Contents
List of Figures xiii
List of Tables xxiii
Preface
xxv
Acknowledgements xxvii
List of Acronyms xxix
Part I: Introduction
1 Background of 3G evolution
3
1.1 History and background of 3G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 Before 3G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Early 3G discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Research on 3G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.4 3G standardization starts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Standardization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 The standardization process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 3GPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 IMT-2000 activities in ITU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Spectrum for 3G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 The motives behind the 3G evolution
17
2.1 Driving forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.1 Technology advancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.2 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.3 Cost and performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 3G evolution: two Radio Access Network approaches and
an evolved core network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Radio Access Network evolution . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 A evolved core network: System Architecture
Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Part II: Technologies for 3G Evolution
3
High data rates in mobile communication
31
3.1 High data rates: fundamental constraints . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.1 High data rates in noise-limited scenarios . . . . . . . . . . . . . . . . . . 33
v
vi
Contents
3.1.2 Higher data rates in interference-limited scenarios . . . . . . . . . . 35
3.2 Higher data rates within a limited bandwidth: higher-order
modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 Higher-order modulation in combination with
channel coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Variations in instantaneous transmit power . . . . . . . . . . . . . . . . . 38
3.3 Wider bandwidth including multi-carrier transmission . . . . . . . . . . . . . 39
3.3.1 Multi-carrier transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4 OFDM transmission
45
4.1 Basic principles of OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 OFDM demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 OFDM implementation using IFFT/FFT processing . . . . . . . . . . . . . 48
4.4 Cyclic-prefix insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5 Frequency-domain model of OFDM transmission . . . . . . . . . . . . . . . 53
4.6 Channel estimation and reference symbols . . . . . . . . . . . . . . . . . . . . . . 54
4.7 Frequency diversity with OFDM: importance of channel coding. . . . . 55
.
4.8 Selection of basic OFDM parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.8.1 OFDM subcarrier spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.8.2 Number of subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.8.3 Cyclic-prefix length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.9 Variations in instantaneous transmission power . . . . . . . . . . . . . . . . . . 60
4.10 OFDM as a user-multiplexing and multiple-access scheme . . . . . . . 61
4.11 Multi-cell broadcast/multicast transmission and OFDM . . . . . . . . . . 63
5 Wider-band ‘single-carrier’ transmission
67
5.1 Equalization against radio-channel frequency selectivity . . . . . . . . . 67
5.1.1 Time-domain linear equalization . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.2 Frequency-domain equalization . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.1.3 Other equalizer strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Uplink FDMA with flexible bandwidth assignment . . . . . . . . . . . . . . 73
5.3 DFT-spread OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.1 Basic principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.2 DFTS-OFDM receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.3 User multiplexing with DFTS-OFDM . . . . . . . . . . . . . . . . . . . . 79
5.3.4 DFTS-OFDM with spectrum shaping . . . . . . . . . . . . . . . . . . . . 80
5.3.5 Distributed DFTS-OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6 Multi-antenna techniques
83
6.1 Multi-antenna configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Benefits of multi-antenna techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3 Multiple receive antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.4 Multiple transmit antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Contents
vii
6.4.1 Transmit-antenna diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4.2 Transmitter-side beam-forming . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.5 Spatial multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.5.1 Basic principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.5.2 Pre-coder-based spatial multiplexing . . . . . . . . . . . . . . . . . . . . 102
6.5.3 Non-linear receiver processing . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7
Scheduling, link adaptation and hybrid ARQ
107
7.1 Link adaptation: Power and rate control . . . . . . . . . . . . . . . . . . . . . . . . 108
7.2 Channel-dependent scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2.1 Downlink scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.2.2 Uplink scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.2.3 Link adaptation and channel-dependent scheduling
in the frequency domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2.4 Acquiring on channel-state information . . . . . . . . . . . . . . . . . . 117
7.2.5 Traffic behavior and scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.3 Advanced retransmission schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.4 Hybrid ARQ with soft combining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Part III: HSPA
8 WCDMA evolution: HSPA and MBMS
129
8.1 WCDMA: brief overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.1.1 Overall architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.1.2 Physical layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.1.3 Resource handling and packet-data session . . . . . . . . . . . . . . . 139
9 High-Speed Downlink Packet Access
141
9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
9.1.1 Shared-channel transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
9.1.2 Channel-dependent scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . 142
9.1.3 Rate control and higher-order modulation . . . . . . . . . . . . . . . . 144
9.1.4 Hybrid ARQ with soft combining . . . . . . . . . . . . . . . . . . . . . . 144
9.1.5 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
9.2 Details of HSDPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
9.2.1 HS-DSCH: inclusion of features in WCDMA Release 5. . . . . 146
9.2.2 MAC-hs and physical-layer processing . . . . . . . . . . . . . . . . . . . 149
9.2.3 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.2.4 Rate control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.2.5 Hybrid ARQ with soft combining . . . . . . . . . . . . . . . . . . . . . . 155
9.2.6 Data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
viii
Contents
9.2.7 Resource control for HS-DSCH . . . . . . . . . . . . . . . . . . . . . . . . . 159
9.2.8 Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
9.2.9 UE categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
9.3 Finer details of HSDPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
9.3.1 Hybrid ARQ revisited: physical-layer processing . . . . . . . . . . 164
9.3.2 Interleaving and constellation rearrangement . . . . . . . . . . . . 168
9.3.3 Hybrid ARQ revisited: protocol operation . . . . . . . . . . . . . . . . 170
9.3.4 In-sequence delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
9.3.5 MAC-hs header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
9.3.6 CQI and other means to assess the downlink quality . . . . . . . 175
9.3.7 Downlink control signaling: HS-SCCH . . . . . . . . . . . . . . . . . . 178
9.3.8 Downlink control signaling: F-DPCH . . . . . . . . . . . . . . . . . . . . 180
9.3.9 Uplink control signaling: HS-DPCCH . . . . . . . . . . . . . . . . . . . 181
10
Enhanced Uplink
185
10.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
10.1.1 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
10.1.2 Hybrid ARQ with soft combining . . . . . . . . . . . . . . . . . . . 188
10.1.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
10.2 Details of Enhanced Uplink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
10.2.1 MAC-e and physical layer processing . . . . . . . . . . . . . . . 193
10.2.2 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
10.2.3 E-TFC selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
10.2.4 Hybrid ARQ with soft combining . . . . . . . . . . . . . . . . . . . 203
10.2.5 Physical channel allocation . . . . . . . . . . . . . . . . . . . . . . . . . 208
10.2.6 Power control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
10.2.7 Data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
10.2.8 Resource control for E-DCH . . . . . . . . . . . . . . . . . . . . . . . 210
10.2.9 Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
10.2.10 UE categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
10.3 Finer details of Enhanced Uplink . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
10.3.1 Scheduling – the small print . . . . . . . . . . . . . . . . . . . . . . . . 213
10.3.2 Further details on hybrid ARQ operation . . . . . . . . . . . . . 222
10.3.3 Control signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
11 MBMS: multimedia broadcast multicast services
239
11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
11.1.1 Macro-diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
11.1.2 Application-level coding . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
11.2 Details of MBMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
11.2.1 MTCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
11.2.2 MCCH and MICH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
11.2.3 MSCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Contents
12
ix
HSPA Evolution
251
12.1 MIMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
12.1.1 HSDPA-MIMO data transmission . . . . . . . . . . . . . . . . . . . 252
12.1.2 Rate control for HSDPA-MIMO . . . . . . . . . . . . . . . . . . . . 255
12.1.3 Hybrid ARQ with soft combining for HSDPA-
MIMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
12.1.4 Control signaling for HSDPA-MIMO . . . . . . . . . . . . . . . 256
12.1.5 UE capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
12.2 Higher-order modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
12.3 Continuous packet connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
12.3.1 DTX – reducing uplink overhead . . . . . . . . . . . . . . . . . . 261
12.3.2 DRX – reducing UE power consumption . . . . . . . . . . . 263
12.3.3 HS-SCCH-less operation: downlink overhead
reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
12.3.4 Control signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
12.4 Enhanced CELL_FACH operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
12.5 Layer 2 protocol enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
12.6 Advanced receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
12.6.1 Advanced UE receivers specified in 3GPP . . . . . . . . . . . . 269
12.6.2 Receiver diversity (type 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
12.6.3 Chip-level equalizers and similar receivers (type 2). . . . . 270
12.6.4 Combination with antenna diversity (type 3) . . . . . . . . . . . 271
12.6.5 Interference cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
12.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Part IV: LTE and SAE
13 LTE and SAE: introduction and design targets
277
13.1 LTE design targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
13.1.1 Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
13.1.2 System performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
13.1.3 Deployment-related aspects . . . . . . . . . . . . . . . . . . . . . . . . 281
13.1.4 Architecture and migration . . . . . . . . . . . . . . . . . . . . . . . . . . 283
13.1.5 Radio resource management . . . . . . . . . . . . . . . . . . . . . . . . . 284
13.1.6 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
13.1.7 General aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
13.2 SAE design targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
14 LTE radio access: an overview
289
14.1 Transmission schemes: downlink OFDM and uplink
SC-FDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
14.2 Channel-dependent scheduling and rate adaptation . . . . . . . . . . . . 290
14.2.1 Downlink scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
14.2.2 Uplink scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Contents
x
14.3
14.4
14.5
14.6
14.2.3 Inter-cell interference coordination . . . . . . . . . . . . . . . . . . . 293
Hybrid ARQ with soft combining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Multiple antenna support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Multicast and broadcast support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Spectrum flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
14.6.1 Flexibility in duplex arrangement . . . . . . . . . . . . . . . . . . . . 296
14.6.2 Flexibility in frequency-band-of-operation . . . . . . . . . . . . 297
14.6.3 Bandwidth flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
15 LTE radio interface architecture
299
15.1 RLC: radio link control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
15.2 MAC: medium access control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
15.2.1 Logical channels and transport channels . . . . . . . . . . . . . . 303
15.2.2 Downlink scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
15.2.3 Uplink scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
15.2.4 Hybrid ARQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
15.3 PHY: physical layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
15.4 LTE states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
15.5 Data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
16 LTE physical layer
317
16.1 Overall time-domain structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
16.2 Downlink transmission scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
16.2.1 The downlink physical resource . . . . . . . . . . . . . . . . . . . . . . 319
16.2.2 Downlink reference signals . . . . . . . . . . . . . . . . . . . . . . . . . . 323
16.2.3 Downlink transport-channel processing . . . . . . . . . . . . . . . 326
16.2.4 Downlink L1/L2 control signaling . . . . . . . . . . . . . . . . . . . 333
16.2.5 Downlink multi-antenna transmission . . . . . . . . . . . . . . . . 336
16.2.6 Multicast/broadcast using MBSFN . . . . . . . . . . . . . . . . . 339
16.3 Uplink transmission scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
16.3.1 The uplink physical resource . . . . . . . . . . . . . . . . . . . . . . . 340
16.3.2 Uplink reference signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
16.3.3 Uplink transport-channel processing . . . . . . . . . . . . . . . . . . 350
16.3.4 Uplink L1/L2 control signaling . . . . . . . . . . . . . . . . . . . . . . 351
16.3.5 Uplink timing advance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
17 LTE access procedures
357
17.1 Cell search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
17.1.1 Cell-search procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
17.1.2 Time/frequency structure of synchronization signals. . . . 359
.
17.1.3 Initial and neighbor-cell search . . . . . . . . . . . . . . . . . . . . . 360
17.2 Random access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
17.2.1 Step 1: Random access preamble transmission . . . . . . . . . 363
17.2.2 Step 2: Random access response . . . . . . . . . . . . . . . . . . . . . 367
17.2.3 Step 3: Terminal identification . . . . . . . . . . . . . . . . . . . . . . . 368
Contents
xi
17.2.4 Step 4: Contention resolution . . . . . . . . . . . . . . . . . . . . . . . . 368
17.3 Paging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
18
System Architecture Evolution
371
18.1 Functional split between radio access network and core
network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
18.1.1 Functional split between WCDMA/HSPA radio
access network and core network . . . . . . . . . . . . . . . . . . . 372
18.1.2 Functional split between LTE RAN and core
network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
18.2 HSPA/WCDMA and LTE radio access network . . . . . . . . . . . . . . . 374
18.2.1 WCDMA/HSPA radio access network . . . . . . . . . . . . . . . . 374
18.2.2 LTE radio access network . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
18.3 Core network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
18.3.1 GSM core network used for WCDMA/HSPA . . . . . . . . . . 382
18.3.2 The ‘SAE’ core network: the Evolved Packet Core . . . . . 386
18.3.3 WCDMA/HSPA connected to Evolved Packet Core. . . . . 388
Part V: Performance and Concluding Remarks
19
Performance of 3G evolution
393
19.1 Performance assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
19.1.1 End-user perspective of performance . . . . . . . . . . . . . . . . . 394
19.1.2 Operator perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
19.2 Performance evaluation of 3G evolution . . . . . . . . . . . . . . . . . . . . . . 396
19.2.1 Models and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
19.2.2 Performance numbers for LTE with 5 MHz
FDD carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
19.3 Evaluation of LTE in 3GPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
19.3.1 LTE performance requirements . . . . . . . . . . . . . . . . . . . . . . 402
19.3.2 LTE performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 403
19.3.3 Performance of LTE with 20 MHz FDD carrier . . . . . . . . 404
19.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
407
20 Other wireless communications systems
20.1 UTRA TDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
20.2 CDMA2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
20.2.1 CDMA2000 1x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
20.2.2 1x EV-DO Rev 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
20.2.3 1x EV-DO Rev A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
20.2.4 1x EV-DO Rev B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
20.2.5 1x EV-DO Rev C (UMB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
20.3 GSM/EDGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
20.3.1 Objectives for the GSM/EDGE evolution . . . . . . . . . . . . . 416
Contents
xii
20.3.2 Dual-antenna terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
20.3.3 Multi-carrier EDGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
20.3.4 Reduced TTI and fast feedback . . . . . . . . . . . . . . . . . . . . . . 419
20.3.5 Improved modulation and coding . . . . . . . . . . . . . . . . . . . 420
20.3.6 Higher symbol rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
20.4 WiMAX (IEEE 802.16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
20.4.1 Spectrum, bandwidth options and duplexing
arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
20.4.2 Scalable OFDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
20.4.3 TDD frame structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
20.4.4 Modulation, coding and Hybrid ARQ . . . . . . . . . . . . . . . . 424
20.4.5 Quality-of-service handling . . . . . . . . . . . . . . . . . . . . . . . . . . 425
20.4.6 Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
20.4.7 Multi-antenna technologies . . . . . . . . . . . . . . . . . . . . . . . . . . 427
20.4.8 Fractional frequency reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
20.5 Mobile Broadband Wireless Access (IEEE 802.20) . . . . . . . . . . . . 427
20.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
21
Future evolution
431
21.1 IMT-Advanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
21.2 The research community . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
21.3 Standardization bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
21.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
References 435
Index 445
485 trang |
Chia sẻ: banmai | Lượt xem: 2311 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu 3g evolution hspa and lte for mobile broadband, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ing on the air interface and can be negotiated
statically or dynamically through MAC messages.
Applications supported through the WiMAX QoS mechanism are:
• Unsolicited Grant Service (UGS): VoIP
• Real-Time Polling Service (rtPS): Streaming Audio or Video
• Extended Real-Time Polling Service (ErtPS): Voice with Activity
• Non-Real-Time Polling Service (nrtPS): File Transfer Protocol (FTP)
• Best-Effort Service (BE): Data Transfer, Web Browsing, etc.
20.4.6 Mobility
Mobile WiMAX supports both sleep mode and idle mode for more efficient power
management. In sleep mode, there is a pre-negotiated period of absence from the
radio interface to the serving base station, where the mobile station may power
down or scan other neighboring base stations. There are different ‘power saving
classes’ suitable for applications with different QoS types, each having different
sleep mode parameters. There is also an idle mode, where the UE is not registered
to any base station and instead periodically scans the network at discrete intervals.
There are three handover methods supported, with Hard Handover (HHO)
being mandatory and Fast Base-Station Switching (FBSS) and Macro-Diversity
handover (MDHO) being optional [2, 116]. Soft handover is not supported:
• Hard Handover (HHO): The mobile station scans neighboring Base Stations
(BS) and maintains a list of candidate BS to make potential decisions for cell
re-selection. The decision to handover to a new BS is made at the MS or at
the serving BS. After decision, the MS immediately starts synchronization to
the downlink of the target BS and obtains uplink and downlink transmission
parameters and establishes a connection. Finally, the context of all connections
to the previous serving BS are terminated.
• Fast Base-Station Switching (FBSS): The MS can maintain a diversity set (same
as ‘active set’ for WCDMA) of multiple suitable Base Stations. One BS in the
active set is selected as Anchor BS through which all uplink and downlink
communication is done, both traffic and control messages. The MS selects the
best BS in the diversity set as its Anchor and can change Anchor BS without any
explicit handover signaling by reporting the selected BS on the CQICH channel.
• Macro-Diversity Handover (MDHO): An Anchor BS and a diversity set of the
most suitable BSs are maintained also in MDHO. However, the MS communi-
cates with all BSs in the diversity set in case of MDHO. In the downlink, multiple
BS provides synchronized transmission of the same messages and in the uplink,
multiple BS receive messages from the MS and provide selection diversity.
Ch20-P372533.tex 14/5/2007 18: 5 Page 427
Other wireless communications systems 427
A requirement for FBSS and MDHO is that all BS in the active set need to operate
on the same frequency, be time synchronized and also share and transfer all MAC
contexts between BSs.
20.4.7 Multi-antenna technologies
In addition to conventional receive diversity, WiMAX supports additional options
using smart-antenna technologies:
• Beam-forming or Adaptive/Advanced Antenna System (AAS): Provides
increased coverage and capacity through uplink and downlink beam-forming.
AAS and non-AAS mobiles are time division multiplexed using a different
time zone for the different options. Other MIMO schemes may be used in the
non-AAS zones.
• Space–time coding (STC): With two transmit antennas, the use of transmit
diversity through Alamouti code is supported to achieve spatial diversity. It is
also possible to have transmit diversity using Linear Dispersion Codes (LDC)
for more than two transmit antennas.
• Spatial multiplexing through MIMO: Higher peak rates and throughput in
favorable propagation environments are provided through a downlink 2 × 2
MIMO scheme. The uplink supports ‘Uplink collaborative MIMO,’ where two
users transmit with one antenna in the same slot and the BS receives the two
multiplexed streams as if it were a MIMO transmission from a single user.
20.4.8 Fractional frequency reuse
WiMAX can operate with a frequency reuse of one, but co-channel interference
may in this case degrade the quality for users at the cell edge. However, a flexible
sub-channel reuse is made possible by dividing the frame into permutation zones
as described above. In this way, it is possible to have a sub-channel reuse by proper
configuration of the sub-channel usage for the users. For users at the cell edges,
the Base Station operates on a zone with a fraction of the sub-channels, while users
close to the Base Station can operate on a zone with all sub-channels. As shown in
the example in Figure 20.8, there can be an effective reuse of frequencies for users
at the cell edge, while still maintaining a reuse of one for the OFDMA carrier as
a whole.
20.5 Mobile Broadband Wireless Access (IEEE 802.20)
Within the IEEE 802 LAN/MAN Standards Committee, the 802.20 group specifies
a Mobile Broadband Wireless Access (MBWA) standard. The group is targeting a
system optimized for IP-data transport, operating in licensed bands below 3.5 GHz
with peak data rates per user in excess of 1 Mbps. High mobility with mobile speeds
Ch20-P372533.tex 14/5/2007 18: 5 Page 428
428 3G Evolution: HSPA and LTE for Mobile Broadband
f2
f3
f1 f2 f3
f1
Figure 20.8 Fractional frequency reuse. In this example there is a reuse of 3 for users at the cell
edge, while users closer to the BSs have a single frequency reuse.
up to 250 km/h and spectral efficiency on par with mobile systems is part of the
MBWA system’s scope, making it potentially more than a MAN system.
The work on the 802.20 standard was initiated in 2002, and has since then moved
to become a high data rate, flexible bandwidth system that is quite similar to
the other technologies discussed in this book, such as LTE, CDMA2000 Rev C,
and IEEE 802.16. The main proposals under discussion today are MBFDD and
MBTDD (Mobile Broadband FDD and TDD) as described in [3].
Some key features of the proposal in [3] are listed below. Note that there are some
concepts very similar to CDMA2000 Rev C:
• The radio interface has OFDM data transmission with 9.6 kHz subcarrier spac-
ing and an FFT size of 512, 1024, and 2048, supporting operation bandwidths
of 5, 10, and 20 MHz, respectively. The cyclic prefix is configurable from 6%
to 23% of the OFDM symbol duration. Most of the uplink control channels are
transmitted with CDMA on a contiguous set of OFDM subcarriers.
• Hopping of subcarriers is possible at symbol level, occurring every two symbol
intervals (to allow for Alamouti coding), or at a block level. Blocks are about
the same size as a resource block in LTE.
• There is one frame structure for FDD and one for TDD where guard times are
added between up- and downlink parts.
• There is support of QPSK, 8PSK, 16QAM, and 64QAM modulations.
• Convolutional coding is used for small packets (mainly signaling) and Turbo
codes for larger packets. HARQ is used with a modulation step down for
retransmissions.
• Fast closed-loop uplink power control is used for control channel power.
Traffic channel power is set relative to control channels. Uplink interference
from neighboring Access Points (AP) is controlled through an Other Sector
Indication Channel (F-OSICH) that signals a load indication to the mobiles.
Ch20-P372533.tex 14/5/2007 18: 5 Page 429
Other wireless communications systems 429
• Handovers are mobile station initiated. The mobile station makes SINR mea-
surements on candidate AP pilots and keeps an active set of up to 8 APs. All
have allocated MAC IDs and control resources, but only one is the serving AP.
Handover can be disjoint (independent) between uplink and downlink.
• The uplink can be quasi-orthogonal where multiple mobiles are assigned the
same bandwidth resources.
• A fractional frequency reuse scheme enables mobiles in different channel
conditions to have different frequency reuse.
• Space Time Transmit Diversity (STTD) is supported.
• There is support for downlink MIMO with single codeword and multiple
codeword designs.
• Eigen-beam-forming is supported using feedback from the mobile station. A
special beam-forming mode is supported for TDD operation.
• There is possibility of embedding other physical layers such as single frequency
network technologies for broadcast services.
• Scalable bandwidth options are supported so that mobiles capable of only
receiving on a lower carrier bandwidth (say 5 MHz) can still be operated on a
20 MHz carrier being transmitted by the base station.
20.6 Summary
The IMT-2000 technologies and the other technologies introduced above are devel-
oped in different standardization bodies, but all show a lot of commonalities. The
reason is that they target the same type of application and operate under similar
conditions and scenarios. The fundamental constraints for achieving high data
rates, good quality of service, and system performance will require that a set of
efficient tools are applied to reach those targets.
The technologies described in Part II of this book form a set of such tools and
it turns out that many of those are applied across most of the technologies dis-
cussed here. To cater for high data rates, different ways to transmit over wider
bandwidth is employed, such as single- and multi-carrier transmission including
OFDM, often with the addition of higher-order modulation. Multi-antenna tech-
niques are employed to exploit the ‘spatial domain,’ using techniques such as
receive and transmit diversity, beam-forming and multi-layer transmission. Most
of the schemes also employ dynamic link adaptation and scheduling to exploit
variations in channel conditions. In addition, coding schemes such as Turbo codes
are combined with advanced retransmission schemes such as HARQ.
As mentioned above, one reason that solutions become similar between systems is
that they target similar problems for the systems. It is also to some extent true that
some technologies and their corresponding acronyms go in and out of ‘fashion.’
Ch20-P372533.tex 14/5/2007 18: 5 Page 430
430 3G Evolution: HSPA and LTE for Mobile Broadband
Most 2G systems were developed using TDMA, while many 3G systems are based
on CDMA and the 3G evolution steps taken now are based on OFDM. Another
reason for this step-wise shift of technologies is of course that as technology
develops, more complex implementations are made possible. A closer look at
many of the evolved wireless communication systems of today also show that they
often combine multiple techniques from previous steps, and are built on a mix of
TDMA, OFDM, and spread spectrum components.
Ch21-P372533.tex 11/5/2007 19: 27 Page 431
21
Future evolution
This book has described the evolution of 3G mobile systems from WCDMA to
HSPA and its continued evolution, and finally the 3G Long-Term Evolution. The
overview of the technologies used for 3G evolution in Part II of the book served
as a foundation for the detailed discussion and explanation of the evolution steps
taken for both HSPA and LTE. The enhancements introduced enable higher peak
data rates, improved system performance, and other enhanced capabilities. The
resulting performance was also presented in Chapter 19 and it was shown that the
targets set up by 3GPP for LTE are met.
It was also demonstrated that many of the enhancing technologies applied are the
same for HSPA and LTE and also give the same types of improvements. They are
also similar to the enhancements applied for other wireless technologies as shown
in the overview made in Chapter 20.
Naturally, the technology evolution does not stop with HSPA Evolution and LTE.
The same driving forces to further enhance performance and capabilities are still
there, albeit the targets are always moved further ahead when state-of-the-art
improves. The next step of wireless evolution is sometimes called 4G. But since
the evolution is not stepwise, but more of a continuous process, also being a
set of parallel evolution processes for similar and often related systems, it may
be difficult to identify specific technology steps as being a new next generation.
Some may want to put a 4G label on technologies that other consider not meet-
ing even 3G requirements, while other try to label intermediate steps as 3.5G
or 3.9G.
The technology race for the next generation of mobile communication has already
started with regulatory bodies, standards organizations, market forums, research
bodies and other bodies taking various initiatives. These bodies all work on
concepts that are candidates for the forthcoming process in ITU-R defining what
IMT-Advanced should be.
431
Ch21-P372533.tex 11/5/2007 19: 27 Page 432
432 3G Evolution: HSPA and LTE for Mobile Broadband
21.1 IMT-Advanced
Within the ITU, Working Party 8F works on IMT-2000 and systems beyond IMT-
2000. The capabilities of IMT-2000, its enhancements, and systems that include
new radio interfaces beyond IMT-2000 are shown in Figure 21.1. ITU-R WP8F
anticipated in [47] that there will be a need for new mobile radio-access technolo-
gies for capabilities beyond enhanced IMT-2000, but the exact point where this
may be needed is not identified. The term IMT-Advanced is used for systems that
include new radio interfaces supporting the new capabilities of systems beyond
IMT-2000. Note that the 3G evolution into enhanced IMT-2000 as described in
this book covers a large part of the step towards IMT-Advanced in Figure 21.1
and that IMT-Advanced will also encompass the capabilities of previous systems.
The process for defining IMT-Advanced is also worked out within WP8F [43] and
will be quite similar to the process used in developing the IMT-2000 recommenda-
tions. It will be based on a set of minimum technical requirements and evaluation
criteria and commence through an invitation to all ITU members and other organi-
zations. Proposed technologies will be evaluated according to the agreed criteria.
The target is harmonization through consensus building, resulting in a recom-
mendation for IMT-Advanced similar to the ITU-R Recommendation M.1457 for
IMT-2000 [46]. The evaluation will be done in cooperation with external bodies
such as standards-developing organizations. Since the process will be based on
consensus, the number of technologies that will finally be encompassed by IMT-
Advanced cannot be determined in advance. It is a trade-off between economies
of scale, support of different user environments, and the capabilities of different
technologies. In addition, the possibility for global circulation of terminals will be
an important aspect.
1Mbps 1000Mbps100Mbps10Mbps
Peak data rate
Low
High
3G evolution
Enhanced
IMT-2000IMT-2000
New mobile
access
New nomadic/local
area wireless access
M
ob
ilit
y
Figure 21.1 Illustration of capabilities of IMT-2000 and systems beyond IMT-2000, based on the
framework described in ITU-R Recommendation M.1645 [47].
Ch21-P372533.tex 11/5/2007 19: 27 Page 433
Future evolution 433
Another major activity within ITU-R concerning IMT-Advanced is the prepara-
tion for WRC’07, the upcoming World Radio Congress. One target is to identify
spectrum that is suitable for IMT-Advanced and that is available globally, since
adequate spectrum availability and globally harmonized spectrum are identified as
essential for IMT-Advanced [43]. In preparation for WRC’07, a range of sharing
studies between IMT-Advanced and other technologies in the different candidate
bands have been produced within WP8F.
21.2 The research community
In the research community, several research projects are run in the area of IMT-
Advanced and the next generation of radio access. One example is the Winner
project, which is partly funded by the European Union. The Winner concept has
many components that are very close to LTE. However, Winner is targeting higher
data rates than LTE and is therefore designed for a wider bandwidth than 20 MHz.
Another key difference is that the Winner concept will work with relaying and
multi-hop modes. For further details, see the Winner homepage [118].
Other regions are running research projects similar to the European ones, such
as the Future project in China, all with the goal of making an IMT-Advanced
radio interface proposal. In the end however, these research communities will not
make the final inputs of IMT-Advanced concepts. It is expected that the estab-
lished standards developing organizations (ETSI, ARIB, CWTS, etc.) will do down
selections of proposals from their respective regions. A global standard body such
as 3GPP will most likely also have a role to play in harmonizing proposals across
the different regions and standards bodies.
21.3 Standardization bodies
Although 3GPP currently does not perform any direct work towards IMT-
Advanced, 3GPP will most likely make a proposal to ITU-R. IEEE802.16 is also
on the move improving its concept and is targeting a proposal for IMT-Advanced
in its work on 802.16 m. Similarly 3GPP2 and the community around cdma2000
are expected to come with an IMT-Advanced proposal.
21.4 Concluding remarks
While LTE standardization is not yet completely finalized, the race for the next
radio interface is already ongoing. Many activities are initiated in the research com-
munity and some standardization developing organizations are about to start (or has
just started) their work towards IMT-Advanced. However, IMT-Advanced is still
Ch21-P372533.tex 11/5/2007 19: 27 Page 434
434 3G Evolution: HSPA and LTE for Mobile Broadband
several years away whereas HSPA Evolution and LTE are just around the corner.
HSPA Evolution is built as a continuing evolution of the existing WCDMA/HSPA
technology whereas LTE is a new radio access optimized purely for IP based
traffic. These two technologies promise to give more services, capabilities, and
performance to the end users than any other radio interface technology has been
able to do to date.
Reference-P372533.tex 11/5/2007 19: 27 Page 435
References
[1] China Unicom et al., ‘Joint Proposal for 3GPP2 Physical Layer for FDD
Spectra’, 3GPP2 TSG-C WG3 Contribution C30-20060731-040R2, July
2006.
[2] IEEE,‘IEEE Standard for Local and Metropolitan Area Networks. Part 16:
Air Interface for Fixed and Mobile Broadband Wireless Access Systems;
Amendment 2: Physical and Medium Access Control Layers for Combined
Fixed and Mobile Operation in Licensed Bands’, IEEE Std 802.16-2005.
[3] IEEE, MBFDD and MBTDD Wideband Mode: Technology Overview,
IEEE C802.20-05/68r1.
[4] H. Holma and A. Toskala, WCDMA for UMTS: Radio Access for Third
Generation Mobile Communications, John Wiley and Sons, Chichester,
England, 2000.
[5] B. Hagerman et al., ‘WCDMA Uplink Interference Cancellation Perfor-
mance – Field Measurements and System Simulations’, Nordic Radio
Symposium NRS’04, Oulo, Finland, August 16–18, 2004.
[6] A. Huebner, F. Schuehlein, M. Bossert, E. Costa and H. Haas, ‘A Simple
Space-frequency Coding Scheme with Cyclic Delay Diversity for OFDM’,
Proceedings of the 5th European Personal Mobile Communications
Conference, Glasgow, Scotland, April 2000, pp. 106–110.
[7] A. Milewski, ‘Periodic Sequences with Optimal Properties for Channel
Estimation and Fast Start-up Equalization’, IBM Journal of Research and
Development, Vol. 27, No. 5, September 1983, pp. 426–431.
[8] M.W. Thelander, ‘The 3G Evolution: Taking CDMA2000 into the Next
Decade’, Signal Research Group, LLC, White Paper developed for the
CDMA Development Group, October 2005.
[9] D. Chase,‘Code Combining – A Maximum-likelihood Decoding Approach
for Combining and Arbitrary Number of Noisy Packets’, IEEE Transac-
tions on Communications, Vol. 33, May 1985, pp. 385–393.
[10] J.-F. Cheng, ‘Coding Performance of Hybrid ARQ Schemes’, IEEE
Transactions on Communications, Vol. 54, June 2006, pp. 1017–1029.
[11] S.T. Chung and A.J. Goldsmith ‘Degrees of Freedom in Adaptive
Modulation: A Unified View’, IEEE Transactions on Communications,
Vol. 49, No. 9, September 2001, pp. 1561–1571.
435
Reference-P372533.tex 11/5/2007 19: 27 Page 436
436 3G Evolution: HSPA and LTE for Mobile Broadband
[12] N. Bhushan et al., ‘CDMA2000 1xEV-DO Revision A: A Physical Layer
and MAC Layer Overview’, IEEE Communications Magazine, February
2006, pp. 75–87.
[13] R. Attar et al., ‘Evolution of CDMA2000 Cellular Networks: Multicarrier
EV-DO’, IEEE Communications Magazine, March 2006, pp. 46–53.
[14] E. Dahlman, B. Gudmundsson, M. Nilsson and J. Sköld, ‘UMTS/IMT-
2000 Based on Wideband CDMA’, IEEE Communication Magazine, 1998,
pp. 70–80.
[15] ‘Views on OFDM Parameter Set for Evolved UTRA Downlink’, NTT
DoCoMo et al., Tdoc R1-050386, 3GPP TSG-RAN WG1, Athens, Greece,
May 9–13, 2005.
[16] J. Pautler, M. Ahmed and K. Rohani, ‘On Application of Multiple-input
Multiple-output Antennas to CDMA Cellular Systems’, IEEE Vehicular
Technology Conference, Atlantic City, NJ, USA, October 7–11, 2001.
[17] ‘Digital Video Broadcasting (DVB): Framing Structure, Channel Coding
and Modulation for Digital Terrestrial Television’, ETSI, ETS EN 300 744
v 1.1.2.
[18] H. Ekström, A. Furuskär, J. Karlsson, M. Meyer, S. Parkvall, J. Torsner
and M. Wahlqvist, ‘Technical Solutions for the 3G Long-term Evolution’,
IEEE Communications Magazine, March 2006, pp. 38–45.
[19] A. Furuskär, J. Näslund and H. Olofsson, ‘Edge – Enhanced Data Rates
for GSM and TDMA/136 Evolution’, Ericsson Review, No. 01, 1999,
pp. 28–37. Telefonaktiebolaget LM Ericsson, Stockholm, Sweden.
[20] H. Axelsson, P. Björkén, P. de Bruin, S. Eriksson and H. Persson,
‘GSM/EDGE Continued Evolution’, Ericsson Review, No. 01, 2006,
pp. 20–29. Telefonaktiebolaget LM Ericsson, Stockholm, Sweden.
[21] S. Parkvall, E. Englund, P. Malm, T. Hedberg, M. Persson and J. Peisa,
‘WCDMA evolved-high-speed packet-data services’, Ericsson Review,
No. 02, 2003, pp. 56–65. Telefonaktiebolaget LM Ericsson, Stockholm,
Sweden.
[22] J. Sköld, M. Lundevall, S. Parkvall and M. Sundelin, ‘Broadband Data
Performance of Third-generation Mobile Systems’, Ericsson Review, No.
01, 2005 Telefonaktiebolaget LM Ericsson, Stockholm, Sweden.
[23] P.V. Etvalt, ‘Peak to Average Power Reduction for OFDM Schemes by
Selective Scrambling’, Electronics Letters, Vol. 32, No. 21, October 1996,
pp. 1963–1964.
[24] D. Falconer et al., ‘Frequency Domain Equalization for Single-carrier
Broadband Wireless Systems’, IEEE Communications Magazine, Vol. 40,
No. 4, April 2002, pp. 58–66.
[25] G. Forney, ‘Maximum Likelihood Sequence Estimation of Digital
Sequences in the Presence of Intersymbol Interference’, IEEE Transactions
on Information Theory, Vol. IT-18, May 1972, pp. 363–378.
Reference-P372533.tex 11/5/2007 19: 27 Page 437
References 437
[26] G. Forney, ‘The Viterbi Algorithm’, Proceedings of the IEEE, Vol. 61, No.
3, March 1973, pp. 268–278 IEEE, Piscataway, NJ, USA.
[27] P. Frenger, S. Parkvall and E. Dahlman, ‘Performance Comparison of
HARQ with Chase Combining and Incremental Redundancy for HSDPA’,
Proceedings of the IEEE Vehicular Technology Conference, Atlantic City,
NJ, USA October 2001, pp. 1829–1833.
[28] A.J. Goldsmith and P. Varaiya, ‘Capacity of Fading Channels with Chan-
nel Side Information’, IEEE Transactions on Information Theory, Vol. 43,
November 1997, pp. 1986–1992.
[29] G. Bottomley, T. Ottosson and Y.-P. Eric Wang, ‘A Generalized RAKE
Receiver for Interference Suppression’, IEEE Journal on Selected Areas
in Communications, Vol. 18, No. 8, August 2000, pp. 1536–1545.
[30] J. Hagenauer, ‘Rate-compatible Punctured Convolutional Codes (RCPC
Codes) and Their Applications’, IEEE Transactions on Communications,
Vol. 36, April 1988, pp. 389–400.
[31] L. Hanzo, M. Munster, B.J. Choi and T. Keller, OFDM and MC-CDMA
for Broadband Multi-user Communications, WLANs, and Broadcasting’,
Wiley-IEEE Press, Chichester, England, ISBN 0-48085879.
[32] S. Haykin, Adaptive Filter Theory, Prentice-Hall International, NJ, USA,
ISBN 0-13-004052-5 025.
[33] J.M. Holtzman, ‘CDMA Forward Link Waterfilling Power Control’, Pro-
ceedings of the IEEE Vehicular Technology Conference, Tokyo, Japan, Vol.
3, May 2000, pp. 1663–1667.
[34] J.M. Holtzman, ‘Asymptotic Analysis of Proportional Fair Algorithm’,
Proceedings of the IEEE Conference on Personal Indoor and Mobile Radio
Communications, San Diego, CA, USA, Vol. 2, 2001, pp. 33–37.
[35] M.L. Honig and U. Madhow, ‘Hybrid Intra-cell TDMA/inter-cell CDMA
with Inter-cell Interference Suppression for Wireless Networks’, Proceed-
ings of the IEEE Vehicular Technology Conference, Secaucus, NJ, USA,
1993, pp. 309–312.
[36] R. Horn and C. Johnson, ‘Matrix Analysis’, Proceedings of the 36th Asilo-
mar Conference on Signals, Systems and Computers, Pacific Grove, CA,
USA, November 2002.
[37] A. Hottinen, O. Tirkkonen and R. Wichman, Multi-antenna Transceiver
Techniques for 3G and Beyond, John Wiley and Sons, Chichester, England,
ISBN 0470 84542 2.
[38] J. Karlsson and J. Heinegard, ‘Interference Rejection Combining for
GSM’, Proceedings of the 5th IEEE International Conference on Universal
Personal Communications, Cambridge, MA, USA, 1996, pp. 433–437.
[39] K.J. KIM, ‘Channel Estimation and Data Detection Algorithms for MIMO-
OFDM Systems’, Proceedings of the 36th Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA, USA, November 2002.
Reference-P372533.tex 11/5/2007 19: 27 Page 438
438 3G Evolution: HSPA and LTE for Mobile Broadband
[40] R. Knopp and P.A. Humblet, ‘Information Capacity and Power Con-
trol in Single-cell Multi-user Communications’, Proceedings of the IEEE
International Conference on Communications, Vol. 1, 1995, pp. 331–335.
[41] W. Lee, Mobile Communications Engineering, McGraw-Hill, New York,
NY, USA, ISBN 0-07-037039-7.
[42] S. Lin and D. Costello, Error Control Coding, Prentice-Hall, Upper Saddle
River, NJ, USA.
[43] ‘Working Party 8F; Draft new resolution/Draft new decision ITU-R
M.[PRINCIPLES]: Principles for the Process of Development of IMT-
advanced’, ITU-R, Document 8/157-E, September 19, 2006.
[44] ‘Frequency Arrangements for Implementation of the Terrestrial Com-
ponent of International Mobile Telecommunications-2000 (IMT-2000)
in the Bands 806–960 MHz, 1710–2025 MHz, 2110–2200 MHz and
2500–2690 MHz’, ITU-R, Recommendation ITU-R M.1036-2, June
2003.
[45] ‘Guidelines for Evaluation of Radio Transmission Technologies for IMT-
2000’, ITU-R, Recommendation ITU-R M.1225, February 1997.
[46] ‘Detailed Specifications of the Radio Interfaces of International Mobile
Telecommunications-2000 (IMT-2000)’, ITU-R, Recommendation ITU-R
M.1457-4, July 2005.
[47] ‘Framework and Overall Objectives of the Future Development of IMT-
2000 and Systems Beyond IMT-2000’, ITU-R, Recommendation ITU-R
M.1645, June 2003.
[48] ‘International Mobile Telecommunications-2000 (IMT-2000)’, ITU-R,
Recommendation ITU-R M.687-2, February 1997.
[49] ‘Comparison of PAR and Cubic Metric for Power De-rating’, Motorola,
Tdoc R1-040642, 3GPP TSG-RAN WG1, May 2004.
[50] J.G. Proakis, Digital Communications, McGraw-Hill, New York, 2001.
[51] S.-J. Oh and K.M. Wasserman, ‘Optimality of Greedy Power Control and
Variable Spreading Gain in Multi-class CDMA Mobile Networks’, Pro-
ceedings of the AMC/IEEE MobiComp, Seattle, Washington, USA, 1999,
pp. 102–112.
[52] A. Oppenheim and R.W. Schafer, Digital Signal Processing, Prentice-Hall
International, ISBN 0-13-214107-8 01.
[53] S. Grant et al., ‘Per-Antenna-Rate-Control (PARC) in Frequency Selec-
tive Fading with SIC-GRAKE Receiver’, 60th IEEE Vehicular Tech-
nology Conference, Los Angeles, CA, USA, September 2004, Vol.2,
pp. 1458–1462.
[54] G.F. Pedersen and J.B. Andersen, ‘Handset Antennas for Mobile Com-
munications: Integration, Diversity, and Performance’, in R.W. Stone
(ed.), Review of Radio Science 1996–1999, Wiley-IEEE Press, Chichester,
England, September 1999.
Reference-P372533.tex 11/5/2007 19: 27 Page 439
References 439
[55] J. Peisa, S. Wager, M. Sågfors, J. Torsner, B. Göransson, T. Fulghum, C.
Cozzo and S. Grant, ‘High-speed Packet-access Evolution – Concept and
Technologies’, IEEE Vehicular Technology Conference, Spring 2007.
[56] M.B. Pursley and S.D. Sandberg, ‘Incremental-redundancy Transmission
for Meteor-burst Communications’, IEEE Transactions on Communica-
tions, Vol. 39, May 1991, pp. 689–702.
[57] ‘E-UTRA Downlink User Throughput and Spectrum Efficiency’, Erics-
son, Tdoc R1-061381, 3GPP TSG-RAN WG1, Shanghai, China, May
8–12, 2006.
[58] ‘E-UTRA Uplink User Throughput and Spectrum Efficiency’, Ericsson,
Tdoc R1-061382, 3GPP TSG-RAN WG1, Shanghai, China, May 8–12,
2006.
[59] ‘E-UTRA Downlink User Throughput and Spectrum Efficiency’, Ericsson,
Tdoc R1-061685, 3GPP TSG-RAN WG1 LTE AdHoc, Cannes, France,
June 27–30, 2006.
[60] ‘Implementation of International Mobile Telecommunications-2000 (IMT-
2000)’, ITU-R, Resolution 212 (Rev.WRC-97).
[61] ‘Minutes of HSDPA Simulation Ad-hoc’, Document R4-040770, 3GPP
TSG-RAN WG4 meeting 33, Shin-Yokohama, Japan, November 2004.
[62] S. Ramakrishna and J.M. Holtzman, ‘A Scheme for Throughput Maxi-
mization in a Dual-class CDMA System’, IEEE Journal on Selected Areas
in Communications, Vol. 16, No. 6, 1998, pp. 830–844.
[63] A. Shokrollahi, ‘Raptor Codes’, IEEE Transactions on Information
Theory, Vol. 52, No. 6, 2006, pp. 2551–2567.
[64] ‘Robust Header Compression (ROHC): Framework and Four Profiles:
RTP, UDP, ESP, and Uncompressed’, IETF, RFC 3095.
[65] ‘Updated New WID on Higher Uplink Performance for GERAN Evolution
(HUGE)’, GERAN, Tdoc GP-061901, 3GPP TSG GERAN#31, Denver,
USA, September 4–8, 2006.
[66] C. Schlegel, Trellis and Turbo Coding, Wiley-IEEE Press, Chichester,
England, March 2004.
[67] M. Schnell et al., ‘IFDMA – A New Spread-spectrum Multiple-access
Scheme’, Proceedings of the ICC’98, Atlanta, GA, USA, June 1998,
pp. 1267–1272.
[68] Lal C. Godara, ‘Applications of Antenna Arrays to Mobile Communi-
cations, Part I: Beam-forming and Direction-of Arrival Considerations’,
Proceedings of the IEEE, Vol. 85, No. 7, July 1997, pp. 1029–1030.
[69] Lal C. Godara, ‘Applications of Antenna Arrays to Mobile Communi-
cations, Part II: Beam-forming and Direction-of Arrival Considerations’,
Proceedings of the IEEE, Vol. 85, No. 7, July 1997, pp. 1031–1060.
[70] C.E. Shannon, ‘A Mathematical Theory of Communication’, Bell System
Technical Journal, Vol. 27, July and October 1948, pp. 379–423, 623–656.
Reference-P372533.tex 11/5/2007 19: 27 Page 440
440 3G Evolution: HSPA and LTE for Mobile Broadband
[71] M.K. Varanasi and T. Guess, ‘Optimum Decision Feedback Multi-user
Equalization with Successive Decoding Achieves the Total Capacity of
the Gaussian Multiple-access Channel’, Proceedings of the Asimolar con-
ference on Signals, Systems, and Computers, Monteray, CA, November
1997.
[72] J. Sun and O.Y. Takeshita, ‘Interleavers for Turbo Codes Using Permuta-
tion Polynomials Over Integer Rings’, IEEE Transactions on Information
Theory, Vol. 51, No. 1, January 2005, pp. 101–119.
[73] O.Y. Takeshita, ‘On Maximum Contention-free Interleavers and Permuta-
tion Polynomials Over Integer Rings’, IEEE Transactions on Information
Theory, Vol. 52, No. 3, March 2006, pp. 1249–1253.
[74] V. Tarokh, N. Seshadri and A. Calderbank, ‘Space–time Block Codes from
Orthogonal Design’, IEEE Transactions on Information Theory, Vol. 45,
No. 5, July 1999, pp. 1456–1467.
[75] X. Zhaoji and B. Sébire, ‘Impact of ACK/NACK Signalling Errors on High
Speed Uplink Packet Access (HSUPA)’, IEEE International Conference
on Communications, Vol. 4, 16–20 May 2005, pp. 2223–2227.
[76] J. Padhye, V. Firoiu, D.F. Towsley and J.F. Kurose, ‘Modelling TCP Reno
Performance: A Simple Model and Its Empirical Validation’, ACM/IEEE
Transactions on Networking Vol. 8, No. 2, 2000, pp. 133–145.
[77] C. Kambiz and L. Krasny, ‘Capacity-achieving Transmitter and Receiver
Pairs for Dispersive MISO Channels’, IEEE Transactions on Communica-
tions, Vol. 42, April 1994, pp. 1431–1440.
[78] J. Tellado and J.M. Cioffi, ‘PAR Reduction in Multi-carrier Transmission
Systems’, ANSI T1E1.4/97-367.
[79] ‘3rd Generation Partnership Project; Technical Specification Group Ser-
vices and System Aspects; 3GPP System Architecture Evolution: Report
on Technical Options and Conclusions (Release 7)’, 3GPP, 3GPP TR
23.882.
[80] ‘3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; S-CCPCH Performance for MBMS (Release 6)’, 3GPP,
3GPP TR 25.803.
[81] ‘3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; Physical Layer Aspects for Evolved Universal Terrestrial
Radio Access (UTRA) (Release 7)’, 3GPP, 3GPP TR 25.814.
[82] ‘3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; 3.84 Mcps TDD Enhanced Uplink; Physical Layer
Aspects (Release 7)’, 3GPP, 3GPP TR 25.826.
[83] ‘3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; Manifestations of Handover and SRNS Relocation
(Release 4)’, 3GPP, 3GPP TR 25.832.
Reference-P372533.tex 11/5/2007 19: 27 Page 441
References 441
[84] ‘3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; High Speed Downlink Packet Access: Physical Layer
Aspects (Release 5)’, 3GPP, 3GPP TR 25.858.
[85] ‘3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; Feasibility Study for Evolved Universal Terrestrial
Radio Access (UTRA) and Universal Terrestrial Radio Access Network
(UTRAN) (Release 7)’, 3GPP, 3GPP TR 25.912.
[86] ‘3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; Requirements for Evolved UTRA (E-UTRA) and
Evolved UTRAN (E-UTRAN) (Release 7)’, 3GPP, 3GPP TR 25.913.
[87] ‘3rd Generation Partnership Project; Technical Specification Group
GSM/EDGE Radio Access Network; Feasibility Study for Evolved
GSM/EDGE Radio Access Network (GERAN) (Release 7)’, 3GPP, 3GPP
TR 45.912.
[88] ‘3rd Generation Partnership Project; Technical Specification Group Ser-
vices and System Aspects; Service Requirements for Evolution of the 3GPP
System (Release 8)’, 3GPP, 3GPP TS 22.278.
[89] ‘3rd Generation Partnership Project; Technical Specification Group Ser-
vices and System Aspects; Network Architecture (Release 7)’, 3GPP,
3GPP TS 23.002.
[90] ‘3rd Generation Partnership Project; Technical Specification Group Ser-
vices and System Aspects; General Packet Radio Service (GPRS); Service
Description; Stage 2 (Release 7)’, 3GPP, 3GPP TS 23.060.
[91] ‘3rd Generation Partnership Project; Technical Specification Group Ser-
vices and System Aspects; 3GPP System Architecture Evolution: GPRS
Enhancements for LTE Access; Release 8’, 3GPP, 3GPP TS 23.401.
[92] ‘3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; User Equipment (UE) Radio Transmission and Reception
(FDD) (Release 7)’, 3GPP, 3GPP TS 25.101.
[93] ‘3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; User Equipment (UE) Radio Transmission and Reception
(TDD) (Release 7)’, 3GPP, 3GPP TS 25.102.
[94] ‘3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; Physical Channels and Mapping of Transport Channels
onto Physical Channels (FDD)’, 3GPP, 3GP TS 25.211.
[95] ‘3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; Multiplexing and Channel Coding (FDD)’, 3GPP, 3GP
TS 25.212.
[96] ‘3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; Spreading and Modulation (FDD)’, 3GPP, 3GP TS
25.213.
Reference-P372533.tex 11/5/2007 19: 27 Page 442
442 3G Evolution: HSPA and LTE for Mobile Broadband
[97] ‘3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; Physical Layer Procedures (FDD)’, 3GPP, 3GP TS
25.214.
[98] ‘3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; Radio Interface Protocol Architecture’, 3GPP, 3GPP TS
25.301.
[99] ‘3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; UE Radio Access Capabilities’, 3GPP, 3GPP TS 25.306.
[100] ‘3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; High Speed Downlink Packet Access (HSDPA); Overall
Description; Stage 2’, 3GPP, 3GPP TS 25.308.
[101] ‘3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; FDD Enhanced Uplink; Overall Description; Stage 2’,
3GPP, 3GPP TS 25.309.
[102] ‘3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; Introduction of the Multimedia Broadcast Multicast Ser-
vice (MBMS) in the Radio Access Network (RAN); Stage 2 (Release 6)’,
3GPP, 3GPP TS 25.346.
[103] ‘3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; UTRAN Overall Description’, 3GPP, 3GPP TS 25.401.
[104] ‘3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; UTRAN Iu Interface RANAP Signalling (Release 7)’,
3GPP, 3GPP TS 25.413.
[105] ‘3rd Generation Partnership Project; Technical Specification Group Ser-
vices and System Aspects; Multimedia Broadcast/multicast Service
(MBMS); Protocols and Codecs’, 3GPP, 3GPP TS 26.346.
[106] ‘3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; Physical Channels and Modulation (Release 8)’, 3GPP,
3GPP TS 36.211.
[107] ‘3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; Multiplexing and Channel Coding (Release 8)’, 3GPP,
3GPP TS 36.212.
[108] ‘3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; Physical Layer Procedures (Release 8)’, 3GPP, 3GPP
TS 36.213.
[109] ‘3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; Physical Layer – Measurements (Release 8)’, 3GPP,
3GPP TS 36.214.
[110] ‘3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA)
and Evolved Universal Terrestrial Radio Access Network (E-UTRAN);
Overall Description; Stage 2 (Release 8)’, 3GPP, 3GPP TS 36.300.
Reference-P372533.tex 11/5/2007 19: 27 Page 443
References 443
[111] D. Tse, ‘Optimal Power Allocation Over Parallel Gaussian Broadcast
Channels’, Proceedings of the International Symposium on Information
Theory, Ulm, Germany, June 1997, p. 7.
[112] Y.-P. Eric Wang, A.S. Khayrallah and G.E. Bottomley, ‘Dual Branch
Receivers for Enhanced Voice and Data Communications in WCDMA’,
Proceedings of the Globecom, San Francisco, CA, USA, November 2006.
[113] S. Verdu, ‘Multiuser Detection’, Cambridge University Press, New York,
1998.
[114] S.B. Wicker, M. Bartz, ‘Type-I Hybrid ARQ Protocols Using Punctured
MDS Codes’, IEEE Transactions on Communications, Vol. 42, April 1994,
pp. 1431–1440.
[115] ‘WiMAX: From Fixed Wireless Access to Internet in the Pocket – Tech-
nology White Paper’, Alcatel, Alcatel Telecommunications Review, 2nd
Quarter, 2005.
[116] ‘Mobile WiMAX – Part I: A Technical Overview and Performance
Evaluation’, WiMAX Forum, White Paper, August 2006.
[117] R. van Nee, R. Prasad, ‘OFDM for Wireless Multimedia Communications’,
Artech House Publishers, London, January 2000.
[118] ‘Wireless World Initiative New Radio’, Eurescom GmbH 2006. https://
www.ist-winner.org.
[119] P. Viswanath, D. Tse and R. Laroia, ‘Opportunistic Beamforming Using
Dumb Antennas’, IEEE Transactions on information Theory, Vol. 48, No.
6, 2002, pp. 1277–1294.
[120] J.M. Wozencraft and M. Horstein, ‘Digitalised Communication Over
Two-way Channels’, Fourth London Symposium on Information Theory,
London, UK, September 1960.
[121] E. Dahlman, P. Beming, J. Knutsson, F. Ovesjö, M. Persson and C. Roobol,
‘WCDMA – The Radio Interface for Future Mobile Multimedia Communi-
cations’, IEEE Transactions on Vehicular Technology, Vol. 47, November
1998, pp. 1105–1118.
[122] E. Dahlman, H. Ekström, A. Furuskär, Y. Jading, J. Karlsson, M. Lundevall
and S. Parkvall, ‘The 3G Long-term Evolution – Radio Interface Concepts
and Performance Evaluation’, 63rd Vehicular Technology Conference,
VTC 2006-Spring, Vol. 1, pp. 137–141, IEEE, 2006.
[123] D.C. Chu, ‘Polyphase Codes with Good Periodic Correlation Properties’,
IEEE Transactions on Information Theory, Vol. 18, No. 4, July 1972,
pp. 531–532.
[124] W. Zirwas,‘Single Frequency Network Concepts for Cellular OFDM
Radio Systems’, International OFDM Workshop, Hamburg, Germany,
September 2000.
This page intentionally left blank
Index-P372533.tex 11/5/2007 19: 27 Page 445
Index
1.28 Mcps TDD, 409
16QAM, 37
3G, 3–7
3GPP, 8–11
3GPP2, 9, 409–10
64QAM, 37
7.68 Mcps TDD, 409
Absolute grant, 199, 213
Adaptive Modulation and Coding (AMC), 109
Application-level coding, 245–46
Automatic Repeat Request (ARQ), 121
Bandwidth utilization, 32
BCCH, 303
BCH, 304
Beam forming:
classical, 95–6
pre-coder based, 96
BM-SC, 240
Broadcast, 63–6
see also MBMS
CDMA2000, 409–29
Cell identity, 324, 357–59
Cell-identity group, 324, 357, 358
Cell search, 357–61
CELL_DCH, 259–61, 267
CELL_FACH, 259, 260, 266–67
CELL_PCH, 259
Channel capacity, 31
Channel-Quality Indicator (CQI):
for HSPA 148, 151, 175–78, 184
for LTE 306, 351
Channelization code, 135–37
Charging, 373, 385–88
Chase combining, 122–24, 168
CN see Core network
Constellation rearrangement, 168–69
Contention resolution, 363, 368–69
Continuous Packet Connectivity (CPC),
259–66
Control-channel element, 335–36
Controlling RNC see RNC
Core network (CN), 26, 371, 372–74
architecture, 382–89
functions, 373–75
Coverage requirement, 280, 402, 417
CPICH, 136
CQI see Channel-Quality Indicator
CRC see Cyclic Redundancy Check
Cyclic Delay Diversity (CDD), 92–93
Cyclic-prefix insertion:
OFDM, 51–53
single-carrier, 71–72
Cyclic Redundancy Check (CRC), 121
for HSDPA, 134–35, 149, 179–80
for Enhanced Uplink, 194
for LTE, 313, 329, 350
D-TXAA, 252
DC-subcarrier, LTE, 320
DCCH, 303
Delay diversity, 91–2
DFT-spread OFDM (DFTS-OFDM), 75–82
localized vs. distributed, 81–2
receiver, 78–9
spectrum shaping, 80–1
user multiplexing, 79–80
Discontinuous Reception (DRX), 260, 263–64,
304, 369
Discontinuous Transmission (DTX), 260–61,
263
DL-SCH, 304, 305, 312
transport-channel processing, 326–33
DPCCH, 137
DPCH, 136
DPDCH, 137
Drift RNC see RNC
DRX see Discontinuous Reception
DTX see Discontinuous Transmission
Duplex, 13, 282, 296
in LTE, 318
E-AGCH, 192, 229, 232–33
E-DCH, 185–186, 190–91
EDGE, 416–21
E-DPCCH, 193, 209, 235–37
445
Index-P372533.tex 11/5/2007 19: 27 Page 446
446 Index
E-DPDCH, 191, 209
E-HICH, 192, 229–32
E-RGCH, 192, 229, 233–34
Enhanced uplink, 129, 185–237
for TDD, 408
eNodeB, 299, 380–82
EPC see Evolved Packet Core
Equalization, 67
decision feedback, 73
frequency domain, 70–2
time domain, 68–70
EV-DO, 409–16
EV-DV, 409–10
Evolved Packet Core, 382, 386–89
FDD, 13, 282, 296, 318
F-DPCH, 148, 180–81
Forward error correction (FEC), 121
Fountain codes, 245
Fractional frequency reuse, 424, 427, 429
see also Interference Coordination
Frequency bands, 13–15, 297
FUTURE project, 431
GERAN, 9, 416, 417, 418
GGSN, 383–88
G-RAKE, 271–72
GSM, 4–5, 382–86, 416–21
Happy bit, 201, 218, 235
Higher-order modulation, 36–39
HLR, 383–384
HS-DPCCH, 148, 181–84
HS-DSCH, 141–42, 146–48
HS-SCCH, 147–48, 178–80
HS-SCCH-less operation, 260, 264–66
HSDPA, 129, 141–184, 252–56, 263
in TDD, 408
performance, 399–405
HSPA, 129–30
HSPA/WCDMA RAN, 372–73, 374–82
architecture, 379–80
HSUPA see Enhanced uplink
Hybrid ARQ, 121
in Enhanced Uplink, 188–89, 203–8, 222–28
in HSDPA, 144, 155–58, 164–73, 256
in LTE, 309–12, 330, 350
process, 170–71
profile, 218, 220–21
with soft combining, 121–25
IEEE 802.16, 421–27
IEEE 802.20, 427–29
IMT-2000, 11–12, 282, 432
IMT-Advanced, 12, 432–33
Incremental redundancy, 122–24, 144, 222,
294, 330
Inter-cell interference coordination, 293
Interference cancellation, 104, 272–73
successive (SIC), 104–5
Interference coordination, 293–94
Interference Rejection Combining (IRC),
87–90
Internet Protocol (IP), 19–20, 284–86
ITU, 5, 11, 432
ITU-R, 6, 12, 13, 432
Iu interface, 372, 376, 383, 384
Iub interface, 376, 378
Iur interface, 376, 377
Latency, 395–396
requirement, 279
Layer mapping, LTE, 336–39
Link adaptation, 108–9
Frequency domain, 117
LMMSE receiver, 269, 272
Logical channels:
in WCDMA, 133
in LTE, 301, 303–5
LTE, 277–78, 289–70
architecture, 283–84
performance, 399–405
RAN, 373–82
spectrum deployment, 281–83
LTE states, 314–15
MAC, 133
in LTE, 302–12
MAC-e, 189, 228–29
MAC-es, 189, 228–29
MAC-hs, 145, 149–50
MBMS, 129, 239–249
for LTE, 281–82, 384
for TDD, 408
MBSFN, 295
MCCH, 246, 248–49, 303
MCH, 304, 314, 339, 340
MICH, 246, 248–49
Migration, 282–84
MIMO, 100, 397
for HSDPA, 251–58
Index-P372533.tex 11/5/2007 19: 27 Page 447
Index 447
Mobility:
for HSPA, 162–63, 212–13
for LTE, 280, 380, 387
MSC, 383, 385
MSCH, 246, 249
MTCH, 246–48, 303
Multi-carrier transmission, 39–43
Multicasts, 63–6
see also MBMS
Multicast/Broadcast over Single–Frequency
Network see MBSFN
New-data indicator, 157
NodeB, 131–32, 376, 377, 379
Noise rise, 139, 195
OFDM see Orthogonal Frequency Division
Multiplex
OFDMA, 62, 415, 424
Orthogonal Frequency Division Multiplex
(OFDM), 45–66
demodulation, 48
IFFT/FFT implementation, 48–51
in LTE, 319–23
see also Cyclic-prefix insertion
Overload indicator, 188, 200–1, 216–17, 233
OVSF code, 136–37
Paging, 369–370
PCCH, 303–4
PCH, 304
PCI see Pre-coding Control Information
PDCCH see Physical Downlink Control
Channel
PDCP:
for HSPA, 132
for LTE, 299–300
PDSCH see Physical Downlink Shared
Channel
Performance:
evaluation, 396–401, 403–5
requirements (LTE), 279–81, 402–3
Physical Downlink Control Channel (PDCCH),
334
Physical Downlink Shared Channel (PDSCH),
333
Physical layer:
in WCDMA, 134–39
in LTE, 312–14, 317–55
Power control, 108–9, 137–38
in Enhanced uplink, 209–10
Pre-coding Control Information (PCI), 254–55,
257–58
Pre-coding, LTE, 336–39
see also Beam forming and Spatial
multiplexing
Puncturing limit, 223–24
QoS, 284, 286
QPSK, 36–7
Radio access network, 23–7, 371–82
Radio Network Controller see RNC
Radio resource management, 9, 159, 210, 284,
373, 381, 422
RAKE, 68, 138, 269, 271
RAN see Radio access network
Random access:
LTE, 361–69
preamble, 362, 363–67
Raptor code, 245
Rate control, 108–9
in HSPA, 144, 152–55, 255–56
in LTE, 290–93
Rate matching, two-stage, 165–68
Receive diversity, 85–90, 294, 412, 427
Reference signals:
channel sounding, 348–49
demodulation, 344–48
in LTE downlink, 323–27
in LTE uplink, 344–49
Relative grant, 192, 199, 200, 216–17, 229,
233–34
Reordering, 158, 171–73, 205, 227–28
Resource blocks:
in LTE downlink, 320, 322–23
in LTE uplink, 342, 343
Resource element, LTE, 319
Retransmission Sequence Number (RSN),
206–7, 224
RLC:
for HSPA 133–34, 155, 247
for LTE 301–2, 316
Roaming, 4, 10, 13, 14, 15, 285, 373, 385, 388
RNC, 131–132, 145, 189–90, 375–76
controlling, 377–78
drift, 377–79
serving, 377–79
RRC, 134
RSN see Retransmission Sequence Number
Index-P372533.tex 11/5/2007 19: 27 Page 448
448 Index
S1 interface, 381, 386, 387
SAE, 26, 277, 285–87, 371–89
functional split, 372–74
bearer, 299
SC-FDMA, 289–90, 340, 344
Scheduling:
channel-dependent, 107, 109–20, 142–43,
195–96, 290–93
downlink, 110–114, 119, 291–93, 305–7
Enhanced Uplink, 186–88, 195–201, 213–22
frequency-domain, 117, 292, 305, 306
greedy filling, 116, 196–97
in HSDPA, 142, 151
max-C/I, 111–12
proportional fair, 113
round robin, 112–13, 116
uplink, 114–17, 292–93, 307–9
Scheduling grant, 187, 192, 198, 308, 367
Scheduling request, 198, 218–19, 351
Served traffic, 399, 400, 401
Services, 19, 20–21
Serving cell, 145, 198
Serving grant, 199, 213
Serving RNC see RNC
SFN see Single–frequency network
SGSN, 383–85
Shared-channel transmission, 141, 290–91
SIC see Interference cancellation
Single-carrier FDMA see SC-FDMA
Single-frequency network (SFN), 60, 65, 295
see also MBSFN
Soft handover, 138–139, 186, 193, 219–20
Space Frequency (Block) Coding (SF(B)C),
94–5
Space Time (Block) Coding (ST(B)C), 93–4,
427
Spatial multiplexing, 98–105
in HSPA see MIMO
in LTE, 294, 338–39
multi-codeword based, 104
pre-coder based, 102–4
single-codeword based, 104, 415
Spectrum efficiency, 396
performance, 400–1, 403–5
requirement, 280, 402–3
Spectrum flexibility, 282–83, 295–98
Standardization, 7–8, 433
Successive Interference Cancellation (SIC) see
Interference cancellation
Synchronization signal, 318
primary, 357–59
secondary, 357–59
System performance, 23, 279–81, 394, 396,
402
System throughput, 395–396
TDD, 13, 282, 296, 318
TFC see Transport Format Combination
Transmission Time Interval (TTI), 133–34,
303
Transmit Diversity, 91–5, 332
Transport block, 133–34, 303
Transport channels, 133, 303–5, 327–28
Transport format, 133–34, 304, 308
Transport Format Combination (TFC), 193,
202–3
Transport format selection, 140, 149, 155, 193,
299, 304
TTI see Transmission Time Interval
UL-SCH, 304, 307, 313, 350–51
URA_PCH, 259
User Equipment (UE), 131
categories, 163, 212–13
User throughput, 395–396
performance, 399–401, 403–5
requirement, 280, 402–3
UTRA FDD see WCDMA
UTRA TDD, 10, 407–9
WCDMA, 7, 10, 131–40
WiMAX, 421–27
Winner project, 433
X2 Interface, 381
Zadoff-Chu sequences, 346
Các file đính kèm theo tài liệu này:
- Academic.Press.3G.Evolution.HSPA.and.LTE.for.Mobile.Broadband.Jul.2007.pdf