: HS-SCCH . . . . . . . . . . . . . . . . . . 178 9.3.8 Downlink control signaling: F-DPCH . . . . . . . . . . . . . . . . . . . . 180 9.3.9 Uplink control signaling: HS-DPCCH . . . . . . . . . . . . . . . . . . . 181 10 Enhanced Uplink 185 10.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 10.1.1 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 10.1.2 Hybrid ARQ with soft combining . . . . . . . . . . . . . . . . . . . 188 10.1.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 10.2 Details of Enhanced Uplink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 10.2.1 MAC-e and physical layer processing . . . . . . . . . . . . . . . 193 10.2.2 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 10.2.3 E-TFC selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 10.2.4 Hybrid ARQ with soft combining . . . . . . . . . . . . . . . . . . . 203 10.2.5 Physical channel allocation . . . . . . . . . . . . . . . . . . . . . . . . . 208 10.2.6 Power control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 10.2.7 Data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 10.2.8 Resource control for E-DCH . . . . . . . . . . . . . . . . . . . . . . . 210 10.2.9 Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 10.2.10 UE categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 10.3 Finer details of Enhanced Uplink . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 10.3.1 Scheduling – the small print . . . . . . . . . . . . . . . . . . . . . . . . 213 10.3.2 Further details on hybrid ARQ operation . . . . . . . . . . . . . 222 10.3.3 Control signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 11 MBMS: multimedia broadcast multicast services 239 11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 11.1.1 Macro-diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 11.1.2 Application-level coding . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 11.2 Details of MBMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 11.2.1 MTCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 11.2.2 MCCH and MICH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 11.2.3 MSCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 Contents 12 ix HSPA Evolution 251 12.1 MIMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 12.1.1 HSDPA-MIMO data transmission . . . . . . . . . . . . . . . . . . . 252 12.1.2 Rate control for HSDPA-MIMO . . . . . . . . . . . . . . . . . . . . 255 12.1.3 Hybrid ARQ with soft combining for HSDPA- MIMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 12.1.4 Control signaling for HSDPA-MIMO . . . . . . . . . . . . . . . 256 12.1.5 UE capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 12.2 Higher-order modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 12.3 Continuous packet connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 12.3.1 DTX – reducing uplink overhead . . . . . . . . . . . . . . . . . . 261 12.3.2 DRX – reducing UE power consumption . . . . . . . . . . . 263 12.3.3 HS-SCCH-less operation: downlink overhead reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 12.3.4 Control signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 12.4 Enhanced CELL_FACH operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 12.5 Layer 2 protocol enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 12.6 Advanced receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 12.6.1 Advanced UE receivers specified in 3GPP . . . . . . . . . . . . 269 12.6.2 Receiver diversity (type 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 12.6.3 Chip-level equalizers and similar receivers (type 2). . . . . 270 12.6.4 Combination with antenna diversity (type 3) . . . . . . . . . . . 271 12.6.5 Interference cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 12.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 Part IV: LTE and SAE 13 LTE and SAE: introduction and design targets 277 13.1 LTE design targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 13.1.1 Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 13.1.2 System performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 13.1.3 Deployment-related aspects . . . . . . . . . . . . . . . . . . . . . . . . 281 13.1.4 Architecture and migration . . . . . . . . . . . . . . . . . . . . . . . . . . 283 13.1.5 Radio resource management . . . . . . . . . . . . . . . . . . . . . . . . . 284 13.1.6 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 13.1.7 General aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 13.2 SAE design targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 14 LTE radio access: an overview 289 14.1 Transmission schemes: downlink OFDM and uplink SC-FDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 14.2 Channel-dependent scheduling and rate adaptation . . . . . . . . . . . . 290 14.2.1 Downlink scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 14.2.2 Uplink scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 Contents x 14.3 14.4 14.5 14.6 14.2.3 Inter-cell interference coordination . . . . . . . . . . . . . . . . . . . 293 Hybrid ARQ with soft combining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 Multiple antenna support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 Multicast and broadcast support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 Spectrum flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 14.6.1 Flexibility in duplex arrangement . . . . . . . . . . . . . . . . . . . . 296 14.6.2 Flexibility in frequency-band-of-operation . . . . . . . . . . . . 297 14.6.3 Bandwidth flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 15 LTE radio interface architecture 299 15.1 RLC: radio link control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 15.2 MAC: medium access control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 15.2.1 Logical channels and transport channels . . . . . . . . . . . . . . 303 15.2.2 Downlink scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 15.2.3 Uplink scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 15.2.4 Hybrid ARQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 15.3 PHY: physical layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 15.4 LTE states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 15.5 Data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 16 LTE physical layer 317 16.1 Overall time-domain structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 16.2 Downlink transmission scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 16.2.1 The downlink physical resource . . . . . . . . . . . . . . . . . . . . . . 319 16.2.2 Downlink reference signals . . . . . . . . . . . . . . . . . . . . . . . . . . 323 16.2.3 Downlink transport-channel processing . . . . . . . . . . . . . . . 326 16.2.4 Downlink L1/L2 control signaling . . . . . . . . . . . . . . . . . . . 333 16.2.5 Downlink multi-antenna transmission . . . . . . . . . . . . . . . . 336 16.2.6 Multicast/broadcast using MBSFN . . . . . . . . . . . . . . . . . 339 16.3 Uplink transmission scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 16.3.1 The uplink physical resource . . . . . . . . . . . . . . . . . . . . . . . 340 16.3.2 Uplink reference signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 16.3.3 Uplink transport-channel processing . . . . . . . . . . . . . . . . . . 350 16.3.4 Uplink L1/L2 control signaling . . . . . . . . . . . . . . . . . . . . . . 351 16.3.5 Uplink timing advance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 17 LTE access procedures 357 17.1 Cell search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 17.1.1 Cell-search procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 17.1.2 Time/frequency structure of synchronization signals. . . . 359 . 17.1.3 Initial and neighbor-cell search . . . . . . . . . . . . . . . . . . . . . 360 17.2 Random access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 17.2.1 Step 1: Random access preamble transmission . . . . . . . . . 363 17.2.2 Step 2: Random access response . . . . . . . . . . . . . . . . . . . . . 367 17.2.3 Step 3: Terminal identification . . . . . . . . . . . . . . . . . . . . . . . 368 Contents xi 17.2.4 Step 4: Contention resolution . . . . . . . . . . . . . . . . . . . . . . . . 368 17.3 Paging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 18 System Architecture Evolution 371 18.1 Functional split between radio access network and core network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 18.1.1 Functional split between WCDMA/HSPA radio access network and core network . . . . . . . . . . . . . . . . . . . 372 18.1.2 Functional split between LTE RAN and core network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 18.2 HSPA/WCDMA and LTE radio access network . . . . . . . . . . . . . . . 374 18.2.1 WCDMA/HSPA radio access network . . . . . . . . . . . . . . . . 374 18.2.2 LTE radio access network . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 18.3 Core network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 18.3.1 GSM core network used for WCDMA/HSPA . . . . . . . . . . 382 18.3.2 The ‘SAE’ core network: the Evolved Packet Core . . . . . 386 18.3.3 WCDMA/HSPA connected to Evolved Packet Core. . . . . 388 Part V: Performance and Concluding Remarks 19 Performance of 3G evolution 393 19.1 Performance assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 19.1.1 End-user perspective of performance . . . . . . . . . . . . . . . . . 394 19.1.2 Operator perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396 19.2 Performance evaluation of 3G evolution . . . . . . . . . . . . . . . . . . . . . . 396 19.2.1 Models and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 19.2.2 Performance numbers for LTE with 5 MHz FDD carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 19.3 Evaluation of LTE in 3GPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402 19.3.1 LTE performance requirements . . . . . . . . . . . . . . . . . . . . . . 402 19.3.2 LTE performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 403 19.3.3 Performance of LTE with 20 MHz FDD carrier . . . . . . . . 404 19.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 407 20 Other wireless communications systems 20.1 UTRA TDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 20.2 CDMA2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 20.2.1 CDMA2000 1x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410 20.2.2 1x EV-DO Rev 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 20.2.3 1x EV-DO Rev A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 20.2.4 1x EV-DO Rev B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413 20.2.5 1x EV-DO Rev C (UMB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 20.3 GSM/EDGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416 20.3.1 Objectives for the GSM/EDGE evolution . . . . . . . . . . . . . 416 Contents xii 20.3.2 Dual-antenna terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 20.3.3 Multi-carrier EDGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 20.3.4 Reduced TTI and fast feedback . . . . . . . . . . . . . . . . . . . . . . 419 20.3.5 Improved modulation and coding . . . . . . . . . . . . . . . . . . . 420 20.3.6 Higher symbol rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421 20.4 WiMAX (IEEE 802.16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421 20.4.1 Spectrum, bandwidth options and duplexing arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 20.4.2 Scalable OFDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 20.4.3 TDD frame structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 20.4.4 Modulation, coding and Hybrid ARQ . . . . . . . . . . . . . . . . 424 20.4.5 Quality-of-service handling . . . . . . . . . . . . . . . . . . . . . . . . . . 425 20.4.6 Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 20.4.7 Multi-antenna technologies . . . . . . . . . . . . . . . . . . . . . . . . . . 427 20.4.8 Fractional frequency reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . 427 20.5 Mobile Broadband Wireless Access (IEEE 802.20) . . . . . . . . . . . . 427 20.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 21 Future evolution 431 21.1 IMT-Advanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 21.2 The research community . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433 21.3 Standardization bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433 21.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433 References 435 Index 445

pdf485 trang | Chia sẻ: banmai | Lượt xem: 2290 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu 3g evolution hspa and lte for mobile broadband, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ing on the air interface and can be negotiated statically or dynamically through MAC messages. Applications supported through the WiMAX QoS mechanism are: • Unsolicited Grant Service (UGS): VoIP • Real-Time Polling Service (rtPS): Streaming Audio or Video • Extended Real-Time Polling Service (ErtPS): Voice with Activity • Non-Real-Time Polling Service (nrtPS): File Transfer Protocol (FTP) • Best-Effort Service (BE): Data Transfer, Web Browsing, etc. 20.4.6 Mobility Mobile WiMAX supports both sleep mode and idle mode for more efficient power management. In sleep mode, there is a pre-negotiated period of absence from the radio interface to the serving base station, where the mobile station may power down or scan other neighboring base stations. There are different ‘power saving classes’ suitable for applications with different QoS types, each having different sleep mode parameters. There is also an idle mode, where the UE is not registered to any base station and instead periodically scans the network at discrete intervals. There are three handover methods supported, with Hard Handover (HHO) being mandatory and Fast Base-Station Switching (FBSS) and Macro-Diversity handover (MDHO) being optional [2, 116]. Soft handover is not supported: • Hard Handover (HHO): The mobile station scans neighboring Base Stations (BS) and maintains a list of candidate BS to make potential decisions for cell re-selection. The decision to handover to a new BS is made at the MS or at the serving BS. After decision, the MS immediately starts synchronization to the downlink of the target BS and obtains uplink and downlink transmission parameters and establishes a connection. Finally, the context of all connections to the previous serving BS are terminated. • Fast Base-Station Switching (FBSS): The MS can maintain a diversity set (same as ‘active set’ for WCDMA) of multiple suitable Base Stations. One BS in the active set is selected as Anchor BS through which all uplink and downlink communication is done, both traffic and control messages. The MS selects the best BS in the diversity set as its Anchor and can change Anchor BS without any explicit handover signaling by reporting the selected BS on the CQICH channel. • Macro-Diversity Handover (MDHO): An Anchor BS and a diversity set of the most suitable BSs are maintained also in MDHO. However, the MS communi- cates with all BSs in the diversity set in case of MDHO. In the downlink, multiple BS provides synchronized transmission of the same messages and in the uplink, multiple BS receive messages from the MS and provide selection diversity. Ch20-P372533.tex 14/5/2007 18: 5 Page 427 Other wireless communications systems 427 A requirement for FBSS and MDHO is that all BS in the active set need to operate on the same frequency, be time synchronized and also share and transfer all MAC contexts between BSs. 20.4.7 Multi-antenna technologies In addition to conventional receive diversity, WiMAX supports additional options using smart-antenna technologies: • Beam-forming or Adaptive/Advanced Antenna System (AAS): Provides increased coverage and capacity through uplink and downlink beam-forming. AAS and non-AAS mobiles are time division multiplexed using a different time zone for the different options. Other MIMO schemes may be used in the non-AAS zones. • Space–time coding (STC): With two transmit antennas, the use of transmit diversity through Alamouti code is supported to achieve spatial diversity. It is also possible to have transmit diversity using Linear Dispersion Codes (LDC) for more than two transmit antennas. • Spatial multiplexing through MIMO: Higher peak rates and throughput in favorable propagation environments are provided through a downlink 2 × 2 MIMO scheme. The uplink supports ‘Uplink collaborative MIMO,’ where two users transmit with one antenna in the same slot and the BS receives the two multiplexed streams as if it were a MIMO transmission from a single user. 20.4.8 Fractional frequency reuse WiMAX can operate with a frequency reuse of one, but co-channel interference may in this case degrade the quality for users at the cell edge. However, a flexible sub-channel reuse is made possible by dividing the frame into permutation zones as described above. In this way, it is possible to have a sub-channel reuse by proper configuration of the sub-channel usage for the users. For users at the cell edges, the Base Station operates on a zone with a fraction of the sub-channels, while users close to the Base Station can operate on a zone with all sub-channels. As shown in the example in Figure 20.8, there can be an effective reuse of frequencies for users at the cell edge, while still maintaining a reuse of one for the OFDMA carrier as a whole. 20.5 Mobile Broadband Wireless Access (IEEE 802.20) Within the IEEE 802 LAN/MAN Standards Committee, the 802.20 group specifies a Mobile Broadband Wireless Access (MBWA) standard. The group is targeting a system optimized for IP-data transport, operating in licensed bands below 3.5 GHz with peak data rates per user in excess of 1 Mbps. High mobility with mobile speeds Ch20-P372533.tex 14/5/2007 18: 5 Page 428 428 3G Evolution: HSPA and LTE for Mobile Broadband f2 f3 f1 f2  f3 f1 Figure 20.8 Fractional frequency reuse. In this example there is a reuse of 3 for users at the cell edge, while users closer to the BSs have a single frequency reuse. up to 250 km/h and spectral efficiency on par with mobile systems is part of the MBWA system’s scope, making it potentially more than a MAN system. The work on the 802.20 standard was initiated in 2002, and has since then moved to become a high data rate, flexible bandwidth system that is quite similar to the other technologies discussed in this book, such as LTE, CDMA2000 Rev C, and IEEE 802.16. The main proposals under discussion today are MBFDD and MBTDD (Mobile Broadband FDD and TDD) as described in [3]. Some key features of the proposal in [3] are listed below. Note that there are some concepts very similar to CDMA2000 Rev C: • The radio interface has OFDM data transmission with 9.6 kHz subcarrier spac- ing and an FFT size of 512, 1024, and 2048, supporting operation bandwidths of 5, 10, and 20 MHz, respectively. The cyclic prefix is configurable from 6% to 23% of the OFDM symbol duration. Most of the uplink control channels are transmitted with CDMA on a contiguous set of OFDM subcarriers. • Hopping of subcarriers is possible at symbol level, occurring every two symbol intervals (to allow for Alamouti coding), or at a block level. Blocks are about the same size as a resource block in LTE. • There is one frame structure for FDD and one for TDD where guard times are added between up- and downlink parts. • There is support of QPSK, 8PSK, 16QAM, and 64QAM modulations. • Convolutional coding is used for small packets (mainly signaling) and Turbo codes for larger packets. HARQ is used with a modulation step down for retransmissions. • Fast closed-loop uplink power control is used for control channel power. Traffic channel power is set relative to control channels. Uplink interference from neighboring Access Points (AP) is controlled through an Other Sector Indication Channel (F-OSICH) that signals a load indication to the mobiles. Ch20-P372533.tex 14/5/2007 18: 5 Page 429 Other wireless communications systems 429 • Handovers are mobile station initiated. The mobile station makes SINR mea- surements on candidate AP pilots and keeps an active set of up to 8 APs. All have allocated MAC IDs and control resources, but only one is the serving AP. Handover can be disjoint (independent) between uplink and downlink. • The uplink can be quasi-orthogonal where multiple mobiles are assigned the same bandwidth resources. • A fractional frequency reuse scheme enables mobiles in different channel conditions to have different frequency reuse. • Space Time Transmit Diversity (STTD) is supported. • There is support for downlink MIMO with single codeword and multiple codeword designs. • Eigen-beam-forming is supported using feedback from the mobile station. A special beam-forming mode is supported for TDD operation. • There is possibility of embedding other physical layers such as single frequency network technologies for broadcast services. • Scalable bandwidth options are supported so that mobiles capable of only receiving on a lower carrier bandwidth (say 5 MHz) can still be operated on a 20 MHz carrier being transmitted by the base station. 20.6 Summary The IMT-2000 technologies and the other technologies introduced above are devel- oped in different standardization bodies, but all show a lot of commonalities. The reason is that they target the same type of application and operate under similar conditions and scenarios. The fundamental constraints for achieving high data rates, good quality of service, and system performance will require that a set of efficient tools are applied to reach those targets. The technologies described in Part II of this book form a set of such tools and it turns out that many of those are applied across most of the technologies dis- cussed here. To cater for high data rates, different ways to transmit over wider bandwidth is employed, such as single- and multi-carrier transmission including OFDM, often with the addition of higher-order modulation. Multi-antenna tech- niques are employed to exploit the ‘spatial domain,’ using techniques such as receive and transmit diversity, beam-forming and multi-layer transmission. Most of the schemes also employ dynamic link adaptation and scheduling to exploit variations in channel conditions. In addition, coding schemes such as Turbo codes are combined with advanced retransmission schemes such as HARQ. As mentioned above, one reason that solutions become similar between systems is that they target similar problems for the systems. It is also to some extent true that some technologies and their corresponding acronyms go in and out of ‘fashion.’ Ch20-P372533.tex 14/5/2007 18: 5 Page 430 430 3G Evolution: HSPA and LTE for Mobile Broadband Most 2G systems were developed using TDMA, while many 3G systems are based on CDMA and the 3G evolution steps taken now are based on OFDM. Another reason for this step-wise shift of technologies is of course that as technology develops, more complex implementations are made possible. A closer look at many of the evolved wireless communication systems of today also show that they often combine multiple techniques from previous steps, and are built on a mix of TDMA, OFDM, and spread spectrum components. Ch21-P372533.tex 11/5/2007 19: 27 Page 431 21 Future evolution This book has described the evolution of 3G mobile systems from WCDMA to HSPA and its continued evolution, and finally the 3G Long-Term Evolution. The overview of the technologies used for 3G evolution in Part II of the book served as a foundation for the detailed discussion and explanation of the evolution steps taken for both HSPA and LTE. The enhancements introduced enable higher peak data rates, improved system performance, and other enhanced capabilities. The resulting performance was also presented in Chapter 19 and it was shown that the targets set up by 3GPP for LTE are met. It was also demonstrated that many of the enhancing technologies applied are the same for HSPA and LTE and also give the same types of improvements. They are also similar to the enhancements applied for other wireless technologies as shown in the overview made in Chapter 20. Naturally, the technology evolution does not stop with HSPA Evolution and LTE. The same driving forces to further enhance performance and capabilities are still there, albeit the targets are always moved further ahead when state-of-the-art improves. The next step of wireless evolution is sometimes called 4G. But since the evolution is not stepwise, but more of a continuous process, also being a set of parallel evolution processes for similar and often related systems, it may be difficult to identify specific technology steps as being a new next generation. Some may want to put a 4G label on technologies that other consider not meet- ing even 3G requirements, while other try to label intermediate steps as 3.5G or 3.9G. The technology race for the next generation of mobile communication has already started with regulatory bodies, standards organizations, market forums, research bodies and other bodies taking various initiatives. These bodies all work on concepts that are candidates for the forthcoming process in ITU-R defining what IMT-Advanced should be. 431 Ch21-P372533.tex 11/5/2007 19: 27 Page 432 432 3G Evolution: HSPA and LTE for Mobile Broadband 21.1 IMT-Advanced Within the ITU, Working Party 8F works on IMT-2000 and systems beyond IMT- 2000. The capabilities of IMT-2000, its enhancements, and systems that include new radio interfaces beyond IMT-2000 are shown in Figure 21.1. ITU-R WP8F anticipated in [47] that there will be a need for new mobile radio-access technolo- gies for capabilities beyond enhanced IMT-2000, but the exact point where this may be needed is not identified. The term IMT-Advanced is used for systems that include new radio interfaces supporting the new capabilities of systems beyond IMT-2000. Note that the 3G evolution into enhanced IMT-2000 as described in this book covers a large part of the step towards IMT-Advanced in Figure 21.1 and that IMT-Advanced will also encompass the capabilities of previous systems. The process for defining IMT-Advanced is also worked out within WP8F [43] and will be quite similar to the process used in developing the IMT-2000 recommenda- tions. It will be based on a set of minimum technical requirements and evaluation criteria and commence through an invitation to all ITU members and other organi- zations. Proposed technologies will be evaluated according to the agreed criteria. The target is harmonization through consensus building, resulting in a recom- mendation for IMT-Advanced similar to the ITU-R Recommendation M.1457 for IMT-2000 [46]. The evaluation will be done in cooperation with external bodies such as standards-developing organizations. Since the process will be based on consensus, the number of technologies that will finally be encompassed by IMT- Advanced cannot be determined in advance. It is a trade-off between economies of scale, support of different user environments, and the capabilities of different technologies. In addition, the possibility for global circulation of terminals will be an important aspect. 1Mbps 1000Mbps100Mbps10Mbps Peak data rate Low High 3G evolution Enhanced IMT-2000IMT-2000 New mobile access New nomadic/local area wireless access M ob ilit y Figure 21.1 Illustration of capabilities of IMT-2000 and systems beyond IMT-2000, based on the framework described in ITU-R Recommendation M.1645 [47]. Ch21-P372533.tex 11/5/2007 19: 27 Page 433 Future evolution 433 Another major activity within ITU-R concerning IMT-Advanced is the prepara- tion for WRC’07, the upcoming World Radio Congress. One target is to identify spectrum that is suitable for IMT-Advanced and that is available globally, since adequate spectrum availability and globally harmonized spectrum are identified as essential for IMT-Advanced [43]. In preparation for WRC’07, a range of sharing studies between IMT-Advanced and other technologies in the different candidate bands have been produced within WP8F. 21.2 The research community In the research community, several research projects are run in the area of IMT- Advanced and the next generation of radio access. One example is the Winner project, which is partly funded by the European Union. The Winner concept has many components that are very close to LTE. However, Winner is targeting higher data rates than LTE and is therefore designed for a wider bandwidth than 20 MHz. Another key difference is that the Winner concept will work with relaying and multi-hop modes. For further details, see the Winner homepage [118]. Other regions are running research projects similar to the European ones, such as the Future project in China, all with the goal of making an IMT-Advanced radio interface proposal. In the end however, these research communities will not make the final inputs of IMT-Advanced concepts. It is expected that the estab- lished standards developing organizations (ETSI, ARIB, CWTS, etc.) will do down selections of proposals from their respective regions. A global standard body such as 3GPP will most likely also have a role to play in harmonizing proposals across the different regions and standards bodies. 21.3 Standardization bodies Although 3GPP currently does not perform any direct work towards IMT- Advanced, 3GPP will most likely make a proposal to ITU-R. IEEE802.16 is also on the move improving its concept and is targeting a proposal for IMT-Advanced in its work on 802.16 m. Similarly 3GPP2 and the community around cdma2000 are expected to come with an IMT-Advanced proposal. 21.4 Concluding remarks While LTE standardization is not yet completely finalized, the race for the next radio interface is already ongoing. Many activities are initiated in the research com- munity and some standardization developing organizations are about to start (or has just started) their work towards IMT-Advanced. However, IMT-Advanced is still Ch21-P372533.tex 11/5/2007 19: 27 Page 434 434 3G Evolution: HSPA and LTE for Mobile Broadband several years away whereas HSPA Evolution and LTE are just around the corner. HSPA Evolution is built as a continuing evolution of the existing WCDMA/HSPA technology whereas LTE is a new radio access optimized purely for IP based traffic. These two technologies promise to give more services, capabilities, and performance to the end users than any other radio interface technology has been able to do to date. Reference-P372533.tex 11/5/2007 19: 27 Page 435 References [1] China Unicom et al., ‘Joint Proposal for 3GPP2 Physical Layer for FDD Spectra’, 3GPP2 TSG-C WG3 Contribution C30-20060731-040R2, July 2006. [2] IEEE,‘IEEE Standard for Local and Metropolitan Area Networks. Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems; Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands’, IEEE Std 802.16-2005. [3] IEEE, MBFDD and MBTDD Wideband Mode: Technology Overview, IEEE C802.20-05/68r1. [4] H. Holma and A. Toskala, WCDMA for UMTS: Radio Access for Third Generation Mobile Communications, John Wiley and Sons, Chichester, England, 2000. [5] B. Hagerman et al., ‘WCDMA Uplink Interference Cancellation Perfor- mance – Field Measurements and System Simulations’, Nordic Radio Symposium NRS’04, Oulo, Finland, August 16–18, 2004. [6] A. Huebner, F. Schuehlein, M. Bossert, E. Costa and H. Haas, ‘A Simple Space-frequency Coding Scheme with Cyclic Delay Diversity for OFDM’, Proceedings of the 5th European Personal Mobile Communications Conference, Glasgow, Scotland, April 2000, pp. 106–110. [7] A. Milewski, ‘Periodic Sequences with Optimal Properties for Channel Estimation and Fast Start-up Equalization’, IBM Journal of Research and Development, Vol. 27, No. 5, September 1983, pp. 426–431. [8] M.W. Thelander, ‘The 3G Evolution: Taking CDMA2000 into the Next Decade’, Signal Research Group, LLC, White Paper developed for the CDMA Development Group, October 2005. [9] D. Chase,‘Code Combining – A Maximum-likelihood Decoding Approach for Combining and Arbitrary Number of Noisy Packets’, IEEE Transac- tions on Communications, Vol. 33, May 1985, pp. 385–393. [10] J.-F. Cheng, ‘Coding Performance of Hybrid ARQ Schemes’, IEEE Transactions on Communications, Vol. 54, June 2006, pp. 1017–1029. [11] S.T. Chung and A.J. Goldsmith ‘Degrees of Freedom in Adaptive Modulation: A Unified View’, IEEE Transactions on Communications, Vol. 49, No. 9, September 2001, pp. 1561–1571. 435 Reference-P372533.tex 11/5/2007 19: 27 Page 436 436 3G Evolution: HSPA and LTE for Mobile Broadband [12] N. Bhushan et al., ‘CDMA2000 1xEV-DO Revision A: A Physical Layer and MAC Layer Overview’, IEEE Communications Magazine, February 2006, pp. 75–87. [13] R. Attar et al., ‘Evolution of CDMA2000 Cellular Networks: Multicarrier EV-DO’, IEEE Communications Magazine, March 2006, pp. 46–53. [14] E. Dahlman, B. Gudmundsson, M. Nilsson and J. Sköld, ‘UMTS/IMT- 2000 Based on Wideband CDMA’, IEEE Communication Magazine, 1998, pp. 70–80. [15] ‘Views on OFDM Parameter Set for Evolved UTRA Downlink’, NTT DoCoMo et al., Tdoc R1-050386, 3GPP TSG-RAN WG1, Athens, Greece, May 9–13, 2005. [16] J. Pautler, M. Ahmed and K. Rohani, ‘On Application of Multiple-input Multiple-output Antennas to CDMA Cellular Systems’, IEEE Vehicular Technology Conference, Atlantic City, NJ, USA, October 7–11, 2001. [17] ‘Digital Video Broadcasting (DVB): Framing Structure, Channel Coding and Modulation for Digital Terrestrial Television’, ETSI, ETS EN 300 744 v 1.1.2. [18] H. Ekström, A. Furuskär, J. Karlsson, M. Meyer, S. Parkvall, J. Torsner and M. Wahlqvist, ‘Technical Solutions for the 3G Long-term Evolution’, IEEE Communications Magazine, March 2006, pp. 38–45. [19] A. Furuskär, J. Näslund and H. Olofsson, ‘Edge – Enhanced Data Rates for GSM and TDMA/136 Evolution’, Ericsson Review, No. 01, 1999, pp. 28–37. Telefonaktiebolaget LM Ericsson, Stockholm, Sweden. [20] H. Axelsson, P. Björkén, P. de Bruin, S. Eriksson and H. Persson, ‘GSM/EDGE Continued Evolution’, Ericsson Review, No. 01, 2006, pp. 20–29. Telefonaktiebolaget LM Ericsson, Stockholm, Sweden. [21] S. Parkvall, E. Englund, P. Malm, T. Hedberg, M. Persson and J. Peisa, ‘WCDMA evolved-high-speed packet-data services’, Ericsson Review, No. 02, 2003, pp. 56–65. Telefonaktiebolaget LM Ericsson, Stockholm, Sweden. [22] J. Sköld, M. Lundevall, S. Parkvall and M. Sundelin, ‘Broadband Data Performance of Third-generation Mobile Systems’, Ericsson Review, No. 01, 2005 Telefonaktiebolaget LM Ericsson, Stockholm, Sweden. [23] P.V. Etvalt, ‘Peak to Average Power Reduction for OFDM Schemes by Selective Scrambling’, Electronics Letters, Vol. 32, No. 21, October 1996, pp. 1963–1964. [24] D. Falconer et al., ‘Frequency Domain Equalization for Single-carrier Broadband Wireless Systems’, IEEE Communications Magazine, Vol. 40, No. 4, April 2002, pp. 58–66. [25] G. Forney, ‘Maximum Likelihood Sequence Estimation of Digital Sequences in the Presence of Intersymbol Interference’, IEEE Transactions on Information Theory, Vol. IT-18, May 1972, pp. 363–378. Reference-P372533.tex 11/5/2007 19: 27 Page 437 References 437 [26] G. Forney, ‘The Viterbi Algorithm’, Proceedings of the IEEE, Vol. 61, No. 3, March 1973, pp. 268–278 IEEE, Piscataway, NJ, USA. [27] P. Frenger, S. Parkvall and E. Dahlman, ‘Performance Comparison of HARQ with Chase Combining and Incremental Redundancy for HSDPA’, Proceedings of the IEEE Vehicular Technology Conference, Atlantic City, NJ, USA October 2001, pp. 1829–1833. [28] A.J. Goldsmith and P. Varaiya, ‘Capacity of Fading Channels with Chan- nel Side Information’, IEEE Transactions on Information Theory, Vol. 43, November 1997, pp. 1986–1992. [29] G. Bottomley, T. Ottosson and Y.-P. Eric Wang, ‘A Generalized RAKE Receiver for Interference Suppression’, IEEE Journal on Selected Areas in Communications, Vol. 18, No. 8, August 2000, pp. 1536–1545. [30] J. Hagenauer, ‘Rate-compatible Punctured Convolutional Codes (RCPC Codes) and Their Applications’, IEEE Transactions on Communications, Vol. 36, April 1988, pp. 389–400. [31] L. Hanzo, M. Munster, B.J. Choi and T. Keller, OFDM and MC-CDMA for Broadband Multi-user Communications, WLANs, and Broadcasting’, Wiley-IEEE Press, Chichester, England, ISBN 0-48085879. [32] S. Haykin, Adaptive Filter Theory, Prentice-Hall International, NJ, USA, ISBN 0-13-004052-5 025. [33] J.M. Holtzman, ‘CDMA Forward Link Waterfilling Power Control’, Pro- ceedings of the IEEE Vehicular Technology Conference, Tokyo, Japan, Vol. 3, May 2000, pp. 1663–1667. [34] J.M. Holtzman, ‘Asymptotic Analysis of Proportional Fair Algorithm’, Proceedings of the IEEE Conference on Personal Indoor and Mobile Radio Communications, San Diego, CA, USA, Vol. 2, 2001, pp. 33–37. [35] M.L. Honig and U. Madhow, ‘Hybrid Intra-cell TDMA/inter-cell CDMA with Inter-cell Interference Suppression for Wireless Networks’, Proceed- ings of the IEEE Vehicular Technology Conference, Secaucus, NJ, USA, 1993, pp. 309–312. [36] R. Horn and C. Johnson, ‘Matrix Analysis’, Proceedings of the 36th Asilo- mar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, November 2002. [37] A. Hottinen, O. Tirkkonen and R. Wichman, Multi-antenna Transceiver Techniques for 3G and Beyond, John Wiley and Sons, Chichester, England, ISBN 0470 84542 2. [38] J. Karlsson and J. Heinegard, ‘Interference Rejection Combining for GSM’, Proceedings of the 5th IEEE International Conference on Universal Personal Communications, Cambridge, MA, USA, 1996, pp. 433–437. [39] K.J. KIM, ‘Channel Estimation and Data Detection Algorithms for MIMO- OFDM Systems’, Proceedings of the 36th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, November 2002. Reference-P372533.tex 11/5/2007 19: 27 Page 438 438 3G Evolution: HSPA and LTE for Mobile Broadband [40] R. Knopp and P.A. Humblet, ‘Information Capacity and Power Con- trol in Single-cell Multi-user Communications’, Proceedings of the IEEE International Conference on Communications, Vol. 1, 1995, pp. 331–335. [41] W. Lee, Mobile Communications Engineering, McGraw-Hill, New York, NY, USA, ISBN 0-07-037039-7. [42] S. Lin and D. Costello, Error Control Coding, Prentice-Hall, Upper Saddle River, NJ, USA. [43] ‘Working Party 8F; Draft new resolution/Draft new decision ITU-R M.[PRINCIPLES]: Principles for the Process of Development of IMT- advanced’, ITU-R, Document 8/157-E, September 19, 2006. [44] ‘Frequency Arrangements for Implementation of the Terrestrial Com- ponent of International Mobile Telecommunications-2000 (IMT-2000) in the Bands 806–960 MHz, 1710–2025 MHz, 2110–2200 MHz and 2500–2690 MHz’, ITU-R, Recommendation ITU-R M.1036-2, June 2003. [45] ‘Guidelines for Evaluation of Radio Transmission Technologies for IMT- 2000’, ITU-R, Recommendation ITU-R M.1225, February 1997. [46] ‘Detailed Specifications of the Radio Interfaces of International Mobile Telecommunications-2000 (IMT-2000)’, ITU-R, Recommendation ITU-R M.1457-4, July 2005. [47] ‘Framework and Overall Objectives of the Future Development of IMT- 2000 and Systems Beyond IMT-2000’, ITU-R, Recommendation ITU-R M.1645, June 2003. [48] ‘International Mobile Telecommunications-2000 (IMT-2000)’, ITU-R, Recommendation ITU-R M.687-2, February 1997. [49] ‘Comparison of PAR and Cubic Metric for Power De-rating’, Motorola, Tdoc R1-040642, 3GPP TSG-RAN WG1, May 2004. [50] J.G. Proakis, Digital Communications, McGraw-Hill, New York, 2001. [51] S.-J. Oh and K.M. Wasserman, ‘Optimality of Greedy Power Control and Variable Spreading Gain in Multi-class CDMA Mobile Networks’, Pro- ceedings of the AMC/IEEE MobiComp, Seattle, Washington, USA, 1999, pp. 102–112. [52] A. Oppenheim and R.W. Schafer, Digital Signal Processing, Prentice-Hall International, ISBN 0-13-214107-8 01. [53] S. Grant et al., ‘Per-Antenna-Rate-Control (PARC) in Frequency Selec- tive Fading with SIC-GRAKE Receiver’, 60th IEEE Vehicular Tech- nology Conference, Los Angeles, CA, USA, September 2004, Vol.2, pp. 1458–1462. [54] G.F. Pedersen and J.B. Andersen, ‘Handset Antennas for Mobile Com- munications: Integration, Diversity, and Performance’, in R.W. Stone (ed.), Review of Radio Science 1996–1999, Wiley-IEEE Press, Chichester, England, September 1999. Reference-P372533.tex 11/5/2007 19: 27 Page 439 References 439 [55] J. Peisa, S. Wager, M. Sågfors, J. Torsner, B. Göransson, T. Fulghum, C. Cozzo and S. Grant, ‘High-speed Packet-access Evolution – Concept and Technologies’, IEEE Vehicular Technology Conference, Spring 2007. [56] M.B. Pursley and S.D. Sandberg, ‘Incremental-redundancy Transmission for Meteor-burst Communications’, IEEE Transactions on Communica- tions, Vol. 39, May 1991, pp. 689–702. [57] ‘E-UTRA Downlink User Throughput and Spectrum Efficiency’, Erics- son, Tdoc R1-061381, 3GPP TSG-RAN WG1, Shanghai, China, May 8–12, 2006. [58] ‘E-UTRA Uplink User Throughput and Spectrum Efficiency’, Ericsson, Tdoc R1-061382, 3GPP TSG-RAN WG1, Shanghai, China, May 8–12, 2006. [59] ‘E-UTRA Downlink User Throughput and Spectrum Efficiency’, Ericsson, Tdoc R1-061685, 3GPP TSG-RAN WG1 LTE AdHoc, Cannes, France, June 27–30, 2006. [60] ‘Implementation of International Mobile Telecommunications-2000 (IMT- 2000)’, ITU-R, Resolution 212 (Rev.WRC-97). [61] ‘Minutes of HSDPA Simulation Ad-hoc’, Document R4-040770, 3GPP TSG-RAN WG4 meeting 33, Shin-Yokohama, Japan, November 2004. [62] S. Ramakrishna and J.M. Holtzman, ‘A Scheme for Throughput Maxi- mization in a Dual-class CDMA System’, IEEE Journal on Selected Areas in Communications, Vol. 16, No. 6, 1998, pp. 830–844. [63] A. Shokrollahi, ‘Raptor Codes’, IEEE Transactions on Information Theory, Vol. 52, No. 6, 2006, pp. 2551–2567. [64] ‘Robust Header Compression (ROHC): Framework and Four Profiles: RTP, UDP, ESP, and Uncompressed’, IETF, RFC 3095. [65] ‘Updated New WID on Higher Uplink Performance for GERAN Evolution (HUGE)’, GERAN, Tdoc GP-061901, 3GPP TSG GERAN#31, Denver, USA, September 4–8, 2006. [66] C. Schlegel, Trellis and Turbo Coding, Wiley-IEEE Press, Chichester, England, March 2004. [67] M. Schnell et al., ‘IFDMA – A New Spread-spectrum Multiple-access Scheme’, Proceedings of the ICC’98, Atlanta, GA, USA, June 1998, pp. 1267–1272. [68] Lal C. Godara, ‘Applications of Antenna Arrays to Mobile Communi- cations, Part I: Beam-forming and Direction-of Arrival Considerations’, Proceedings of the IEEE, Vol. 85, No. 7, July 1997, pp. 1029–1030. [69] Lal C. Godara, ‘Applications of Antenna Arrays to Mobile Communi- cations, Part II: Beam-forming and Direction-of Arrival Considerations’, Proceedings of the IEEE, Vol. 85, No. 7, July 1997, pp. 1031–1060. [70] C.E. Shannon, ‘A Mathematical Theory of Communication’, Bell System Technical Journal, Vol. 27, July and October 1948, pp. 379–423, 623–656. Reference-P372533.tex 11/5/2007 19: 27 Page 440 440 3G Evolution: HSPA and LTE for Mobile Broadband [71] M.K. Varanasi and T. Guess, ‘Optimum Decision Feedback Multi-user Equalization with Successive Decoding Achieves the Total Capacity of the Gaussian Multiple-access Channel’, Proceedings of the Asimolar con- ference on Signals, Systems, and Computers, Monteray, CA, November 1997. [72] J. Sun and O.Y. Takeshita, ‘Interleavers for Turbo Codes Using Permuta- tion Polynomials Over Integer Rings’, IEEE Transactions on Information Theory, Vol. 51, No. 1, January 2005, pp. 101–119. [73] O.Y. Takeshita, ‘On Maximum Contention-free Interleavers and Permuta- tion Polynomials Over Integer Rings’, IEEE Transactions on Information Theory, Vol. 52, No. 3, March 2006, pp. 1249–1253. [74] V. Tarokh, N. Seshadri and A. Calderbank, ‘Space–time Block Codes from Orthogonal Design’, IEEE Transactions on Information Theory, Vol. 45, No. 5, July 1999, pp. 1456–1467. [75] X. Zhaoji and B. Sébire, ‘Impact of ACK/NACK Signalling Errors on High Speed Uplink Packet Access (HSUPA)’, IEEE International Conference on Communications, Vol. 4, 16–20 May 2005, pp. 2223–2227. [76] J. Padhye, V. Firoiu, D.F. Towsley and J.F. Kurose, ‘Modelling TCP Reno Performance: A Simple Model and Its Empirical Validation’, ACM/IEEE Transactions on Networking Vol. 8, No. 2, 2000, pp. 133–145. [77] C. Kambiz and L. Krasny, ‘Capacity-achieving Transmitter and Receiver Pairs for Dispersive MISO Channels’, IEEE Transactions on Communica- tions, Vol. 42, April 1994, pp. 1431–1440. [78] J. Tellado and J.M. Cioffi, ‘PAR Reduction in Multi-carrier Transmission Systems’, ANSI T1E1.4/97-367. [79] ‘3rd Generation Partnership Project; Technical Specification Group Ser- vices and System Aspects; 3GPP System Architecture Evolution: Report on Technical Options and Conclusions (Release 7)’, 3GPP, 3GPP TR 23.882. [80] ‘3rd Generation Partnership Project; Technical Specification Group Radio Access Network; S-CCPCH Performance for MBMS (Release 6)’, 3GPP, 3GPP TR 25.803. [81] ‘3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Physical Layer Aspects for Evolved Universal Terrestrial Radio Access (UTRA) (Release 7)’, 3GPP, 3GPP TR 25.814. [82] ‘3rd Generation Partnership Project; Technical Specification Group Radio Access Network; 3.84 Mcps TDD Enhanced Uplink; Physical Layer Aspects (Release 7)’, 3GPP, 3GPP TR 25.826. [83] ‘3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Manifestations of Handover and SRNS Relocation (Release 4)’, 3GPP, 3GPP TR 25.832. Reference-P372533.tex 11/5/2007 19: 27 Page 441 References 441 [84] ‘3rd Generation Partnership Project; Technical Specification Group Radio Access Network; High Speed Downlink Packet Access: Physical Layer Aspects (Release 5)’, 3GPP, 3GPP TR 25.858. [85] ‘3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Feasibility Study for Evolved Universal Terrestrial Radio Access (UTRA) and Universal Terrestrial Radio Access Network (UTRAN) (Release 7)’, 3GPP, 3GPP TR 25.912. [86] ‘3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN) (Release 7)’, 3GPP, 3GPP TR 25.913. [87] ‘3rd Generation Partnership Project; Technical Specification Group GSM/EDGE Radio Access Network; Feasibility Study for Evolved GSM/EDGE Radio Access Network (GERAN) (Release 7)’, 3GPP, 3GPP TR 45.912. [88] ‘3rd Generation Partnership Project; Technical Specification Group Ser- vices and System Aspects; Service Requirements for Evolution of the 3GPP System (Release 8)’, 3GPP, 3GPP TS 22.278. [89] ‘3rd Generation Partnership Project; Technical Specification Group Ser- vices and System Aspects; Network Architecture (Release 7)’, 3GPP, 3GPP TS 23.002. [90] ‘3rd Generation Partnership Project; Technical Specification Group Ser- vices and System Aspects; General Packet Radio Service (GPRS); Service Description; Stage 2 (Release 7)’, 3GPP, 3GPP TS 23.060. [91] ‘3rd Generation Partnership Project; Technical Specification Group Ser- vices and System Aspects; 3GPP System Architecture Evolution: GPRS Enhancements for LTE Access; Release 8’, 3GPP, 3GPP TS 23.401. [92] ‘3rd Generation Partnership Project; Technical Specification Group Radio Access Network; User Equipment (UE) Radio Transmission and Reception (FDD) (Release 7)’, 3GPP, 3GPP TS 25.101. [93] ‘3rd Generation Partnership Project; Technical Specification Group Radio Access Network; User Equipment (UE) Radio Transmission and Reception (TDD) (Release 7)’, 3GPP, 3GPP TS 25.102. [94] ‘3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Physical Channels and Mapping of Transport Channels onto Physical Channels (FDD)’, 3GPP, 3GP TS 25.211. [95] ‘3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Multiplexing and Channel Coding (FDD)’, 3GPP, 3GP TS 25.212. [96] ‘3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Spreading and Modulation (FDD)’, 3GPP, 3GP TS 25.213. Reference-P372533.tex 11/5/2007 19: 27 Page 442 442 3G Evolution: HSPA and LTE for Mobile Broadband [97] ‘3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Physical Layer Procedures (FDD)’, 3GPP, 3GP TS 25.214. [98] ‘3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Radio Interface Protocol Architecture’, 3GPP, 3GPP TS 25.301. [99] ‘3rd Generation Partnership Project; Technical Specification Group Radio Access Network; UE Radio Access Capabilities’, 3GPP, 3GPP TS 25.306. [100] ‘3rd Generation Partnership Project; Technical Specification Group Radio Access Network; High Speed Downlink Packet Access (HSDPA); Overall Description; Stage 2’, 3GPP, 3GPP TS 25.308. [101] ‘3rd Generation Partnership Project; Technical Specification Group Radio Access Network; FDD Enhanced Uplink; Overall Description; Stage 2’, 3GPP, 3GPP TS 25.309. [102] ‘3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Introduction of the Multimedia Broadcast Multicast Ser- vice (MBMS) in the Radio Access Network (RAN); Stage 2 (Release 6)’, 3GPP, 3GPP TS 25.346. [103] ‘3rd Generation Partnership Project; Technical Specification Group Radio Access Network; UTRAN Overall Description’, 3GPP, 3GPP TS 25.401. [104] ‘3rd Generation Partnership Project; Technical Specification Group Radio Access Network; UTRAN Iu Interface RANAP Signalling (Release 7)’, 3GPP, 3GPP TS 25.413. [105] ‘3rd Generation Partnership Project; Technical Specification Group Ser- vices and System Aspects; Multimedia Broadcast/multicast Service (MBMS); Protocols and Codecs’, 3GPP, 3GPP TS 26.346. [106] ‘3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Physical Channels and Modulation (Release 8)’, 3GPP, 3GPP TS 36.211. [107] ‘3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Multiplexing and Channel Coding (Release 8)’, 3GPP, 3GPP TS 36.212. [108] ‘3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Physical Layer Procedures (Release 8)’, 3GPP, 3GPP TS 36.213. [109] ‘3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Physical Layer – Measurements (Release 8)’, 3GPP, 3GPP TS 36.214. [110] ‘3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description; Stage 2 (Release 8)’, 3GPP, 3GPP TS 36.300. Reference-P372533.tex 11/5/2007 19: 27 Page 443 References 443 [111] D. Tse, ‘Optimal Power Allocation Over Parallel Gaussian Broadcast Channels’, Proceedings of the International Symposium on Information Theory, Ulm, Germany, June 1997, p. 7. [112] Y.-P. Eric Wang, A.S. Khayrallah and G.E. Bottomley, ‘Dual Branch Receivers for Enhanced Voice and Data Communications in WCDMA’, Proceedings of the Globecom, San Francisco, CA, USA, November 2006. [113] S. Verdu, ‘Multiuser Detection’, Cambridge University Press, New York, 1998. [114] S.B. Wicker, M. Bartz, ‘Type-I Hybrid ARQ Protocols Using Punctured MDS Codes’, IEEE Transactions on Communications, Vol. 42, April 1994, pp. 1431–1440. [115] ‘WiMAX: From Fixed Wireless Access to Internet in the Pocket – Tech- nology White Paper’, Alcatel, Alcatel Telecommunications Review, 2nd Quarter, 2005. [116] ‘Mobile WiMAX – Part I: A Technical Overview and Performance Evaluation’, WiMAX Forum, White Paper, August 2006. [117] R. van Nee, R. Prasad, ‘OFDM for Wireless Multimedia Communications’, Artech House Publishers, London, January 2000. [118] ‘Wireless World Initiative New Radio’, Eurescom GmbH 2006. https:// www.ist-winner.org. [119] P. Viswanath, D. Tse and R. Laroia, ‘Opportunistic Beamforming Using Dumb Antennas’, IEEE Transactions on information Theory, Vol. 48, No. 6, 2002, pp. 1277–1294. [120] J.M. Wozencraft and M. Horstein, ‘Digitalised Communication Over Two-way Channels’, Fourth London Symposium on Information Theory, London, UK, September 1960. [121] E. Dahlman, P. Beming, J. Knutsson, F. Ovesjö, M. Persson and C. Roobol, ‘WCDMA – The Radio Interface for Future Mobile Multimedia Communi- cations’, IEEE Transactions on Vehicular Technology, Vol. 47, November 1998, pp. 1105–1118. [122] E. Dahlman, H. Ekström, A. Furuskär, Y. Jading, J. Karlsson, M. Lundevall and S. Parkvall, ‘The 3G Long-term Evolution – Radio Interface Concepts and Performance Evaluation’, 63rd Vehicular Technology Conference, VTC 2006-Spring, Vol. 1, pp. 137–141, IEEE, 2006. [123] D.C. Chu, ‘Polyphase Codes with Good Periodic Correlation Properties’, IEEE Transactions on Information Theory, Vol. 18, No. 4, July 1972, pp. 531–532. [124] W. Zirwas,‘Single Frequency Network Concepts for Cellular OFDM Radio Systems’, International OFDM Workshop, Hamburg, Germany, September 2000. This page intentionally left blank Index-P372533.tex 11/5/2007 19: 27 Page 445 Index 1.28 Mcps TDD, 409 16QAM, 37 3G, 3–7 3GPP, 8–11 3GPP2, 9, 409–10 64QAM, 37 7.68 Mcps TDD, 409 Absolute grant, 199, 213 Adaptive Modulation and Coding (AMC), 109 Application-level coding, 245–46 Automatic Repeat Request (ARQ), 121 Bandwidth utilization, 32 BCCH, 303 BCH, 304 Beam forming: classical, 95–6 pre-coder based, 96 BM-SC, 240 Broadcast, 63–6 see also MBMS CDMA2000, 409–29 Cell identity, 324, 357–59 Cell-identity group, 324, 357, 358 Cell search, 357–61 CELL_DCH, 259–61, 267 CELL_FACH, 259, 260, 266–67 CELL_PCH, 259 Channel capacity, 31 Channel-Quality Indicator (CQI): for HSPA 148, 151, 175–78, 184 for LTE 306, 351 Channelization code, 135–37 Charging, 373, 385–88 Chase combining, 122–24, 168 CN see Core network Constellation rearrangement, 168–69 Contention resolution, 363, 368–69 Continuous Packet Connectivity (CPC), 259–66 Control-channel element, 335–36 Controlling RNC see RNC Core network (CN), 26, 371, 372–74 architecture, 382–89 functions, 373–75 Coverage requirement, 280, 402, 417 CPICH, 136 CQI see Channel-Quality Indicator CRC see Cyclic Redundancy Check Cyclic Delay Diversity (CDD), 92–93 Cyclic-prefix insertion: OFDM, 51–53 single-carrier, 71–72 Cyclic Redundancy Check (CRC), 121 for HSDPA, 134–35, 149, 179–80 for Enhanced Uplink, 194 for LTE, 313, 329, 350 D-TXAA, 252 DC-subcarrier, LTE, 320 DCCH, 303 Delay diversity, 91–2 DFT-spread OFDM (DFTS-OFDM), 75–82 localized vs. distributed, 81–2 receiver, 78–9 spectrum shaping, 80–1 user multiplexing, 79–80 Discontinuous Reception (DRX), 260, 263–64, 304, 369 Discontinuous Transmission (DTX), 260–61, 263 DL-SCH, 304, 305, 312 transport-channel processing, 326–33 DPCCH, 137 DPCH, 136 DPDCH, 137 Drift RNC see RNC DRX see Discontinuous Reception DTX see Discontinuous Transmission Duplex, 13, 282, 296 in LTE, 318 E-AGCH, 192, 229, 232–33 E-DCH, 185–186, 190–91 EDGE, 416–21 E-DPCCH, 193, 209, 235–37 445 Index-P372533.tex 11/5/2007 19: 27 Page 446 446 Index E-DPDCH, 191, 209 E-HICH, 192, 229–32 E-RGCH, 192, 229, 233–34 Enhanced uplink, 129, 185–237 for TDD, 408 eNodeB, 299, 380–82 EPC see Evolved Packet Core Equalization, 67 decision feedback, 73 frequency domain, 70–2 time domain, 68–70 EV-DO, 409–16 EV-DV, 409–10 Evolved Packet Core, 382, 386–89 FDD, 13, 282, 296, 318 F-DPCH, 148, 180–81 Forward error correction (FEC), 121 Fountain codes, 245 Fractional frequency reuse, 424, 427, 429 see also Interference Coordination Frequency bands, 13–15, 297 FUTURE project, 431 GERAN, 9, 416, 417, 418 GGSN, 383–88 G-RAKE, 271–72 GSM, 4–5, 382–86, 416–21 Happy bit, 201, 218, 235 Higher-order modulation, 36–39 HLR, 383–384 HS-DPCCH, 148, 181–84 HS-DSCH, 141–42, 146–48 HS-SCCH, 147–48, 178–80 HS-SCCH-less operation, 260, 264–66 HSDPA, 129, 141–184, 252–56, 263 in TDD, 408 performance, 399–405 HSPA, 129–30 HSPA/WCDMA RAN, 372–73, 374–82 architecture, 379–80 HSUPA see Enhanced uplink Hybrid ARQ, 121 in Enhanced Uplink, 188–89, 203–8, 222–28 in HSDPA, 144, 155–58, 164–73, 256 in LTE, 309–12, 330, 350 process, 170–71 profile, 218, 220–21 with soft combining, 121–25 IEEE 802.16, 421–27 IEEE 802.20, 427–29 IMT-2000, 11–12, 282, 432 IMT-Advanced, 12, 432–33 Incremental redundancy, 122–24, 144, 222, 294, 330 Inter-cell interference coordination, 293 Interference cancellation, 104, 272–73 successive (SIC), 104–5 Interference coordination, 293–94 Interference Rejection Combining (IRC), 87–90 Internet Protocol (IP), 19–20, 284–86 ITU, 5, 11, 432 ITU-R, 6, 12, 13, 432 Iu interface, 372, 376, 383, 384 Iub interface, 376, 378 Iur interface, 376, 377 Latency, 395–396 requirement, 279 Layer mapping, LTE, 336–39 Link adaptation, 108–9 Frequency domain, 117 LMMSE receiver, 269, 272 Logical channels: in WCDMA, 133 in LTE, 301, 303–5 LTE, 277–78, 289–70 architecture, 283–84 performance, 399–405 RAN, 373–82 spectrum deployment, 281–83 LTE states, 314–15 MAC, 133 in LTE, 302–12 MAC-e, 189, 228–29 MAC-es, 189, 228–29 MAC-hs, 145, 149–50 MBMS, 129, 239–249 for LTE, 281–82, 384 for TDD, 408 MBSFN, 295 MCCH, 246, 248–49, 303 MCH, 304, 314, 339, 340 MICH, 246, 248–49 Migration, 282–84 MIMO, 100, 397 for HSDPA, 251–58 Index-P372533.tex 11/5/2007 19: 27 Page 447 Index 447 Mobility: for HSPA, 162–63, 212–13 for LTE, 280, 380, 387 MSC, 383, 385 MSCH, 246, 249 MTCH, 246–48, 303 Multi-carrier transmission, 39–43 Multicasts, 63–6 see also MBMS Multicast/Broadcast over Single–Frequency Network see MBSFN New-data indicator, 157 NodeB, 131–32, 376, 377, 379 Noise rise, 139, 195 OFDM see Orthogonal Frequency Division Multiplex OFDMA, 62, 415, 424 Orthogonal Frequency Division Multiplex (OFDM), 45–66 demodulation, 48 IFFT/FFT implementation, 48–51 in LTE, 319–23 see also Cyclic-prefix insertion Overload indicator, 188, 200–1, 216–17, 233 OVSF code, 136–37 Paging, 369–370 PCCH, 303–4 PCH, 304 PCI see Pre-coding Control Information PDCCH see Physical Downlink Control Channel PDCP: for HSPA, 132 for LTE, 299–300 PDSCH see Physical Downlink Shared Channel Performance: evaluation, 396–401, 403–5 requirements (LTE), 279–81, 402–3 Physical Downlink Control Channel (PDCCH), 334 Physical Downlink Shared Channel (PDSCH), 333 Physical layer: in WCDMA, 134–39 in LTE, 312–14, 317–55 Power control, 108–9, 137–38 in Enhanced uplink, 209–10 Pre-coding Control Information (PCI), 254–55, 257–58 Pre-coding, LTE, 336–39 see also Beam forming and Spatial multiplexing Puncturing limit, 223–24 QoS, 284, 286 QPSK, 36–7 Radio access network, 23–7, 371–82 Radio Network Controller see RNC Radio resource management, 9, 159, 210, 284, 373, 381, 422 RAKE, 68, 138, 269, 271 RAN see Radio access network Random access: LTE, 361–69 preamble, 362, 363–67 Raptor code, 245 Rate control, 108–9 in HSPA, 144, 152–55, 255–56 in LTE, 290–93 Rate matching, two-stage, 165–68 Receive diversity, 85–90, 294, 412, 427 Reference signals: channel sounding, 348–49 demodulation, 344–48 in LTE downlink, 323–27 in LTE uplink, 344–49 Relative grant, 192, 199, 200, 216–17, 229, 233–34 Reordering, 158, 171–73, 205, 227–28 Resource blocks: in LTE downlink, 320, 322–23 in LTE uplink, 342, 343 Resource element, LTE, 319 Retransmission Sequence Number (RSN), 206–7, 224 RLC: for HSPA 133–34, 155, 247 for LTE 301–2, 316 Roaming, 4, 10, 13, 14, 15, 285, 373, 385, 388 RNC, 131–132, 145, 189–90, 375–76 controlling, 377–78 drift, 377–79 serving, 377–79 RRC, 134 RSN see Retransmission Sequence Number Index-P372533.tex 11/5/2007 19: 27 Page 448 448 Index S1 interface, 381, 386, 387 SAE, 26, 277, 285–87, 371–89 functional split, 372–74 bearer, 299 SC-FDMA, 289–90, 340, 344 Scheduling: channel-dependent, 107, 109–20, 142–43, 195–96, 290–93 downlink, 110–114, 119, 291–93, 305–7 Enhanced Uplink, 186–88, 195–201, 213–22 frequency-domain, 117, 292, 305, 306 greedy filling, 116, 196–97 in HSDPA, 142, 151 max-C/I, 111–12 proportional fair, 113 round robin, 112–13, 116 uplink, 114–17, 292–93, 307–9 Scheduling grant, 187, 192, 198, 308, 367 Scheduling request, 198, 218–19, 351 Served traffic, 399, 400, 401 Services, 19, 20–21 Serving cell, 145, 198 Serving grant, 199, 213 Serving RNC see RNC SFN see Single–frequency network SGSN, 383–85 Shared-channel transmission, 141, 290–91 SIC see Interference cancellation Single-carrier FDMA see SC-FDMA Single-frequency network (SFN), 60, 65, 295 see also MBSFN Soft handover, 138–139, 186, 193, 219–20 Space Frequency (Block) Coding (SF(B)C), 94–5 Space Time (Block) Coding (ST(B)C), 93–4, 427 Spatial multiplexing, 98–105 in HSPA see MIMO in LTE, 294, 338–39 multi-codeword based, 104 pre-coder based, 102–4 single-codeword based, 104, 415 Spectrum efficiency, 396 performance, 400–1, 403–5 requirement, 280, 402–3 Spectrum flexibility, 282–83, 295–98 Standardization, 7–8, 433 Successive Interference Cancellation (SIC) see Interference cancellation Synchronization signal, 318 primary, 357–59 secondary, 357–59 System performance, 23, 279–81, 394, 396, 402 System throughput, 395–396 TDD, 13, 282, 296, 318 TFC see Transport Format Combination Transmission Time Interval (TTI), 133–34, 303 Transmit Diversity, 91–5, 332 Transport block, 133–34, 303 Transport channels, 133, 303–5, 327–28 Transport format, 133–34, 304, 308 Transport Format Combination (TFC), 193, 202–3 Transport format selection, 140, 149, 155, 193, 299, 304 TTI see Transmission Time Interval UL-SCH, 304, 307, 313, 350–51 URA_PCH, 259 User Equipment (UE), 131 categories, 163, 212–13 User throughput, 395–396 performance, 399–401, 403–5 requirement, 280, 402–3 UTRA FDD see WCDMA UTRA TDD, 10, 407–9 WCDMA, 7, 10, 131–40 WiMAX, 421–27 Winner project, 433 X2 Interface, 381 Zadoff-Chu sequences, 346

Các file đính kèm theo tài liệu này:

  • pdfAcademic.Press.3G.Evolution.HSPA.and.LTE.for.Mobile.Broadband.Jul.2007.pdf