Bài giảng Đại số tuyến tính - Chương 3: Hệ phương trình tuyến tính
Hệ thuần nhất.
Hệ thuần nhất AX = 0 có nghiệm không tầm thường khi và chỉ
khi r(A) < n.
Hệ thuần nhất AX = 0, với A là ma trận vuông có nghiệm không
tầm thường (nghiệm khác 0) khi và chỉ khi det(A) = 0.
II. Hệ thuần nhất.
Giả sử A là ma trận của hệ thuần nhất có 4 phương trình và 8 ẩn,
giả sử có 5 ẩn tự do. Tìm r(A)?
Ví dụ
Giải thích vì sao hệ phương trình thuần nhất có m phương trình,
n ẩn với m < n luôn luôn có vô số nghiệm.
30 trang |
Chia sẻ: hachi492 | Ngày: 08/01/2022 | Lượt xem: 493 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Bài giảng Đại số tuyến tính - Chương 3: Hệ phương trình tuyến tính, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Trường Đại học Bách khoa tp. Hồ Chí Minh
Bộ môn Toán Ứng dụng
---------------------------------------------------------------
Đại số tuyến tính
Chương 3: Hệ phương trình tuyến tính
Giảng viên Ts. Đặng Văn Vinh (9/2007)
www.tanbachkhoa.edu.vn
Nội dung
---------------------------------------------------------------------------------------------------------------------------
I – Hệ phương trình tuyến tính tổng quát
II – Hệ phương trình tuyến tính thuần nhất
I. Hệ phương trình tuyến tính tổng quát
---------------------------------------------------------------------------------------------------------------------------
a11, a12, , amn được gọi là hệ số của hệ phương trình.
11 1 12 2 1 1
21 1 22 2 2 2
1 1 2 2
n n
n n
m m mn m m
a x a x a x b
a x a x a x b
a x a x a x b
Hệ phương trình tuyến tính gồm m phương trình, n ẩn có
dạng:
Định nghĩa hệ phương trình tuyến tính.
b1, b2, , bm được gọi là hệ số tự do của hệ phương trình.
I. Hệ phương trình tuyến tính tổng quát
---------------------------------------------------------------------------------------------------------------------------
Nghiệm của hệ là một bộ n số c1, c2, , cm sao cho khi thay
vào từng phương trình của hệ ta được những đẳng thức đúng.
Hệ phương trình tuyến tính được gọi là thuần nhất nếu tất cả
các hệ số tự do b1, b2, , bm đều bằng 0.
Định nghĩa hệ thuần nhất.
Hệ phương trình tuyến tính được gọi là không thuần nhất nếu ít
nhất một trong các hệ số tự do b1, b2, , bm khác 0.
Định nghĩa hệ không thuần nhất.
I. Hệ phương trình tuyến tính tổng quát
---------------------------------------------------------------------------------------------------------------------------
Hệ tương thích
Hệ không tương thích
Một hệ phương trình tuyến tính có thể:
1. vô nghiệm,
2. có duy nhất một nghiệm
3. Có vô số nghiệm
Hai hệ phương trình được gọi là tương đương nếu chúng cùng
chung một tập nghiệm.
Để giải hệ phương trình ta dùng các phép biến đổi hệ về
hệ tương đương, mà hệ này giải đơn giản hơn.
I. Hệ phương trình tuyến tính tổng quát
---------------------------------------------------------------------------------------------------------------------------
Có 3 phép biến đổi tương đương đối với hệ phương trình .
Một phép biến đổi được gọi là tương đương nếu biến một hệ
phương trình về một hệ tương đương.
Định nghĩa phép biến đổi tương đương
3. Đổi chổ hai phương trình.
1. Nhân hai vế của phương trình với một số khác không.
2. Cộng vào một phương trình một phương trình khác đã
được nhân với một số tùy ý.
Chú ý: Chúng ta có thể kiểm tra dễ dàng rằng các phép biến
đổi trên là các phép biến đổi tương đương.
I. Hệ phương trình tuyến tính tổng quát
---------------------------------------------------------------------------------------------------------------------------
1 2
1 3
2h h
h h
0
3 3 3
3 3
x y
y z
y z
2 3
h h
0
3 3 3
4 0
x y
y z
z
Phương trình có nghiệm duy nhất: x = 1; y = -1; z = 0
Giải hệ phương trình:
0
2 3 3
2 3
x y
x y z
x y z
Ví dụ
I. Hệ phương trình tuyến tính tổng quát
---------------------------------------------------------------------------------------------------------------------------
1 1 0
2 1 3
1 2 1
Ma trận hệ số:
Ma trận mở rộng:
1 1 0 0
2 1 3 3
1 2 1 3
I. Hệ phương trình tuyến tính tổng quát
---------------------------------------------------------------------------------------------------------------------------
1 2
1 3
2h h
h h
2 3
h h
1 1 0 0
2 1 3 3
1 2 1 3
1 1 0 0
0 3 3 3
0 3 1 3
1 1 0 0
0 3 3 3
0 0 4 0
I. Hệ phương trình tuyến tính tổng quát
Ẩn cơ sở là ẩn tương ứng với cột chứa phần tử cơ sở.
Ẩn tự do là tương ứng với cột không có phần tử cơ sở.
Định nghĩa ẩn cơ sở và ẩn tự do.
1 1 1 2 1
2 2 3 5 6
3 3 4 1 1
BĐSC HÀNG
1 1 1 2 1
0 0 1 1 4
0 0 0 6 8
x1, x3, x4: là các ẩn cơ sở
x2: ẩn tự do
Nếu , thì hệ AX = b có nghiệm.( | ) ( )r A b r A
Nếu , thì hệ AX = b vô nghiệm.( | ) ( )r A b r A
I. Hệ phương trình tuyến tính tổng quát
Nếu = số ẩn, thì hệ AX = b có nghiệm duy
nhất.
( | ) ( )r A b r A
Nếu < s, thì hệ AX = b có vô số nghiệm.( | ) ( )r A b r A
Định lý Kronecker Capelli
Nếu hai ma trận mở rộng của hai hệ phương trình tuyến tính
tương đương hàng với nhau thì hai hệ đó tương đương.
I. Hệ phương trình tuyến tính tổng quát
--------------------------------------------------------------------------------------------------
2. Dùng biến đổi sơ cấp đối với hàng đưa ma trận mở rộng
về ma trận dạng bậc thang. Kiểm tra hệ có nghiệm hay
không
3. Viết hệ phương trình tương ứng với ma trận bậc thang
4. Giải hệ phương trình ngược từ dưới lên, tìm ẩn xn, sau đó
xn-1, ., x1.
Sử dụng biến đổi sơ cấp đối với hàng để giải hệ
1. Lập ra ma trận mở rộng ° ( | )A A b
I. Hệ phương trình tuyến tính tổng quát
----------------------------------------------------------------------------------------------------------------------
Giải các hệ phương trình sau đây với các ma trận mở rộng cho
trước.
1 5 2 6
. 0 4 7 2 ,
0 0 5 0
a
1 1 1 3
. 0 1 2 4 ,
0 0 0 5
b
1 1 1 0
. 0 1 2 5 ,
0 0 0 0
c
1 1 1 0
. 0 3 1 0 .
0 0 0 0
c
Ví dụ
I. Hệ phương trình tuyến tính tổng quát
--------------------------------------------------------------------------------------------------------------------
Ví dụ
5 2 1
4 6
3 3 9
x y z
x y z
x y z
Giải hệ phương trình:
I. Hệ phương trình tuyến tính tổng quát
---------------------------------------------------------------------------------------------------------------------------
3
3 5 9 2
2 3 3
y z
x y z
x y z
Ví dụ
Giải hệ phương trình
I. Hệ phương trình tuyến tính tổng quát
---------------------------------------------------------------------------------------------------------------------------
ẩn cơ sở: 521 ,, xxx ẩn tự do: 43, xx
Nghiệm tổng quát:
1
2
3
4
5
24 2 3
7 2 2
4
x
x
x
x
x
Tìm nghiệm tổng quát của hệ phương trình
Ví dụ
2 3 4 5
1 2 3 4 5
1 2 3 4 5
3 6 6 4 5
3 7 8 5 8 9
3 9 12 9 6 15
x x x x
x x x x x
x x x x x
I. Hệ phương trình tuyến tính tổng quát
---------------------------------------------------------------------------------------------------------------------------
Tìm nghiệm tổng quát của hệ phương trình biết ma trân mở rộng
Ví dụ
1 1 1 1
2 3 4 1
3 4 2 1
I. Hệ phương trình tuyến tính tổng quát
--------------------------------------------------------------------------------------------------------------
Tìm nghiệm tổng quát của hệ phương trình biết ma trận mở rộng
Ví dụ
1 1 2 0
2 1 5 0
3 4 5 0
I. Hệ phương trình tuyến tính tổng quát
-------------------------------------------------------------------------------------------------------------
Tìm nghiệm tổng quát của hệ phương trình biết ma trận mở rộng
Ví dụ
1 1 1 1 2
2 1 3 0 1
3 4 2 2 5
2 3 1 1 3
I. Hệ phương trình tuyến tính tổng quát
---------------------------------------------------------------------------------------------------------------------------
Tìm nghiệm tổng quát của hệ phương trình biết ma trận mở rộng
1 1 2 0 1
2 3 1 2 4
3 4 5 1 3
1 2 3 1 0
Ví dụ
I. Hệ phương trình tuyến tính tổng quát
-------------------------------------------------------------------------------------------------------------
Tìm tất cả các giá trị của tham số m để phương trình sau có nghiệm
Ví dụ
2
1 1 1
1 1 ,
1 1
m
m m
m m
I. Hệ phương trình tuyến tính tổng quát
---------------------------------------------------------------------------------------------------------------------------
1 1 1 1
2 3 1 4
3 4 1m m
Tìm tất cả các giá trị của tham số m để phương trình sau có nghiệm
Example
I. I. Hệ phương trình tuyến tính tổng quát
Ví dụ
Tìm tất cả các giá trị của tham số m để phương trình sau có nghiệm
duy nhất
1 1 1 1 1
2 1 3 1 2
,
3 4 2 0 6
2 1 0 1m m
I. Hệ phương trình tuyến tính tổng quát
---------------------------------------------------------------------------------------------------------------------------
Ví dụ
Tìm tất cả các giá trị của tham số m để phương trình sau có nghiệm
duy nhất
2
2 3 1 4 0
3 2 1 5 7
1 1 1m m
II. Hệ thuần nhất.
---------------------------------------------------------------------------------------------------------------------------
Hệ phương trình tuyến tính được gọi là thuần nhất nếu tất cả
các hệ số tự do b1, b2, , bm đều bằng 0.
Định nghĩa hệ thuần nhất.
Hệ tuyến tính thuần nhất luôn luôn có một nghiệm bằng không
x1 = x2 = = xn = 0.
Nghiệm này được gọi là nghiệm tầm thường.
Hệ thuần nhất chỉ có nghiệm duy nhất bằng không khi và chỉ
khi r (A) = n = số ẩn .
II. Hệ thuần nhất.
---------------------------------------------------------------------------------------------------------------------------
Hệ thuần nhất AX = 0 có nghiệm không tầm thường khi và chỉ
khi r(A) < n.
Hệ thuần nhất AX = 0, với A là ma trận vuông có nghiệm không
tầm thường (nghiệm khác 0) khi và chỉ khi det(A) = 0.
II. Hệ thuần nhất.
---------------------------------------------------------------------------------------------------------------------------
Tìm nghiệm tổng quát của hệ phương trình.
Ví dụ
1 2 3 4
1 2 3 4
1 2 3 4
2 2 0
2 4 3 0
3 6 4 0
x x x x
x x x x
x x x x
II. Hệ thuần nhất.
---------------------------------------------------------------------------------------------------------------------------
Giữa những nghiệm của hệ
Ví dụ
2 0
2 4 0
2 0
x y z
x y z
x y z
tìm nghiệm thỏa biểu thức y – xy = 2z
II. Hệ thuần nhất.
---------------------------------------------------------------------------------------------------------------------------
Giả sử A là ma trận của hệ thuần nhất có 4 phương trình và 8 ẩn,
giả sử có 5 ẩn tự do. Tìm r(A)?
Ví dụ
Giải thích vì sao hệ phương trình thuần nhất có m phương trình,
n ẩn với m < n luôn luôn có vô số nghiệm.
Ví dụ
II. Hệ thuần nhất.
-------------------------------------------------------------------------------------------------------------
Tìm tất cả các gía trị tham số m để hệ sau có nghiệm không tầm
thường
Ví dụ
0
2 3 5 0
3 ( 1) 0
x y z
x y z
x my m z
Các file đính kèm theo tài liệu này:
- bai_giang_dai_so_tuyen_tinh_chuong_3_he_phuong_trinh_tuyen_t.pdf