Bài giảng khoa học quản lý đại cương

LỜI MỞ ĐẦU Để đáp ứng nhu cầu nghiên cứu và học tập cho sinh viên ngành Khoa học quản lý, chúng tôi biên soạn Tập bài giảng Khoa học quản lý đại cương nhằm cung cấp hệ thống tri thức cơ bản, có tính lý luận chung về quản lý. Việc nắm vững các nguyên lý quản lý, quy luật quản lý, các phạm trù và các khái niệm cơ bản của khoa học quản lý sẽ giúp cho sinh viên có những cơ sở lý luận và phương pháp luận để nhận thức một cách đúng đắn các môn học trong khối kiến thức cơ sở cũng như trong khối kiến thức chuyên ngành. Đây là một môn học có tính khái quát hoá và trừu tượng hoá cao, đòi hỏi sinh viên phải được trang bị kiến thức của những môn học cơ bản, đặc biệt là môn Những nguyên lý chung của Chủ nghĩa Mác - Lênin. Kết cấu của tập bài giảng được trình bày bởi các phần và các chương theo logic sau: Phần 1: Tổng quan về Khoa học quản lý Chương 1. Quản lý và môi trường quản lý Chương 2. Quản lý với tư cách là một khoa học Phần 2: Nguyên tắc và phương pháp quản lý Chương 3: Nguyên tắc quản lý Chương 4: Phương pháp quản lý Phần 3: Các chức năng của quy trình quản lý Chương 5: Lập kế hoạch và ra quyết định quản lý Chương 6: Chức năng tổ chức Chương 7: Chức năng lãnh đạo Chương 8: Chức năng kiểm tra Chương 9: Thông tin trong quản lý Tiếp cận và nội dung của tập bài giảng này là có sự kế thừa của các tác giả đi trước, nhưng cũng có những khác biệt đáng kể. Chúng tôi đã cố gắng đầu tư để cho tập bài giảng có chất lượng và phù hợp với sinh viên ngành Khoa học quản lý. Tuy nhiên, công trình này cũng không tránh khỏi nhiều thiếu sót. Chúng tôi rất mong được sự góp ý của các đồng nghiệp và của sinh viên để tiếp tục hoàn thiện với chất lượng cao hơn. Gồm 185 trang

doc80 trang | Chia sẻ: thanhnguyen | Lượt xem: 2156 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Bài giảng khoa học quản lý đại cương, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
c gọi là biến giả(dummy variable), biến nhị phân, biến phân loại hay biến định tính. 4.7.1. Hồi quy với một biến định lượng và một biến phân loại Ví dụ 4.1. Ở ví dụ này chúng ta hồi quy tiêu dùng cho gạo theo quy mô hộ có xem xét hộ đó ở thành thị hay nông thôn. Mô hình kinh tế lượng như sau: Yi = b1 + b2X i+ b3Di + ei(4.19)Y: Chi tiêu cho gạo, ngàn đồng/năm X : Quy mô hộ gia đình, người D: Biến phân loại, D = 1 nếu hộ ở thành thị, bằng D = 0 nếu hộ ở nông thôn. Chúng ta muốn xem xét xem có sự khác biệt trong tiêu dùng gạo giữa thành thị và nông thôn hay không ứng với một quy mô hộ gia đình Xi xác định. Đối với hộ ở nông thôn (4.20) Đối với hộ ở thành thị (4.21) Vậy sự chênh lệch trong tiêu dùng gạo giữa thành thị và nông thôn như sau (4.22) Sự khác biệt trong tiêu dùng gạo giữa thành thị và nông thôn chỉ có ý nghĩa thống kê khi b3 khác không có ý nghĩa thống kê. Chúng ta đã có phương trình hồi quy như sau Y = 187 + 508*X - 557*D (4.23) t-stat [0,5] [6,4] [-2,2] R2 hiệu chỉnh = 0,61 Hệ số hồi quy khác không với độ tin cậy 95%. Vậy chúng ta không thể bác bỏ được sự khác biệt trong tiêu dùng gạo giữa thành thị và nông thôn. Chúng ta sẽ thấy tác động của làm cho tung độ gốc của phuơng trình hồi quy của thành thị và nông thôn sai biệt nhau một khoảng b3 = -557 ngàn đồng/năm. Cụ thể ứng với một quy mô hộ gia đình thì hộ ở thành thị tiêu dùng gạo ít hơn hộ ở nông thôn 557 ngàn đồng/năm.Chúng ta sẽ thấy điều này một cách trực quan qua đồ thị sau: Hình 4.1. Hồi quy với một biến định lượng và một biến phân loại. 4.7.2. Hồi quy với một biến định lượng và một biến phân loại có nhiều hơn hai phân lớp Ví dụ 4.2. Giả sử chúng ta muốn ước lượng tiền lương được quyết định bởi số năm kinh nghiệm công tác và trình độ học vấn như thế nào. Gọi Y : Tiền lương X : Số năm kinh nghiệm D: Học vấn. Giả sử chúng ta phân loại học vấn như sau : chưa tốt nghiệp đại học, đại học và sau đại học. Phuơng án 1: Di = 0 nếu chưa tốt nghiệp đại học Di = 1 nếu tốt nghiệp đại học Di =2 nếu có trình độ sau đại học Cách đặt biến này đưa ra giả định quá mạnh là phần đóng góp của học vấn vào tiền lương của người có trình độ sau đại học lớn gấp hai lần đóng góp của học vấn đối với người có trình độ đại học. Mục tiêu của chúng ta khi đưa ra biến D chỉ là phân loại nên ta không chọn phương án này. Phương án 2: Đặt bộ biến giả D1iD2iHọc vấn 00Chưa đại học 10Đại học 01Sau đại học Mô hình hồi quy Yi = b1 + b2X + b3D1i + b4D2i + ei(4.24) Khai triển của mô hình (4.24) như sau Đối với người chưa tốt nghiệp đại học E(Yi )= b1 + b2X (4.25) Đối với người có trình độ đại học E(Yi )= (b1 + b3)+ b2X3(4.26) Đối với người có trình độ sau đại học E(Yi )= (b1 + b3+ b4 )+ b2X (4.27) 4.7.3. Cái bẩy của biến giả Số lớp của biến phân loạiSố biến giả Trong ví dụ 4.1. 21 Trong ví dụ 4.232 Điều gì xảy ra nếu chúng ta xây dựng số biến giả đúng bằng số phân lớp? Ví dụ 4.3. Xét lại ví dụ 4.1. Giả sử chúng ta đặt biến giả như sau D1iD2iVùng 10Thành thị 01Nông thôn Mô hình hồi quy là Yi = b1 + b2X i+ b3D1i + b4D2i +ei(4.28) Chúng ta hãy xem kết quả hồi quy bằng Excel Coefficients Standard Error t Stat P-value Intercept 2235,533 0 65535 #NUM! X 508,1297 80,36980143 6,322396 1,08E-06 D1 -2605,52 0 65535 #NUM! D2 -2048 0 65535 #NUM! Kết quả hồi quy rất bất thường và hoàn toàn không có ý nghĩa kinh tế. Lý do là có sự đa cộng tuyến hoàn hảo giữa D1, D2 và một biến hằng X2 =-1. D1i + D2i + X2 = 0 . Hiện tượng đa cộng tuyến hoàn hảo này làm cho hệ phương trình chuẩn không có lời giải. Thực tế sai số chuẩn tiến đến vô cùng chứ không phải tiến đến 0 như kết quả tính toán của Excel. Hiện tượng này được gọi là cái bẩy của biến giả. Quy tắc: Nếu một biến phân loại có k lớp thì chỉ sử dụng (k-1) biến giả. 4.7.4. Hồi quy với nhiều biến phân loại Ví dụ 4.4. Tiếp tục ví dụ 4.2. Chúng ta muốn khảo sát thêm có sự phân biệt đối xử trong mức lương giữa nam và nữ hay không. Đặt thêm biến và đặt lại tên biến GTi: Giới tính, 0 cho nữ và 1 cho nam. TL : Tiền lương KN: Số năm kinh nghiệm làm việc ĐH: Bằng 1 nếu tốt nghiệp đại học và 0 cho chưa tốt nghiệp đại học SĐH: Bằng 1 nếu có trình độ sau đại học và 0 cho chưa. Mô hình hồi quy TLi = b1 + b2KNi + b3ĐHi + b4SĐHi +b5GTi+ ei(4.29) Chúng ta xét tiền lương của nữ có trình độ sau đại học E(TLi /SĐH=1∩GT=0)= (b1 + b4)+ b2KNi 4.7.5. Biến tương tác Xét lại ví dụ 4.1. Xét quan hệ giữa tiêu dùng gạo và quy mô hộ gia đình.Để cho đơn giản trong trình bày chúng ta sử dụng hàm toán như sau. Nông thôn: Y = a1 + b1X Thành thị: Y = a2 + b2X D : Biến phân loại, bằng 1 nếu hộ ở thành thị và bằng 0 nếu hộ ở nông thôn. Có bốn trường hợp có thể xảy ra như sau a1=a2 và b1= b2, hay không có sự khác biệt trong tiêu dùng gạo giữa thành thị và nông thôn. Mô hình : Y = a + b X Trong đó a1=a2 = a và b1= b2 = b. a1≠a2 và b1= b2, hay có sự khác biệt về tung độ gốc Mô hình: Y = a + bX + cD Trong đó a1 = a, a2 = a + c và b1 = b2 = b. a1=a2 và b1≠ b2, hay có sự khác biệt về độ dốc Mô hình: Y = a + bX + c(DX) Trong đó DX = X nếu nếu D =1 và DX = 0 nếu D = 0 a1 = a2 = a , b1 = b và b2 = b + c. a1≠a2 và b1≠ b2, hay có sự khác biệt hoàn toàn về cả tung độ gốc và độ dốc. Mô hình: Y = a + bX + cD + d(DX) a1 = a , a2 = a + c, b1 = b và b2 = b + d. Quy mô hộ, X a. Mô hình đồng nhất a1=a2 b1 = b2 Tiêu dùng gạo, Y Tiêu dùng gạo, Y Quy mô hộ, X b. Mô hình song song a1 a2 b1 = b2 Quy mô hộ, X d. Mô hình phân biệt Tiêu dùng gạo, Y Tiêu dùng gạo, Y a1=a2 b1 b2 1 a2 a1 b1 b2 Quy mô hộ, X c. Mô hình đồng quy Hình 4.2. Các mô hình hồi quy Biến DX được xây dựng như trên được gọi là biến tương tác. Tổng quát nếu Xp là một biến định lượng và Dq là một biến giả thì XpDq là một biến tương tác. Một mô hình hồi quy tuyến tổng quát có thể có nhiều biến định lượng, nhiều biến định tính và một số biến tương tác. CHƯƠNG 5 GIỚI THIỆU MỘT SỐ VẤN ĐỀ LIÊN QUAN ĐẾN MÔ HÌNH HỒI QUY Đa cộng tuyến Bản chất của đa cộng tuyến Đa cộng tuyến hoàn hảo: Các biến X1, X2,…,Xk được gọi là đa cộng tuyến hoàn hảo nếu tồn tại l1, l2, …,lk không đồng thời bằng không sao cho l1X1 + l2X2 + … + lkXk =0(5.1) Hiện tượng đa cộng tuyến hoàn hảo thường xảy do nhầm lẫn của nhà kinh tế lượng như trường hợp cái bẩy của biến giả mà chúng ta đã xem xét ở mục 4.7.3 chương 4. Hiện tượng đa cộng tuyến mà chúng ta xét trong kinh tế lượng được hiểu với nghĩa rộng hơn đa cộng tuyến hoàn hảo như điều kiện (5.1). Các biến X1, X2,…,Xk được gọi là đa cộng tuyến không hoàn hảo nếu tồn tại l1, l2, …,lk sao cho l1X1 + l2X2 + … + lkXk + e =0(5.2) với e là sai số ngẫu nhiên. Chúng ta có thể biểu diễn biến Xi theo các biến còn lại như sau với li ≠ 0.(5.3) Vậy hiện tượng đa cộng tuyến xảy ra khi một biến là sự kết hợp tuyến tính của các biến còn lại và một nhiễu ngẫu nhiên. Một số nguyên nhân gây ra hiện tượng đa cộng tuyến Khi chọn các biến độc lập mối quan có quan hệ nhân quả hay có tương quan cao vì đồng phụ thuộc vào một điều kiện khác. Ví dụ số giường bệnh và số bác sĩ nếu đồng thời là biến độc lập của một hồi quy thì sẽ gây ra hiện tượng đa cộng tuyến gần hoàn hảo. Khi số quan sát nhỏ hơn số biến độc lập. Một ví dụ điển hình là một nghiên cứu y khoa trên một số lượng nhỏ bệnh nhân nhưng lại khảo sát quá nhiều nhân tố tác động lên hiệu quả điều trị. Cách thu thập mẫu. Ví dụ chỉ thu thập mẫu trên một số lớp giới hạn của tổng thể. Chọn biến Xi có độ biến thiên nhỏ. Hệ quả của đa cộng tuyến Ví dụ 5.1 Ví dụ này lấy từ William E.Griffiths et al, Learning and Practicing Econometrics, John Wiley&Sons Inc, 1998, trang 433. . Nghiên cứu của Klein và Golberger(1995) về quan hệ giữa tiêu dùng nội địa C, thu nhập từ lương W, thu nhập khác phi nông nghiệp P và thu nhập từ nông nghiệp A của nền kinh tế Hoa Kỳ từ năm 1928 đến 1950, với số liệu của các năm 1942 đến 1944 bị loại ra khỏi dữ liệu. Klein và Golberger thực hiện hồi quy tiêu dùng nội địa theo ba loại thu nhập như sau Ct = b1 + b2Wt + b3Pt + b4A + et(5.4) Hồi quy này có thể gặp phải hiện tượng đa cộng tuyến vì các loại thu nhập có xu hướng cùng tăng theo sự phát triển của nền kinh tế. Năm C W P A 1928 52,8 39,21 17,73 4,39 1929 62,2 42,31 20,29 4,60 1930 58,6 40,37 18,83 3,25 1931 56,6 39,15 17,44 2,61 1932 51,6 34,00 14,76 1,67 1933 51,1 33,59 13,39 2,44 1934 54 36,88 13,93 2,39 1935 57,2 39,27 14,67 5,00 1936 62,8 45,51 17,20 3,93 1937 65 46,06 17,15 5,48 1938 63,9 44,16 15,92 4,37 1939 67,5 47,68 17,59 4,51 1940 71,3 50,79 18,49 4,90 1941 76,6 57,78 19,18 6,37 1945 86,3 78,97 19,12 8,42 1946 95,7 73,54 19,76 9,27 1947 98,3 74,92 17,55 8,87 1948 100,3 74,01 19,17 9,30 1949 103,2 75,51 20,20 6,95 1950 108,9 80,97 22,12 7,15 Bảng 5.1. Số liệu thu nhập và tiêu dùng của nền kinh tế Hoa Kỳ Kết quả hồi quy như sau =8,133 +1,059W +0,452P +0,121A(5.5) t-Stat(0,91)(6,10)(0,69)(0,11) Khoảng 95%(-10,78;27,04)(0,69;1,73)(-0,94;1,84)(-2,18;2,43) R2 = 0,95F = 107,07 > F(3,16,99%) = 5,29. Mô hình này có tính giải thích cao thể hiện qua R2 rất cao và thống kê F cao. Tuy nhiên một số hệ số lại không khác không với ý nghĩa thống kê thể hiện qua t-stat thấp, nghĩa là ước lượng khoảng cho các hệ số chứa 0. W với hệ số có t-stat lớn thì ý nghĩa kinh tế lại rất lạ: nếu thu nhập từ lương tăng 1 USD thì tiêu dùng tăng 1,059 USD. Để tìm hiểu lý do gây ra hiện tượng trên chúng ta phải dùng lý thuyết của đại số ma trận, ở đây chỉ minh hoạ bằng mô hình hồi quy ba biến. Phương sai của ước lượng hệ số b2 là Khi X2 và X3 có hiện tượng cộng tuyến thì cao làm cho phương sai của ước lượng b2 cao. Ước lượng b2 theo phương pháp bình phương tối thiểu trở nên không hiệu quả. Hệ quả của đa cộng tuyến Ước lượng các hệ số không hiệu quả do phương sai của ước lượng lớn. Mô hình có đa cộng tuyến có t-stat nhỏ và một số hệ số của thể có dấu trái với lý thuyết hay có giá trị không phù hợp. R2 thể hiện độ phù hợp của dữ liệu và F thể hiện ý nghĩa chung của các hệ số có thể rất cao. Giá trị ước lượng của các hệ số rất nhạy cảm đối với việc tăng hoặc bớt một hoặc quan sát hoặc loại bỏ biến có mức ý nghĩa thấp. Mặc dù việc phân tích tác động riêng phần của một biến khó khăn nhưng tính chính xác của dự báo có thể vẫn cao khi bản chất của đa cộng tuyến vẫn không đổi đối với quan sát mới. Biện pháp khắc phục Nếu mục tiêu của phân tích hồi quy là dự báo thì trong một số trường hợp chúng ta không cần khắc phục hiện tượng đa cộng tuyến. Nếu mục tiêu của phân tích là xét tác động riêng phần của từng biến số lên biến phụ thuộc để quyết định chính sách thì đa cộng tuyến trở thành một vấn đề nghiêm trọng. Sau đây là một số biện pháp khắc phục. Dùng thông tin tiên nghiệm. Ví dụ khi hồi quy hàm sản xuất Cobb-Douglas Ln(Yi)=b1 + b2ln(Ki)+ b3ln(Li) + ei (5.6) Chúng ta có thể gặp hiện tượng đa cộng tuyến do K và L cùng tăng theo quy mô sản xuất. Nếu ta biết là hiệu suất không đổi theo quy mô thì ta có thêm thông tin b2+b3=1. Với thông tin tiên nghiệm này chúng ta chuyển mô hình hồi quy (5.6) thành Ln(Yi)=b1 + b2ln(Ki)+ (1-b2)ln(Li) + ei (5.7) Bỏ đi một biến có đa cộng tuyến. Đây là cách làm đơn giản nhất. Ví dụ trong mô hình có biến giải thích là số bác sĩ và số giường bệnh thì ta có thể bỏ đi biến số giường bệnh. Nếu biến bị bỏ đi thực sự cần phải có trong mô hình thì chúng ta lại gặp phải một vấn đề khác, đó là ước lượng chệch đối với các hệ số còn lại. Vấn đề này chúng ta sẽ tiếp tục xem xét ở cuối chương. Chuyển dạng dữ liệu Giả sử chúng ta hồi quy trên dữ liệu chuỗi thời gian Yt = b1 + b2X2t + b3X3t + et(5.8) Và chúng ta gặp phải hiện tượng đa cộng tuyến do X1t và X3t có thể cùng tăng hoặc giảm theo từng năm. Ta có thể tối thiểu tác động đa cộng tuyến này bằng kỹ thuật hồi quy trên sai phân bậc nhất như sau: Ta có Yt-1 = b1 + b2X2,t-1 + b3X3,t-1 + et-1(5.9) Từ (5.8) và (5.9) ta xây dựng mô hình hồi quy (Yt -Yt-1 )= b2(X2t-X2,t-1) + b3(X3t- 3X3,t-1 )+ nt(5.10) Với nt= et-et-1. Một vấn đề mới nảy sinh là nt có thể có tính tương quan chuỗi, và như thế không tuân theo giả định của mô hình hồi quy tuyến tính cổ điển. Nếu hiện tượng tương quan chuỗi là nghiêm trọng thì mô hình (5.10) còn kém hơn cả mô hình (5.8). Tăng thêm quan sát. Giải pháp này thích hợp cho hiện tượng đa cộng tuyến do cỡ mẫu nhỏ. Đôi khi chỉ cần tăng thêm một số quan sát là ta khắc phục được hiện tượng đa cộng tuyến. Một lần nữa chúng ta lại có sự đánh đổi. Tăng dữ liệu đôi khi đồng nghĩa với việc tăng chi phí, nhất là đối với dữ liệu sơ cấp. Mặt khác nếu là dữ liệu không có kiểm soát, chúng ta phải biết chắc rằng các điều kiện khác tương tự với khi ta thu thập dữ liệu gốc. Khắc phục hiện tượng đa cộng tuyến đòi hỏi các kỹ thuật phức tạp và đôi khi cũng không mang lại hiệu quả như ta mong muốn. Mặt khác, hầu hết các mô hình hồi quy bội đều có tính cộng tuyến nhất định nên chúng ta phải cẩn thận trong việc xây dựng mô hình và giải thích kết quả. Chúng ta sẽ nghiên cứu nguyên tắc xây dựng mô hình ở cuối chương. Phương sai của sai số thay đổi - HETEROSKEDASTICITY Bản chất của phương sai của sai số thay đổi Giả định của mô hình hồi quy tuyến tính cổ điển là phương sai của sai số hồi quy không đổi qua các quan sát. Trong thực tế sai số hồi quy có thể tăng lên hoặc giảm đi khi giá trị biến độc lập X tăng lên. Tổng quát, thay cho giả định chúng ta giả định (5.11) Thường gặp phương sai không đồng nhất ở dữ liệu chéo và dữ liệu bảng. Nguyên nhân phương sai không đồng nhất rất đa dạng, sau đây là một số trường hợp điển hình: Gọi Y là số phế phẩm trong 100 sản phẩm của một thợ học việc, X là số giờ thực hành. Khi số giờ thực hành càng lớn thì số phế phẩm càng nhỏ và càng ít biến động. Chúng ta có trường hợp phương sai giảm dần khi X tăng dần. Khi thu nhập(X) tăng thì chi tiêu cho các mặt hàng xa xỉ tăng và mức biến động càng lớn. Chúng ta có trường hợp phương sai tăng dần khi X tăng dần. Khi cải thiện phương pháp thu thập số liệu thì phương sai giảm. Phương sai của sai số tăng do sự xuất hiện của điểm nằm ngoài, đó là các trường hợp bất thường với dữ liệu rất khác biệt(rất lớn hoặc rất nhỏ so với các quan sát khác). Phương sai thay đổi khi không xác đúng dạng mô hình, nếu một biến quan trọng bị bỏ sót thì phương sai của sai số lớn và thay đổi. Tình trạng này giảm hẳn khi đưa biến bị bỏ sót vào mô hình. Hệ quả của phương sai thay đổi khi sử dụng ước lượng OLS Xét hồi quy Yi = b1 + b2X i+ ei(5.12) với Sử dụng phương pháp bình phương tối thiểu thông thường (OLS) chúng ta có (5.13) vậy ước lượng theo OLS không chệch. Chúng ta không chưa rõ là OLS có cho ước lượng hiệu quả hay không. Ước lượng bình phương tối thiểu có trọng số (WLS) Đặt , chia hai vế của (5,12) cho wi chúng ta có mô hình hồi quy (5.14) Ta viết lại mô hình (5.13) như sau (5.15) Mô hình (5.14) không có tung độ gốc và phương sai đồng nhất. Vậy ước lượng hệ số của (5.15) theo OLS là ước lượng hiệu quả(BLUE). Kết quả ước lượng b2 của (5.15) theo OLS như sau (5.16) Ước lượng (5.16) hoàn toàn khác với (5.13). Chúng ta biết ước lượng theo WLS (5.16) là ước lượng hiệu quả vậy ước lượng theo OLS (5.13) là không hiệu quả. Phương sai đúng của hệ số ước lượng b2 là nhưng các phần mềm máy tính báo cáo phương sai là . Từ phương sai của sai số bị tính sai này các trị thống kê t-stat và sai số chuẩn của hệ số ước lượng phần mềm cung cấp là vô dụng. Tóm lại, với sự hiện diện của phương sai của sai số thay đổi mặc dù ước lượng các hệ số theo OLS vẫn không chệch nhưng ước lượng không hiệu quả và các trị thống kê như t-stat không chính xác. Phát hiện và khắc phục Phát hiện phương sai của sai số thay đổi. Phương pháp đồ thị. Xét đồ thị của phần dư theo giá trị Y và X. Hình 5.1. Đồ thị phân tán phần dư ei theo . Hình 5.2. Đồ thị phân tán phần dư ei theo Xi Theo các đồ thị trên thì khi giá trị dự báo Y tăng (hoặc khi X tăng) thì phần dư có xu hướng tăng, hay mô hình có phương sai của sai số thay đổi. Các phép thử chính thức Xét hồi quy bội (5.17) Trong (k-1) biến độc lập trên ta trích ra (p-1) biến làm biến độc lập cho một hồi quy phụ. Trong hồi quy phụ này phần dư từ hồi quy mô hình(5.17) làm hồi quy biến phụ thuộc. Các dạng hồi quy phụ thường sử dụng là (5.18) (5.19) (5.20) Kiểm định Breusch-Pagan căn cứ vào hồi quy phụ (5.18), kiểm định Glejser căn cứ vào (5.19) và kiểm định Harvey-Godfrey căn cứ vào (5.20). Giả thiết không là không có phương sai không đồng nhất H0 : a2 = a3 = … = ap = 0 H1 : Không phải tất cả các hệ số trên đều bằng 0. R2 xác định từ hồi quy phụ, n là cỡ mẫu dùng để xây dựng hồi quy phụ, với cỡ mẫu lớn thì nR2 tuân theo phân phối Chi bình phương với (p-1) bậc tự do. Quy tắc quyết định Nếu thì bác bỏ H0. Nếu bác bỏ được H0 thì chúng ta chấp nhận mô hình có phương sai của sai số thay đổi và thực hiện kỹ thuật ước lượng mô hình như sau: Đối với kiểm định Breusch-Pagan Đối với kiểm định Glejser Đối với kiểm định Harvey-Godfrey Ta có. Đến đây chúng ta có thể chuyển dạng hồi quy theo OLS thông thường sang hồi quy theo bình phương tối thiểu có trọng số WLS. 5.3. Tự tương quan (tương quan chuỗi) Trong mô hình hồi quy tuyến tính cổ điển chúng ta giả định không có tương quan giữa các phần dư hay E(eiej) = 0 với mọi i, j. Trong thực tế đối với dữ liệu chuỗi thời gian, giả định này hay bị vi phạm. Một lý do nôm na là biến số kinh tế có một quán tính(sức ỳ) nhất định. Ví dụ sự tăng cầu một loại hàng hóa của năm nay sẽ làm tăng lượng cung nội địa của hàng hoá đó vào năm sau, đây là tác động trễ của biến độc lập hay biến phụ thuộc thời kỳ t chịu tác động của biến độc lập ở thời kỳ t-1. Đôi khi nền kinh tế lại phản ứng quá nhạy với sự thay đổi. Ví dụ giá mía cao ở năm nay sẽ làm cho nông dân đổ xô trồng mía, sản lượng mía năm sau tăng vọt làm giảm giá mía ở năm sau, đây là tác động trễ của biến phụ thuộc hay giá trị biến phụ thuộc thời kỳ t chịu ảnh hưởng của giá trị biến phụ thuộc thời kỳ t-1. Hiện tượng tự tương quan làm cho E(eiej) ≠ 0 và gây ra các hậu quả sau Ước lượng theo OLS không chệch nhưng không hiệu quả Các trị thống kê tính theo OLS không hữu ích trong việc nhận định mô hình. Chúng ta có thể phát hiện hiện tượng tự tương quan bằng cách quan sát đồ thị phần dư của mô hình trên dữ liệu chuỗi thời gian. Hình 5.3. Tương quan chuỗi nghịch Hình 5.4. Tương quan chuỗi thuận Chúng ta sẽ tiếp tục làm việc với dữ liệu chuỗi và xử lý hiện tượng tự tương quan ở phần sau của giáo trình liên quan đến các mô hình dự báo. Lựa chọn mô hình Một yếu tố quan trọng đầu tiên để chọn đúng mô hình hồi quy là chọn đúng dạng hàm. Để chọn đúng dạng hàm chúng ta phải hiểu ý nghĩa và mối quan hệ kinh tế của các biến số. Ý nghĩa của một số loại hàm thông dụng đã được trình bày ở mục 3.8.2 chương 3. Ở phần này chúng ta xét hậu quả của một số dạng xây dựng mô hình sai và chiến lược xây dựng mô hình kinh tế lượng. Chúng ta cũng không đi sâu vào chứng minh các kết quả. 5.4.1. Thiếu biến có liên quan và chứa biến không liên quan. Xét hai hồi quy sau (5.21) và (5.22) Mô hình (5.21) có các trị thông kê tương ứng có ký hiệu R và mô hình (5.22) có các trị thống kê tương ứng có ký hiệu U. Có hai trường hợp xảy ra: Trường hợp 1: Nếu mô hình (5.22) là đúng nhưng chúng ta chọn mô hình (5.21) nghĩa là chúng ta bỏ sót L biến quan trọng (XK+1,..XK+L). Hậu quả là ước lượng các hệ số cho K-1 biến độc lập còn lại bị chệch, mô hình kém tính giải thích cho cả mục tiêu dự báo vào phân tích chính sách. Trường hợp 2: Nếu mô hình (5.21) là đúng nhưng chúng ta chọn mô hình (5.22), nghĩa là chúng ta đưa vào mô hình các biến không liên quan. Hậu quả là ước lượng hệ số cho các biến quan trọng vẫn không chệch nhưng không hiệu quả. 5.4.2. Kiểm định so sánh mô hình (5.21) và (5.22) - Kiểm định Wald Chúng ta muốn kiểm định xem L biến (XK+1,..XK+L) có đáng được đưa vào mô hình hay không. H0: Trị thống kê Quy tắc quyết dịnh: Nếu thì ta bác bỏ H0 hay chấp nhận L biến (XK+1,..XK+L) xứng đáng được đưa vào mô hình. 5.4.3. Hai chiến lược xây dựng mô hình Có hai chiến lược xây dựng mô hình kinh tế lượng là: Xây dựng mô hình từ đơn giản đến tổng quát: chứa tất cả các biến có liên quan trong mô hình và loại bỏ dần những biến ít ý nghĩa thống kê nhất cho đến khi nhận được mô hình “tốt nhất”. Xây dựng mô hình tổng quát đến đơn giản : Xuất phát từ biến độc lập có quan hệ kinh tế trực tiếp nhất với biến phụ thuộc, tiếp tục bổ sung biến mới cho đến khi nhận được mô hình “tốt nhất”. Mỗi cách làm đều có những ưu và nhược điểm. Hiện nay với công cụ máy vi tính, người ta không còn ngại tính toán trên mô hình lớn và nhiều nhà kinh tế lượng cho rằng xây dựng mô hình từ tổng quát đến đơn giản thì hiệu quả hơn từ đơn giản đến tổng quát. Nét chung của cả hai chiến lược này là ở từng bước đều phải thực hiện kiểm định Wald. CHƯƠNG 6 DỰ BÁO VỚI MÔ HÌNH HỒI QUY (Đọc thêm) PHÂN LOẠI CÁC PHƯƠNG PHÁP DỰ BÁO Có hai nhóm phương pháp dự báo chính là nhóm định tính và nhóm định lượng. Trong giáo trình này chúng ta chủ yếu sử dụng phương pháp định lượng có kết hợp với các phán đoán định tính để dự báo. Các phương pháp dự báo định tính Các phương pháp dự báo định tính dựa vào phán đoán chủ quan và trực giác để đưa ra dự báo thay cho vì dựa vào các số liệu quá khứ. Phương pháp dự báo định tính hữu ích cho việc dự báo toàn cục và một số trường hợp mà số liệu quá khứ không hữu ích cho dự báo. Các phương pháp dự báo định lượng Các kỹ thuật dự báo định lượng dựa vào việc phân tích số liệu quá khứ để đưa ra dự báo. Giả định của phương pháp này là các nhân tố từng tác động lên biến được dự báo trong quá khứ vẫn tiếp tục ảnh hưởng đến biến này trong tương lai. Vậy dựa vào diễn biến dữ liệu trong quá khứ ta có thể dự báo cho tương lai. Các phương pháp dự báo định lượng lại được chia thành hai nhóm chính: dự báo định lượng mang tính nhân quả và dự báo định lượng mang tính thống kê. Các phương pháp dự báo định lượng mang tính nhân quả Đại diện của nhóm phương pháp này là phân tích hồi quy. Mô hình dự báo có hai nhóm biến số: các biến số được dự báo được gọi là biến độc lập, các biến số dùng để dự báo được gọi là biến phụ thuộc. Chúng ta đã nghiên cứu mô hình hồi quy ở phần 1, nay chúng ta tiếp tục nghiên cứu việc áp dụng mô hình hồi quy cho dự báo và một số kỹ thuật phân tích hồi quy với dữ liệu chuỗi thời gian. Các phương pháp dự báo định lượng mang tính thống kê Nhóm các phương pháp dự báo mang tính thống kê chỉ quan tâm đến quy luật biến thiên của biến cần dự báo trong quá khứ để dưa ra dự báo. Biến thiên của một biến số kinh tế được chia thành các thành phần: xu hướng, chu kỳ, thời vụ và ngẫu nhiên. Nhóm các phương pháp dự báo mang tính thống kê lại chia thành hai nhóm chính. Nhóm thứ nhất phân tích một thành phần hoặc kết hợp một số thành phần riêng biệt nêu trên như: đường xu hướng, san bằng số mũ, trung bình động. Nhóm thứ hai sử dụng các khái niệm thống kê về dữ liệu chuỗi thời gian mà không chia biến động của dữ liệu thành các thành phần riêng biệt như ở phương pháp luận Box-Jenkins. 6.1. Dự báo với mô hình hồi quy thông thường Mô hình hồi quy (6.1) Chỉ số t chỉ thời kỳ thứ t. Giả sử mô hình này thoả mãn các điều kiện của phương pháp ước lượng theo bình phương tối thiểu. Các tham số ước lượng từ mô hình tương ứng là . Ước đoán tốt nhất cho Yt+1 khi biết các Xi,t+1 là: (6.2) Độ lệch chuẩn của ước lượng là Đối với hồi quy hai biến (6.3) Đối với hồi quy bội: công thức rất phức tạp và nằm ngoài phạm vi giáo trình này. 6.2. Tính chất “trễ” của dữ liệu chuỗi thời gian và hệ quả của nó đến mô hình Khi chúng ta sử dụng mô hình (6.1) chúng ta giả định rằng các biến độc lập tác động tức thì lên biến phụ thuộc và biến phụ thuộc chỉ chịu tác động của biến độc lập. Đối với các biến số kinh tế các giả định này thường không đúng. Tác động của biến độc lập có thành phần tác động tức thời và có thành phần tác động trễ. Mặt khác, đôi khi bản thân biến phụ thuộc cũng có “quán tính” hay “sức ỳ” của nó. Có ba nguyên nhân gây ra “độ trễ” hay “sức ỳ” trong kinh tế là Nguyên nhân tâm lý Khi thu nhập của một người giảm tiêu dùng của người đó có thể không giảm ngay lập tức do thói quen duy trì mức sống cao. Nếu tình hình thu nhập vẫn không phục hồi trong thời gian dài, anh ta phải học cách chi tiêu tiết kiệm hơn. Nguyên nhân kỹ thuật Giả sử cầu nội địa đối với một mặt hàng tăng lên làm giá một mặt hàng này tăng. Sản lượng nội địa có thể không tăng tức thời vì để tăng sản lượng cần phải có thời gian xây dựng nhà máy, đầu tư máy móc thiết bị và đào tạo công nhân. Doanh nghiệp còn phải phân tích xem sự tăng cầu nội địa này có mang tính chất lâu dài hay chỉ là tức thời. Nguyên nhân định chế Các ràng buộc pháp lý là nguyên nhân của một số hiện tượng tác động trễ. Ví dụ nếu hợp đồng tài trợ Giải bóng đá chuyên nghiệp Việt Nam đã được ký kết có hiệu lực 2 năm thì Liên đoàn Bóng đá Việt Nam không thể huỷ hợp đồng để ký lại với một đối tác khác có số tiền tài trợ cao hơn. Giả sử số tiền tài trợ phụ thuộc tầm ảnh hưởng của giải đấu lên công chúng thể hiện qua số lượt khán giả đến sân và số lượt khán giả theo dõi qua truyền hình. Số khán giả đến sân tăng lên chỉ có thể tác động làm tăng số tiền tài trợ của lần ký kết ở 2 năm sau. Khi có tính chất “trễ” nêu trên của dữ liệu chuỗi thời gian, mô hình (6.1) có sai số hồi quy không thỏa mãn các điều kiện của mô hình hồi quy tuyến tính cổ điển.(Tại sao?). Từ đó dự báo theo (6.2) sẽ không chính xác. 6.3. Mô hình tự hồi quy (6.4) Mô hình (6.4) còn được gọi là mô hình động vì nó thể hiện mối liên hệ giữa giá trị của biến phụ thuộc với giá trị quá khứ của nó. 6.4. Mô hình có độ trễ phân phối (6.5) Trong mô hình này k được gọi là độ trễ. Chúng ta phải xác định độ trễ k. 6.4.1. Cách tiếp cận của Alt và Tinberger F.F.Alt, “Distribution Lags”, Economitrica, quyển 10,1942, trang 113-128. (Theo D.N.Gujarati, Basis Econometrics 3rd Edition, 1995, trang 591). : Vì Xt là xác định và không tương quan với et nên Xt-1,Xt-2, …, Xt-k đều xác định và không tương quan với et. Do đó chúng ta có thể áp dụng OLS để ước lượng tham số cho mô hình (6.5). Chúng ta sẽ xác định k bằng cách tăng dần độ trễ như sau: Hồi quy Yt theo Xt Hồi quy Yt theo Xt và Xt-1… (k) Hồi quy Yt theo Xt, Xt-1, …, Xt-k (k+1) Hồi quy Yt theo Xt, Xt-1, …, Xt-(k+1) Quá trình này dừng ở độ trễ (k+1) hoặc (k+2) khi chúng ta nhận thấy các hệ số ứng với các biến trễ không có ý nghĩa thống kê hoặc đổi dấu. Quá trình trên vướng phải bốn nhược điểm như sau: Không có tiên liệu trước là độ trễ sẽ là bao nhiêu. Mô hình có thêm một độ trễ thì mất đi một bậc tự do, nếu dữ liệu chuỗi thời gian không đủ dài thì ý nghĩa thống kê của mô hình ngày càng kém. Các biến giải thích thực chất là giá trị của một biến X theo thời gian, điều này gây ra sự tương quan giữa các biến giải thích trong mô hình, tức là có hiện tượng đa cộng tuyến. Ước lượng các tham số của mô hình trong trường hợp có đa cộng tuyến sẽ cho kết quả kém chính xác. Việc xác định độ trễ k của mô hình (6.5) theo cách thức trên là một dạng của “đào mỏ dữ liệu”. 6.4.2. Mô hình Koyck Giả định: Tất cả các hệ số ứng với biến trễ có cùng dấu Các hệ số tuân theo cấp số nhân giảm dần: với 0 < l < 1. Chúng ta viết lại mô hình (6.5) như sau (6.6) Tương tự (6.7) Nhân (6.7) với l (6.8) Lấy (6.6) trừ (6.7) (6.9) Kết quả cuối cùng (6.10) Với , còn được gọi là trung bình trượt của et và et-1. Mô hình (6.10) được gọi là mô hình chuyển dạng Koyck. Chúng ta đã chuyển mô hình trễ phân phối thành mô hình tự hồi quy. 6.4.3. Mô hình kỳ vọng thích nghi Giả sử mô hình xác định cầu tiền có dạng như sau P.Cagan, “The Monetary Dynamics of Hyperinflations”, in M.Friedman (ed.), “Studies in the Quantity Theory of Money”, University of Chicago Press, 1956. (6.11) Y : Cầu tiền X*: Giá trị kỳ vọng Giá trị kỳ vọng ở đây mang ý nghĩa giá trị được mong đợi, không mang ý nghĩa giá trị trung bình thực. của lãi suất danh nghĩa e: Sai số hồi quy Lãi suất kỳ vọng của năm nay(năm t) không thể quan sát được một cách trực tiếp mà được xác định như sau với 0 < l ≤ 1. Biểu thức này hàm ý kỳ vọng của người ta thay đổi(thích hợp) theo lãi suất thực tế, hay nói cách khác người ta học hỏi từ sai lầm. (6.12) Thay (6.12) vào (6.11) Qua một số phép biến đổi tương tự như mô hình Koyck ta có (6.13) Với 6.4.4. Mô hình hiệu chỉnh từng phần Mô hình hiệu chỉnh từng phần phù hợp với phân tích hồi quy có độ trễ do lý do kỹ thuật và định chế. Giả sử mức đầu tư tư bản tối ưu ứng với một mức sản lượng X cho trước là Y*. Mô hình hồi quy đơn giản Y* theo X như sau: (6.14) Thực tế chúng ta không trực tiếp quan sát được . Giả định được xác định như sau: với 0 < d ≤ 1. (6.15) Trong đó : Thay đổi lượng tư bản thực tế, cũng chính là đầu tư trong kỳ : Thay đổi lượng tư bản mong muốn Từ (6.14) và(6.15) sau một vài phép biến đổi chúng ta nhận được (6.17) Một lần nữa chúng ta lại nhận được mô hình tự hồi quy. 6.5. Ước lượng mô hình tự hồi quy Trong cả ba mô hình vừa xét, chúng ta đều nhận được mô hình cuối cùng có dạng tự hồi quy. Koyck: (6.18) Kỳ vọng thích nghi (6.19) Hiệu chỉnh từng phần (6.20) Dạng chung của ba mô hình này là (6.21) Có hai vấn đề cần lưu tâm đối với mô hình (6.21): Thứ nhất, có sự hiện diện của biến ngẫu nhiên trong các biến độc lập, đó là Yt-1. Điều này vi phạm điều kiện của mô hình hồi quy tuyến tính cổ điển. Thứ hai, có khả năng xảy ra hiện tượng tương quan chuỗi. Để tránh các hệ quả bất lợi do Yt-1 gây ra người ta sử dụng một biến thay thế cho Yt-1 với đặc tính biến này tương quan mạnh với Yt-1 nhưng không tương quan với Xt. Biến độc lập có đặc tính vừa kể được gọi là biến công cụ N.Levitan có đề xuất dùng Xt-1 làm biến công cụ cho Yt-1 và dề xuất một hệ phương trình chuẩn đặc biệt cho ước lượng hệ số, nhưng vấn đề đa cộng tuyến của mô hình cũng không được khắc phục triệt để. (Theo Gujarati, Basic Econometrics, 3rd Edition,Mc Graw-Hill Inc,1995, trang 604-605). . 6.6. Phát hiện tự tương quan trong mô hình tự hồi quy Trị thống kê h (6.22) Trong đó: n = cỡ mẫu; = phương sai hệ số ước lượng của Yt-1. là hệ số tự tương quan mẫu bậc nhất được xác định từ công thức (6.23) h có phân phối chuẩn hoá tiệm cận. Từ phân phối chuẩn hoá chúng ta có P(-1,96 < h < 1,96) = 0,95 Quy tắc quyết định: Nếu h < -1,96, chúng ta bác bỏ H0 cho rằng mô hình không có tự tương quan bậc 1 nghịch. Nếu h > 1,96, chúng ta bác bỏ H0 cho rằng mô hình không có tự tương quan bậc 1 thuận. Nếu -1,96 < h < 1,96: chúng ta không thể bác bỏ H0 cho rằng không có tự tương quan bậc nhất. CHƯƠNG 7 CÁC MÔ HÌNH DỰ BÁO MANG TÍNH THỐNG KÊ (Tham khảo) 7.1. Các thành phần của dữ liệu chuỗi thời gian Các thành phần chính của dữ liệu chuỗi thời gian là Xu hướng Chu kỳ Thời vụ Ngẫu nhiên 7.1.1. Xu hướng dài hạn Xu hướng dài hạn thể hiện sự tăng trưởng hoặc giảm sút của một biến số theo thời gian với khoảng thời gian đủ dài. Một số biến số kinh tế có xu hướng tăng giảm dài hạn như Tốc độ tăng dân số của Việt Nam có xu hướng giảm. Tỷ trọng nông nghiệp trong GDP của Việt Nam có xu hướng giảm. Mức giá có xu hướng tăng. 7.1.2. Chu kỳ Các số liệu kinh tế vĩ mô thường có sự tăng giảm có quy luật theo chu kỳ kinh tế. Sau một thời kỳ suy thoái kinh tế sẽ là thời kỳ phục hồi và bùng nổ kinh tế, kế tiếp tăng trưởng kinh tế sẽ chựng lại và khỏi đầu cho một cuộc suy thoái mới. Tuỳ theo nền kinh tế mà chu kỳ kinh tế có thời hạn là 5 năm, 7 năm hay 10 năm. 7.1.3. Thời vụ Biến động thời vụ của biến số kinh tế là sự thay đổi lặp đi lặp lại từ năm này sang năm khác theo mùa vụ. Biến động thời vụ xảy ra do khí hậu, ngày lễ, phong tục tập quán…Biến động thời vụ có tính ngắn hạn với chu kỳ lặp lại thường là 1 năm. 7.1.4. Ngẫu nhiên Những dao động không thuộc ba loại trên được xếp vào dao động ngẫu nhiên. Các nguyên nhân gây ra biến động ngẫu nhiên có thể là thời tiết bất thường, chiến tranh, khủng hoảng năng lượng, biến động chính trị… Xu hướng dài hạn Tính thời vụ Hình 7.1. Xu hướng và thời vụ Nguồn: Problem set 7, Analytic method for Policy Making, Chương trình Giảng dạy Kinh tế Fulbright Việt Nam 2000. Bất thường (Ngẫu nhiên) Chu kỳ 10 năm Hình 7.2. Chu kỳ và ngẫu nhiên-Tăng trưởng kinh tế của Hoa Kỳ giai đoạn 1961-1999. Nguồn : World Development Indicator CD-Rom 2000, World Bank. 7.2. Dự báo theo đường xu hướng dài hạn 7.2.1. Mô hình xu hướng tuyến tính Chúng ta sử dụng mô hình xu hướng tuyến tính nếu tin rằng biến Y tăng một lượng không đổi trong một đơn vị thời gian. (7.1) hoặc dạng (7.2) Ứng với dữ liệu ở hình 7.2, phương trình đường xu hướng là gt = 3,6544- 0,029t Với gt = tốc độ tăng trưởng GDP của Hoa Kỳ, tính bằng %. t = năm đang xét- 1991. Dự báo tốc độ tăng trưởng kinh tế cho năm 2000 là g2000 = 3,6544 – 0,029*(2000 – 1961) = 2,52 % 7.2.2. Mô hình xu hướng dạng mũ Chúng ta sử dụng hàm mũ khi cho rằng có tỷ lệ tăng trưởng cố định trong một đơn vị thời gian. (7.3) chuyển dạng (7.4) Mô hình xu hướng dạng mũ dùng để dự báo dân số, sản lượng, nhu cầu năng lượng…Hình 7.3 cho thấy dân số của Việt Nam có dạng hàm mũ với phương trình ước lượng như sau: Yt = 33,933e0,0214n Từ dạng hàm (7.3), kết quả (7.4) cho thấy tốc độ tăng dân số của Việt Nam trong thời kỳ 1960-1999 khoảng 2,14 %. Hình 7.3. Dân số Việt Nam giai đoạn 1960-1999 Nguồn : World Development Indicator CD-Rom 2000, World Bank. 7.2.3. Mô hình xu hướng dạng bậc hai (7.5) Dấu của các tham số quyết định dạng đường xu hướng như sau: Nếu b2 và b3 đều dương: Y tăng nhanh dần theo thời gian. Nếu b2 âm và b3 dương: Y giảm sau đó tăng Nếu b2 dương và b3 âm: Y tăng nhưng tốc độ tăng giảm dần sau đó đạt cực trị và bắt đầu giảm. 7.3. Một số kỹ thuật dự báo đơn giản 7.3.1. Trung bình trượt (Moving Average) Giá trị dự báo bằng trung bình của m giá trị trước đó (7.6) Một lưu ý là khi làm trơn chuỗi dữ liệu bằng kỹ thuật trung bình trượt như trên mô hình giảm (m-1) bậc tự do. Chúng ta tạm gác lại việc thảo luận về số số hạng m của mô hình trung bình trượt (7.6). 7.3.2. San bằng số mũ (Exponential Smoothing Method) Phương pháp dự báo này còn được gọi là phương pháp Holt. Ý tưởng của mô hình san bằng số mũ tương tự mô hình kỳ vọng thích nghi mà chúng ta đã xét ở chương 6. Giá trị dự báo mới không chỉ phụ thuộc vào giá trị giai đoạn trước mà còn phụ thuộc giá trị dự báo của giai đoạn trước. (7.7.a) hoặc (7.7.b) a càng gần 1 thì dự báo mới càng gần với giá trị gần nhất, nếu a càng gần 0 thì dự báo mới càng gần với dự báo gần nhất. Trong thực tế người ta sẽ thử với các giá trị a khác nhau, giá trị được chọn là giá trị làm cho sai số dự báo bình phương trung bình(MSE) của mô hình nhỏ nhất. Có thể dùng trung bình của 5 đến 6 số đầu tiên để làm giá trị dự báo đầu tiên Theo Loan Lê, Hệ thống dự báo điều khiển kế hoạch ra quyết định, NXB Thống Kê-2001, trang 307-308. . 7.3.3. Tự hồi quy (Autoregression) Giá trị dự báo được xác định từ mô hình tự hồi quy với m độ trễ. (7.8) Trong mô hình (7.7) có thể có số b0 hoặc không có b0. Trường hợp có b0 ứng với dữ liệu có xu hướng dài hạn tăng hoặc giảm, trường hợp không có b0 ứng với dữ liệu có tính dừng Chúng ta sẽ thảo luận về tính dừng khi nghiên cứu mô hình ARIMA. . 7.4. Tiêu chuẩn đánh giá mô hình dự báo Gọi là giá trị dự báo cho Yt. Sai số của dự báo là et = Yt - . Hai tiêu chuẩn thường được sử dụng để đánh giá và so sánh các mô hình dự báo là Sai số dự báo tuyệt đối trung bình(Mean absolute deviation-MAD) (7.9) Sai số dự báo bình phương trung bình(Mean squared error-MSE) (7.10) Mô hình tốt là mô hình có MAD và MSE nhỏ. 7.5. Một ví dụ bằng số Sử dụng số liệu giá bắp cải đến tháng 12/1992(hình7.1), chúng ta lập mô hình dự báo giá bắp cải và dự báo cho các tháng của năm 1993. Mô hình 1: Lin Xu hướng tuyến tính: với k là số thứ tự của thời kỳ t. Mô hình 2: MA Trung bình trượt: Mô hình 3: Holt Phuơng pháp Holt: với a = 0,6. Mô hình 4: AR Tự hồi quy: Sau khi ước lượng các hệ số của mô hình 1 và 4 dựa trên số liệu đến hết 1992(trong mẫu), chúng ta ước lượng cho cả giai đoạn trước 1993(trong mẫu) và 1993(ngoài mẫu). Chúng ta vẽ đồ thị các dãy số liệu dự báo và số liệu gốc như ở hình 7.5. Kết quả tính toán sai số của các mô hình như sau: Trong mẫu: Mô hình Lin MA Holt AR MSE trong mẫu, đồng^2 2.733 157 2.216 59.629 Ngoài mẫu Mô hình Lin MA Holt AR MSE dự báo, đồng^2 429.043 245.417 216.134 260.392 Trong trường hợp cụ thể của ví dụ này mô trung bình trượt(MA) cho MSE trong mẫu nhỏ nhất nhưng phương pháp Holt lại cho MSE nhỏ nhất ngoài mẫu. Hình 7.4. Các phương pháp dự báo đơn giản 7.6. Giới thiệu mô hình ARIMA 7.6.1. Tính dừng của dữ liệu Quá trình ngẫu nhiên(Stochastic process) Bất cứ dữ liệu chuỗi thời gian nào cũng được tạo ra bằng một quá trình ngẫu nhiên. Một dãy số liệu thực tế cụ thể như giá bắp cải từng tháng ở hình 7.1 là kết quả của một quá trình ngẫu nhiên. Đối với dữ liệu chuỗi thời gian, chúng ta có những khái niệm về tổng thể và mẫu như sau: Quá trình ngẫu nhiên là một tổng thể. Số liệu thực tế sinh ra từ quá trình ngẫu nhiên là mẫu. Tính dừng(Stationary) Một quá trình ngẫu nhiên được gọi là có tính dừng khi nó có các tính chất sau: Kỳ vọng không đổi theo thời gian, E(Yt) = m. Phương sai không đổi theo thời gian, Var(Yt) = E(Yt-m) = s2. Đồng phương sai chỉ phụ thuộc khoảng cách của độ trễ mà không phụ thuộc thời điểm tính đồng phương sai đó, nk = E[(Yt-m)(Yt-k-m)] không phụ thuộc t. Lưu ý: Chúng ta có thể biến dữ liệu chuỗi thời gian từ không có tính dừng thành có tính dừng bằng cách lấy sai phân của nó. wt = Yt-Yt-1: Sai phân bậc nhất : Sai phân bậc hai… 7.6.2. Hàm tự tương quan và hàm tự tương quan mẫu Hàm tự tương quan(ACF) ở độ trễ k được ký hiệu là được định nghĩa như sau: (7.11) Tính chất của ACF không có thứ nguyên. Giá trị của nằm giữa -1 và 1. Trong thực tế chúng ta chỉ có thể có số liệu thực tế là kết quả của quá trình ngẫu nhiên, do đó chúng chỉ có thể tính toán được hàm tự tương quan mẫu(SAC), ký hiệu là . với và Độ lệch chuẩn hệ số tự tương quan mẫu s(rj) = (7.12) Trị thống kê t tk = (7.13) Với cỡ mẫu lớn thì tk ~ Z nên với t > 1,96 thì rk khác không có ý nghĩa thống kê, khi đó người ta gọi rk là 1 đỉnh. Các phần mềm kinh tế lượng sẽ tính toán cho chúng ta kết quả của SAC và các giá trị đến hạn(hoặc trị thống kê t) của nó ứng với mức ý nghĩa a = 5%. Thống kê Ljung-Box (7.14) n là cỡ mẫu m là chiều dài của độ trễ H0: Tất cả các đều bằng 0. H1: Không phải tất cả các đều bằng 0. Nếu LB > thì ta bác bỏ H0. Một số phần mềm kinh tế lượng có tính toán trị thống kê LB. 7.6.3. Hàm tự tương quan riêng phần (PACF) Hệ số tự tương quan riêng phần với độ trễ k đo lường tương quan của Yt-k với Yt sau khi loại trừ tác động tương quan của tất các các độ trễ trung gian. Công thức tính PACF như sau (7.15) Độ lệch chuẩn của rkk Công thức tính độ lệch chuẩn của rkk phụ thuộc vào bậc của sai phân. Công thức trình bày ở trên là công thức gần đúng với số quan sát đủ lớn. (7.16) Trị thống kê t (7.17) Với cỡ mẫu lớn thì tkk~ Z nên với tkk> 1,96 thì rkk khác không có ý nghĩa thống kê, khi đó người ta gọi rkk là 1 đỉnh. Các chương trình kinh tế lượng có thể tính toán cho chúng ta các giá trị PACF, các giá trị tới hạn hay trị thống kê t. 7.6.4. Mô hình AR, MA và ARMA Xét quá trình ngẫu nhiên có tính dừng với dữ liệu chuỗi thời gian Yt có E(Yt) = m và sai số ngẫu nhiên et có trung bình bằng 0 và phương sai s2(nhiễu trắng). Mô hình tự hồi quy (AR-Autoregressive Model) Mô hình tự hồi quy bậc p được ký hiệu là AR(p) có dạng (7.17) Nhận dạng mô hình AR(p): PACF có đỉnh đến độ trễ p và SAC suy giảm nhanh ngay sau độ trễ thứ nhất thì mô hình dự báo có dạng tự hồi quy bậc p. Mô hình trung bình trượt(MA-Moving average Model) Mô hình trung bình trượt bậc q được ký hiệu là MA(q) có dạng (7.18) với m là hằng số, et là nhiễu trắng. Nhận dạng mô hình MA(q): SAC có đỉnh đến độ trễ q và SPAC suy giảm nhanh ngay sau độ trễ thứ nhất. Mô hình kết hợp tự hồi quy kết hợp trung bình trượt(ARMA) Mô hình có tự hồi quy bậc p và trung bình trượt bậc q được ký hiệu là ARMA(p,q) có dạng (7.19) Nhận dạng mô hình ARMA(p,q): cả SAC và SPAC đều có giá trị giảm dần theo hàm mũ. Nhận dạng đúng p và q đòi hỏi phải có nhiều kinh nghiệm. Trong thực hành người ta chọn một vài mô hình ARMA và lựa chọn mô hình tốt nhất. 7.6.5. Mô hình ARIMA và SARIMA ARIMA Đa số dữ liệu kinh tế theo chuỗi thời gian không có tính dừng(stationary) mà có tính kết hợp(integrated). Để nhận được dữ liệu có tính dừng, chúng ta phải sử dụng sai phân của dữ liệu. Các bậc sai phân Sai phân bậc 0 là I(0): chính là dữ liệu gốc Yt. Sai phân bậc 1 là I(1): wt = Yt – Yt-1. Sai phân bậc 2 là I(2): w2t = wt – wt-1… Sai phân bậc d ký hiệu I(d). Mô hình ARMA(p,q) áp dụng cho I(d) được gọi là mô hình ARIMA(p,d,q). SARIMA Trong mô hình ARIMA nếu chúng ta tính toán sai phân bậc nhất với độ trễ lớn hơn 1 để khử tính mùa vụ như sau wt = Yt – Yt-s, với s là số kỳ giữa các mùa thì mô hình được gọi là SARIMA hay ARIMA có tính mùa vụ. 7.6.6. Phương pháp luận Box-Jenkins Phương pháp luận Box-Jenkins cho mô hình ARIMA có bốn bước như sau: Bước 1: Xác lập mô hình ARIMA(p,d,q) Dùng các đồ thị để xác định bậc sai phân cần thiết để đồ thị có tính dừng. Giả sử dữ liệu dùng ở I(d). Dùng đồ thị SAC và SPAC của I(d) để xác định p và q. Triển khai dạng của mô hình. Bước 2: Tính toán các tham số của mô hình. Trong một số dạng ARIMA đơn giản chúng ta có thể dùng phương pháp bình phương tối thiểu. Một số dạng ARIMA phức tạp đòi hỏi phải sử dụng các ước lượng phi tuyến. Chúng ta không phải lo lắng về việc ước lượng tham số vì các phần mềm kinh tế lượng sẽ tính giúp chúng ta. Quay lại bước 1 xây dựng mô hình với cặp (p,q) khác dường như cũng phù hợp. Giả sử chúng ta ước lượng được m mô hình ARIMA. Bước 3: Kiểm tra chẩn đoán So sánh các mô hình ARIMA đã ước lượng với các mô hình truyền thống(tuyến tính, đường xu hướng, san bằng số mũ,…) và giữa các mô hình ARIMA với nhau để chọn mô hình tốt nhất. Bước 4: Dự báo Trong đa số trường hợp mô hình ARIMA cho kết quả dự báo ngắn hạn đáng tin cậy nhất trong các phương pháp dự báo. Tuy nhiên giới hạn của của ARIMA là: Số quan sát cần cho dự báo phải lớn. Chỉ dùng để dự báo ngắn hạn Không thể đưa các yếu tố thay đổi có ảnh hưởng đến biến số cần dự báo của thời kỳ cần dự báo vào mô hình. Xây dựng mô hình ARIMA theo phương pháp luận Box-Jenkins có tính chất nghệ thuật hơn là khoa học, hơn nữa kỹ thuật và khối lượng tính toán khá lớn nên đòi hỏi phải có phần mềm kinh tế lượng chuyên dùng. MỘT SỐ GIÁ TRỊ Z THƯỜNG ĐƯỢC SỬ DỤNG Mức ý nghĩa Kiểm định 1 đuôi Kiểm định 2 đuôi a Z 1-a Z 1-a/2 1% 2,326 2,576 5% 1,645 1,960 10% 1,282 1,645 20% 0,842 1,282 Nguồn: hàm Normsinv của Excel. MỘT SỐ GIÁ TRỊ t THƯỜNG ĐƯỢC SỬ DỤNG Bậc tự do Mức ý nghĩa a 1% 5% 10% 20% 1 63,656 12,706 6,314 3,078 2 9,925 4,303 2,920 1,886 3 5,841 3,182 2,353 1,638 4 4,604 2,776 2,132 1,533 5 4,032 2,571 2,015 1,476 6 3,707 2,447 1,943 1,440 7 3,499 2,365 1,895 1,415 8 3,355 2,306 1,860 1,397 9 3,250 2,262 1,833 1,383 10 3,169 2,228 1,812 1,372 11 3,106 2,201 1,796 1,363 12 3,055 2,179 1,782 1,356 13 3,012 2,160 1,771 1,350 14 2,977 2,145 1,761 1,345 15 2,947 2,131 1,753 1,341 16 2,921 2,120 1,746 1,337 17 2,898 2,110 1,740 1,333 18 2,878 2,101 1,734 1,330 19 2,861 2,093 1,729 1,328 20 2,845 2,086 1,725 1,325 21 2,831 2,080 1,721 1,323 22 2,819 2,074 1,717 1,321 23 2,807 2,069 1,714 1,319 24 2,797 2,064 1,711 1,318 25 2,787 2,060 1,708 1,316 26 2,779 2,056 1,706 1,315 27 2,771 2,052 1,703 1,314 28 2,763 2,048 1,701 1,313 29 2,756 2,045 1,699 1,311 30 2,750 2,042 1,697 1,310 >30 2,576 1,960 1,645 1,282 Nguồn: hàm Tinv của Excel. MỘT SỐ GIÁ TRỊ F TỚI HẠN TRÊN THƯỜNG ĐƯỢC SỬ DỤNG Mức ý nghĩa a = 5% 0 F1-a/2 df1 df2 1 2 3 4 5 6 7 8 9 10 10 4,96 4,10 3,71 3,48 3,33 3,22 3,14 3,07 3,02 2,98 11 4,84 3,98 3,59 3,36 3,20 3,09 3,01 2,95 2,90 2,85 12 4,75 3,89 3,49 3,26 3,11 3,00 2,91 2,85 2,80 2,75 13 4,67 3,81 3,41 3,18 3,03 2,92 2,83 2,77 2,71 2,67 14 4,60 3,74 3,34 3,11 2,96 2,85 2,76 2,70 2,65 2,60 15 4,54 3,68 3,29 3,06 2,90 2,79 2,71 2,64 2,59 2,54 16 4,49 3,63 3,24 3,01 2,85 2,74 2,66 2,59 2,54 2,49 17 4,45 3,59 3,20 2,96 2,81 2,70 2,61 2,55 2,49 2,45 18 4,41 3,55 3,16 2,93 2,77 2,66 2,58 2,51 2,46 2,41 19 4,38 3,52 3,13 2,90 2,74 2,63 2,54 2,48 2,42 2,38 20 4,35 3,49 3,10 2,87 2,71 2,60 2,51 2,45 2,39 2,35 21 4,32 3,47 3,07 2,84 2,68 2,57 2,49 2,42 2,37 2,32 22 4,30 3,44 3,05 2,82 2,66 2,55 2,46 2,40 2,34 2,30 23 4,28 3,42 3,03 2,80 2,64 2,53 2,44 2,37 2,32 2,27 24 4,26 3,40 3,01 2,78 2,62 2,51 2,42 2,36 2,30 2,25 25 4,24 3,39 2,99 2,76 2,60 2,49 2,40 2,34 2,28 2,24 26 4,23 3,37 2,98 2,74 2,59 2,47 2,39 2,32 2,27 2,22 27 4,21 3,35 2,96 2,73 2,57 2,46 2,37 2,31 2,25 2,20 28 4,20 3,34 2,95 2,71 2,56 2,45 2,36 2,29 2,24 2,19 29 4,18 3,33 2,93 2,70 2,55 2,43 2,35 2,28 2,22 2,18 30 4,17 3,32 2,92 2,69 2,53 2,42 2,33 2,27 2,21 2,16 31 4,16 3,30 2,91 2,68 2,52 2,41 2,32 2,25 2,20 2,15 32 4,15 3,29 2,90 2,67 2,51 2,40 2,31 2,24 2,19 2,14 33 4,14 3,28 2,89 2,66 2,50 2,39 2,30 2,23 2,18 2,13 34 4,13 3,28 2,88 2,65 2,49 2,38 2,29 2,23 2,17 2,12 35 4,12 3,27 2,87 2,64 2,49 2,37 2,29 2,22 2,16 2,11 36 4,11 3,26 2,87 2,63 2,48 2,36 2,28 2,21 2,15 2,11 37 4,11 3,25 2,86 2,63 2,47 2,36 2,27 2,20 2,14 2,10 38 4,10 3,24 2,85 2,62 2,46 2,35 2,26 2,19 2,14 2,09 39 4,09 3,24 2,85 2,61 2,46 2,34 2,26 2,19 2,13 2,08 40 4,08 3,23 2,84 2,61 2,45 2,34 2,25 2,18 2,12 2,08 Nguồn: hàm Finv của Excel. MỘT SỐ GIÁ TRỊ c2 TỚI HẠN TRÊN THƯỜNG ĐƯỢC SỬ DỤNG Mức ý nghĩa a = 5% a 0 c21-a a df 1% 5% 10% 20% 2 9,21 5,99 4,61 3,22 3 11,34 7,81 6,25 4,64 4 13,28 9,49 7,78 5,99 5 15,09 11,07 9,24 7,29 6 16,81 12,59 10,64 8,56 7 18,48 14,07 12,02 9,80 8 20,09 15,51 13,36 11,03 9 21,67 16,92 14,68 12,24 10 23,21 18,31 15,99 13,44 11 24,73 19,68 17,28 14,63 12 26,22 21,03 18,55 15,81 13 27,69 22,36 19,81 16,98 14 29,14 23,68 21,06 18,15 15 30,58 25,00 22,31 19,31 16 32,00 26,30 23,54 20,47 17 33,41 27,59 24,77 21,61 18 34,81 28,87 25,99 22,76 19 36,19 30,14 27,20 23,90 20 37,57 31,41 28,41 25,04 21 38,93 32,67 29,62 26,17 22 40,29 33,92 30,81 27,30 23 41,64 35,17 32,01 28,43 24 42,98 36,42 33,20 29,55 25 44,31 37,65 34,38 30,68 26 45,64 38,89 35,56 31,79 27 46,96 40,11 36,74 32,91 28 48,28 41,34 37,92 34,03 29 49,59 42,56 39,09 35,14 30 50,89 43,77 40,26 36,25 31 52,19 44,99 41,42 37,36 32 53,49 46,19 42,58 38,47 33 54,78 47,40 43,75 39,57 34 56,06 48,60 44,90 40,68 35 57,34 49,80 46,06 41,78 36 58,62 51,00 47,21 42,88 37 59,89 52,19 48,36 43,98 38 61,16 53,38 49,51 45,08 39 62,43 54,57 50,66 46,17 40 63,69 55,76 51,81 47,27 Nguồn: Hàm Chiinv của Excel TÀI LIỆU THAM KHẢO PGS.TS. Vũ Thiếu, TS. Nguyễn Quang Dong, TS. Nguyễn Khắc Minh Kinh tế lượng NXB Khoa học và Kỹ thuật Hà nội-1996 TS. Bùi Phúc Trung Giáo trình Kinh tế lượng Trường Đại học Kinh tế TP Hồ Chí Minh-2001 TS. Nguyễn Thống Kinh tế lượng ứng dụng NXB Đại học Quốc gia TP Hồ Chí Minh-2000 TS. Nguyễn Quang Dong Bài tập Kinh tế lượng với sự trợ giúp của phần mềm Eviews NXB Khoa học và kỹ thuật-2002 TS. Nguyễn Quang Dong Kinh tế lượng nâng cao NXB Khoa học và kỹ thuật-2002 Loan Lê Hệ thống dự báo điều khiển kế hoạch ra quyết định NXB Thống Kê-2001 Lê Thanh Phong Hướng dẫn sử dụng SPSS for Windows V.10 Đại học Cần Thơ-2001 PGS. Đặng Hấn Xác suất thống kê NXB Thống kê-1996 PGS. Đặng Hấn Bài tập xác suất thống kê NXB Thống kê-1996 Nguyễn Đình Trí, Tạ Văn Dĩnh và Nguyễn Hồ Quỳnh Toán học cao cấp NXB Giáo Dục-1998 Đỗ Công Khanh Giải tích một biến Tủ sách Đại học đại cương TP Hồ Chí Minh-1997 Đỗ Công Khanh Giải tích nhiều biến Tủ sách Đại học đại cương TP Hồ Chí Minh-1997 Bùi Văn Mưa Logic học Đại học Kinh tế TP Hồ Chí Minh-1998 Cao Hào Thi, Lê Nguyễn Hậu, Tạ Trí Nhân, Võ Văn Huy và Nguyễn Quỳnh Mai Crystal Ball- Dự báo và phân tích rủi ro cho những người sử dụng bảng tính Chương trình giảng dạy kinh tế Fulbright Việt nam-1995 Đoàn Văn Xê Kinh tế lượng Đại học Cần thơ 1993 Ban biên dịch First News EXCEL toàn tập Nhà Xuất Bản Trẻ-2001 TS.Phan Hiếu Hiền Phương pháp bố trí thí nghiệm và xử lý số liệu(Thống kê thực nghiệm) NXB Nông Nghiệp 2001. Chris Brooks Introductory Econometrics for Finance Cambridge University Press-2002 A.Koutsoyiannis Theory of Econometrics-Second Edition ELBS with Macmillan-1996 Damodar N. Gujarati Basic Econometrics-Second Edition McGraw-Hill Inc -1988 Damodar N. Gujarati Basic Econometrics-Third Edition McGraw-Hill Inc -1995 Damodar N. Gujarati Basic Econometrics-Student solutions manual to accompany McGraw-Hill Inc-1988 Ernst R. Berndt The Practice of Econometrics: Classic and Contemporary MIT-1991 William E. Griffiths, R. Carter Hill, George G.Judge Learning and Practicing Econometrics John Wiley & Sons-1993 Daniel Westbrook Applied Econometrics with Eviews Fulbright Economics Teaching Program-2002 Ramu Ramanathan Introductory Econometrics with Applications Harcourt College Publishers-2002 Robert S.Pindyck and Daniel L.Rubinfeld Econometric Models and Economics Forcasts-Third Edition McGraw-Hill Inc-1991 Kwangchai A.Gomez and Arturo A.Gomez Statistical Procedures for Agricultural Research John Wiley & Sons-1983 Chandan Mukherjee, Howard White and Marc Wuyts Data Analysis in Development Economics Draft -1995 Aswath Damodaran Corporate Finance-Theory and Practice John Willey & Sons, Inc - 1997

Các file đính kèm theo tài liệu này:

  • dockinh_te_luong_bai_giang_3691.doc
Tài liệu liên quan