Kỹ thuật lấy ngưỡng không nhất thiét phải được áp dụng cho toàn bộ ảnh, mà
có thể áp dụng cho từng vùng ảnh một. Hai tác giả Chow và Kaneko đã phát triển
một biến thể của kỹ thuật lấy ngưỡng bằng cách chia một ảnh có kích thước MxN ra
thành nhiều vùng không chồng chất lên nhau. Các giá trị ngưỡng được tính riêng
biệt cho từng vùng một và sau đó được kết hợp lại thông qua phép nội suy để hình
thành nên một mặt ngưỡng cho toàn bộ ảnh. Trong thuật toán mới này, kích thước
của các vùng cần được chọn một cách thích hợp sao cho có một lượng đáng kể các
điểm ảnh ở trong một vùng, nhằm phục vụ cho việc tính lược đồ và xác định ngưỡng
tương ứng. Tính hữu ích của thuật toán này, cũng như nhiêu thuật toán khác, sẽ phụ
thuộc vào từng ứng dụng cụ thể.
65 trang |
Chia sẻ: huongthu9 | Lượt xem: 442 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Bài giảng Xử lý ảnh số (Bản đẹp), để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
m
2 3
S(m,n) G(m,n) h1(m,n)⊗ h2(m,n)
h1(m,n) h2(m,n) G(m,n) S(m,n)
Bài giảng Xử lý ảnh số 24
GV. Mai Cường Thọ
c. Tính chất phân phối với phép cộng
[ ] ),(),(),(),(),(),(),( 3121321 nmSnmSnmSnmSnmSnmSnmS ⊗+⊗=+⊗
Ghép nối song song 2 hệ thống tuyến tính bất biến có đáp ứng xung h1, h2
Tương đương với
Ví dụ:
Cho một hệ thống xử lý ảnh được thiết kế như hình vẽ, hãy xác định đáp ứng G(m,n)
của hệ thống.
Với
Giải
Ta có
[ ]
[ ]),(),(),(),(
),(),(),(),(),(),(
321
32
nmhnmhnmhnmS
nmhnmhnmSnmhnmSnmG
⊗+⊗=
⊗+⊗=
S(m,n) g(m,n) h1(m,n) + h2(m,n)
n
-1 1
1 1
h1(m,n)
m
n
1 j
1 j
h2(m,n)
m
n
1 -j
1 j
h3(m,n)
m
n
1 1
1 1
S(m,n)
m
h1(m ,n)
h2(m ,n) h3(m ,n)
+
G(m,n) S(m,n)
h1(m,n)
h2(m,n)
+
V1(m,n)
V2(m,n)
S(m,n) G(m,n)
Bài giảng Xử lý ảnh số 25
GV. Mai Cường Thọ
Tính riêng: h2(m,n)⊗h3(m,n)
)1,1(),1()1,(),(
)1.1()1,1(),1()0,1()1,()1,0(),()0,0(
),1(),1(),(),0(
),(),(),(),(
3333
32323232
1
0
32
1
0
32
1
0
1
0
3232
−−+−+−+=
−−+−+−+=
−−+−=
−−⋅=⊗
∑∑
∑∑
==
= =
nmjhnmhnmhnmjh
nmhhnmhhnmhhnmhh
lnmhlhlnmhlh
lnkmhlkhnmhnmh
ll
k l
h(m,n)=h1(m,n)+h*(m,n)
Kết quả cuối cùng của hệ thống ta có:
∑ ∑
∞
−∞=
∞
−∞=
−−=⊗
k l
lnkmhlkSnmhnmS ),(),(),(),(
Khai triển công thức trên với S(m,n) và H(m,n) ta sẽ thu được tín hiệu ra G(m,n).
1
-j 1
n
0 0
j
h3(m,n-1)
m
n
1
0 1
-j 0
j h3(m-1,n)
m
jh3(m-1,n-1)
n
0
0 1
0 0
j
m
0 j
-1
h2⊗h3
n
j 1
j
-1 jh3(m,n)
m
h*(m,n)
n
1
0 2
0 1
2j
m
1 2j
-1
h(m,n)
n
1
1 3
-1 2
2j
m
1 2j
-1
Bài giảng Xử lý ảnh số 26
GV. Mai Cường Thọ
CHƯƠNG IV
CÁC PHÉP BIẾN ĐỔI ẢNH
Các phép biến đổi ảnh là cách tiếp cận thứ hai được áp dụng trong tín hiệu số
nói chung và trong xử lý ảnh nói riêng. Phép biến đổi (transform) là thuật ngữ dùng
để chỉ việc chuyển đổi sự biểu diễn của một đối tượng từ không gian này sang một
không gian khác, từ cách biểu diễn này sang cách biểu diễn khác, ví dụ phép biến
đổi Fourier, Z, Laplace. Nói chung mục đích của các phép biến đổi ở đây là cố gắng
phân tích để biểu diễn tín hiệu dưới dạng tổng có trọng số của các tín hiệu cơ bản,
đặc biệt mà ta có thể thấy rõ được tính chất của chúng.
- Nhớ lại phép biến đổi Fourier tín hiệu rời rạc một chiều:
∑
∑
∞
−∞=
−
∞
−∞=
=
=
n
knj
k
knj
enx
N
kX
ekXnx
ω
ω
).(1)(
).()(
Ta có ωωω sincos je j += là một tín hiệu điều hòa phức cơ bản.
- Đối với ảnh số, ta có thể mô tả như sau:
Các Sij là các ảnh cơ sở, các aij là các hệ số phân tích
I. Phép biến đổi Unitar (Unitary Transform)
1. Ma trận trực giao và ma trận Unitar
• Cho A là một ma trận vuông
• A trực giao khi: hay IAAT =
Trong đó A-1 là ma trận đảo của A.
AT là ma trận chuyển vị của A.
• Ma trận A được gọi là ma trận Unitar nếu:
A-1= A*T hay AA*T= I
A* là ma trận liên hợp của A
S S11 S12 SMN a11 + a11 + aMN +
AA T=−1
Bài giảng Xử lý ảnh số 27
GV. Mai Cường Thọ
Các phần tử của A* được xác định như sau với aik= x + jy thì a*ik = x – jy
(dạng số phức tổng quát).
Nhận xét :
Nếu các phần tử của ma trận A có giá trị là số thực thì
A trực giao ⇔ A unitar
Ví dụ 1
Xét xem ma trận A sau đây có phải là ma trận Unitar không
Giải :
Ta có ,
A trực giao ⇒ A Unitar
Ví dụ 2
Kiểm tra tính Unitar của ma trận sau
Nhận xét
Tuy nhiên
Vậy A không Unitar
Ví dụ 3
Xét ma trận
11
11
2
1
−
=A
11
11
2
1
−
=AT IA ==
−−
=
20
02
2
1
11
11
11
11
2
1AT
2
2
j
jA
−
=
2
2
j
jAT −= Ij
j
j
jA AT ==−
−
=
20
01
2
2
2
2
I
j
j
j
j
j
jA
j
j
j
j AA T ≠
−
=
−−
=
−
=
−
=
322
223
2
2
2
2
,
2
2
,
2
2 A*T**
Ij
j
j
j
j
j
Aj
j
j
j
A TTA ≠==== 02
20
2
1
1
1
1
1
2
1
,
1
1
2
1
,
1
1
2
1 A
Bài giảng Xử lý ảnh số 28
GV. Mai Cường Thọ
Tuy nhiên ta lại có:
⇒ A là ma trận Unitar
ví dụ 4:
Xét tính Unitar của ma trận sau:
2. Phép biến đổi Unitar một chiều
Cho vector S = S(n) = (S(0), S(1), S(2),S(N-1))T và ANxN là ma trận Unitar. Ta có
ảnh V của S qua phép biến đổi Unitar thuận.
Ví dụ:
S(n)= (S1, S2, S3)T , ma trận unitar
Ta có
Phép biến đổi Unitar ngược:
Suy ra:
2
3
2
1
2
3
2
11
2
3
2
1
2
3
2
11
111
3
1
jj
jjA
−
−
+
−
+
−
−
−
=
IAj
j
A T ==
−
−
=
20
02
2
1
,
1
1
2
1 A*T*
→→
= SAV hay ∑
−
=
=
1
0
)()(
N
n
kn nskv a
aaa
aaa
aaa
A
333231
232221
131211
=
SaSaSa
SaSaSa
SaSaa
S
S
S
aaa
aaa
aaa S
SAV
333232131
323222121
31321211
3
2
1
333231
232221
131211 1
++
++
+
=×==
+
→→
→
−
→
= VS A 1
→→
= VS A T*
Bài giảng Xử lý ảnh số 29
GV. Mai Cường Thọ
Hay ta có công thức:
Trong đó:
Kết luận: với hình ảnh cơ sở ka∗ là cột k của ma trân A*T, ta tách Sr thành các hình
ảnh cơ sở thông qua các hệ số của Vr
3 Phép biến đổi Unitar 2 chiều
Cho ma trận Unitar ANxN , với ảnh s(m, n) ta có công thức biến đổi Unitar
của ảnh S như sau:
Cặp biến đổi Unitar 2 chiều:
)()()(
1
*
1
kvkvns
N
k
kn
N
k
nk ab ∑∑
==
==
bbb
bbb
bbb
A T
333231
232221
131211
*
=
k
n ba nkkn =
*
)1(...)1()0( * 1
*
1
*
0 −+++=
→
−
→→→ NVvvS aaa N
Các hinh ảnh cơ sở
hệ số phân tích
V = ASAT (Xác định hệ số phân tích)
S= A*TVA* (Xác định ảnh cơ sở)
Hay S= ∑∑
−
=
−
=
1
0
1
0
,
* ),(
N
k
N
l
lk lkVA , với A lk* , : là hình ảnh cơ sở
aaA Tlklk *** , =
Trong đó : ak* và al* là các cột thứ k và l của A*T
Bài giảng Xử lý ảnh số 30
GV. Mai Cường Thọ
Ví dụ: Cho ma trận Unitar A và ảnh S, hãy xác định các ảnh cơ sở của S qua phép
biến đổi
Giải:
* Xác định hệ cơ sở:
V= ASAT =
A*T =
* Xác định các aaA Tlklk *** , =
Ta có :
1
1
2
1*
0 =a và 1
1
2
1*
1 −
=a
11
11
2
111
1
1
2
1*
0
*
0
*
00 === aaA T , 11
11
2
111
1
1
2
1*
0
*
1
*
10
−−
=
−
== aaA T
11
11
2
111
1
1
2
1*
1
*
0
*
01
−
−
=−== aaA T , 11
11
2
111
1
1
2
1*
1
*
1
*
11
−
−
=−
−
== aaA T
* Như vậy S có thể biểu diễn qua các hình ảnh cơ sở như sau:
11
11
0
11
11
11
11
2
1
11
11
2
5
43
21
−
−
+
−−
−
−
−
−==S
11
11
2
1
−
=A và
43
21
=S
04
210
2
1
11
11
22
64
2
1
11
11
43
21
11
11
2
1
−
−
=
−−−
=
−−
11
11
2
1
−
Hình ảnh cơ sở
Bài giảng Xử lý ảnh số 31
GV. Mai Cường Thọ
Ví dụ 2:
Cho ma trận Unitar A và ảnh S, hãy xác định V và A lk* ,
1
1
2
1
j
j
A = và
43
21
=S
Giải:
* V= ASAT = jj
jj
j
j
jj
jj
j
j
j
j
5351
5153
2
1
1
1
243
4231
2
1
1
1
43
21
1
1
2
1
++
+−+−
=
++
++
=
* A*T=
1
1
2
1
j
j
−
−
* Tính aaA Tlklk *** , = với ja −=
1
2
1*
0 và 12
1*
1
j
a
−
=
1
1
2
11
1
2
1*
0
*
0
*
00
−−
−
=−
−
== j
jjjaaA
T
j
jjjaaA
T
−
−
=−
−
==
1
1
2
11
1
2
1*
1
*
0
*
01
j
jjjaaA T
−
−−
=−
−
==
1
1
2
11
12
1*
0
*
1
*
10
1
1
2
11
12
1*
1
*
1
*
11 j
jjjaaA T
−
−−
=−
−
==
II. Biến đổi Fourier
1. Biến đổi Fourier 1 chiều
Cho f(x) là hàm liên tục với biến thực x. Biến đổi Fourier của f(x) là ℑ ( ){ }xf :
ℑ ( ){ }xf = F(u) = dxxf e uxj pi2)( −
∞
∞−
∫
Trong đó j= 1−
Cho F(u), f(x) có thể nhận được bằng cách biến đổi Fourier ngược (IFT):
ℑ-1 ( ){ }uF = f(x) = duuF e uxj∫∞
∞−
pi2)(
Bài giảng Xử lý ảnh số 32
GV. Mai Cường Thọ
Công thức trên là cặp biến đổi Fourier tồn tại nếu f(x) liên tục và có thể tích phân
được, và F(u) cũng có thể tích phân được. Trong thực tế các điều kiện trên luôn thoả
mãn.
Với f(x) là hàm thực, biến đổi Fourier của hàm thực nói chung là số phức:
F(u) = R(u) + j I(u)
Trong đó R(u) và I(u) là thành phần thực và thành phần ảo của F(u). Ta thường biểu
diễn dưới dạng hàm mũ
F(u)= e ujuF )()( φ
Trong đó:
)()()( 22 uIuRuF += và
= )(
)(
tanarg)(
uR
uI
uφ
- F(u) được gọi là phổ biên độ Fourier của f(x), và )(uφ gọi là góc pha.
- Biến u thường được gọi là biến tần số (phần biểu diễn hàm mũ) =e uxj pi2− , theo công
thức Euler:
e
uxj pi2−
= cos(2piux) – jsin(2piux)
Vậy ta có thể nói rằng, biến đổi Fourier tạo ra một cách biểu diễn khác của tín
hiệu dưới dạng tổng có trọng số các hàm sin và cosin (2 hàm trực giao)
Ví dụ:
Ta có hàm f(x) như sau:
F(u) = dxxf e uxj∫∞
∞−
− pi2)( = dxA
X
uxj
e∫ −
0
2pi
= [ ]e uxjuj A Xpipi 22 0−− = [ ]12 2 −− −e uxjuxj A pipi
= [ ] eeee uxjuxjuxjuxj ux
u
A
uj
A pipipipi
pi
pipi
−−−
=− )sin(
2
22
Đó là một hàm phức, phổ Fourier: )(
)sin()sin()(
ux
uxAxnux
u
A
uF e
uxj
pi
pi
pi
pi
==
−
A
f(x)
X
x
Bài giảng Xử lý ảnh số 33
GV. Mai Cường Thọ
2. Biến đổi Fourier 2 chiều
Biến đổi Fourier có thể mở rộng cho hàm f(x, y) với 2 biến. Nếu f(x, y) là
hàm liên tục và tích phân được và F(u, v) cũng tích phân được, thì cặp biến đổi
Fourier 2 chiều sẽ là : ℑ { } ∫ ∫ +−∞
∞−
== dxdyyxfvuFyxf e
vyuxj )(2),(),(),( pi
ℑ-1 { } ∫ ∫∞
∞−
+
== dudvvuFyxfvuf e
vyuxj )(2),(),(),( pi
Trong đó u, v là biến tần số.
Cũng như biến đổi Fourier 1 chiều, ta có phổ biên độ, phổ pha, cho trường hợp 2
chiều:
),(),(),( 22 vuIvuRvuF += và
= ),(
),(
tanarg),(
vuR
vuI
vuφ
Ví dụ: xác định biến đổi Fourier của hàm trên hình sau:
F(u, v)=
Y
vyjXX Y uxj
vyjuxjvyuxj
vyjuxjAdydxAdxdyyxf
ee
eee
0
2
00 0
2
22)(2
22
),(
−
−==
−−
−−+−
∞
∞−
∫ ∫ ∫∫ pipi
pipi
pipipi
= [ ] [ ]
=−−−−
−−
−−
vY
vY
uX
uX
AXY
vjuj
A ee
ee
vYjuXj
YjuXj
pi
pi
pi
pi
pipi
pipi
pipi )sin()sin(1
2
11
2
22
Phổ công suất của nó:
vY)(
vY)sin(
uX)(
)Xusin(XY),( 2
pi
pi
pi
piAvuF =
Các tính chất của biến đổi Fourier
A
X
Y
F(x,y)
x
y
Bài giảng Xử lý ảnh số 34
GV. Mai Cường Thọ
3. Biến đổi Fourier rời rạc (DFT)
Giả thiết cho hàm liên tục f(x), được rời rạc hoá thành chuổi:
{ } { } { } [ ]{ }{ }xNxfxxfxxfxf ∆−+∆+∆+ 1,2,, 0000
Trong đó: N- số mẫu, ∆x bước rời rạc ( chu kỳ lấy mẫu). Ta dùng biến x vừa là biến
liên tục vừa là biến rời rạc.
Ta định nghĩa : f(x)= f(x0 + x∆x)
x: - là các giá trị rời rạc 0, 1, 2,, N-1.
Chuỗi { })1(...),2(),1(),0( −Nffff là các mẫu đều bất kì được lấy mẫu đều từ một
hàm liên tục. Cặp biến đổi Fourier cho các hàm lấy mẫu:
F(u)= ∑
−
=
−1
0
2
)(1
N
x
N
uxj
exfN
pi
với u= 0, 1, 2, N-1
Và f(x) =∑
−
=
1
0
2
)(
N
x
N
uxj
euF
pi
với x= 0, 1, 2, N-1
Trường hợp DFT 2 chiều:
F(u, v) = ∑∑−
=
−
=
+−
1
0
1
0
)(2),(1
M
x
N
y
N
vy
M
uxj
eyxfMN
pi
f(x,y)=∑ ∑
−
=
−
=
+
1
0
1
0
)(2),(
M
u
N
v
N
vy
M
uxj
evuF
pi
với u= 1,0 −M , v= 1,0 −N và x= 1,0 −M , y= 1,0 −N
Nếu M=N (lấy mẫu vuông ):
Ta có:
∑∑−
=
−
=
+
−
=
1
0
1
0
)(2),(1),(
N
x
N
y
N
vyuxj
eyxfNvuF
pi
∑∑−
=
−
=
+
=
1
0
1
0
)(2),(1),(
N
u
N
v
N
vyuxj
evuFN
yxf pi
với x, y=0, 1, 2,N-1
Bài giảng Xử lý ảnh số 35
GV. Mai Cường Thọ
Chương V
Xử lý và nâng cao chất lượng ảnh
Nâng cao chất lượng ảnh là một bước quan trọng tạo tiền đề cho xử lý ảnh.
Mục đích: làm nổi bật một số đặc tính của ảnh: Thay đổi độ tương phản, lọc
nhiễu, nổi biên, làm trơn biên, khuếch đại ảnh
- Tăng cường ảnh: Nhằm hoàn thiện trạng thái quan sát của một ảnh. Bao gồm
điều khiển mức xám, thay đổi độ tương phản, giảm nhiễu, làm trơn, nội
suy
- Khôi phục ảnh: Nhằm khôi phục ảnh gần với trạng thái thực nhất trước khi
biến dạng, tùy theo nguyên nhân gây ra biến dạng.
Các phương pháp thực hiện:
- Thực hiện trên miền không gian
+ Toán tử điểm (Point Operations): giá trị 1 điểm ảnh đầu ra phụ thuộc duy
nhất vào 1 giá trị đầu vào tại vị trí tương ứng trên ảnh vào.
+ Toán tử cục bộ (Local Operations): giá trị một điểm ảnh đầu ra phụ thuộc
vào giá trị của chính nó và các lân cận của nó trong ảnh vào.
- Thực hiện trên miền tần số
+ Toán tử tổng thể (Global Operations): giá trị của 1 điểm ảnh đầu ra phụ
thuộc vào tất cả giá trị các điểm ảnh trong ảnh vào
I. Tăng cường ảnh
I.1. Các thao tác trên miền không gian (Spatial Operations)
- Là hàm thao tác trực tiếp trên tập các điểm ảnh.
- Biểu diễn công thức tổng quát như sau: )],([),( nmSnmV T=
- Một láng giềng (Neighborhood) của (m,n) được định nghĩa bởi việc sử dụng một
ảnh con (subimage) hình vuông, hình chữ nhật hoặc bát giác, có tâm điểm tại (m,n).
Hình 5.1. Một số dạng lân cận
- Khi láng giềng là 1x1, thì hàm T trở thành hàm biến đổi hay ánh xạ mức xám
(gray level transformation function).
v = T[s]
s, v là các mức xám của S(m,n) và V(m,n).
Bài giảng Xử lý ảnh số 36
GV. Mai Cường Thọ
1. Các kỹ thuật tăng cường ảnh sử dụng toán tử điểm
- Xử lý điểm ảnh là 1 trong các phép xử lý cơ bản và đơn giản. Có 2 cách tiếp cận
trong cách xử lý này:
+ Dùng 1 hàm thích hợp (hàm tuyến tính hay hàm phi tuyến) tùy theo mục
đích cải thiện ảnh để biến đổi giá trị của điểm ảnh (mức xám, độ sáng) sang một giá
trị khác (mức xám mới).
+ Dựa vào kỹ thuật biến đổi lược đồ xám (Histogram).
(i). Tăng độ tương phản
Trước tiên cần làm rõ khái niệm độ tương phản. Ảnh số là tập hợp các điểm mà
mỗi điểm có giá trị sáng khác nhau, ở đây độ sáng để mắt người dễ cảm nhận ảnh
song không phải là quyết định. Thực tế chỉ ra rằng hai đối tượng có cùng độ sáng
nhưng đặt trên hai nền khác nhau sẽ cho cảm nhận khác nhau. Như vậy, độ tương
phản biểu diễn sự thay đổi độ sáng của đối tượng so với nền, một cách nôm na độ
tương phản là độ nổi của điểm ảnh hay vùng ảnh so với nền. Với khái niệm này, nếu
ảnh của ta có độ tương phản kém, ta có thể thay đổi tuỳ theo ý muốn.
Hình 5.2. Các hình vuông con cùng 1 mức xám xuất hiện trên các nền khác nhau
Nguyên lý: Điều chỉnh lại biên độ trên toàn dải hay dải có giới hạn bằng cách
biến đổi tuyến tính (T là hàm tuyến tính) hay phi tuyến biên độ đầu vào.
+ Cách biến đổi tuyến tính:
≤<+−
≤<+−
≤
=
Lsbvbs
bsavas
ass
v
b
a
)(
)(
γ
β
α
với các độ dốc γβα ,, xác định độ tương phản tương đối, L là
số mức xám tối đa của ảnh. Biểu diễn dưới dạng đồ thị ta có:
- Dễ dàng thấy rằng:
+ 1=== γβα : ảnh kết quả trùng với ảnh gốc.
+ 1,, >γβα : giãn độ tương phản
+ 1,, <γβα : co độ tương phản
Việc chọn γβα ,, phải phù hợp, sao cho với Ls ≤≤0 thì Lv ≤≤0
s
v
a b L
vb
va
L
α
β
γ
Bài giảng Xử lý ảnh số 37
GV. Mai Cường Thọ
ví dụ:
200100190180
130170160120
26272423
26302220
30202010
S
giả sử chọn: 5.0,8,5.0,30,10 ===== γβαba
tính được: 165,5 == ba vv
5.0=α
8=β 5.0=γ
s 10 20 22 23 24 26 27 30 100 120 130 160 170 180 190 200
v 5 85 101 109 117 133 141 165 200 210 215 230 235 240 245 250
+ Cách biến đổi phi tuyến: trong trường hợp biến đổi phi tuyến, người ta sử dụng
các hàm mũ hay hàm log dạng: )1log( scv += , γcsv = , γ,c là hằng số hiệu chỉnh và
0>γ .
(ii). Tách nhiễu và phân ngưỡng
Tách nhiễu Là trường hợp đặc biệt của phân ngưỡng khi
các độ dốc 0== γα .
Ứng dụng để quan sát ảnh, cắt ảnh hoặc giảm nhiễu khi biết
tín hiệu đầu vào nằm trên khoảng [ ]ba, .
Đồ thị minh họa: →
Phân ngưỡng (Thresholding)
- Là trường hợp đặc biệt của tách nhiễu khi constba ==
- Ứng dụng tạo các ảnh nhị phân, in ảnh 2 màu, vì ảnh gần nhị
phân không thể cho ra ảnh nhị phân khi quét ảnh bởi có sự
xuất hiện của nhiễu do bộ cảm biến và sự biến đổi của nền.
Thí dụ trường hợp ảnh vân tay.
- Đồ thị minh họa: →
(ii). Biến đổi âm bản (Digital Negative)
- Biến đổi âm bản nhận được khi dùng phép biến đổi
sLv −= . Ứng dụng khi hiện các ảnh y học và trong quá tròng
tạo các ảnh âm bản
s
v
a≡ b L
L
s
v
a b L
L
β
s
v
L
L
Bài giảng Xử lý ảnh số 38
GV. Mai Cường Thọ
(iii). Cắt theo mức (Intensity Level Slicing)
- Làm nổi bật một miền mức xám nhất định (để tăng cường một số đặc điểm nào
đó).
Có 2 kỹ thuật thực hiện:
+ Hiển thị giá trị cao cho tất cả các mức xám trong vùng quan tâm, và ngược lại
(không nền).
+ Làm sáng vùng mức xám mong muốn, nhưng giữ nguyên các giá trị xám khác
(có nền).
Không nền:
≠
≤≤=
0
bsaL
v Có nền:
≠
≤≤=
s
bsaL
v
(iv). Trích chọn bít (Bit Plane Slicing)
Mục đích là để làm nổi bật các thành phần trên toàn ảnh bởi việc sử dụng các bít
đặc biệt.
- Mỗi mức xám s của 1 điểm ảnh được mã hóa trên B bít, và được biểu diễn:
BB
BB kkkks ++++=
−
−− 2...22 1
2
2
1
1
- Trong các bít mã hóa, người ta chia làm 2 loại: bít bậc thấp và bít bậc cao. Với bít
bậc cao, độ bảo toàn thông tin cao hơn nhiều so với bít bậc thấp, các bít bậc thấp
thường biểu diễn nhiễu hay nền.
Muốn trích chọn bít thứ n và hiện chúng, ta dùng biến đổi:
≠
==
0
1nkL
v
(v). Các toán tử logic và đại số
Sử dụng toán tử logic: Ứng dụng đối với các ảnh nhị phân NOT, AND, OR,
XOR, NOT_AND...
Sử dụng toán tử đại số: Cộng, Trừ, Nhân
- Trừ ảnh: mục đích tìm ra sự khác nhau của ảnh khi quan sát ảnh ở 2 thời điểm
khác nhau. Sử dụng biến đổi
),(),(),( 21 nmsnmsnmv tt −=
Kỹ thuật này được dùng trong dự báo thời tiết, trong y học.
Bài giảng Xử lý ảnh số 39
GV. Mai Cường Thọ
(vi). Mô hình hóa và biến đổi lược đồ xám
Lược đồ xám: là một hàm rời rạc cung cấp tần suất xuất hiện của mỗi mức xám.
kk nsh =)(
+ sk là mức xám thứ k
+ nk là số các điểm ảnh khác có cùng mức xám sk
+ n là tổng số các điểm ảnh trong ảnh
- Biểu diễn lược đồ xám:
+ Trục tung biểu diễn số điểm ảnh cho một mức xám (hoặc tỷ lệ số điểm ảnh
có cùng mức xám trên tổng số điểm ảnh)
+ Trục hoành biễu diễn các mức xám
Ví dụ:
# Phương pháp giãn lược đồ xám (Histogram Stretching )
- Thường thì trong một số ảnh, các giá trị xám không phủ đều trên toàn dải
động sẵn có của ảnh, mà chỉ tập trung ở một số mức xám nhất định (tồn tại nhiều giá
trị xám =0, hoặc là 2B-1). Điều này làm cho ảnh quá tối, quá sáng hoặc tương phản
kém.
h(sk)
sk ảnh tối
h(sk)
sk ảnh sáng
h(sk)
sk ảnh tương phản thấp
h(sk)
sk ảnh tương phản cao
Bài giảng Xử lý ảnh số 40
GV. Mai Cường Thọ
Để giải quyết điều này, ta thực hiện thao tác giãn lược đồ xám lên toàn dải động của
ảnh.
Giả sử dải động (dải độ sáng ) của ảnh là 120 −÷ B , thì: thao tác này là một ánh
xạ sao cho:
Giá trị xám nhỏ nhất của ảnh →giá trị 0
Giá trị xám lớn nhất của ảnh →giá trị 2B-1
Ánh xạ này là: ( ) min)(
minmax
12
−
−
−
= k
B
k sv
# Phương pháp san bằng lược đồ xám (Histogram Equalization)
Mục đích của phương pháp này là cố gắng chuyển lược đồ xám của ảnh về
gần với 1 lược đồ định trước.
Thuật toán san bằng:
+ Khởi tạo H
for (i=0; i<256; i++) H[i] = 0 ;
+ Tính H
for (i=0; i<M; i++)
for (j=0; j<N; j++) H[Im[i][j]]++
+ Tính tỉ lệ xuất hiện mức xám I trên ảnh
for (i=0; i<256; i++) Hr[i] = H[i] / (M*N) ;
+ Tính phân phối xác suất mức xám k trên ảnh
Tong=0;
for (k=0; k<255; k++) { Tong+= Hr[k] ; HC[k] = Tong}
+ San bằng
for (i=0; i<M; i++)
for (j=0; j<N; j++) ImEq[i][j] = 255 * HC[Im[i][j]] ;
{Hàm phân phối xác suất P(a) là khả năng xuất hiện các mức xám trong ảnh bé
hơn hoặc bằng mức xám a}
h(sk)
sk a b Max
h(sk)
sk a b Max
Ảnh gốc Ảnh sau khi san bằng
Bài giảng Xử lý ảnh số 41
GV. Mai Cường Thọ
Ví dụ
Cân bằng histogram của ảnh S
3020101020
3060607070
7050506040
3030704020
5040302010
=S
Xác định tần số mức xám
25
3)40(
25
4)70(,
25
5)30(
25
3)60(,
25
4)20(
25
3)50(,
25
3)10(
=
==
==
==
Hr
HrHr
HrHr
HrHr
;
25
15)40(
25
25)70(,
25
12)30(
25
21)60(,
25
7)20(
25
18)50(,
25
3)10(
=
==
==
==
Hc
HcHc
HcHc
HcHc
Áp dụng ImEq[i,j]=255*Hc[Im[i,j]] và làm tròn số liệu ta có
Mức xám sin 10 20 30 40 50 60 70
Thay thế bởi sout 31 72 122 153 184 214 255
I.2. Kỹ thuật tăng cường ảnh sử dụng các toán tử cục bộ (miền không gian) -Kỹ
thuật lọc số miền không gian
- Nhiễu gây cho ta những khó khăn khi phân tích tín hiệu, trong khi các kỹ thuật
trên rõ ràng là chưa đáp ứng được vấn đề giảm nhiễu. Vì vậy, kỹ thuật lọc số miền
không gian được ứng dụng.
- Cơ sở lý thuyết của lọc số là dựa trên tính dư thừa thông tin không gian.
- Trong kỹ thuật này, người ta sử dụng một mặt nạ và di chuyển khắp ảnh gốc.
Tùy theo cách tổ hợp điểm đang xét với các điểm lân cận mà ta có kỹ thuật lọc tuyến
tính hay phi tuyến. Điểm ảnh chịu tác động của biến đổi là điểm ở tâm mặt nạ.
- Mô hình lọc số:
h(m,n) S(m,n) V(m,n)
mức xám 10 20 30 40 50 60 70
tần số 3 4 5 3 3 3 4
Bài giảng Xử lý ảnh số 42
GV. Mai Cường Thọ
I.2.1. Kỹ thuật lọc tuyến tính (Linear Filter)
(i) Lọc trung bình không gian
- Mục đích: san bằng ảnh, làm mịn ảnh, loại bỏ các thành phần nhiễu muối, tiêu.
- Ý tưởng: mỗi điểm ảnh được thay thế bằng tổng trọng số hay trung bình trọng số
của các điểm lân cận với với mặt nạ.
- Công thức toán học biểu diễn như sau:
∑∑
−= −=
++=
a
as
b
bt
tnsmstswnmv ),(),(),(
2
)1(
,2
)1( −
=
−
=
NbMa , MxN là số lẻ.
W: cửa sổ lọc, ),( tsw là các trọng số của bộ lọc.
Trên là công thức tính tổng chập, vậy đây chính là việc nhân chập ảnh với
mặt nạ lọc ảnh.
- Thực tế ta thường dùng mặt nạ 33xMxN = ,
- Nói chung, người ta sử dụng nhiều kiểu mặt nạ khác nhau.
=
111
111
111
9
1
1H ,
=
111
121
111
10
1
2H ,
=
121
242
121
16
1
3H
Ví dụ: Dùng mặt nạ H1
++++++++=
9
30100403020020705030)2,3(S =63
(ii). Lọc thông thấp không gian (Spacial Low- Pass Filter).
- Mục đích: Khử nhiễu cộng và nội suy ảnh
- Trong lỹ thuật này, hay dùng một số mặt nạ sau:
=
010
121
010
8
1
1tH , ( )
+= 11
11
2
1 2
2
b
bbb
b
b
H b
703010040
103020020
60705030
40302020
=S
Bài giảng Xử lý ảnh số 43
GV. Mai Cường Thọ
I.2.2. Kỹ thuật lọc phi tuyến (NonLinear Filter)
(i). Lọc trung vị (Median Filter)
- Được sử dụng chủ yếu cho giảm nhiễu
- Một bộ lọc trung vị cũng dựa vào việc dùng một cửa số di chuyển trên ảnh, và giá
trị xám pixel đầu ra được thay thế bởi trung vị của các pixel trong cửa sổ đó.
- Thuật toán:
+ Các pixel trong cửa sổ sẽ được sắp xếp từ nhỏ tới lớn.
+ Nếu kích thước của cửa sổ =JxK là lẻ thì vị trí trung vị là 2/)1( +JxK , ngược
lại thì vị trí trung vị là 2/JxK .
Ví dụ:
Dùng cửa sổ 3x3 ta có.
(ii) Bọ lọc giữ biên (Kuwahara Filter)
- Biên đóng vai trò quan trọng trong cảm nhận ảnh của chúng ta và trong
phân tích ảnh. Bằng cách nào đó ta làm trơn ảnh mà không làm mất đi độ sắc nét của
biên, nếu có thể thì không làm thay đổi vị trí của biên.
- Bộ lọc đạt được mục đích này gọi là bộ lọc “giữ biên”.
- Bộ lọc này cũng sử dụng một cửa sổ:
+ kích thước J=K=4L+1, L
nguyên.
+ Chia của sổ thành 4 vùng(
như mô tả)
+ Trong mỗi vùng ta tính
trung bình độ sáng
∑
ℜ∈Λ
=
),(
),(1
nm
i nmsm
và bình phương độ lệch
chuẩn
( )∑
ℜ∈
−
−Λ
=
),(
22 ),(
1
1
nm
ii mnmsµ
703010040
103020020
60705030
40302020
=S
20 30 30 30 40 50 70 100 200
Pixel trung tâm
Vùng 1
Vùng 2
Vùng 3
Vùng 4
Bài giảng Xử lý ảnh số 44
GV. Mai Cường Thọ
+ Giá trị đầu ra của pixel trung tâm trong cửa sổ là giá trị trung bình của vùng
có bình phương độ lệch chuẩn nhỏ nhất.
- Λ là số điểm ảnh của vùng ℜ
(ii). Lọc thông cao, thông dải (Spacial High- pass, Band -pass Filter)
- Mục đích: làm trơn ảnh và trích chọn biên.
- Nếu ta có bộ lọc thông thấp không gian là ),( nmhLP , thì bộ lọc thông cao được
định nghĩa ),(),( nmhnmh LPHP −= δ , và bộ lọc thông dải là
),(),( 21 nmhnmhh LPLPBP −=
- Dưới đây là cac mặt nạ hay dùng cho lọc thông cao.
−−−
−−
−−−
=
111
191
111
1HP ,
−
−−
−
=
010
151
010
2HP ,
−
−−
−
=
121
252
121
3HP
I.3. Các thao tác trên miền tần số
- Kỹ thuật này không thao tác trên một vùng ảnh mà là toàn bộ ảnh.
- Ý tưởng: Biểu diễn ảnh đầu vào qua miền tần số sử dụng biến đổi Fourier thuận,
chọn hàm đáp ứng tần số ),( vuH sao cho đạt kết quả mong muốn. Sau đó ta dùng
biến đổi Fourier ngược để biểu diễn lại ảnh qua miền không gian.
Mô hình lọc số miền tần số
Ta có: ),(),(),( nmhnmxnmy ⊗=
Sử dụng biến đổi Fourier thuận, biểu diễn qua miền tần số ta được:
),(),( vuXnmx F→
),(),( vuHnmh F→
),().,(),(),( vuHvuXvuYnmy F =→
),(),( 1 nmyvuY F→
Ta có các bộ lọc miền tần số hay dùng là lọc thông thấp và thông cao
h(m,n)
Bộ lọc
x(m,n) y(m,n)
Bài giảng Xử lý ảnh số 45
GV. Mai Cường Thọ
Bộ lọc thông thấp, bộ lọc thông cao
(i). Lọc thông thấp
- Mục đích: làm trơn ảnh
- Bộ lọc thông thấp lý tưởng: Hàm truyền đạt có dạng
>
≤=
0
0
),(0
),(1),(
DvuD
DvuD
vuH
00 ≥D , D(u,v) là khoảng cách từ điểm (u,v) đến gốc tọa độ tần số
0D còn được gọi là tần số cắt của bộ lọc. Là giao điểm giữa H(u,v) =1 với H(u,v)=0
- Gốc tọa độ ( )2,2),( NMvu =
-
22),( vuvuD +=
Bộ lọc lý tưởng chỉ ra rằng, tất cả các tần số trong vòng tròn bán kính D0 không bị
suy giảm, trong khi đó tất cả các tần số ngoài vòng tròn này hoàn toàn bị suy giảm.
Đồ thị không gian của bộ lọc thông thấp lý tưởng, biểu diễn dưới dạng ảnh, lát cắt của đồ thị
Bài giảng Xử lý ảnh số 46
GV. Mai Cường Thọ
- Bộ lọc ButterWorth thông thấp: Hàm truyền đạt bậc n với quĩ tích tần số cắt tại
D0
n
D
vuD
vuH 2
0
),(1
1),(
+
=
Đồ thị không gian của bộ lọc thông thấp lý tưởng, biểu diễn dưới dạng ảnh, lát cắt của đồ thị
(ii) Lọc thông cao
- Mục đích: Làm sắc nét ảnh
- Bộ lọc thông cao có thể được định nghĩa qua bộ lọc thông thấp như sau
),(1),( vuHvuH LPHP −=
-Bộ lọc thông cao lý tưởng:
>
≤=
0
0
),(1
),(0),(
DvuD
DvuD
vuH
Bài giảng Xử lý ảnh số 47
GV. Mai Cường Thọ
-Bộ lọc ButterWorth thông cao:
n
vuD
D
vuH 2
0
),(1
1),(
+
=
II. Khôi phục ảnh (Image Restoration)
Khôi phục ảnh để cập tới các kỹ thuật laọi bỏ hay tối thiểu hóa các ảnh hưởng
cua môi trường bên ngoài hay các hệ thông thu nhận, phát hiện và lưu trữ ảnh đến
ảnh thu nhận được.
Khôi phục ảnh bao gồm các quá trình như: lọc ảnh, khử nhiễu nhằm làm
giảm các biến dạng để có thể khôi phục lại ảnh gần giống ảnh gốc tùy theo các
nguyên nhân đã gây ra biến dạng.
- Về nguyên tắc: Khôi phục ảnh là nhằm xác định mô hình toán học của quá trình
gây ra biến dạng, tiếp theo là dùng ánh xạ ngược để xác định lại ảnh.
Quá trình thu nhận ảnh từ thế giới thực
Bài giảng Xử lý ảnh số 48
GV. Mai Cường Thọ
- Hướng tiếp cận: Một mô hình sẽ được xây dựng từ các ảnh kiểm nghiệm để xác
định đáp ứng xung của hệ thống nhiễu.
II.1. Mô hình quan sát và tạo ảnh
- Cơ sở lý thuyết của kỹ thuật khôi phục ảnh: Quá trình gây ra biến dạng ảnh gốc
phụ thuộc vào hệ thống quan sát và tạo ảnh. Ta phải xem xét ảnh quan sát được
biểu diễn thế nào trên cơ sở đó mô hình hóa nhiễu sinh ra. Tiếp theo là dùng biến
đổi ngược (lọc ngược) để khử nhiễu và thu lấy ảnh gốc.
- Ảnh quan sát được gồm: ảnh gốc + nhiễu: ),( nmu + ),( nmη
- Nhiễu gồm:
+ Nhiễu nhân: thành phần nhiễu phụ thuộc kiểu thiết bị quan sát và tạo ảnh
),(1 nmη
+ Nhiễu cộng : thành phần nhiễu ngẫu nhiên độc lập ),(2 nmη
Như vậy là: nếu bằng cách nào đó xác định được các loại tác động biến dạng (phụ
thuộc vào hệ thống và thiết bị) thì ta suy ra được ảnh gốc.
- h(m,n): còn được gọi là hàm phân tán điểm (point-spread function.)
- Trong trường hợp lý tưởng,
≠≠
====
0 00
01),(),(
nhaym
nm
nmnmh δ
II.2. Kỹ thuật lọc tuyến tính
(i). Lọc ngược
Lọc ngược là kỹ thuật khôi phục đầu vào của hệ thống khi biết đầu ra (ảnh
thu nhận được).
Tiến trình thu nhận ảnh
Hàm tác động gây
nên biến dạng
h(m,n)
Bộ lọc
khôi phục ảnh
v(m,n) u(m,n) ),(ˆ nmu w(m,n)
η(m,n)
h(m,n)
Bài giảng Xử lý ảnh số 49
GV. Mai Cường Thọ
- ),(),(),(),( nmnmunmhnmv η+⊗=
- Biểu diễn qua miền tần số: ),(),(),(),( βαβαβαβα WUHV +=
Tiến trình phục hồi ảnh bằng lọc ngược
- ),(
1),(1 βαβα HH =
−
Để đơn giản ta gải thiết là hệ thống không có nhiễu. Như vậy thì vấn đề chỉ còn
xác định xác định hàm phân tán điểm h(m,n).
- Mô hình ảnh rung động mờ (Blur Motion)
+ Lý tưởng: ảnh không có rung động mờ:
≠≠
====
0 00
01),(),(
nhaym
nm
nmnmh δ
+ Ảnh có rung động mờ tuyến tính (dịch chuyển, xoay, kết hợp cả 2,):
=≤+=
khác
vàLnm
LLnmh
0
)tan(
m
n
2
1
),:,(
22 ϕϕ
L: độ dịch chuyển, ϕ góc xoay
+ Rung động đồng nhất ngoài tiêu điểm (Uniform Out of Focus Blur)
≤+=
khác
Rnm
RRnmh
0
1
):,(
222
2pi
- Biến dạng ảnh do nhiễu loạn của khí quyển
6
5
22 )(),( βαβα +−= keH
k là hệ số hiệu chỉnh, k<1
),(1 βα−H
Bài giảng Xử lý ảnh 50
GV. Mai Cường Thọ
CHƯƠNG VI
PHÁT HIỆN BIÊN VÀ PHÂN VÙNG ẢNH
I. Biên và kỹ thuật phát hiện biên
Nhìn chung về mặt toán học người ta coi điểm biên của ảnh là điểm có sự
biến đổi đột ngột về độ xám như chỉ ra trong hình dưới đây:
Như vậy, phát hiện biên một cách lý tưởng là xác định được tất cả các đường
bao trong các đối tượng. Định nghĩa toán học của biên ở trên là cơ sở cho các kỹ
thuật phát hiện biên. Điều quan trọng là sự biến thiên giữa các điểm ảnh là nhỏ,
trong khi đó biến thiên độ sáng của điểm biên (khi qua biên) lại khá lớn. Xuất phát
từ cơ sở này người ta thường sử dụng 2 phương pháp phát hiện biên sau:
• Phương pháp phát hiện biên trực tiếp: phương pháp này nhằm làm nổi
đường biên dựa vào biến thiên về giá trị độ sáng của điểm ảnh. Kỹ thuật chủ yếu là
dùng kỹ thuật đạo hàm. Nếu lấy đạo hàm bậc nhất của ảnh ta có phương pháp
Gradient, nếu lấy đạo hàm bậc 2 ta có kỹ thuật Laplace.
• Phương pháp gián tiếp: Nếu bằng cách nào đấy ta phân ảnh thành các
vùng thì đường phân ranh giữa các vùng đó chính là biên.
s(m,n)
Biên lý tưởng
n
s(m,n)
Biên bậc thang
n
Biên thực tế s(m,n)
n
Bài giảng Xử lý ảnh 51
GV. Mai Cường Thọ
II. Phương pháp phát hiện biên trực tiếp
Tương tự như các phép toán làm trơn ảnh, khả năng lấy đạo hoàm theo tọa độ
các điểm là hết sức quan trọng. Bài toán cơ bản ở đây là nếu chiếu theo đúng định
nghĩa toán học về đạo hàm thì chúng ta không thể thực hiện được việc lấy đạo hàm
các điểm ảnh, do một ảnh số hóa không phải là một hàm liên tục a[x,y] theo các biến
tọa độ mà chỉ là một hàm rời rạc a[m,n] với các biến tọa độ nguyên. Vì lý do đó,
những thuật toán ma chúng ta trình bày ở đây chỉ có thể được xem là các xấp xỉ cho
đạo hàm thật sự theo tọa độ của ảnh liên tục ban đầu.
1. Phương pháp Gradient
Phương pháp gradient là phương pháp dò biên cục bộ dựa vào cực đại của
đạo hàm bậc nhất.
Vì ảnh là một hàm 2 biến, khi tính đạo hàm chúng ta cần phải xác định hướng
cần lấy đạo hàm. Các hướng ở đây có thể là hướng ngang, dọc, hoặc tùy ý là sự kết
hợp của 2 hướng ngang dọc.
Ký hiệu hx , hy , hθ là các bộ lọc đạo hàm theo các hướng x,y, bất kỳ. Ta có
quan hệ sau:
yx hhh .sin.cos][ θθθ +=
Theo định nghĩa gradient ),( yxf∇ là một vectơ có các thành phần biểu thị tốc
độ thay đổi giá trị của điểm ảnh theo hai hướng x và y. yx ii rr , là các vector đơn vị
theo hai hướng x và y.
yxxxyx iyxfhiyxfhiy
yxfi
x
yxfyxf rrrr )),(()),((),(),(),( ⊗+⊗=
∂
∂+
∂
∂=∇
x
x
x
f(x)
f’(x
)
f’’(x)
Bài giảng Xử lý ảnh 52
GV. Mai Cường Thọ
Các thành phần của gradient được tính bởi:
dx
yxfydxxff
x
yxf
x
),(),(),( −+≈=
∂
∂
dy
yxfdyyxff
y
yxf
y
),(),(),( −+≈=
∂
∂
Với dx là khoảng cách các điểm theo hướng x(khoảng cách tính bằng số
điểm) và tương tự với dy. Trên thực tế người ta hay dùng dx=dy=1
Như vậy ta có :
Độ lớn Gradient : 22 )),(()),((,( yxfhyxfhyxf yx ⊗+⊗=∇
Hướng Gradient :
⊗
⊗=∇ ),(
),(
arctan)),((
yxfh
yxfh
yxf
x
yψ
Độ lớn Gradiant xấp xỉ : ),(),(),( yxfhyxfhyxf yx ⊗+⊗=∇
Trong kỹ thuật gradient, người ta chia nhỏ thành 2 kỹ thuật(do dùng 2 toán tử
khác nhau) : kỹ thuật gradient và kỹ thuật la bàn. Kỹ thuật gradient dùng toán tử
gradient lấy đạo hàm theo một hướng; còn kỹ thuật la bàn dùng toán tử la bàn lấy
đạo hàm theo 8 hướng: Bắc, Nam, Đông, Tây và Đông Bắc, Tây Bắc, Đông Nam,
Tây Nam.
Thực hiện ký thuật trên, với mỗi điểm ảnh I(m,n) của I, đạo hàm theo x, theo
y được kí hiệu tương ứng bởi Ix, Iy
Ta có:
−+=
−+=
),()1,(),(
),(),1(),(
nmInmInmI
nmInmInmI
y
x
yx inmInmIinmInmInmI
rr )),()1,(()),(),1((),( −++−+=∇⇒
),()1,(),(),1(),( nmInmInmInmInmI −++−+=∇⇒
Điều này tương đương với nhân chập ảnh với 2 mặt nạ (bộ lọc) hx và hy
]11[][][ −== Tyx hh
hx(m,n)
hy(m,n)
+
I(m,n) ),( nmI∇
Bài giảng Xử lý ảnh 53
GV. Mai Cường Thọ
Nói chung, ảnh kết quả sau khi áp dụng kỹ thuật nổi biên phụ thuộc rất nhiều
vào việc chọn (hx , hy.). Sau đây là một số bộ lọc khác hay dùng
- ]101[][][ −== Tyx hh (2.1)
- Bộ lọc Sobel
[ ] [ ]101
1
2
1
4
1
101
202
101
4
1 −•
=
−
−
−
=xh
[ ] [ ]121
1
0
1
4
1
121
000
121
4
1 •
−
=
−−
=yh
Theo trên ta thấy hx và hy đều tách được, mỗi bộ lọc lấy đạo
hàm theo một hướng nhờ phương trình (2.1) và làm trơn theo hướng
trực giao với hướng đó nhờ một bộ lọc tam giác một 1- chiều.
- Bộ lọc Prewitt
[ ] [ ]101
1
1
1
3
1
101
101
101
3
1 −•
=
−
−
−
=xh
[ ] [ ]111
1
0
1
3
1
111
000
111
3
1 •
−
=
−−−
=yh
Theo trên ta thấy hx và hy đều tách được, mỗi bộ lọc lấy đạo
hàm theo một hướng nhờ phương trình (2.1) và làm trơn theo hướng
trực giao với hướng đó nhờ một bộ lọc đều một 1- chiều.
Toán tử la bàn
Toán tử la bàn đo gradient theo một số hướng đã chọn. Nếu kí hiệu gk là
gradient la bàn theo hướng θk=pi/2 +2kpi với k=0,1, 2,7. Như vậy ta có gradient E
theo 8 hướng ngược chiều kim đồng hồ.
yx hhh .sin.cos][ θθθ +=
Bài giảng Xử lý ảnh 54
GV. Mai Cường Thọ
Có nhiều toán tử la bàn khác nhau. Nhưng ở đây, trình bày một cách chi tiết
toán tử Kish. Toán tử này sử dụng mặt nạ 3x3.
333
503
553
333
303
555
21
−−−
−
−
=
−−−
−−= HH
553
503
333
533
503
533
43
−
−
−−−
=
−−
−
−−
= HH
333
305
355
335
305
335
355
305
333
555
303
333
8765
−−−
−
−
=
−−
−
−−
=
−
−
−−−
=−−
−−−
= HHHH
Trong đó H1, H2, H3, H8 tương ứng với 8 hướng: 00, 450, 900, 1350, 1800, 2250,
3150. Nếu ta kí hiệu ∇i, i=1, 2, 8 là gradient thu được theo 8 hướng bởi 8 mặt nạ,
biên độ gradient tại (x, y) được tính như sau:
( )8....,2,1,),(),( =∇=∇ iyxMaxyx i
2. Kỹ thuật Laplace
Các phương pháp đánh giá gradient ở trên làm việc khá tốt khi độ sáng thay
đổi rõ nét. Khi mức xám thay đổi chậm, miền chuyển tiếp trải rộng, phương pháp
hiệu quả hơn đó là phương pháp sử dụng đạo hàm bậc 2, gọi là phương pháp
Laplace. Toán tử Laplace được định nghĩa như sau:
2
2
2
2
2
dy
f
dx
ff ∂+∂=∇
Toán tử Laplace dùng nhiều kiểu mặt nạ khác nhau để xấp xỉ rời rạc đạo hàm
bậc hai. Dưới đây là 3 kiểu mặt nạ hay dùng:
121
252
121
111
181
111
010
141
010
321
−
−−
−
=
−−−
−−
−−−
=
−
−−
−
= HHH
Với mặt nạ H1, đôi khi người ta dùng phần tử ở tâm có giá trị là 8 thay vì giá
trị là 4 như đã chỉ ra. Để dễ hình dung việc xấp xỉ đạo hàm bậc hai trong không gian
rời rạc bởi mặt nạ H1 hay là ý nghĩa của mặt nạ H1, ta xét chi tiết cách tính đạo hàm
bậc 2. Trong không gian rời rạc đạo hàm bậc 2 có thể tính:
WS
NW
E W
N
S
NE
SE
Mô hình 8 hướng
Bài giảng Xử lý ảnh 55
GV. Mai Cường Thọ
)1,()1,(),(2
),1(),1(),(2
2
2
2
2
+−−−=
∂
∂
+−−−=
∂
∂
yxfyxfyxf
y
f
yxfyxfyxf
x
f
Vậy ),1()1,(),(4)1,(),1(2 yxfyxfyxfyxfyxff +−+−+−−−−=∇
3. Phương pháp khớp nối lỏng
a. Khái niệm láng giềng 4 và láng giềng 8
Với điểm P được bao phủ xung quanh bởi 8 điểm: P0, P1, P8
Ta có láng giềng 8 của P gồm các điểm: P0, P1, P2, P3, P4, P5, P6, P7
Láng giềng 4 của P gồm các điểm: P0, P2, P4, P6.
b. Phương pháp khớp nối lỏng
• Xét các điểm p và q là 2 điểm 4 láng giềng.
• I(p), I(q): giá trị mức xám của điểm p và q
• Nếu θ>− )()( qIpI thì coi như có cặp biên (p, q).
Ví dụ:
Cho ma trận ảnh
chọn θ =3 ta có
II. CÁC KỸ THUẬT DÒ BIÊN
1 Kỹ thuật Freeman(dò biên theo ảnh đen trắng)
Thuật toán
Bước1: Quét ảnh đến khi gặp điểm đen. Gọi nó là pixel 1.
Bước 2: Lặp
Nếu “điểm ảnh hiện thời là đen” rẽ trái
Ngược lại thì rẽ phải.
Dừng khi gặp điểm 1 ban đầu.
P3 P2 P1
P4 P P0
P5 P6 P7
6 2 3 6
2 3 6 2
3 6 2 3 6
2
3
2 3 6 2 3 1 4 2 8 5 7
4 2 8 5 7 1
2 8 5 7 1 4
3
6 1 4 2 8 5 7
4 2 8 5 7 1
2 8 5 7 1 4
Bài giảng Xử lý ảnh 56
GV. Mai Cường Thọ
Cải tiến thuật toán trên (Luân văn tiến sĩ: Hồ Ngọc Kỷ -1992)
Thuật toán
Bước1: Quét ảnh đến khi gặp điểm đen. Gọi nó là pixel 1.
Bước 2: Lặp
Nếu “điểm ảnh hiện thời là đen”
Thì “dò ngược”.
Ngược lại “sang phải”.
Đến khi gặp pixel 1
2. Dò biên theo cặp nền vùng
Phương pháp
Tìm cặp điểm (n,v), trong đó n và v là điểm 8 láng giềng, n là điểm nền và v
là điểm vùng.
Ban đầu có (n0, v0) dựa vào đó ta tìm được (n1, v1), qua trình này cứ tiếp tục.
Tổng quát nếu có (ni, vi) ta sẽ tìm (ni+1, vi+1), sao cho ni và ni+1 là 8 láng giềng , vi và
vi+1 là 8 láng giềng.
11 14 19
24 25
30
13
7
3 2
1 4 5
6
8
10
9
12
15
16 17
18
20 21
22 23 26 27
28 29
31
32 33
34 35
1 2
12
3
11
4 6
5
10 9 8 7
Bài giảng Xử lý ảnh 57
GV. Mai Cường Thọ
Quá trình dò biên theo nền vùng là: tìm 1 dãy các điểm (n0, v0), (n1, v1)(nk, vk) sao
cho
n0, n1, .nk : chu tuyến nền
v0, v1, .vk : chu tuyến vùng
3. Xấp xỉ bởi đoạn thẳng
Nối điểm xuất phát R với điểm đang xét Pc bởi một đoạn thẳng. Sau đó tính
toạ độ của Pi, một điểm nằm giữa R và Pc sao cho khoảng cách từ Pi đến đoạn thẳng
là cực đại. Gọi khoảng cách này là di. Nếu di lớn hơn một ngưỡng cho trước (độ
chính xác của xấp xỉ) người ta phân đoạn RPc thành 2 đoạn RPi và PiPc và tiếp tục
thực hiện lấy mẫu với từng đoạn cho tới khi đoạn thẳng tìm được là “rất gần” với
đường bao.
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 0 0
0 0 0 1 1 1 1 1 1 1 1 1 0 0
0 0 0 1 1 1 1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cặp (ni+1, vi+1) 8 láng giềng
Pi
•
•
•
•
•
•
•
•
• •
•
•
R
Pc
di
Pi
di
•
•
•
•
•
•
•
•
• •
•
•
R
Pc
P1
P2
•
•
•
•
•
•
•
•
• •
•
•
R
Pc
Hình xấp xỉ đường biên bằng đường gấp khúc
Bài giảng Xử lý ảnh 58
GV. Mai Cường Thọ
III. CÁC PHƯƠNG PHÁP PHÂN VÙNG ẢNH
Để phân tích các đối tượng trong ảnh, chúng ta cần phải phân biệt được các
đối tượng cần quan tâm với phần còn lại của ảnh. Những đối tượng này có thể tìm ra
được nhờ các kỹ thuật phân đoạn ảnh, theo nghĩa tách phần tiền cảnh ra khỏi hậu
cảnh trong ảnh. Chúng ta cần phải hiểu được là:
- Không có kỹ thuật phân đoạn nào là vạn năng, theo nghĩa có thể áp dụng cho
mọi loại ảnh.
- Không có kỹ thuật phân đoạn nào là hoàn hảo.
Có thể hiểu phân vùng là tiến trình chia ảnh thành nhiều vùng, mỗi vùng chứa
một đối tượng hay nhóm đối tượng cùng kiểu. Chẳng hạn, một đối tượng có thể là
một kí tự trên một trang văn bản hoặc một đoạn thẳng trong một bản vẽ kỹ thuật
hoặc một nhóm các đối tượng có thể biểu diễn một từ hay hay đoạn thẳng tiếp xúc
nhau. Ta có một số phương pháp phân vùng ảnh như sau:
1. Thuật toán gán nhãn thành phần liên thông
Kỹ thuật này gán cho mỗi thành phần liên thông của ảnh nhị phân một nhãn
riêng biệt. Nhãn thường là các số tự nhiên bắt đầu từ một đến tổng số các thành phần
liên thông có trong ảnh. Giải thuật quét ảnh từ trái sang phải và từ trên xuống dưới.
Trong dòng thứ nhất của các pixel đen, một nhãn duy nhất được gán cho mỗi đường
chạy liên tục của pixel đen. Với mỗi pixel đen của các dòng tiếp theo, các pixel lân
cận trên dòng trước và pixel bên trái được xem xét. Nếu bất kì pixel lân cận nào
được gán nhãn, nhãn tương tự được gán cho pixel đen hiện thời; ngược lại nhãn tiếp
theo chưa được sử dụng được chọn. Thủ tục này được tiếp tục cho tới dòng cuối của
ảnh.
Lúc kết thúc tiến trình này, một thành phần liên thông có thể chứa các pixel
có các nhãn khác nhau vì khi chúng ta xem xét lân cận của pixel đen, chẳng hạn
pixel “?” trong hình vẽ. Pixel đối với lân cận trái và những lân cận trong dòng trước
có thể được gán nhãn một cách riêng biệt. Một tình huống như vậy phải được xác
định và ghi lại. Sau tiến trình quét ảnh, việc gán nhãn được hoàn tất bằng cách thống
nhất các mâu thuẫn các nhãn và gán lại các nhãn chưa sử dụng.
Bài giảng Xử lý ảnh 59
GV. Mai Cường Thọ
Để minh hoạ ta có hình biểu diễn sau :
Vd : một phương pháp sửa nhãn
∃(p,q) là liên thông 8 mà label(p)label(q) -> sửa nhãn cho giống nhau.
2. Phân vùng bằng tách cây tứ phân
Về nguyên tắc, phương pháp này kiểm tra tính hợp thức của tiêu chuẩn một
cách tổng thể trên miền lớn của ảnh. Nếu tiêu chuẩn được thỏa, việc phân đoạn coi
như kết thúc. Trong trường hợp ngược lại, ta chia miền đang xét thành 4 miền nhỏ
hơn. Với mỗi miền nhỏ, ta áp dụng một cách đệ quy phương pháp trên cho đến khi
tất cả các miền đều thỏa.
Thuật toán này tạo nên một cây mà mỗi nút cha có 4 nút con ở mọi mức trừ
mức ngoài cùng. Vì thế cây này có tên là cây tứ phân. Cây này cho ta hình ản rõ nét
về cấu trúc phân cấp của các vùng tương ứng với tiêu chuẩn.
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. * * * * . . * * * . . . . . 1 1 1 1 . . 2 2 2 . . . .
. . * * * . . * * * * . . . . . 1 1 1 . . 2 2 2 2 . . .
. * * * * . * * * * * . . . . 1 1 1 1 . 2 2 2 2 2 . . .
. . . * * * * * . . . . . . . . . 1 1 ? * * . . . . . .
. . . * * * * * * . * . . . ⇒ . . . * * * * * * . * . . .
* * . . . . . . . . * * . . * * . . . . . . . . * * . .
. * * . . . . . . . * * . . . * * . . . . . . . * * . .
. * * . . . . . . . . . . . . * * . . . . . . . . . . .
Hình b . Ảnh ban đầu Hình c . Tiến trình gán nhãn
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 1 1 1 1 . . 2 2 2 . . . . . 1 1 1 1 . . 1 1 1 . . . .
. . 1 1 1 . . 2 2 2 2 . . . . . 1 1 1 . . 1 1 1 1 . . .
. 1 1 1 1 . 2 2 2 2 2 . . . . 1 1 1 1 . 1 1 1 1 1 . . .
. . . 1 1 1 1 1 . . . . . . . . . 1 1 1 1 1 . . . . . .
. . . 1 1 1 1 1 1 . 3 . . . ⇒ . . . 1 1 1 1 1 1 . 2 . . .
4 4 . . . . . . . . 3 3 . . 3 3 . . . . . . . . 2 2 . .
. 4 4 . . . . . . . 3 3 . . . 3 3 . . . . . . . 2 2 . .
. 4 4 . . . . . . . . . . . . 3 3 . . . . . . . . . . .
Hình d . Sau khi quét đầy đủ Hình e .Kết quả sau cùng
. . . . . . . . . ..
. . . . P P P P . . . .
. . . . L ? . . . . . . .
. . . . . . . .. . . . . ..
P: lân cận trước, L lân cân trái
Bài giảng Xử lý ảnh 60
GV. Mai Cường Thọ
Một vùng thỏa chuẩn sẽ tạo nên một nút lá, nếu không nó sẽ tạo nên một nút
trong và có 4 nút con tương ứng với việc chia làm 4 vùng. Ta cứ tiếp tục như vậy
cho đến khi phân xong. Các nút của cây biểu diễn số vùng đã phân.
Tiêu chuẩn phân vùng ở đây là màu sắc. Nếu mọi điểm của vùng đều là màu
trắng thì sẽ tạo nên nút lá trắng và tương tự như vậy với nút lá đen. Nút màu ghi
vùng không thuần nhất và phải tiếp tục chia.
Với ngưỡng θ cho trước, vùng thuần nhất phải thỏa điều kiện
• Độ lệch chuẩn σ < θ
• Hoặc θ<− MinMax với Max, Min lần lượt là giá trị lớn nhất và nhỏ nhất của
mức xám trong vùng cần chia.
• Giá trị điểm ảnh trong vùng bằng cách lấy trung bình giá trị của vùng đó
Ảnh gốc Phân đoạn ở mức 1
Ví dụ:
Cho ảnh S(m, n) , hãy phân vùng theo tiêu chí: ngưỡng θ= 2 và θ<− MinMax
98664422
98664422
22335577
22335577
12335578
98765532
88664422
88664422
),( =nmS kết quả
Vùng 2
Vùng 1
Vùng 3
Vùng 4
98664422
98664422
22335577
22335577
12335578
98765532
88664422
88664422
),( =nmS
Vùng 1
Bài giảng Xử lý ảnh 61
GV. Mai Cường Thọ
Ta có cây tứ phân như sau
3. Phân vùng bởi hợp
Ý tưởng của phương pháp này là xem xét ảnh từ các miền nhỏ nhất rồi hợp
chúng lại nếu thỏa tiêu chuẩn để được một miền đồng nhất lớn hơn. Ta lại tiếp tục
với miền thu được cho tới khi không thể hợp được nữa. Số miền còn lại cho ta kết
quả phân đoạn. Như vậy miền nhỏ nhất của bước xuất phát là điểm ảnh.
Phương pháp hợp vùng được thực hiện như sau:
• Giả sử có 2 vùng ω và ω’
•
Ta xác định cặp các điểm 4 láng giềng (p, q) sao cho p ∈ω và q ∈ω’
• Xác định
≤−=
otherwise
qIpIif
qpT
0
)()(1),( 1θ
Trong đó I(p), I(q) là giá trị mức xám của điểm p và q, θ1 là giá trị ngưỡng cho
trước.
• Gọi b(ω) và b(ω’) là số điểm biên của 2 vùng ω và ω’
(8)
(3)
22 21
(1) (2) (8) (9)
14
4
3
2
1
13
12
11
(6)
(7) (6) (3) (3)
23
24
(4)
(2) (5)
(2)
(8)
(7)
(5)
(7) (2) (4) (2) (3) (6) (9)
Bài giảng Xử lý ảnh 62
GV. Mai Cường Thọ
• Xét hàm khả năng hợp 2 vùng : ))(),((
),(),(
'
'
ϖϖ
ϖϖ
bbMin
qpT
KNG ∑=
• Nếu ( ) 2', θϖϖ ≥KNG thì có thể hợp 2 vùng ω và ω’ thành 1 vùng.
Ví dụ:
Xét khả năng hợp các vùng của ảnh sau, 1θ =3, 2θ =0.6
44442222
88644222
88662212
88866612
68886111
66666111
66666611
),( =nmS
Gọi A, B, C, D, E lần lượt là các vùng chứa mức xám 1, 2, 4, 6, 8
Ta có bảng 1, Đếm số điểm biên các vùng và tính toán các ∑ ),( qpT
Xác định hợp vùng Bảng 2
Kết luận : Có thể hợp được 2 vùng D và E vì 11/10 >θ2
Có thể hợp được 2 vùng B và C vì 4/6 >θ2
KNG(ω,ω’) A B C D E
A - 5/10 0 0 0
B 5/10 - 4/6 0 0
C 0 4/6 - 3/6 0
D 0 0 3/6 - 11/10
ω’
ω
A B C D E B(ω)
A - 5 0 0 0 10
B 5 - 4 0 0 11
C 0 4 - 3 0 6
D 0 0 3 - 11 19
E 0 0 0 11 - 10
Bài giảng Xử lý ảnh 63
GV. Mai Cường Thọ
IV. Phân vùng ảnh dựa theo ngưỡng biên độ
- Kỹ thuật lấy ngưỡng
Kỹ thuật này dựa trên một ý tưởng hết sức đơn giản. Một tham số θ, gọi là
ngưỡng độ sáng, sẽ được chọn để áp dụng cho một ảnh a[m,n] theo cách sau:
Nếu [ ] θ≥nma , thì [ ] 1, == objectnma
Ngược lại [ ] 0, == backgroundnma
Thuật toán trên giả định rằng chúng ta đang quan tâm đến các đối tượng sáng
(object) hay nền ảnh (background) bằng các giá trị “1” hoặc “0”.
Câu hỏi trung tâm trong kỹ thuật lấy ngưỡng khi đó sẽ là: Chúng ta nên chọn
ngưỡng θ như thế nào? Mặc dù không có thuật toán chọn ngưỡng vạn năng nào có
thể áp dụng cho mọi loại ảnh. Chúng ta cũng có nhiều phương pháp đưa ra dưới đây:
1. Ngưỡng cố định
Phương pháp đầu tiên là chọn một ngưỡng độc lập với dữ liệu ảnh. Nếu chúng
ta biết trước là chương trình ứng dụng sẽ làm việc với những ảnh có độ tương phản
rất cao, trong đó các đối tuợng quan tâm rất tối còn nền gần như đồng nhất và rất
sáng, thì giá trị ngưỡng không đổi 128 trên thang độ sáng từ 0 đến 255 sẽ là một giá
trị chọn khá chính xác. Chính xác ở đây nên được hiểu theo nghĩa là số lượng các
điểm ảnh bị phân lớp sai là cực tiểu.
2. Ngưỡng dựa trên lược đồ
Trong hầu hết các trường hợp, ngưỡng được chọn từ lược đồ độ sáng của vùng
hay ảnh cần được phân đoạn. Hình dưới đây cho chúng ta một ví dụ về ảnh và lược
đồ độ sáng liên kết với nó.
Bài giảng Xử lý ảnh 64
GV. Mai Cường Thọ
Có rất nhiều kỹ thuật chọn ngưỡng tự động xuất phát từ lược đồ xám. Những kỹ
thuật phổ biến nhất trong số đó sẽ được trình bày dưới đây. Những kỹ thuật này có
thể tận dụng lợi thế do sự làm trơn dữ liệu lược đồ ban đầu mang lại, nhằm loại bỏ
những dao động nhỏ về độ sáng. Tuy nhiên các thuật toán làm trơn cần phải cẩn
trọng không được làm dịch chuyển các vị trí đỉnh của lược đồ. Nhận xét này dẫn đến
thuật toán làm trơn lược đồ dưới dây, với độ rộng của cửa sổ W là N, thông dụng là
N=3 hoặc N=5 (bộ lọc trung bình 1-chiều):
[ ]
( )
( ) [ ]ibh
N
bh
N
Ni
rawsmooth −= ∑
−
−−=
2/1
2/1
1
2.1. Tuật toán đẳng liệu (Isodata)
Kỹ thuật chọn ngưỡng theo kiểu lặp này do Ridler và Calvard đưa ra. Thuật
toán như sau:
- Chia lược đồ thành 2 đoạn bằng một giá trị ngưỡng khởi động 10 2 −= Bθ , tức
là bằng phần nửa thang độ xám động của ảnh.
- Sau đó tính toán độ sáng trung bình của 2 vùng:
- 0,fm của những điểm ảnh thuộc đối tượng
- 0,bm của những điểm ảnh nền.
- Tính giá trị ngưỡng mới
2
0,0,
1
bf mm +
=θ
Quá trình này cứ thế sẽ được tiếp tục với các ngưỡng mới cho đến khi nào giá
trị ngưỡng không thay đổi nữa thì dừng lại. Biểu diễn dưới dạng công thức toán học,
chúng ta có:
2
1,1, −− +
=
kbkf
k
mm
θ cho tới khi 1−= kk θθ
2.2. Thuật toán tam giác
Thuật toán này do Zack đưa ra trong (36) và được minh họa trong hình (trang
bên). Trong hình này, chúng ta có thể quan sát thấy một đường thẳng đã được xây
dựng bằng cách nối từ giá trị lớn nhất của lược đồ tại độ sáng bmax đến giá trị nhỏ
nhất của lược đồ tại độ sáng bmin .Với mỗi độ sáng b trong khoảng [bmax, bmin], chúng
ta đi tính khoảng cách d từ giá trị lược đồ tại b là h[b] đến đường thẳng đã có. Giá trị
b0 ứng với khoảng cách lớn nhất sẽ được chọn làm giá trị ngưỡng θ.
Bài giảng Xử lý ảnh 65
GV. Mai Cường Thọ
Kỹ thuật lấy ngưỡng không nhất thiét phải được áp dụng cho toàn bộ ảnh, mà
có thể áp dụng cho từng vùng ảnh một. Hai tác giả Chow và Kaneko đã phát triển
một biến thể của kỹ thuật lấy ngưỡng bằng cách chia một ảnh có kích thước MxN ra
thành nhiều vùng không chồng chất lên nhau. Các giá trị ngưỡng được tính riêng
biệt cho từng vùng một và sau đó được kết hợp lại thông qua phép nội suy để hình
thành nên một mặt ngưỡng cho toàn bộ ảnh. Trong thuật toán mới này, kích thước
của các vùng cần được chọn một cách thích hợp sao cho có một lượng đáng kể các
điểm ảnh ở trong một vùng, nhằm phục vụ cho việc tính lược đồ và xác định ngưỡng
tương ứng. Tính hữu ích của thuật toán này, cũng như nhiêu thuật toán khác, sẽ phụ
thuộc vào từng ứng dụng cụ thể.
Các file đính kèm theo tài liệu này:
- bai_giang_xu_ly_anh_so_ban_dep.pdf