In this paper, the cell-based smoothed discrete shear gap method (CS-FEM-DSG3)
is extended to investigate the dynamic response of laminated composite plate under the
effect of blast loading modeled by some trigonometric time functions. Numerical results
demonstrate that the proposed method can achieve accurate results by using only a relative coarse mesh. Moreover, numerical examples also demonstrate the direct effect of
the number of layers and the fiber orientation to the stiffness of plate, so an optimization
algorithm should be applied to determine the optimal layer number and fiber orientations in the composite laminated problem. In addition, the new results of the numerical
example which are used to demonstrate the effect of the layer’s number and the fiber
orientation to the dynamic response of the plate under the effect of blast loading can
be served as reliable benchmark examples for later studies. The present CS-FEM-DSG3
is promising to extend to the problems with more complicated geometry domains and
boundary conditions without existing available analytical solutions.
10 trang |
Chia sẻ: huongthu9 | Lượt xem: 465 | Lượt tải: 0
Bạn đang xem nội dung tài liệu A cell-Based smoothed discrete shear gap method (cs-fem-dsg3) for dynamic response of laminated composite plate subjected to blast loading, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
-DSG3
DSG3
Exponential
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-0.4
-0.2
0
0.2
0.4
0.6
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Sine
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Ti e (sec)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Step
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
triangular
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Time (sec)
Time (sec)
Time (sec)
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-36
-18
0
18
36
Khdeir and Reddy FSDT
CS-FEM-DSG3
Step
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-32
-16
0
16
32
Khdeir and Reddy FSDT
CS-FEM-DSG3
triangular
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-20
-10
0
10
20
Khdeir and Reddy FSDT
CS-FEM-DSG3
Sine
Exponential
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-30
-15
0
15
30
Khdeir and Reddy FSDT
CS-FEM-DSG3
Time (sec) Time (sec)
Time (sec) Time (sec)
x
x
x
x
x
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-36
-18
0
18
36
Khdeir and Reddy FSDT
CS-FEM-DSG3
Step
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-32
-16
0
16
32
Khdeir and Reddy FSDT
CS-FEM-DSG3
triangular
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-20
-10
0
10
20
Khdeir and Reddy FSDT
CS-FEM-DSG3
Sine
Exponential
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-30
-15
0
15
30
Khdeir and Reddy FSDT
CS-FEM-DSG3
Time (sec) Time (sec)
Time (sec) Time (sec)
x
x
x
x
x
( )
b)
d)
i . . t r flection as a function of time for various pulses loading: a) sine;
) step; c) exponential; d) triangle.
tr l eflection as a function of time corresponding to differ nt pulse
lo i , S 3 ( eshing 12122 triangular elements) and previous
p li t t the results by the CS-FEM-DSG3 agre well with those from
ir l tical solution based on the FSDT theory, and outperform those
b t t cell-based gradient smo thing technique of the CS-FEM-DSG3
hel s f t e S 3 as shown in Ref [1 ], and hence make the results by
the - r te than those by the DSG3.
0 . . 0.005 0.006 0.0 7 0.0 8
-1
-0.5
0
0.5
1
( )
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
ti l
0 . . 0.005 0.006 0.0 7 0.0 8
-0.4
-0.2
0
0.2
0.4
0.6
(s c)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
0 .001 .002 .003 0.004 .005 .006 .007 . 08
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Ti e (sec)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Step
0 .001 .002 .003 0.004 .005 .006 .007 . 08
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
triangular
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
)
Time (sec)
)
0 0.001 0.002 0.003 .004 .005 .006 .007 .008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Red y FSDT
CS-FEM-DSG3
DSG3
Exponential
0 0.001 0.002 0.003 .004 .005 .006 .007 0.008
-0.4
-0.2
0
0.2
0.4
0.6
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Red y FSDT
CS-FEM DSG3
DSG3
Sine
0 0. 01 0. 02 0. 03 0.004 0.005 0.0 6 0.0 7 0.0 8
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Ti e (sec)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Step
0 0. 01 0. 02 0. 03 0.004 0.005 0.0 6 0.0 7 0.0 8
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
triangular
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Time (s c)
Time (sec)
Time (s c)
0 . . 0.005 0.006 0.0 7 0.0 8
-1
-0.5
0
0.5
1
( c)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
ti l
0 . . 0.005 0.006 0.0 7 0.0 8
-0.4
-0.2
0
0.2
0.4
0.6
(s c)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
0 .001 .002 .003 0.004 .005 .006 .007 . 08
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Ti e (sec)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Step
0 .001 .002 0.003 0.004 .005 .006 .007 . 08
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
triangular
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
)
Time (sec)
)
0 0.001 0.002 0.003 .004 .005 .006 .007 .008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Red y FSDT
CS-FEM-DSG3
DSG3
Exponential
0 0.001 0.002 0.003 .004 .005 .006 .007 0.008
-0.4
-0.2
0
0.2
0.4
0.6
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Red y FSDT
CS-FEM DSG3
DSG3
Sine
0 0. 01 0. 02 0. 03 0.004 0.005 0.0 6 0.0 7 0.0 8
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Ti e (sec)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Step
0 0. 01 0. 02 0. 03 0.004 0.005 0.0 6 0.0 7 0.0 8
-1
-0.5
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
triangular
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Time (s c)
Time (sec)
Time (s c)
0 0.001 .002 .003 .004 . 05 0. 06 0. 07 0. 08
-36
-18
0
18
36
Khdeir and Reddy FSDT
CS-FEM-DSG3
Step
0 0.001 .002 .003 .004 . 05 0. 06 0. 07 0. 08
-32
-16
0
16
32
Khdeir and Reddy FSDT
CS-FEM-DSG3
triangular
0 . . 0.005 0.006 0.0 7 0.0 8
-20
-10
0
10
20
ti l
0 . . 0.005 0.006 0.0 7 0.0 8
-30
-15
0
15
30
Time (sec) )
Time (sec) )
x
x
x
x
x
0 0. 01 0. 02 0. 03 0.004 0.0 5 0.0 6 0.0 7 0.0 8
-36
-18
0
18
36
Khdeir and Reddy FSDT
CS-FEM-DSG3
Step
0 0. 01 0. 02 0. 03 0.004 0.0 5 0.0 6 0.0 7 0.0 8
-32
-16
0
16
32
Khdeir and Reddy FSDT
CS-FEM-DSG3
triangular
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 .008
-20
-10
0
10
20
Khdeir and Reddy FSDT
CS-FEM-DSG3
Sine
Exponential
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 .008
-30
-15
0
15
30
Khdeir and Reddy FSDT
CS-FEM-DSG3
Time (sec) Time (s c)
Time (sec) Time (s c)
x
x
x
x
x
(
a)
b)
c)
d)
Fig. 3. Variation of the center deflection as a function of time for various pulses loading: a) sine;
b) step; c) exponen al; d) riangle.
Fig. 3 shows the central deflection as a function of time corresponding to different pulse
loadings by the CS-FEM-DSG3, DSG3 (meshing 12122 triangular elements) and previous
publ shed results. It is seen that the results by the CS-FEM-DSG3 gr w ll with those fr m
Khdeir and Reddy [1] u ing an lytical o ution based on the FSDT theo y, and outperf rm those
by the DSG3. This is because the cell-based gradient smoothing technique of the CS-FEM-DSG3
helps soften the over-stiffness of th DSG3 as shown in Ref [11], a d h nce make the results by
t CS-FEM-DSG3 mor a curate than those by the DSG3.
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Exponential
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-0.4
-0.2
0
0.2
0.4
0.6
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Sin
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Ti e (sec)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Step
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
triangular
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Time (sec)
Time (sec)
Time (sec)
0 0.001 0.002 0.00 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Exponential
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-0.4
-0.2
0
0.2
0.4
0.6
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Sin
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Ti e (sec)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Step
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
triangular
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Time (sec)
Time (sec)
Time (sec)
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Exponential
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-0.4
-0.2
0
0.2
0.4
0.6
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Sin
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Ti e (sec)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
St p
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
triangular
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Time (sec)
Time (sec)
Time (sec)
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Ti e (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Exponential
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-0.4
-0.2
0
0.2
0.4
0.6
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Sin
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Ti e (sec)
Khdeir and Re y FSDT
CS-FEM-DSG3
DSG3
Step
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
triangular
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Time (sec)
Time (sec)
Time (sec)
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-36
-18
0
18
36
Khdeir and Reddy FSDT
CS-FEM-DSG3
Step
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-32
-16
0
16
32
Khdeir and Reddy FSDT
CS-FEM-DSG3
triangular
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-20
-10
0
10
20
Khdeir and Reddy FSDT
CS-FEM-DSG3
Sine
Exponential
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-30
-15
0
15
30
Khdeir and Reddy FSDT
CS-FEM-DSG3
Time (sec) Time (sec)
Time (sec) Time (sec)
x
x
x
x
x
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-36
-18
0
18
36
Khdeir and Reddy FSDT
CS-FEM-DSG3
Step
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-32
-16
0
16
32
Khdeir and Reddy FSDT
CS-FEM-DSG3
triangular
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-20
-10
0
10
20
Khdeir and Reddy FSDT
CS-FEM-DSG3
Sine
Exponential
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-30
-15
0
15
30
Khdeir and Reddy FSDT
CS-FEM-DSG3
Time (sec) Time (sec)
Time (sec) Time (sec)
x
x
x
x
x
(c)
b)
d)
Fig. 3. Variation of t s a function of time for various pulses loading: a) sine;
) onen al; d) r angle.
Fig. 3 sho s t i as a function of time corresponding to differ nt pulse
lo dings by the - ( eshing 12122 triangular elements) and pr vious
published results. It i lts by the CS-FEM-DSG3 ag e well with those fr m
Khdeir and Red y [ ] s l tion bas d on the FS T theory, and outperform those
by the DSG3. This is radient smoo ing technique of the CS-FEM-DSG3
helps soften the over- ti as shown in Ref [1 ], and hence make the results by
the CS-FE - S 3 t se by the DSG3.
0 0. 01 0. 02 0.003 0. . 7 0.008
-1
-0.5
0
0.5
1
Ti e (s
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FS
CS-FEM-DSG3
DSG3
0 0. 01 0. 02 0.003 0. . 07 0.008
-0.4
-0.2
0
0.2
0.4
0.6
Ti e (s
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FS
CS-FEM-DSG3
DSG3
0 0.001 0.002 0.003 0.004 0.005 .006 .007 .008
-1
-0.5
0
0.5
1
Tim (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Ti e (sec)
Khdeir an Reddy FSDT
CS-FEM-DSG3
DSG3
Step
0 0.001 0.002 0.003 0.004 0.005 .006 .007 .008
-1
-0.5
0
0.5
1
Tim (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir an Reddy FSDT
CS-FEM-DSG3
DSG3
triangular
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
i (
Time (sec)
i
0 0.001 .002 .00 .004 0.005 0.006 .007 .008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Exponential
0 0.001 .002 .003 .004 0.005 0.006 .007 .008
-0.4
-0.2
0
0.2
0.4
0.6
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Sine
0 0.0 1 0. 02 0. 03 0. 04 0.005 0.0 6 0.0 7 0.0 8
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Ti e (sec)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Step
0 0.0 1 0. 02 0. 03 0. 04 0.005 0.0 6 0.0 7 0.0 8
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
triangular
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Time (sec)
Time (sec)
Time (sec)
0 0. 01 0. 02 0.003 0. . 07 0.008
-1
-0.5
0
0.5
1
Ti e (s
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FS
CS-FEM-DSG3
DSG3
0 0. 01 0. 02 0.003 0. . 07 0.008
-0.4
-0.2
0
0.2
0.4
0.6
Ti e (
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FS
CS-FEM-DSG3
DSG3
i
0 0.001 0.002 0.003 0.004 0.005 .006 .007 .008
-1
-0.5
0
0.5
1
Tim (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Ti e (sec)
Khdeir an Reddy FSDT
CS-FEM-DSG3
DSG3
St p
0 0.001 0.002 0.003 0.004 0.005 .006 .007 .008
-1
-0.5
0
0.5
1
Tim (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir an Reddy FSDT
CS-FEM-DSG3
DSG3
triangular
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
i
Time (sec)
i
0 0.001 .002 .003 .004 0.005 0.006 .007 .008
-1
-0.5
0
0.5
1
ime (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Exponential
0 0.001 .002 .003 .004 0.005 0.006 .007 .008
-0.4
-0.2
0
0.2
0.4
0.6
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
S ne
0 0.0 1 0. 02 0. 03 0. 04 0.005 0.0 6 0.0 7 0.0 8
-1
- .
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Ti e (sec)
Khdeir and Red y FSDT
CS-FEM-DSG3
DSG3
Step
0 0.0 1 0. 02 0. 03 0. 04 0.005 0.0 6 0.0 7 0.0 8
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
triangular
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Time (sec)
Time (sec)
Time (sec)
0 0.001 0.002 .003 .004 .005 0.006 .007 .008
-36
-18
0
18
36
Khdeir and Reddy FSDT
CS-FEM-DSG3
Step
0 0.001 0.002 .003 .004 .005 0.006 .007 .008
-32
-16
0
16
32
Khdeir and Reddy FSDT
CS-FEM-DSG3
triangular
0 0. 01 0. 02 0.003 0. . 07 0.008
-20
-10
0
10
20
Khdeir and Reddy FSDT
CS-FEM-DSG3
i
0 0. 01 0. 02 0.003 0. . 07 0.008
-30
-15
0
15
30
Khdeir and Reddy FSDT
CS-FEM-DSG3
Time (sec) i
Time (sec) i
x
x
x
x
x
0 0. 1 0. 02 0. 03 0.004 0.005 0.0 6 0.0 7 0.0 8
-36
-18
0
18
36
Khdeir and Reddy FSDT
CS-FEM-DSG3
Step
0 0. 1 0. 02 0. 03 0.004 0.005 0.0 6 0.0 7 0.0 8
-32
-16
0
16
32
Khdeir and Reddy FSDT
CS-FEM-DSG3
triangular
0 0.001 0.002 0.003 0.004 .005 .006 .007 0.008
-20
-10
0
10
20
Khdeir and Red y FSDT
CS-FEM-DSG3
Sine
Exponential
0 0.001 0.002 0.003 0.004 .005 .006 .007 0.008
-30
-15
0
15
30
Khdeir and Red y FSDT
CS-FEM-DSG3
Time (sec) Time (s c)
Time (sec) Time (s c)
x
x
x
x
x
(d)
Fig. 3. Variation of the center deflection as a function of time for various pulses loading:
a) sine; b) step; c) exponential; d) triangle
a)
b)
c)
d)
Fig. 3. Variation of the center deflection as a func ion of time for various pulses loading: a) sine;
b) step; c) exponen ial; d) triangle.
Fig. 3 shows the central deflection as a function of time corresponding to different pulse
loadings by the CS-FEM-DSG3, DSG3 (meshing 12122 triangular elements) and previous
published results. It is s en that the results by the CS-FEM-DSG3 agree well with those from
Khdeir and Reddy [1] using analytical solution based on the FSDT th ory, and outperform those
by the DSG3. This is because the cell-based gradient smoothing technique of the CS-FEM-DSG3
helps soften the over-stiffness of the DSG3 as shown in Ref [11], and hence make the results by
the CS-FEM-DSG3 more accurate than those by the DSG3.
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Exponential
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-0.4
-0.2
0
0.2
0.4
0.6
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Sine
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Ti e (sec)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Step
0 0.001 0.0 2 0.003 4 . 5 0. 6 0. 7 . 08
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
triangular
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Time (sec)
Time (sec)
Time (sec)
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Exponential
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-0.4
-0.2
0
0.2
0.4
0.6
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Sine
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
Ti e (sec)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Step
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
triangular
.
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
.
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
.
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
Time (sec)
Time (sec)
Time (sec)
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Exponential
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-0.4
-0.2
0
0.2
0.4
0.6
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Sine
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Ti e (sec)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Step
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
triangular
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Time (sec)
Time (sec)
Time (sec)
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Exponential
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-0.4
-0.2
0
0.2
0.4
0.6
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Sine
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Ti e (sec)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Step
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
triangular
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Time (sec)
Time (sec)
Time (sec)
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-36
-18
0
18
36
Khdeir and Reddy FSDT
CS-FEM-DSG3
Step
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-32
-16
0
16
32
Khdeir and Reddy FSDT
CS-FEM-DSG3
triangular
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-20
-10
0
10
20
Khdeir and Reddy FSDT
CS-FEM-DSG3
Sine
Exponential
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-30
-15
0
15
30
Khdeir and Reddy FSDT
CS-FEM-DSG3
Time (sec) Time (sec)
Time (sec) Time (sec)
x
x
x
x
x
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-36
-18
0
18
36
Khdeir and Reddy FSDT
CS-FEM-DSG3
Step
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-32
-16
0
16
32
Khdeir and Reddy FSDT
CS-FEM-DSG3
triangular
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-20
-10
0
10
20
Khdeir and Reddy FSDT
CS-FEM-DSG3
Sine
Exponential
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-30
-15
0
15
30
Khdeir and Reddy FSDT
CS-FEM-DSG3
Time (sec) Time (sec)
Time (sec) Time (sec)
x
x
x
x
x
(a)
a)
b)
c)
d)
Fig. 3. Variation of the center deflection as a function of time for various pulses loading: a) sine;
b) step; c) exponential; d) triangle.
Fig. 3 shows the central deflection as a function of time corresponding to different pulse
loadings by the CS-FEM-DSG3, DSG3 (meshing 12122 triangular l ments) and previous
published results. It is seen that the results by the CS-FEM-DSG3 agr e well with those from
Khdeir and Reddy [1] using a alytical solution based on the FSDT theory, and outperform those
by the DSG3. This is because the cell-based gradient smoothing technique of the CS-FEM-DSG3
helps soften the over-stiffnes of the DSG3 as shown in Ref [11], and henc make the results by
the CS-FEM-DSG3 more accurate than those by the DSG3.
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Exponential
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-0.4
-0.2
0
0.2
0.4
0.6
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Sine
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
Ti e (sec)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Step
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
triangular
.
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
.
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
.
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
Time (sec)
Time (sec)
Time (sec)
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Exponential
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-0.4
-0.2
0
0.2
0.4
0.6
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Sine
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
.
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
Ti e (s c)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Step
0 0.001 0. 02 0.0 3 0.004 . .006 0. 07 .008
-1
-0.5
0
0.5
1
Tim (sec)
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
triangular
.
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
.
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
.
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
Time (sec)
i e ( c)
Time (sec)
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Exponential
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-0.4
-0.2
0
0.2
0.4
0.6
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Sine
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
Ti e (sec)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Step
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
triangular
.
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
.
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
.
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
Time (sec)
Time (sec)
Time (sec)
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Exponential
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-0.4
-0.2
0
0.2
0.4
0.6
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Sine
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Ti e (s c)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
Step
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
Time (sec)
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
Khdeir and Reddy FSDT
CS-FEM-DSG3
DSG3
triangular
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Time (sec)
Time (sec)
Time (sec)
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-36
-18
18
36
Khdeir and Reddy FSDT
CS-FEM-DSG3
Step
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-32
-16
0
16
32
Khdeir and Reddy FSDT
CS-FEM-DSG3
triangular
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-20
-10
0
10
20
Khdeir and Reddy FSDT
CS-FEM-DSG3
Sine
Exponential
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-30
-15
0
15
30
Khdeir and Reddy FSDT
CS-FEM-DSG3
Time (sec) Time (sec)
Time (sec) Time (sec)
x
x
x
x
x
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-36
-18
0
18
36
Khdeir and Reddy FSDT
CS-FEM-DSG3
Step
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-32
-16
0
16
32
Khdeir and Reddy FSDT
CS-FEM-DSG3
triangular
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-20
-10
0
10
20
Khdeir and Reddy FSDT
CS-FEM-DSG3
Sine
Exponential
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-30
-15
0
15
30
Khdeir and Reddy FSDT
CS-FEM-DSG3
Time (sec) Time (sec)
Time (sec) Time (sec)
x
x
x
x
x
(b)
a) b)
c)
d)
Fig. 4. Variation of the normal stress x x (a/2, a/2, h/2)/q0 as a function of time for various
pulse loadings: a) sine; b) step; c) exponential; d) triangle.
Similarly, Fig. 4 presents the normal stress as a function of time for the various pulse
loadings, obtained by th CS-FEM-DSG3 and by Khdeir and Reddy [1]. The two results match
perfectly. This hence illustrates again the accuracy and robustness of the present method.
a)
b)
Fig. 5. Central deflection and normal stress of the plate by the CS-FEM-DSG3 (as a function of
time for exponential pulse loading) subjected to various number of layers and fiber orientations;
(a) Central deflection (in) and b) Normal stress x x (a/2, a/2, h/2)/q0.
Fig. 5 illustrates the central deflection and normal stress of the plate by the CS-FEM-
DSG3 (as a function of time for exponential pulse loading) subjected to various numbers of
layers and fiber orientations. It can be seen that the plate stiffness is directly proportional to the
number of layers, in which the cross-ply contributes less stiffness than the angle-ply. The
example demonstrates the dependence of the plate stiffness to the number of layers and fiber
orientations, and hence an optimization problem for determining the optimal number of layers
and fiber orientations should be applied to optimize the stiffness of the composite laminated
plate.
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-36
-18
0
18
36
Khdeir and Reddy FSDT
CS-FEM-DSG3
Step
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-32
-16
0
16
32
Khdeir and Reddy FSDT
CS-FEM-DSG3
triangular
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-20
-10
0
10
20
Khdeir and Reddy FSD
CS-FEM-DS 3
Sine
Exponential
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-30
-15
0
15
30
Khdeir and Reddy FSDT
CS-FEM-DSG3
Time (sec) Time (sec)
Time (sec) Time (sec)
x
x
x
x
x
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-36
-18
0
18
36
Khdeir n Reddy FSDT
CS-FEM-DSG3
Step
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-
-
32
ir and Reddy FSDT
- - S 3
triangular
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-20
-10
0
10
20
Khdeir and Reddy FSDT
CS-FEM-DSG3
Sine
Expo ential
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-30
-15
0
15
30
Khdeir and Reddy FSDT
CS-FEM-DSG3
i e (sec) Time (sec)
i e (sec) Time (sec)
x
x
x
x
x
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
00/900/00
00/900/900/00
450/-450/450
450/-450/-450/450
.
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
Time (sec)
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-30
-15
0
15
30
Time (sec)
00/900/00
00/900/900/00
450/-450/450
450/-450/-450/450
x
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
00/900/00
00/900/900/00
450/- 0/450
450/-450/-450/450
.
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
Time (sec)
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-30
-15
0
15
30
Time (sec)
00/900/00
00/90 /90 /00
450/-450/450
450/-450/-450/450
x
( )
a) b)
c)
d)
Fig. 4. Variation of the normal stress x x (a/2, a/2, h/2)/q0 s a function of time for various
pulse loadings: a) sine; b) step; c) exponential; d) triangle.
Similarly, Fig. 4 pres nts he normal stress a function f time for the various p lse
loadings, obtained by the CS-FEM-DSG3 and by Khdeir and Reddy [1]. The two results match
perfectly. This hence illustrates ag in the accuracy and robustness of he pr sent method.
a)
b)
Fig. 5. Central deflection and normal stress of the plate by the CS-FEM-DSG3 (as a function of
time for expone tial pulse loading) subject d to various number of layers and fiber orientations;
(a) Central defl ction (in) and b) Normal stress x x (a/2, a/2, h/2)/q0.
Fig. 5 illustrates the central defl ction a d ormal stre s of the plate by the CS-FEM-
DSG3 (as a function of time for exponential pulse loading) subjected to various n mbers of
layers and fiber orientations. It can be s en tha the plate s iffness i d rectly proportional to the
number of layers, in which the cross-ply contributes less tiffness than the angle-ply. The
example demonstrates the dep ndence of the plate stiffness to the number of layers and fiber
orienta ions, and hence an optim zation problem for determining the optimal number of layers
and fiber orientations hould be applied to optimize the stiffness of the composite laminated
plate.
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-36
-18
0
18
36
Khdeir and Reddy FSDT
CS-FEM-DSG3
Step
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-32
-16
0
16
32
Khdeir and Reddy FSDT
CS-FEM-DSG3
triangular
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-20
-10
0
10
20
Khdeir and Reddy FSDT
CS-FEM-DSG3
Sine
Exponential
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-30
-15
0
15
30
Khdeir and Reddy FSDT
CS-FEM-DSG3
Time (sec) Time (sec)
Time (sec) Time (sec)
x
x
x
x
x
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-36
-18
0
18
36
Khdeir and Reddy FSDT
CS-FEM-DSG3
Step
0 .001 0.002 0.003 0.004 .005 0.006 .007 .008
-32
-16
0
16
32
Khdeir and Reddy FSDT
CS-FEM-DSG3
triangular
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-20
-10
0
10
20
Khdeir and Reddy FSDT
CS-FEM-DSG3
Sine
Exponential
0 0.001 .002 .003 .004 .005 .006 .007 .008
-30
-15
0
15
30
Khdeir and Reddy FSDT
CS-FEM-DSG3
Time (sec) Time (sec)
Time (sec) Time (sec)
x
x
x
x
x
0 .0 1 .0 2 .003 . 04 0. 05 0. 06 0. 07 0.008
-1
-0.5
0
0.5
1
00/900/ 0
00/900/900/00
450/-450/
450/-450/-450/
.
C
en
tr
al
d
ef
le
ct
io
n
(i
n)
Time (sec)
. . . . 04 . 05 0. 06 0. 7 0.0 8
-
-
i (sec)
/ 0/ 0/
450/-450/450
450/-450/-450/450
x
0 0.0 1 0.0 2 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
00/900/
00/900/900/ 0
450/- 0/45
450/-450/-450/
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Time (sec)
0 0.001 0.002 .003 .004 .005 0. 06 0. 07 0. 08
-30
-15
0
15
30
Time (sec)
00/900/00
00/900/900/00
450/-450/450
450/-450/-450/450
x
(d)
Fig. 4. Variation of the normal stress σ¯x = σx(a/2, a/2, h/2)/q0 as a function of time for various
pulse loadings: a) sine; b) step; c) exponent l; ) triangle
88 Dang Trung Hau, Nguyen Thoi My Hanh, Nguyen Thoi Trung
Similarly, Fig. 4 presents the normal stress as a function of time for the various
pulse loadings, obtained by the CS-FEM-DSG3 and by Khdeir and Reddy [1]. The two
results match perfectly. This hence illustrates again the accuracy and robustness of the
present method.
a) b)
c)
d)
Fig. 4. Variation of the normal stress x x (a/2, a/2, h/2)/q0 as a function of time for various
pulse loadings: a) sine; b) step; c) exponential; d) triangle.
Similarly, Fig. 4 presents the normal stress as a function of time for the various pulse
loadings, obtained by the CS-FEM-DSG3 and by Khdeir and Reddy [1]. The two results match
perfectly. This hence illustrates again the accuracy and robustness of the present method.
a)
b)
Fig. 5. Central deflection and normal stress of the plate by the CS-FEM-DSG3 (as a function of
time for exponential pulse loading) subjected to various number of layers and fiber orientations;
(a) Central deflection (in) and b) Normal stress x x (a/2, a/2, h/2)/q0.
Fig. 5 illustrates the central deflection and normal stress of the plate by the CS-FEM-
DSG3 (as a function of time for exponential pulse loading) subjected to various numbers of
layers and fiber orientations. It can be seen that the plate stiffness is directly proportional to the
number of layers, in which the cross-ply contributes less stiffness than the angle-ply. The
example demonstrates the dependence of the plate stiffness to the number of layers and fiber
orientations, and hence an optimization problem for determining the optimal number of layers
and fiber orientations should be applied to optimize the stiffness of the composite laminated
plate.
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-36
-18
0
18
36
Khdeir and Reddy FSDT
CS-FEM-DSG3
Step
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-32
-16
0
16
32
Khdeir and Reddy FSDT
CS-FEM-DSG3
triangular
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-20
-10
0
10
20
Khdeir and Reddy FSDT
CS-FEM-DSG3
Sine
Exponential
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-30
-15
0
15
30
Khdeir and Reddy FSDT
CS-FEM-DSG3
Time (sec) Time (sec)
Time (sec) Time (sec)
x
x
x
x
x
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-36
-18
0
18
36
Khdeir and Reddy FSDT
CS-FEM-DSG3
Step
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-32
-16
0
16
32
Khdeir and Reddy FSDT
CS-FEM-DSG3
triangular
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-20
-10
0
10
20
Khdeir and Reddy FSDT
CS-FEM-DSG3
Sine
Exponential
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-30
-15
0
15
30
Khdeir and Reddy FSDT
CS-FEM-DSG3
Time (sec) Time (sec)
Time (sec) Time (sec)
x
x
x
x
x
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
00/900/00
00/900/900/00
450/-450/450
450/-450/-450/450
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Time (sec)
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-30
-15
0
15
30
Time (sec)
00/900/00
00/900/900/00
450/-450/450
450/-450/-450/450
x
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
00/900/00
00/900/900/00
450/-450/450
450/-450/-450/450
.
C
e
n
tr
a
l
d
e
fl
e
c
ti
o
n
(
in
)
Time (sec)
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-30
-15
0
15
30
Time (sec)
00/900/00
00/90 /90 /00
450/-450/450
450/-450/-450/450
x
(a)
a) b)
c)
d)
Fig. 4. Variation of the normal stress x x (a/2, a/2, h/2)/q0 as a function of ti f
pulse loadings: a) sine; b) step; c) exponential; d) triangle.
Similarly, Fig. 4 presents the normal stres as a function of ti e for t ri
loadings, obtained by the CS-FEM-DSG3 and by Khdeir and Reddy [1]. The t r l
perfectly. This hence illustrates again the ac uracy and robustnes of the present t .
a)
b)
Fig. 5. Central deflection and normal stress of the plate by the CS-FE - S 3 (as a f cti f
time for exponential pulse loading) subjected to various number of layers and fiber orientations;
(a) Central deflection (in) and b) Normal stress x x (a/2, a/2, h/2)/q0.
Fig. 5 illustrates the central deflection and normal stress of the plate by the S-FE -
DSG3 (as a function of time for exponential pulse loading) subjected to various nu bers of
layers and fiber orientations. It can be seen that the plate stiffness is directly proportional to the
number of layers, in which the cross-ply contributes less stiffness than the angle-ply. The
example demonstrates the dependence of the plate stiffness to the number of layers and fiber
orientations, and hence an optimization problem for determining the optimal number of layers
and fiber orientations should be applied to optimize the stiffness of the composite laminated
plate.
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-36
-18
0
18
36
Khdeir and Reddy FSDT
CS-FEM-DSG3
Step
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-32
-16
0
16
32
Khdeir and Reddy FSDT
CS-FEM-DSG3
triangular
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-20
-10
0
10
20
Khdeir and Reddy FSDT
CS-FEM-DSG3
Sine
Exponential
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-30
-15
0
15
30
Khdeir and Reddy FSDT
CS-FEM-DSG3
Time (sec) Time (sec)
Time (sec) Time (sec)
x
x
x
x
x
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-36
-18
0
18
36
Khdeir and Reddy FSDT
CS-FEM-DSG3
Step
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-32
-16
0
16
32
Khdeir and Reddy FSDT
CS-FEM-DSG3
triangular
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-20
-10
0
10
20
Khdeir and Reddy FSDT
CS-FEM-DSG3
Sine
xponential
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-30
-15
0
15
30
Khdeir and Reddy FSDT
CS-FEM-DSG3
Time (sec) Time (sec)
Time (sec) i e (sec)
x
x
x
x
x
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1
-0.5
0
0.5
1
00/9 0/ 0
00/9 0/9 0/ 0
450/-450/450
450/-450/-450/450
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Time (sec)
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-30
-15
0
15
30
Ti e (sec)
00/9 0/00
00/900/900/00
450/-450/ 0
450/-450/- 0/ 0
x
0 0. 01 2 3 . 4 . 05 . 6 0.007 0.008
-1
-0.5
0
0.5
1
00/900/ 0
00/9 0/9 0/ 0
450/-450/450
450/-450/-450/450
.
C
en
tr
al
d
ef
le
ct
io
n
(
in
)
Time (sec)
0 0.001 0. 02 0. 03 0. 04 0. 05 0. 06 . 07 . 08
-30
-15
0
15
30
Time (sec)
00/900/00
00/90 /90 /00
450/-450/450
450/-450/-450/ 0
x
(b)
Fig. 5. Central deflectio and normal stress of the plate by the CS-FEM-DSG3 (as a function of
time for exponential pulse loading) subjected to various number of layers and fiber orientations;
(a) Central deflection (in) and b) Normal stress σ¯x = σx(a/2, a/2, h/2)/q0
Fig. 5 illustrates the central deflection and normal stress of the plate by the CS-
FEM-DSG3 (as a function of time for exponential pulse loading) subjected to various
numbers of layers and fiber orientations. It can be seen that the plate stiffness is directly
proportional to the number of layers, in which the cross-ply contributes less stiffness
than the angle-ply. The example demonstrates the dependence of the plate stiffness to
the number of layers and fiber orientations, and hence an optimization problem for deter-
mining the optimal number of layers and fiber orientations should be applied to optimize
the stiffness of the composite laminated plate.
5. CONCLUSION
In this paper, the cell-based smoothed discrete shear gap method (CS-FEM-DSG3)
is extended to investigate the dynamic response of laminated composite plate under the
effect of blast loading modeled by some trigonometric time functions. Numerical results
demonstrate that the proposed method can achieve accurate results by using only a rel-
ative coarse mesh. Moreover, numerical examples also demonstrate the direct effect of
the number of layers and the fiber orientation to the stiffness of plate, so an optimization
algorithm should be applied to determine the optimal layer number and fiber orienta-
tions in the composite laminated problem. In addition, the new results of the numerical
example which are used to demonstrate the effect of the layer’s number and the fiber
orientation to the dynamic response of the plate under the effect of blast loading can
be served as reliable benchmark examples for later studies. The present CS-FEM-DSG3
is promising to extend to the problems with more complicated geometry domains and
boundary conditions without existing available analytical solutions.
A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) for dynamic response of laminated composite plate... 89
ACKNOWLEDGEMENTS
This work was supported by Vietnam National Foundation for Science & Tech-
nology Development (NAFOSTED), Ministry of Science & Technology, under the basic
research program (Project No.: 107.99-2014.11).
REFERENCES
[1] A. A. Khdeir and J. N. Reddy. Exact solutions for the transient response of symmetric cross-
ply laminates using a higher-order plate theory. Composites Science and Technology, 34, (3),
(1989), pp. 205–224.
[2] L. Librescu and A. Nosier. Response of laminated composite flat panels to sonic boom and
explosive blast loadings. AIAA Journal, 28, (2), (1990), pp. 345–352.
[3] K. Y. Lam and L. Chun. Analysis of clamped laminated plates subjected to conventional blast.
Composite Structures, 29, (3), (1994), pp. 311–321.
[4] C. Meimaris and J. D. Day. Dynamic response of laminated anisotropic plates. Computers &
Structures, 55, (2), (1995), pp. 269–278.
[5] Y. V. Satish Kumar and M. Mukhopadhyay. Transient response analysis of laminated stiff-
ened plates. Composite Structures, 58, (1), (2002), pp. 97–107.
[6] T. Hause and L. Librescu. Dynamic response of anisotropic sandwich flat panels to explosive
pressure pulses. International Journal of Impact Engineering, 31, (5), (2005), pp. 607–628.
[7] L. Librescu, S.-Y. Oh, and J. Hohe. Dynamic response of anisotropic sandwich flat panels to
underwater and in-air explosions. International Journal of Solids and Structures, 43, (13), (2006),
pp. 3794–3816.
[8] G. R. Liu and T. T. Nguyen. Smoothed finite element methods. CRC Press, (2010).
[9] G. R. Liu, K. Y. Dai, and T. T. Nguyen. A smoothed finite element method for mechanics
problems. Computational Mechanics, 39, (6), (2007), pp. 859–877.
[10] K.-U. Bletzinger, M. Bischoff, and E. Ramm. A unified approach for shear-locking-free trian-
gular and rectangular shell finite elements. Computers & Structures, 75, (3), (2000), pp. 321–
334.
[11] T. Nguyen-Thoi, P. Phung-Van, H. Nguyen-Xuan, and C. Thai-Hoang. A cell-based
smoothed discrete shear gap method using triangular elements for static and free vibration
analyses of Reissner-Mindlin plates. International Journal for Numerical Methods in Engineering,
91, (7), (2012), pp. 705–741.
[12] T. Nguyen-Thoi, T. Bui-Xuan, P. Phung-Van, H. Nguyen-Xuan, and P. Ngo-Thanh. Static,
free vibration and buckling analyses of stiffened plates by CS-FEM-DSG3 using triangular
elements. Computers & Structures, 125, (2013), pp. 100–113.
[13] T. Nguyen-Thoi, H. Luong-Van, P. Phung-Van, T. Rabczuk, and D. Tran-Trung. Dynamic
responses of composite plates on the Pasternak foundation subjected to a moving mass by
a cell-based smoothed discrete shear gap (CS-FEM-DSG3) method. International Journal of
Composite Materials, 3, (2013), pp. 19–27.
[14] T. Nguyen-Thoi, P. Phung-Van, C. Thai-Hoang, and H. Nguyen-Xuan. A cell-based
smoothed discrete shear gap method (CS-DSG3) using triangular elements for static and free
vibration analyses of shell structures. International Journal of Mechanical Sciences, 74, (2013),
pp. 32–45.
[15] P. Phung-Van, T. Nguyen-Thoi, H. Dang-Trung, and N. Nguyen-Minh. A cell-based
smoothed discrete shear gap method (CS-FEM-DSG3) using layerwise theory based on the
C0-HSDT for analyses of composite plates. Composite Structures, 111, (2014), pp. 553–565.
90 Dang Trung Hau, Nguyen Thoi My Hanh, Nguyen Thoi Trung
[16] P. Phung-Van, T. Nguyen-Thoi, T. Le-Dinh, and H. Nguyen-Xuan. Static and free vibration
analyses and dynamic control of composite plates integrated with piezoelectric sensors and
actuators by the cell-based smoothed discrete shear gap method (CS-FEM-DSG3). Smart Ma-
terials and Structures, 22, (9), (2013). doi:10.1088/0964-1726/22/9/095026.
[17] R. D. Mindlin. Influence of rotary inertia and shear on flexural motions of isotropic elastic
plates. Journal of Applied Mechanics, 18, (1951), pp. 31–38.
[18] E. Reissner. The effect of transverse shear deformation on the bending of elastic plates. Journal
of Applied Mechanics, 12, (1945), pp. 69–77.
[19] J. N. Reddy. Mechanics of laminated composite plates and shells: Theory and analysis. CRC press,
(2004).
[20] N. M. Newmark. A method of computation for structural dynamics. Journal of the Engineering
Mechanics Division, 85, (3), (1959), pp. 67–94.
[21] S.-Y. Chang. Studies of Newmark method for solving nonlinear systems: (I) basic analysis.
Journal of the Chinese Institute of Engineers, 27, (5), (2004), pp. 651–662.
Các file đính kèm theo tài liệu này:
- a_cell_based_smoothed_discrete_shear_gap_method_cs_fem_dsg3.pdf