Bài giảng Kinh tế lượng - Chương 8: Hiện tượng tự tương quan - Trần Quang Cảnh

Xem giá trị Obs*R-squared (nR2) và giá trị p-value của nó để bác bỏ hay chấp nhận giả thuyết H0. Giả thuyết H0: Không có tự tương quan B3. Ước lượng các B4: Biến đổi và thay vào các biểu thức sau B5: Hồi quy yt * theo xt*, chú ý Durbin – Watson d – statistic để xem còn tương quan không. Nếu không còn thì mô hình ở bước này được chọn. Thực hành trên Eviews: Giả sử mô hình hồi quy Yi=β1 + β2. Xi + Ui B1. Hồi qui Y theo X như sau Y C X B2. So sánh Durbin – Watson d – statistic với dL và dU để kiểm định có tự tương quan không. Nếu dùng kiểm định Breusch – Godfrey (BG) Tại cửa sổ Equation, chọn View \ Residual Tests \ Serial Correlation LM Test, hiện ra cửa sổ nhỏ cho nhập bậc tương quan cần kiểm định , ví dụ ta nhập 2

pdf7 trang | Chia sẻ: hachi492 | Lượt xem: 265 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Bài giảng Kinh tế lượng - Chương 8: Hiện tượng tự tương quan - Trần Quang Cảnh, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
1CHƯƠNG 8 HIỆN TƯỢNG TỰ TƯƠNG QUAN (Autocorrelation) 2 1. Hiểu bản chất và hậu quả của tự tương quan 2. Biết cách phát hiện tự tương quan và biện pháp khắc phục MỤC TIÊU TỰ TƯƠNG QUAN NỘI DUNG 3 Bản chất hiện tượng hiện tượng tự tương quan 1 Hậu quả2 3 Cách khắc phục tự tương quan4 Cách phát hiện tự tương quan 8.1 Bản chất 1. Tự tương quan là gì ? Là tương quan giữa các sai số ngẫu nhiên. cov(ui, uj)  0 (i  j) 701003- Tự tương quan 4 Tự tương quan là gì ? 701003- Tự tương quan 5 Giả sử Yt = 1 + 2Xt + ut AR(p): Tự tương quan bậc p ut = 1ut-1 + 2ut-2 + + put-p + vt Quá trình tự hồi quy bậc p của các sai số ngẫu nhiên 8.1 Bản chất • Sự tương quan xảy ra đối với những quan sát theo không gian gọi là “tự tương quan không gian”. • Sự tương quan xảy ra đối với những quan sát theo chuỗi thời gian gọi là “tự tương quan thời gian”. 1 2 3 4 5 6 2· · · · · · · · · · · · · · · · · · t (a) · · · · · · ·· · · ·· · · t (b) · ·· · · · · · ·· ·· · · · t (c) · · · · · · · · · · · · t (d) · · · · · · · · · · · · · · · t (e) · · · · · · · · · · · ui, ei ui, ei ui, ei ui, ei ui, ei Hình 8.1 Một số dạng biến thiên của nhiễu theo thời gian Nguyên nhân Nguyên nhân khách quan: • Quán tính: các chuỗi thời gian mang tính chu kỳ, VD: các chuỗi số liệu thời gian về GDP, chỉ số giá, sản lượng, tỷ lệ thất nghiệp • Hiện tượng mạng nhện: phản ứng của cung của nông sản đối với giá thường có một khoảng trễ về thời gian: QSt = 1 + 2Pt-1 + ut • Độ trễ: tiêu dùng ở thời kỳ hiện tại phụ thuộc vào thu nhập và chi tiêu tiêu dùng ở thời kỳ trước đó: Ct = 1 + 2It + 3Ct-1 + ut Nguyên nhân Nguyên nhân chủ quan • Hiệu chỉnh số liệu: do việc “làm trơn” số liệu ® loại bỏ những quan sát “gai góc”. • Sai lệch do lập mô hình: bỏ sót biến, dạng hàm sai. • Phép nội suy và ngoại suy số liệu Ví dụ bỏ sót biến ttttt uXXXY  4433221  10 Với Y: cầu thịt bò X2: giá thịt bò X3: thu nhập người tiêu dùng X4: giá thịt heo t: thời gian Mô hình đúng tttt vXXY  33221 Mô hình bỏ sót biến ttt uXv  44 8.2 Hậu quả của tự tương quan Áp dụng OLS thì sẽ có các hậu quả: • Các ước lượng không chệch nhưng không hiệu quả (vì phương sai không nhỏ nhất) • Phương sai của các ước lượng là các ước lượng chệch, vì vậy các kiểm định t và F không còn hiệu quả. 11 8.2 Hậu quả của tự tương quan • là ước lượng chệch của σ2 • R2 của mẫu là ước lượng chệch (dưới) của R2 tổng thể • Các dự báo về Y không chính xác 12 2ˆ 7 8 9 10 11 12 313 a. Đồ thị Chạy OLS cho mô hình gốc và thu thập et. Vẽ đường et theo thời gian. Hình ảnh của et có thể cung cấp những gợi ý về sự tự tương quan. 8.3 Cách phát hiện tự tương quan · · · · · · · · · · · · · · · · · · t (a) · · · · · · ·· · · ·· · · t (b) · ·· · · · · · ·· ·· · · · t (c) · · · · · · · · · · · · t (d) · · · · · · · · · · · · · · · t (e) Không có tự tương quan · · · · · · · · · · · a. Đồ thịet et et et et 15 Thống kê d của Durbin – Watson Khi n đủ lớn thì d » 2(1-) với do -1 ≤  ≤ 1, nên 0<= d <=4:  = -1 => d = 4: tự tương quan hoàn hảo âm  = 0 => d = 2: không có tự tương quan  = 1 => d = 0: tự tương quan hoàn hảo dương    2 2 1)( i ii e ee d    2 1 i ii e ee  b. Dùng kiểm định d của Durbin – Watson 16 Bảng thống kê Durbin cho giá trị tới hạn dU và dL dựa vào 3 tham số: α: mức ý nghĩa k’: số biến độc lập của mô hình n: số quan sát b. Dùng kiểm định d của Durbin – Watson 0 dL 2 4 Có tự tương quan dương Không có tự tương quan bậc nhất Có tự tương quan âm Không quyết định được Không quyết định được 4-dLdU 4-dU 17 Các bước thực hiện kiểm định d của Durbin – Watson: 1. Chạy mô hình OLS và thu thập phần sai số et. 2. Tính d theo công thức trên. 3. Với cỡ mẫu n và số biến giải thích k, tìm giá trị tra bảng dL và dU. 4. Dựa vào các quy tắc kiểm định trên để ra kết luận. b. Dùng kiểm định d của Durbin – Watson 18 Nếu d thuộc vùng chưa quyết định, sử dụng quy tắc kiểm định cải biên: 1. H0:  = 0; H1:  > 0 Nếu d < dU : bác bỏ H0 và chấp nhận H1 (với mức ý nghĩa a), nghĩa là có tự tương quan dương. b. Dùng kiểm định d của Durbin – Watson Có tự tương quan dương dU Không có tự tương quan dương 13 14 15 16 17 18 419 2. H0:  = 0; H1:  < 0 Nếu d > 4 - dU : bác bỏ H0 và chấp nhận H1 (với mức ý nghĩa a), nghĩa là có tự tương quan âm. b. Dùng kiểm định d của Durbin – Watson Không có tự tương quan âm 4-dU Có tự tương quan âm 20 Có tự tương quan dương Không có tự tương quan Có tự tương quan âm dU 4-dU 3. H0:  = 0; H1:  ≠ 0 Nếu d 4 - dU : bác bỏ H0 và chấp nhận H1 (với mức ý nghĩa 2a), nghĩa là có tự tương quan (âm hoặc dương). b. Dùng kiểm định d của Durbin – Watson 21 ØLưu ý khi áp dụng kiểm định d: 1. Mô hình hồi quy phải có hệ số chặn. 2. Các sai số ngẫu nhiên có tương quan bậc nhất: ut = ut-1 + et 3. Mô hình hồi quy không có chứa biến trễ Yt-1. 4. Không có quan sát bị thiếu (missing). b. Dùng kiểm định d của Durbin – Watson ttktktttt uYXXXXY  14433221  Xét mô hình: Yt = 1 + 2Xt + ut (8.1) ut = 1ut-1 + 2ut-2 + + put-p + vt Kiểm định giả thiết H0: 1 = 2 = =  = 0 -> không có AR(p) H1: có ít nhất một i khác 0 c. Dùng kiểm định Breusch – Godfrey (BG) (Kiểm định nhân tử Lagrange) 701003- Tự tương quan 22 23 Bước 1: Ước lượng (8.1) bằng OLS, tìm phần dư et Bước 2: Dùng OLS để ước lượng mô hình et = 1 + 2Xt + 1et-1 + 2et-2 + + pet-p + εt từ đây thu được R2. Bước 3: với n đủ lớn, (n-p)R2 có phân phối xấp xỉ χ2(p) với p là bậc tương quan. - Nếu (n-p)R2 > χ2a(p): Bác bỏ H0, nghĩa là có tự tương quan ít nhất ở một bậc nào đó. - Nếu (n-p)R2 ≤ χ2a(p): Chấp nhận H0, nghĩa là không có tự tương quan. c. Dùng kiểm định Breusch – Godfrey (BG) 24 Kiểm định BG có đặc điểm: ØÁp dụng cho mẫu có kích thước lớn ØÁp dụng cho mô hình có biến độc lập có dạng Yt-1 , Yt-2 .. ØKiểm định được bậc tương quan bất kỳ c. Dùng kiểm định Breusch – Godfrey (BG) 19 20 21 22 23 24 525 Các bước tiến hành 1) Ước lượng giá trị  2) Dùng giá trị  vừa được ước lượng để chuyển đổi mô hình hồi quy 8.4 Khắc phục 8.4 Khắc phục 1. Trường hợp đã biết cấu trúc của tự tương quan: Phương pháp GLS: • ut tự hồi quy bậc p, AR(p) ut = 1ut-1 + 2ut-2 + + put-p + vt với : hệ số tự tương quan;  < 1 • Giả sử ut tự hồi qui bậc nhất AR(1) ut = ut-1 + et (*) et: sai số ngẫu nhiên (nhiễu trắng), thỏa mãn những giả định của OLS: E(et) = 0; Var(et) =  2;Cov(et, et+s) = 0 Xét mô hình hai biến: yt = a1 + 1xt + ut (8.2) Nếu (8.2) đúng với t thì cũng đúng với t – 1 yt-1 = a1 + 1xt - 1 + ut - 1 (8.3) Nhân hai vế của (8.3) với  yt-1 = a1 + 1xt - 1 + ut - 1 (8.4) Trừ (8.2) cho (8.4) yt - yt-1 = a1(1 - ) + 1 (xt - xt – 1) + (ut - ut – 1) = a1(1 - ) + 1 (xt - xt – 1) + et (8.5) 8.4 Khắc phục 8.4 Khắc phục (8.5) gọi là phương trình sai phân tổng quát Đặt: a1* = a1 (1 - ) 1* = 1 yt* = yt - yt – 1 xt* = xt - xt – 1 Khi đó (8.5) thành yt* = a1* + 1*xt* + et (8.5*) 8.4 Khắc phục Vì et thoả mãn các giả định của phương pháp OLS nên các ước lượng tìm được là BLUE • Phương trình hồi qui 8.5* được gọi là phương trình sai phân tổng quát (Generalized Least Square – GLS). • Để tránh mất mát một quan sát, quan sát đầu của y và x được biến đổi như sau:  11 * 1 yy  111 xx * 2. 1 Phương pháp sai phân cấp 1 • Nếu  = 1, thay vào phương trình sai phân tổng quát (8.5) yt – yt – 1 = 1(xt – xt – 1) + (ut – ut – 1) = 1(xt – xt – 1) + et Hay: Dyt = 1 D xt + et (8.6) (8.6) phương trình sai phân cấp 1 D toán tử sai phân cấp 1 Sử dụng mô hình hồi qui qua gốc toạ độ để ước lượng hồi qui (8.6) 2.Trường hợp  chưa biết 25 26 27 28 29 30 6Giả sử mô hình ban đầu yt = a1 + 1xt + 2t + ut (8.7) Trong đó t biến xu thế ut theo mô hình tự hồi qui bậc nhất Thực hiện phép biến đổi sai phân cấp 1 đối với (8.7) Dyt = 1Dxt + 2 + et trong đó: Dyt = yt – yt – 1 Dxt = xt – xt – 1 2.1 Phương pháp sai phân cấp 1 • Nếu  = -1, thay vào phương trình sai phân tổng quát (8.5) yt + yt – 1 = 2a1 + 1(xt + xt – 1) + et Hay: (*) Mô hình * gọi là mô hình hồi qui trung bình trượt. 22 1 11 1 ttttt exxyy       2 2.1 Phương pháp sai phân cấp 1 hay Đối với các mẫu nhỏ có thể sử dụng thống kê d cải biên của Theil – Nagar. 2 d » 1ˆ 22 22 21 kn k)/d(n^    Dùng giá trị  vừa được ước lượng để chuyển đổi số liệu như mô hình 8.5 2.2 Ước lượng  dựa trên thống kê d-Durbin-Watson )ˆ1(2 »d Giả sử có mô hình hai biến yt = a1 + 1xt + ut (8.8) Mô hình ut tự tương quan bậc nhất AR(1) ut = ut – 1 + et (8.9) Các bước ước lượng  Bước 1: Ước lượng mô hình (8.8) bằng phương pháp OLS và thu được các phần dư et. 2.3 Thủ tục lặp Cochrance – Orcutt để ước lượng  Bước 2: Sử dụng các phần dư để ước lượng hồi qui: (8.10) Do et là ước lượng vững của ut thực nên ước lượng  có thể thay cho  thực. Bước 3: Sử dụng thu được từ (8.10) để ước lượng phương trình sai phân tổng quát (8.5) Hay yt* = a1* + 1* xt* + vt (8.11) ˆ 2.3 Thủ tục lặp Cochrance – Orcutt để ước lượng  )ˆ()ˆ()ˆ1(ˆ 11111   tttttt uuXXYY  ttt vee  1ˆ Bước 4: Vì chưa biết thu được từ (8.10) có phải là ước lượng tốt nhất của  hay không nên thế giá trị ước lượng của a1* và 1* từ (8.11) vào hồi qui gốc (8.8) và được các phần dư mới et*: et* = yt – (a1* + 1* xt) (8.12) Ước lượng phương trình hồi qui tương tự với (8.10) (8.13) (8.13) là ước lượng vòng 2 của . Thủ tục này tiế tục cho đến khi các ước lượng kế tiếp nhau của  khác nhau một lượng rất nhỏ, chẳng hạn nhỏ hơn 0,05 hoặc 0,005. ˆ 2.3 Thủ tục lặp Cochrance – Orcutt để ước lượng  ttt wee   * 1 * ˆ 31 32 33 34 35 36 7Viết lại phương trình sai phân tổng quát yt = a1(1 - ) + 1 xt – 1xt – 1 + yt – 1 + et (8.14) Thủ tục Durbin – Watson 2 bước để ước lượng : Bước 1: 1. Hồi qui (8.14) yt theo xt, xt – 1 và yt – 1 2. Xem giá trị ước lượng hệ số hồi qui của yt – 1 (= ) là ước lượng của  ˆ 2.4 Phương pháp Durbin – Watson 2 bước để ước lượng  Bước 2: Sau khi thu được , thay và ước lượng hồi qui (8.5*) với các biến đã được biến đổi như trên. 1 * 1 * .ˆ;.ˆ   tttttt xxxyyy  ˆ 2.4 Phương pháp Durbin – Watson 2 bước để ước lượng  Thực hành trên Eviews: Giả sử mô hình hồi quy Yi=β1 + β2. Xi + Ui B1. Hồi qui Y theo X như sau Y C X B2. So sánh Durbin – Watson d – statistic với dL và dU để kiểm định có tự tương quan không. Nếu dùng kiểm định Breusch – Godfrey (BG) Tại cửa sổ Equation, chọn View \ Residual Tests \ Serial Correlation LM Test, hiện ra cửa sổ nhỏ cho nhập bậc tương quan cần kiểm định , ví dụ ta nhập 2 Xem giá trị Obs*R-squared (nR2) và giá trị p-value của nó để bác bỏ hay chấp nhận giả thuyết H0. Giả thuyết H0: Không có tự tương quan B3. Ước lượng các B4: Biến đổi và thay vào các biểu thức sau B5: Hồi quy yt * theo xt*, chú ý Durbin – Watson d – statistic để xem còn tương quan không. Nếu không còn thì mô hình ở bước này được chọn. 40 ˆ ˆ 1 * 1 * .ˆ;.ˆ   tttttt xxxyyy  Khắc phục bằng thủ tục lặp Cochrane-Orcutt Thực hiện hồi quy Y c X AR(1) nếu mô hình có tự tương quan bậc 1 Y c X AR(1) AR(2) nếu mô hình có tự tương quan bậc 2 41 37 38 39 40 41

Các file đính kèm theo tài liệu này:

  • pdfbai_giang_kinh_te_luong_chuong_8_hien_tuong_tu_tuong_quan_tr.pdf
Tài liệu liên quan