Overall the mangroves in the Giao Thuy
district increased by 2486.96 hectares during
2005-2014. Among the 272 DSAS transects in
this study, 126 showed mangrove shoreline
regression, while the mangrove forests increased in the 146 other transects. The degradation rate is calculated at 1.41 m yr-1, and
the growth rate is 1.26 m yr-1on average. The
dynamic analysis of the DSAS transects using
EPR-values allows defining 4 zones in the
study area. Zones near the Xuan Thuy NP and
along the coast of Quat Lam coast expand
fastest along the coastline in Giao Thuy.
Even though other research also focused
on detecting and monitoring mangrove changes in Nam Dinh province using remote sensed
data (Pham et al., 2016) or based on a combination of DSAS and remote sensing (To and
Thao, 2008), this is the first study using
DSAS for the purpose of both mangrove
shoreline change analysis and mangrove zoning. This is a methodological improvement
because proved very difficult to clarify different mangrove zones by using only mangrove
zone type detected on separate satellite images. The combination with DSAS statistics allows identifying indicators that discriminate
between different mangrove zones. DSAS allows examining historical shorelines, which is
an advantage as compared with the traditional
ground survey techniques (Thieler et al.,
2009). This study combines DSAS and remote
sensing to describe historical mangrove shoreline changes and mangrove zoning. The results show that this combination is a practical
application for decision-making on coastal
management.
The main limitation of this study is in
choosing the DSAS statistical change parameters defining the mangrove zones. Five main
measures among which the Net Shoreline
Movement (NSM), the Shoreline Change Envelope (SCE), the End Point Rate (EPR), the
Linear Regression Rate (LRR) and the
Weighted Linear Regression Rate (WLR) can
be used. In this study, only the End Point Rate
(EPR) was calculated. However, because of
the strong correlation between these values
(Thieler et al., 2009), the EPR is a sensitive
measure of mangrove change. It is easy to understand as it calculates the shoreline position
over different time periods.
Socio-economic development, but also environmental factors as global climate change
explain the changes and make further studies
imperative. Not only the rate of change should
be quantified, but also the drivers of the
changes should be identified in more detail.
Historical mangrove shoreline change should
be considered as a parameter to monitor
changes in coastal environments as indicators
of global warming, climate change, storm effects, sea level change, pollution, and sedimentation rates.
10 trang |
Chia sẻ: honghp95 | Lượt xem: 502 | Lượt tải: 0
Bạn đang xem nội dung tài liệu A Digital Shoreline Analysis System (DSAS) applied on mangrove shoreline changes along the Giao Thuy Coastal area (Nam Dinh, Vietnam) during 2005-2014, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Vietnam Journal of Earth Sciences, 39(1), 87-96, DOI: 10.15625/0866-7187/39/1/9231
87
(VAST)
Vietnam Academy of Science and Technology
Vietnam Journal of Earth Sciences
A Digital Shoreline Analysis System (DSAS) applied on
mangrove shoreline changes along the Giao Thuy Coastal
area (Nam Dinh, Vietnam) during 2005-2014
Nguyen An Thinh1*, Luc Hens2
1Hanoi University of Natural Resources and Environment (HUNRE), Vietnam
2Flemish Institute for Technological Research (VITO), Belgium
Received 10 November 2016. Accepted 12 February 2017
ABSTRACT
The paper deals with a combination of the Digital Shoreline Analysis System (DSAS) and remote sensing, study-
ing historical mangrove shoreline changes and mangrove zoning in the Giao Thuy coastal area of the Nam Dinh prov-
ince, Vietnam. The results show an over-all mangrove area increase of 2,487 hectares during the years 2005-2014.
This dynamics results from both degradation and increase of the mangroves. The calculated degradation rate is 1.41
m yr-1, and the growth rate is 1.26 m yr-1 on average. 4 different mangrove zones were delineated based on the End
Point Rate (EPR) values of DSAS transects. The differential evolution of the mangroves in these zones is driven by
socio-economic and environmental factors. The results contribute to practices of mangrove planning and management
in a coastal area. Furthermore, historical mangrove shoreline change provides indicators to monitor coastal environ-
mental changes for global warming, climate change, storm effects, sea level change, pollution, and sedimentation
rates.
Keywords: Digital Shoreline Analysis System (DSAS), mangrove shoreline changes, mangrove zoning, transect,
Giao Thuy coast, Vietnam.
©2017 Vietnam Academy of Science and Technology
1. Introduction1
Mangroves provide a variety of beneficial
ecosystem services such as protecting shore-
lines, accelerating sediment accretions, and
buffering shorelines from erosion by storms
and waves (Sathirathai and Barbier, 2001).
Combinations of both natural and human driv-
ing forces cause significant mangrove changes
*Corresponding author, Email: anthinhhus@gmail.com
along the coasts. Considerable natural driving
forces include storm damage, and changes in
rainfall, tidal regimes and sea level (Ellison,
2000; Lewis, 2005); whereas, urbanization,
industrialization, and aquaculture are consid-
ered main human contributing factors to man-
grove changes (Cohen and Lara, 2003; Rebelo
et al., 2009; Tran et al., 2014). The recon-
struction of mangrove changes allows identi-
fying historical coastline dynamics, assessing
the intensity and impact of natural hazards
Nguyen An Thinh and Luc Hens/Vietnam Journal of Earth Sciences 39 (2017)
88
and developments in coastal areas, among
others in the context of global climate change
(Alongi, 2008). Traditionally, remote sensing
and GIS were recommended to detect and de-
scribe mangrove changes. To this end, both
aerial photos and satellite images were used.
More recently the combination of remote
sensing and GIS with spatial models as fractal
analysis (Nguyen et al., 2015) or Digital
Shoreline Analysis System (DSAS) (Thieler
et al., 2009) was used. Because DSAS is ef-
fective for calculating changing rates of man-
grove boundary changes incorporating an evi-
dently -identified attribute position at separate
times (Cohen and Lara, 2003; Sheik and
Chandrasekar, 2011), it is able to provide a
better understanding of the nature, dynamics
and trend of mangrove shoreline change.
DSAS applications to study shoreline dy-
namics in coastal areas are found in the USA,
Turkey, Italy, Cameroon, Ghana, India, Bang-
ladesh, and Vietnam - just listing these exam-
ples (Moussaid et al., 2015; Hegde and
Akshaya, 2015). Vietnamese research using
DSAS showed shoreline changes in the Nam
Dinh coast (To and Thao, 2008), Kien Giang
coast (Nguyen et al., 2015), and in the MuiCa
Mau coast, where long-term changes were
documented (Tran et al., 2014). To and Thao
(2008) indicates that the shoreline moved
forward 37-39 meters in Xuan Thuy coast
during 1905-1992; whereas, Nguyen et al.,
2015 show that mangrove extent in Kien
Giang coast decreased during period 1989-
1992, increased during 1992-2003, and de-
creased during 2003-2006.
The GiaoThuy district has a volatile econ-
omy on the move, in particular in its central
area and along the coast. The largest, partially
protected mangrove area of the Red River Bi-
osphere Reserve (BR), is found in the Xuan
Thuy National Park (NP) along the coast of
Giao Thuy. Tidal alluvial soil covers the area,
which facilitates the growth of the mangrove
forest (Vu, 2016). Mangroves in this area
changed significantly over last centuries
(Pham and Nguyen, 2016); their surface in-
creased since the last ten years. However, ur-
banization, agro-aquaculture, and marine in-
frastructure construction recently caused
mangrove degradation in specific locations.
Moreover, climate change hazards as storms,
floods, and sea level rise synergistically con-
tribute to the degradation. To counteract this
degradation, strategic spatial planning target-
ed at sustainable mangrove management, and
addressing the conflicts between mangrove
protection and socio-economic development is
most necessary.
This paper aims at zoning the mangroves
along the coast of Giao Thuy based on man-
grove shoreline changes during the period
2005-2014. Rates of mangrove shoreline deg-
radation and increaseare calculated using
DSAS data derived from LANDSAT satellite
images.
2. Material and methods
2.1. Study area
The coastline of GiaoThuy is 32 kilometers
long and stretches along the northeast of the
Nam Dinh province (Figure 1). The coastal
communes are Giao Thien, Giao An, Giao
Lac, Giao Xuan, Giao Hai, Giao Long, Bach
Long, Giao Phong, and Quat Lam. As part of
the Red River Delta, this area has two estuar-
ies - Ba Lat and Day- where most mangroves
are found. Xuan Thuy NP which is located in
the south of the Ba Lat estuary, is planned as
the core area of the Red River BR. This is the
first RAMSAR site in Southeast Asia since
the Convention took effect in 1989. Most
mangroves in Giao Thuy are found in the
Xuan Thuy NP and in the Ba Lat estuary. Al-
most all the mangrove trees were planted
which explains the occurrence of Kandeliaob-
ovata as the dominant species. The most
spread species mixtures consist of
Aegicerascorniculatum + Sonneratiacaseolaris
+ Avicennia marina + Acanthus ilicifolius,
Vietnam Journal of Earth Sciences, 39(1), 87-96
89
Kandeliaobovata + Aegicerascorniculatum
(in Xuan Thuy NP), and of Aegicerascornicu-
latum + Avicennia marina (in Con Lu area),
and Kandeliaobovata (in the Giao Lam com-
mune). The study period 2005-2014 was se-
lected because of the strong economic growth
in the district, which affected considerably
mangrove changes along the coast.
Figure 1. The location of the Giao Thuy district in the Nam Dinh province
2.2. Satellite detection of mangroves
Available remotely sensed images were
used as the primary data to detect mangrove
covers. Three LANDSAT TM satellite images
(table 1), realized respectively on 2005 Oct 10
and 2010 Nov 9 (LANDSAT 7 ETM+), and
2014 Sep 25 (LANDSAT 8 OLI-TIRS) were
used. Although the Nam Dinh province, is
well covered by good spatial data (aerial pho-
tos from 1942, Corona (American high-
resolution images from 1960-1963), SPOT4
and 5, and IKONOS-images), these LAND-
SATdata sources are sufficient to describe
major changes in mangrove cover over the
province. Recently, Nguyen et al., 2015 used
Landsat images to map mangrove in the Kien
Giang coastal area, Vietnam. The results
showed that Landsat images are able to fit for
mapping mangrove in such areas because they
are cloud free and freely available. The
LANDSAT data were downloaded for free
from the United States Geological
Survey (USGS) homepages
( Using the
ENVI® system version 5.2 (the Environment
for Visualizing Images, USA), satellite imag-
es were submitted to the supervised classifica-
tion. Bare tidal soil (BS), water (WA) and five
land cover types were recognized on the satel-
lite images: built-up land (BU), cropland
(CR), marshland (ML), salt production areas
(SP), and mangroves (MA). Salt production
areas (SP) was principally recognized by its
extent and location: this type of land cover lo-
cates limitedly in costs of Bach Long, Giao
Phong, and Quat Lam. Two land cover transi-
tion matrices allowed describing areas where
cån C¸t Nam
§. Nam
b·i ®¸ B¾c
§. Hoμng Sa
§¸ Lå i
§. B¹ch Quy
§.Tri T«n
§. Tr− êng Sa
®¸ Ch÷ ThËp
®¸ T©y
®¸ §«ng
®¸ L¸t
b·i Vòng M©y
Spratly Islands
§. C©y
§. Linh C«n
®¸ B«ng Bay
.
§. Ph ó L©m
Para
cel I
sland
s
Quy Nh¬n
Tuy Hßa
Nha Trang
Phan Rang - Th¸p Chµm
n g»
R
§. Phó Quý
hßn H¶i
Phan ThiÕt
Bu«n Ma Thuét
§
µ
§µ L¹t
§. Lý S¬n
cöa ThuËn An
§ång Híi
HuÕ
§. Cån Cá
Tam Kú
Qu¶ng Ng·i
§«ng Hµ
Kon Tum
S g.
Pl©y Ku
H ugnuC
Ç
Vòng Tµu
§ång Xoµi
Gia NghÜa
Q§ C«T«
B»ng
T−êng
H¹ Long
Cao B»ng
L¹ng S ¬n
Mãng C¸i
B¾c C¹n
A
Q§. C«n S¬n
n
hn
Biªn HßaThñ DÇu Mét
T©y Ninh
Trµ Vinh
Þ§
aö
cSãc Tr¨ng
c ö aVÞ Thanh
Sg. TiÒn
Sg. HËu
Mü Tho
Cao
L·nh
B¹c Liªu
VÜnh Long
T©n An
Hµ Giang
L
«
Sg
.
ViÖt Tr×
Yªn B¸iTuy ªn Quang
Sg. M·
Vinh
Hßa B×nh
Lµo Cai
Sg. §µ
Hång
Sg.
§. Phó Quèc
Q§. Thæ Chu
Q§. Nam Du
hßn Khoai
Long X uyªn
b·i Cμ Mau
R¹ch Gi¸
Cµ Mau
S¬n La
§iÖn Biªn P hñ
Lai Ch©u
Nam Dinh province
E
A
S
T
S
E
A
2
3
5
6
7
0 15 30
kilometers
Nam Truc
Vu Ban
Nam Dinh
My Loc
Truc Ninh
Xuan Truong
Y Yen
Nghia Hung
Hai Hau
Giao Thuy
Nguyen An Thinh and Luc Hens/Vietnam Journal of Earth Sciences 39 (2017)
90
mangroves changed to another type of land
cover and vice versa during the periods 2005-
2010 and 2010-2014. For each land cover
type, the evolution of its surface during the
study period was calculated using class statis-
tics, post classification in an ENVI environ-
ment. Because the LANDSAT image specifies
the pixel size in its header, the resulting class
statistics include the area covered by each se-
lected class (land cover type).
Table 1.Characteristics of LANDSAT TM satellite images
Bands and
wavelength (µm)
Spatial resolution
(meters)
Swathwidth
(kilometers)
Repeatcoverage
(days)
Orbitaltitude
(kilometers)
1 (0.45-0.52) 30 185 16 705
2 (0.52-0.60) 30 185 16 705
3 (0.63-0.69) 30 185 16 705
4 (0.76-0.90) 30 185 16 705
5 (1.55-1.75) 30 185 16 705
6 (10.40-12.50) 120 185 16 705
7 (2.08-2.35) 30 185 16 705
2.3. Digital Shoreline Analysis System
(DSAS)
The Digital Shoreline Analysis System
(DSAS) is a GIS-based system developed by
the United States Geological Survey (USGS).
Two DSAS versions are available: the DSAS
extension of the Environmental System Re-
search Institute (ESRI)’s ArcGIS software
(Thieler et al., 2009), and the DSAS web. The
DSAS software was selected because it runs
faster than the web-based version. DSAS
measures gaps between the shoreline positions
during defined periods of time. This provides
the basic data to calculate the shoreline
changes. The historical trend of these shore-
line changes is based on indicators of the
shoreline geometry. The system controls the
following coastline characteristics: historical
coastline dynamics, shoreline change, devel-
opment and evolution of gulls, cliff retreat and
erosion, shoreline measurement and modeling
(Oyedotun, 2014). In this study, the End Point
Rate (EPR) was chosen the statistical parame-
ters describing the spatial patterns of shoreline
change (Thieler et al., 2009). EPR measures
mangrove shoreline change by dividing the
distance of the mangrove shoreline between
its initial (year 2005) and the most recent po-
sition of shoreline (year 2014).
Figure 2 shows the DSAS components and
its operational flow. DSAS components in-
clude the baselines (the starting points of all
transects), historical shorelines (for the stud-
ied periods), DSAS transects (casting from the
baseline and intersect the multiple shoreline
features), measurement points, measurement
distances, and shoreline uncertainty (setup as
a Personal Geodatabase in DSAS). Baseline,
historical shorelines, and shorelines uncertain-
ty are input data provided by the mangrove
cover maps of 2005, 2010, and 2015. The
spacing between transects along the baseline
and the length of transects were defined based
on the mangrove pattern. The distance be-
tween two neighboring transects is 100 me-
ters. DSAS transects are 2,000 meters long.
With a coastline of 32 kilometers, the maxi-
mum number of DSAS transects is 320. How-
ever, the Giao Long and GiaoHai communes
have no mangroves: consequently only 272
DSAS transects were defined. The DSAS op-
erational flow includes 4 steps: (i) Set default
parameters (step 1): Establish transects, shore-
line calculations, metadata and log file output
options; (ii) Cast transects (step 2): establish a
transect geodatabase, a casting method by us-
ing smoothing distances, flip baseline orienta-
tion, and a transect metadata file; (iii) Edit
(step 3):modify the baseline and directly edit
individual transects; (iv) Calculate the change
statistics (step 4): including process data
(choose existing transect layers, select the sta-
tistics to be calculated, specify the confidence
Vietnam Journal of Earth Sciences, 39(1), 87-96
91
intervals, and shoreline intersection thresh-
olds), validate, and extract the outputs (define
measurement locations and the external mod-
ule XML input table).
Figure 2. Digital Shoreline Analysis System components and operational flows
3. Results
3.1. Reconstruction of mangrove cover
change
Three mangrove cover maps extracted
from LANDSAT satellite images show that
the mangrove area increased faster and faster
during the period 2005-2014. By 2014 man-
groves were found in 7 of the 9 coastal com-
munes along the Ba Lat and Day estuaries:
Giao Thien, Giao An, Giao Lac, Giao Xuan
(Ba Lat estuary), Bach Long, Giao Phong, and
Quat Lam (Day estuary). Mangroves in-
creased by 2,487 hectares over a period of 10
years, which corresponds with an average ex-
pansion rate of 250 ha yr-1.
In 2005 the mangroves covered 1,387 hec-
tares; by 2010 the figure increased to 2,309
hectares. This corresponds with an increase of
9,212 hectares. During this first period the
mangrove cover changed gradually driven by
agro-aquaculture, afforestation and ecological
succession. CR and BS were the main land
cover types which turned into MA: 380 hec-
tares of CR and 671 hectares of BS were in-
volved. During the same period, MA mainly
changed to 110 hectares of CR and 49 hec-
tares of BS.
Mangrove change during 2010-2014 shows
similar trends as during the previous period.
In 2014 there were 3,874 hectares of man-
groves, which corresponds with an increase of
1,565 hectares over 5 years. The changes are
explained by urbanization, agro-aquaculture
and afforestation. 163 hectares of CR and
1,903 hectares of BS were the main land cov-
er types which were transformed in man-
groves. Mangroves also changed in CR, BU
and BS (369, 85, and 44 hectares respective-
ly). Figure 3 shows limited changes in man-
grove cover in the Day estuary, while their
expansion and defragmentation was most sig-
nificant in the Xuan Thuy NP and the Ba Lat
estuary.
Nguyen An Thinh and Luc Hens/Vietnam Journal of Earth Sciences 39 (2017)
92
(A) LANDSAT 2005 October 10
(B) LANDSAT 2010 November 9
(C) LANDSAT 2014 September 25
Figure 3. LANDSAT satellite images (left) and mangrove cover maps (right) in 2005, 2010, and 2014
3.2. Historical mangrove shoreline change
The mangrove shoreline underwent both
expansion and regression during the period
2005-2010. Figure 4 shows the baselines and
the DSAS transects which were used to calcu-
late the shoreline changes. 5 baselines were
established along the Xuan Thuy NP, and the
coasts of Giao Thien, Bach Long, Giao
Con Lu
Con Ngan
Con Xanh
Quat Lam
Con Lu
Con Ngan
Con Xanh
Quat Lam
Mangrove cover
Con Lu
Con Ngan
Con Xanh
Quat Lam
Vietnam Journal of Earth Sciences, 39(1), 87-96
93
Phong, and Quat Lam. 272 DSAS transects
have been used to calculate the shoreline dy-
namics. They are identified using consecutive-
ly increasing numbers from left to right. Posi-
tive values of the EPR (end point rate) indi-
cate mangrove shoreline expansion towards
the sea (increase), and negative values repre-
sent inland movements (degradation).
In 126 transects mangrove shoreline regres-
sionwas observed, while the other 146 tran-
sects showed expansion of the mangroves.
During 2005-2014, the regression rate var-
iesbetween 0.02 m yr-1 to 36.77 m yr-1, with
an average of 1.41 m yr-1 (see the maps A, B,
and C in the Figure 3). The rate of increase
ranges between 0.03 to 49.27 m yr-1, with an
average of 1.26 m yr-1 (see the maps B and D
in the Figure 3). This figure is not in conflict
with the overall increase of the mangroves
which is described above. Mangrove shore-
lines move land inwards: new mangroves are
formed inland as a result of plantation pro-
grams; whereas, damaged mangroves are
merely located on tidal alluvial soils close to
the sea which protects the hinterland from im-
pacts of sea waves and storms.
Figure 3. End Point Rate value of historical mangrove shorelines in the Giao Thuy coast during 2005-2014
Differentiating mangroves just using cover
data from LANDSAT satellite images is un-
certain because all mangrove patches show a
homogeneous pattern and texture. As shown
in figure 4, using the DSAS transect results
and the derived EPR values one may disti
guish 4 mangrove zones in the study area (see
the figure 4):
- Mangrove zone 1 (along with the coast of
the Giao Thien commune) (“A1” symbol in
the map of mangrove zoning): this zone in-
cludes mangroves of the upper Ba Lat estuary.
The 40 transects of this zone are consecutive-
ly numbered from 1 to 40. These forests were
lost as a result of intensive aquaculture devel-
opment (mangrove MA transfer to marshland
Nguyen An Thinh and Luc Hens/Vietnam Journal of Earth Sciences 39 (2017)
94
ML). EPR values range from -1.61 to 0.01 m
yr-1.
- Mangrove zone 2 (Xuan Thuy NP) (A2):
this zone includes the mangroves surrounding
the lower Ba Lat estuary. Their protection sta-
tus varies: In Con Lu near the core zone of the
Xuan Thuy NP they are strictly protected:
Con Ngan is an ecological restoration area:
other mangroves are part of the beach and
mining areas and are not protected. Aquacul-
ture expanded on the bare tidal soils of the ar-
ea. The mangroves near Con Xanh were the
subject of natural disasters as storms, flash
floods, salinization, pollution and calamities
from inland industrial areas. The protected
mangrove forests in this vast zone increase
and expand on the bare land faster than in the
three other zones. The ERP values of the 143
DSAS transects (numbered 41 to 183) in this
zone range between 40.01 and 68.75 m yr-1 in
Con Lu, Con Ngan, and Con Xanh, and be-
tween 0.01 and 20.01 m yr-1 along the beach-
es of the Giao An, Giao Lac and Giao Xuan
communes.
- Mangrove zone 3 (Bach Long and Giao
Phong coast) (A3): this zone includes man-
groves surrounding the Day estuary. Man-
groves are regressing as a result of intensive
agro-aquaculture development and salt pro-
duction. The ERP values of the 50 DSAS
transects (numbered from 184 to 235) vary
between -36.77 and -19.99 m yr-1, which indi-
cates the regression of the mangrove forest in
this zone.
- Mangrove zone 4 (Quat Lam coast) (A4):
this zone includes the mangroves of the Day
estuary. Tourism develops in this area, while
both agro-aquaculture and industry are less
important and mangroves increase in this
zone. A large area of bare tidal soil outside the
national dike allows the expansion of the for-
ests. The ERP values in the 36 DSAS tran-
sects (236 to 272) range between 20 to 40 m
yr-1. This is the second fastest rate of man-
grove extension along the coastline in
Giao Thuy.
Figure 4. Mangrove zones of Giao Thuy coast
Vietnam Journal of Earth Sciences, 39(1), 87-96
95
4. Discussion and conclusion
Overall the mangroves in the Giao Thuy
district increased by 2486.96 hectares during
2005-2014. Among the 272 DSAS transects in
this study, 126 showed mangrove shoreline
regression, while the mangrove forests in-
creased in the 146 other transects. The degra-
dation rate is calculated at 1.41 m yr-1, and
the growth rate is 1.26 m yr-1on average. The
dynamic analysis of the DSAS transects using
EPR-values allows defining 4 zones in the
study area. Zones near the Xuan Thuy NP and
along the coast of Quat Lam coast expand
fastest along the coastline in Giao Thuy.
Even though other research also focused
on detecting and monitoring mangrove chang-
es in Nam Dinh province using remote sensed
data (Pham et al., 2016) or based on a combi-
nation of DSAS and remote sensing (To and
Thao, 2008), this is the first study using
DSAS for the purpose of both mangrove
shoreline change analysis and mangrove zon-
ing. This is a methodological improvement
because proved very difficult to clarify differ-
ent mangrove zones by using only mangrove
zone type detected on separate satellite imag-
es. The combination with DSAS statistics al-
lows identifying indicators that discriminate
between different mangrove zones. DSAS al-
lows examining historical shorelines, which is
an advantage as compared with the traditional
ground survey techniques (Thieler et al.,
2009). This study combines DSAS and remote
sensing to describe historical mangrove shore-
line changes and mangrove zoning. The re-
sults show that this combination is a practical
application for decision-making on coastal
management.
The main limitation of this study is in
choosing the DSAS statistical change parame-
ters defining the mangrove zones. Five main
measures among which the Net Shoreline
Movement (NSM), the Shoreline Change En-
velope (SCE), the End Point Rate (EPR), the
Linear Regression Rate (LRR) and the
Weighted Linear Regression Rate (WLR) can
be used. In this study, only the End Point Rate
(EPR) was calculated. However, because of
the strong correlation between these values
(Thieler et al., 2009), the EPR is a sensitive
measure of mangrove change. It is easy to un-
derstand as it calculates the shoreline position
over different time periods.
Socio-economic development, but also en-
vironmental factors as global climate change
explain the changes and make further studies
imperative. Not only the rate of change should
be quantified, but also the drivers of the
changes should be identified in more detail.
Historical mangrove shoreline change should
be considered as a parameter to monitor
changes in coastal environments as indicators
of global warming, climate change, storm ef-
fects, sea level change, pollution, and sedi-
mentation rates.
References
Alongi, D.M., 2008. Mangrove forests: Resilience, pro-
tection from tsunamis, and responses to global cli-
mate change. Estuarine, Coastal and Shelf Science,
76(1), 1-13.
Cohen, M.C.L., Lara R.J., 2003. Temporal changes of
mangrove vegetation boundaries in Amazonia: Ap-
plication of GIS and remote sensing techniques.
Wetland Ecology Management 11, 223-231.
Ellison, J., 2000. How South Pacific mangroves may
respond to predicted climate change and sea level
rise. In: Gillespie A. and Burns W. (Eds.). Climate
change in the South Pacific: Impacts and responses
in Australia, New Zealand, and small islands states.
Dordrecht, Netherlands: Kluwer Academic Publish-
ers (Chapter 15), 289-301.
Hegde, A.V., Akshaya B.J., 2015. Shoreline transfor-
mation study of Karnataka Coast: Geospatial Ap-
proach. Aquatic Procedia 4, 151-156.
Lewis, R.R., 2005. Ecological engineering for successful
management and restoration of mangrove forests.
Ecological Engineering, 24(4SI), 403-418.
Moussaid, J., Fora A.A., Zourarah B., Maanan M.,
Maanan M., 2015. Using automatic computation to
Nguyen An Thinh and Luc Hens/Vietnam Journal of Earth Sciences 39 (2017)
96
analyze the rate of shoreline change on the Kenitra
coast, Morocco.Ocean Engineering, 102(1), 71-77.
Nguyen Hai Hoa, McAlpine C., Pullar D., Leisz S.J.,
Galina G., 2015. Drivers of coastal shoreline
change: case study of Hon Dat coast, Kien Giang,
Vietnam. Environmental Management, 55(5),
1093-1108.
Oyedotun, T.D.T., 2014. Shoreline Geometry: DSAS as
a tool for historical trend analysis. Geomorphologi-
cal Techniques, Chapter 3(2.2), British Society for
Geomorphology, 1-12.
Pham Quang Son , Nguyen Duc Anh, 2016. Evolution of
the coastal zone in Hai Hau district (Nam Dinh prov-
ince) and nearest region over the last 100 years
based on analysis topographic maps and multi-
temporal remote sensing data. Vietnam Journal
of Earth Sciences, 38(1), 118-130 (in Vietnamese).
Rebelo, L.M., Finlayson C.M., Nagabhatla N., 2009.
Remote sensing and GIS for wetland inventory,
mapping and change analysis. Environmental Man-
agement, 90, 2144-2153.
Sathirathai, S., Barbier E.B., 2001. Valuing mangrove
conservation in southern Thailand. Contemporary
Economic Policy, 19(2), 109-122.
Sheik, M., Chandrasekar, 2011. A shoreline change
analysis along the coast between Kanyakumari and
Tuticorin, India, using digital shoreline analysis sys-
tem. Geo-spatial Information Science, 14(4), 282.
Thieler, E.R., Himmelstoss E.A., Zichichi J.L., Ergul A.,
2009. Digital Shoreline Analysis System (DSAS)
version 4.0 - An ArcGIS extension for calculating
shoreline change.U.S. Geological Survey Open-File
Report 2008-1278.
Dang Van To, Phan Thi Phuong Thao, 2008. A shoreline
analysis using DSAS in Nam Dinh coastal area.
GeoInformatics, 4(1), 37-42.
Tran Thi V., Xuan A Tien Thi., Phan Nguyen Hong,
Dahdouh-Guebas F., Koedam N. , 2014. Application
of remote sensing and GIS for detection of long-
term mangrove shoreline changes in Mui Ca Mau,
Vietnam. Biogeosciences ,11, 3781-3795.
Vu Van Loi, 2016. Sedimentary facies and engineering
geological characteristics of Holocene deposits in
the coastal area of Tien Lang district, Hai Phong
city. Vietnam Journal of Earth Sciences, 38(1),
108-117.
Các file đính kèm theo tài liệu này:
- 9231_36404_1_pb_2829_2090294.pdf