Trên đây em đã trình bày một số mô hình tối đa hoá lợi ích của người đi vay và cho vay.Việc ứng dụng các mô hình này vào Việt Nam còn nhiều phức tạp song nó cũng đưa ra những cách giải quyết khác nhau cho mối quan hệ này. Trong tương lai các mô hình này sẽ được ứng dụng nhiều hơn nên việc nghiên cứu nó là điều nên làm.Với đề tài của mình em cũng hiểu thêm một phần việc tối đa hoá lợi ích của người đi vay và cho vay và em hy vọng các mô hình này sẽ được ứng dụng rộng rãi ở Việt nam trong thời gian tới.
54 trang |
Chia sẻ: Kuang2 | Lượt xem: 927 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Đề tài Tối ưu hoá lợi ích của hai tác nhân trong mối quan hệ giữa người đi vay và người cho vay, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ay sẽ chọn lựa kết quả mức e* mà tối ưu húa kỡ vọng của hàm thỏa dụng. :
V(R,e)=
Trong đú f(y, e) là hàm mật độ của y đối với e đó cho và là hàm lồi tăng, diễn tả cõn bằng tiền phải nộp của chi phớ đối với kết quả của người đi vay. Được xỏc định bởi e* mà
Cho một mức hợp lý cỏ nhõn cầu của người cho vay, hợp đồng tối ưu sẽ như là việc tối đa húa độ thỏa dụng của người đi vay, dưới giới hạn kết quả và giới hạn nợ thông thường và giới hạn hợp lý cỏ nhõn.
Vỡ vậy chương trỡnh sẽ đươc giải quyết như sau:
( 0≤R(y) ≤y
V(R,e) ≤ V(R,e*)
E[R(y)e*]≥U0L
Kết quả 1.5.Nếu cho tất cả e1 >e2, tỷ số có thể đúng là một hàm tăng theo y (tỷ số (MLR) có thể đúng đều điều ) hàm phải trả nợ tối ưu là thường xuyên theo loại sau:
R(y)=0 đối y
R(y)=y cho y<
R
R(y)
y
Hình 1.4 diễn tả hình dáng của hàm thanh toán nợ tối ưu
Tài sản MLR (theo Holmtrom 1979) nghĩa là kết quả y của đầu tư là một dấu hiệu tốt cho mức kết quả, cao hơn y là, cao hơn mối quan hệ sẽ là điều mà kết quả có đã cao hơn là thấp.Vì vậy bằng trực giác sau kết quả 1.5 là: cách tốt nhất để quy định đúng nhạy cảm đối với kết quả là để cho tiền thưởng tối ưu của tác nhân này (R(y)=0) khi kết quả là tốt () và tiền phạt R(y)=y khi kết quả là tồi ()(cho bằng chứng thông thường ,xem vấn đề 1.7.3). Thật không may mắn loại hợp đồng này thường không gặp trong thực hành Innes(1987) đã nghiên cứu điều gì xảy ra nếu một sự hạn chế vấn đề xa hơn bởi mong muốn rằng, hàm nợ phải trả là không giảm theo y. Trong trường hợp đó Innes diễn giải rằng hợp đồng tối ưu là một hợp đồng nợ tiêu chuẩn .
Dionne và Viala(1992,1994) đã nghiên cứu mối quan hệ giữa người đi vay và cho vay trong đó có đồng thời Moral Hazard và xác định tình trạng chi phí. Mô hình của họ là sự tổng hợp của Innes và Townsend, Gale và Hellwig. Họ tìm kiếm hợp đồng nợ tối ưu của Pareto giữa các hợp đồng nợ mà thoả mãn tính tương thích nhạy cảm và gây ra cho người đi vay để đạt được mức kết quả tối đa của. Dưới tài sản MLR, họ cho thấy những hợp đồng nợ tối ưu là một tổ hợp của hợp đồng nợ và là một “hợp đồng lợi tức ” như kết quả đã đạt được trong 2.5. Vì vậy những hàm thanh toán nợ tối ưu được đặc trưng bởi hai ngưỡng R và ,với như :
R(y)=min(y,R) đối với y
R(y)=0 đối với y
Vài mục trên đã nghiên cứu Moral Hazard trong trạng thái động, như Diamond (1991). Trong trường hợp như ngân hàng có thể đưa ra hợp đồng dài hạn, có thể thu xếp tiền trợ cấp thông qua những giai đoạn. Điều này ngụ ý rằng hứa là chủ yếu, khi đó ngân hàng sẽ có lợi hơn bởi sự bội ứơc giản đơn trên lời hứa của họ để hồi phục vốn vay từ kết quả của người đi vay. Vấn đề quan trọng đã có ở đây trong tập hợp chung. Thật vậy, như sự nhấn mạnh Boot,Thakor,và Udell(1991). Nếu một hãng tiến hành đầu tư không quan sát trước khi đạt được tiền từ tài chính của một dự án, sự thiếu hụt của lời hứa thay mặt ngân hàng để chấp nhận một khoản vay với sự mong đợi sẽ giảm mức đầu tư không thể quan sát ở dưới một mức hiệu quả .
Top of Form
Tại sao trung gian tài chính sẽ hứa? Có hai lí do chính tại sao nhân hàng có thể thích thừa nhận hợp đồng để “đem tiền và thoát tiền” thay đổi (1) cả hai xác suất của nguồn điều lệ được chấp nhận bởi người đi vay có thể là khả năng cao (BOOT, THAKOR, and UDELL1991), hoặc(2) ngân hàng có thể xây dựng một danh tiếng cho danh dự hợp đồng của nó. Trong trường hợp cuối này nó sẽ thú vị để thông báo rằng ngân hàng có thể vẫn chọn để “vốn danh tiếng nổi bật” hơn để đối mặt một mất mát vốn quan trọng trong suy yếu về tài chính,nhấn mạnh thời điểm bởi BOOT, GREENBAUM, và THAKOR(1993). Mối quan hệ bên ngoài quan trọng khác giữa ngân hàng và hoạt động của người đi vay là cái mà các hãng với việc đóng mối quan hệ với ngân hàng dường như để ít hạn chế trạng thái trong hoạt động đầu tư của họ hơn độc lập với hãng. HOSHI, KASHYAP, và SCHARFSTEIN(1993) đưa ra khái niệm cho hiện tượng này khi họ nghiên cứu người Nhật “KEIRETSU”, cái đó là kết thành ngân hàng liên kết thân thiết và các hãng công nghiệp. Tương tự kết quả đã đạt được trên dữ liệu GERMAN. (cho giai đoạn 1973 thông qua 1984) bởi ELSTON(1995).
1.5 . Tến tới hợp đồng chưa hoàn thành
Lý thuyết kinh tế chứng minh rằng : bản hợp đồng hoàn thành viết tay(ie, những hợp đồng mà là ngẫu nhiên tiềm tàng trên tất cả hoàn cảnh tương lai của tự nhiên ) có thể chỉ cải tiến hậu quả, bởi vì, nó đồng ý cho việc hoàn thành chia sẻ rủi ro thông qua những tình trạng tương lai của tự nhiên. Hơn nữa , hợp đồng hoàn thành không thấy được trường hợp đặc biệt và thậm chí nhiều sự khác nhau với phương pháp này.
Sự thương lượng lại thường xảy ra sau khi hợp đồng đã ký. Một ví dụ tiêu biểu là khi một hãng vỡ nợ, điều đó sắp xếp một giao kèo thông qua cải thiện tất cả đòi hỏi của cổ đông(người nắm giữ). Vì vậy một hoàn cảnh dường như chứng minh(biểu lộ rằng) là quá khó để miêu tả tất cả các sự kiện mà sẽ dẫn tới vỡ nợ(phá sản) và tất cả các hoạt động mà hãng sẽ đem đến trong mỗi người họ.
Lý thuyết hợp đồng chưa hoàn chỉnh ghi nhận đó là thực tế và đồng ý mối quan hệ của loại này về trường hợp đó.
Một trường hợp quan trọng là khi tình trạng tự nhiên là có thể quan hệ được bởi cả hai bên đối với hợp đồng nhưng không thể kiểm tra xác nhận được điều này nghĩa là cả ba bên sẽ không thể quan hệ tình trạng ngẫu nhiên mà đã xảy ra, như xảy ra trong mối quan hệ của BOTTONvà SCHARFSTEIN(1990) và HART và MOARE(1996) c 1.3.1, 1.3 và kết quả, một hợp đồng ngẫu nhiên. Nếu đã được viết lên sẽ không có ít giá trị, khi không tranh thủ sẽ không thể quyết định nghĩa vụ ngẫu nhiên của mỗi bên.
Một hợp đồng chưa hoàn chỉnh sẽ cải tiến đặc biệt trên một vài đại biểu và sự phân phối tới một trong các bên của khả năng chọn giữa việc tập hợp những quyết định trước của hoạt động( lựa chọn đầu tư, nối lại khoản vay, vấn đề chia sẻ mới). Và sẽ tạo khả năng ngẫu nhiên.
Tuy nhiên, nhìn chung những dấu hiệu có thể kiểm tra là không hoàn hảo tương quan với tình trạng không xác định được của tự nhiên.
Tiêu biểu, tác nhân trong viẹc giao nhiệm vụ sẽ hoạt động theo hàm mục tiêu của họ và không thể chọn hầu hết quá trình hiệu quả của hoạt động, trong trường hợp như vậy, có mục tiêu của đàm phán lại. Tất nhiên, hãng sẽ làm trước cho phù hợp với việc khởi đầu này.
Mục tiêu của mục này không nghiên cứu tất cả những mối quan hệ hợp đồng hoàn chỉnh mà có xem xét (nghiên cứu ) mối quan hệ giữa người đi vay và cho vay nhưng tóm lại, để diễn tả trong vài bài báo gần đây vì vậy cho một vài cái của hợp đồng chưa hoàn chỉnh có thể cải tiến sự thoả thuận của mối quan hệ giữa người đi vay và cho vay.
Một kết luận chung của những mô hình này là cái mà ý đồ(kế hoạch) của hợp đồng trên là như thế mà nó giới hạn xã hội hướng của các tác nhân đối với hoạt động không hiệu quả.
Điều này ngụ ý rằng, cho ví dụ, một sự giải thích khác của sự vỡ nợ, những cái đó diễn tả một vai trò bởi vì nó chỉ định sự kiểm soát đối với một bên khác nhau hoặc vì nó là mối đe doạ đáng tin cậy mà cho một độ nhạy cảm (khuyến khích) đối với tác nhân trong sự thay đổi để chọn ra những hoạt động hiệu quả.
Như một ví dụ đơn thuần trong phần của HARTvà MOORE(1995), hãy tưởng tượng rằng một nhà quản lý của hãng là “những chủ thầu có sức mạnh (vị thế)” những người có quyền ưu tiên đối với đầu tư của giá trị hiện tại ròng của sự đầu tư khi giá trị hiện tại ròng hãng là có thể quan sát được nhưng không xác minh được.
Nếu một hãng có những dòng tiền có sẵn, nó sẽ đầu tư, nếu đáng lẽ nó phải làm thanh toán khoản nợ, nhưng nó bị kiềm chế bởi tiền mặt và ngân hàng sẽ cấp vốn chỉ cho những dự án đầu tư có thể đem lại lợi nhuận. Giới hạn nợ này sẽ hữu ích vì nó hạn chế được việc tự do quản lí (độc lập) trong việc lựa chọn đầu tư (chi tiết xem ở 1.7.4). phần này sẽ nghiên cứu hai ví dụ : đầu tiên, là phần của BOLTON và FREIXA(1994) xây dựng trên ý kiến cho rằng người gửi tiền giao phó cho ngân hàng quyền để thương lượng lại những vốn vay đã chấp nhận cho người đi vay. Tiếp theo của GORTON và KAHN(1993) sẽ điều chỉnh mà tại sao ngân hàng cho vay thường xuyên bao gồm cả điều khoản mà có thể đưa ra quyền đối với ngân hàng gọi là khoản vay ra hạn. Thỉnh thoảng gây nên sự phá sản.
1.5.1. Uỷ quyền thương lượng lại
Một sự khác nhau chính giữa thị trường tài chính và trung gian tài chính (FIS). Sự khác nhau đó từ quyền thương lại. Thật vậy nếu một trung gian tài chính dược thấy như một sự liên kết giữa những người giữ tiền. Sự thú vị của việc liên kết như vậy là cái mà quyền đối với việc thương lượng lại không bị phân tán giữa nhiều bên cá nhân người cho vay nhưng tập trung trong thể chế tài chính. Người gửi tiền có thể thấy đựơc sự uỷ quyền trong quyền thương lượng của họ đối với trung gian người gửi.
ý kiến này được lặp lại đúng kiểu trong thực tế mà nó có giá trị nhiều hơn đối với hãng để thương lượng lại (kỳ hạn giả của một trái phiếu mà nó đã được đặt, đánh giá) trong đợt phát hành sau đó là đối với ngân hàng thương lượng lại khoản cho vay.
BOLTON và FREIXAS (1994) đã xây dựng trên ý kiến đối với sự phát triển một mặt hàng của trung gian tài chính mà nó chắc chắn thích hợp với sự thay đổi quan sát trong sự hợp thành nợ của hãng thông qua chu kỳ kinh doanh. Thảo luận này sẽ mang tới một sự tiến tới đơn giản hoá. Tóm tắt từ mục đích chính trong thoả thuận của họ, theo một trật tự minh hoạ những đói thủ và sự chống lại việc thương lượng lại trong một khung giản đơn. Một ý kiến tương tự được sử dụng bởi CHEMMAER và FULGHIERI. Cuộc thảo luận này sẽ đơn giản đưa ra thương lượng lại có thể hấp dẫn hoặc không phụ thuộc vào đặc trưng của hãng như thế nào.
Theo cách đó sự khác nhau giữa vấn đề nợ vào khoản vay ngân hàng sẽ được minh họa. nghĩa là nó sẽ được diễn ra cái mà: thậm chí hợp đồng cho vay của ngân hàng là hiệu quả nó có thể lỗi (thiếu sót) vẫn có thể tin được, trái lại, hợp đồng nợ công khai sẽ được thực hiện.
Cân nhắc mối quan hệ đầu tư ba giai đoạn trong đó tại thời điểm 0 vấn đề nợ của hãng và đầu tư trên một đơn vị tiền tệ của dự án là bàng quan với rủi ro.
Tại thời điểm 1,2 nó sẽ đạt được dòng tiền y1 và y2 dòng tiền cao nhất và thấp nhất là yH và yL) nhận biết (cổ phiếu) được tóm tắt ở một biến, gọi là tình trạng thực, cái mà có thể mang 4 giá trị : (H,H), (H,L),(L,H) và (L,L).
Giả thiết rằng: tình trạng thực được hoàn toàn lộ ra ở thời điểm 1 ( vì vậy mà thời điểm 2 dòng tiền được biết là một cách hoàn hảo một giai đoạn đầu). Cũng giả thiết rằng tình trạng thực là không xác định thậm chí nếu cả hai bên (người đi vay và người cho vay)quan sát được nó. Tuy nhiên, khi dòng tiền là tối thiểu ở yL , phần dòng tiền này là xác định. Lấy thời điểm 1 và thời điểm 2 của dòng tiền là độc lập sắp xếp giống hệt nhau, với xác suất p đạt được yY. Hơn nữa giả thiết tỷ lệ lãi suất chiết khấu (zero coupu) tương đương, tất cả các dòng tền để được chiết khấu trong khung cảnh hợp đồng giữa giữa người đi vay và cho vay không thể tạo nên sự ngẫu nhiên trước dòng tiền không xác định. Vì vậy nó tương đương với hợp đồng nợ giới hạn, trong trường hợp đó khả năng thanh toán của hãng đối với người cho vay trong trường hợp hứa trả nợ không được thực hiện. Trong trường hợp đó người cho vay đặt trước giá trị tương đương ở giai đoạn đầu tiên A.
Khi dự án là kết thúc, giá trị tương đương của nó là 0. Dưới những giá trị hãng thanh toán giai đoạn 2 có thể điều chỉnh cân bằng với khối lượng tại yL.
Nếu yL>A thì sự đe doạ của hãng đối với việc đóng cửa trong trường hợp vỡ nợ là không đáng tin. Vì vậy hãng sẽ thường xuyên lấy cớ là không thành công vì tổng số nợ phải trả đối với ngân hàng sẽ chỉ bằng 2yL. Nếu yL < 1/2 thị trường đối với các khoản vay phá vỡ (sụp đổ). Theo cách khác, giả thiết rằng: những người nắm giữ thành phẩm là không thể thương lượng lại vì vậy mà họ sẽ đóng cửa hãng khi nó ở yL. Điều này xẩy ra khi hãng thực sự không thành công ở thời điểm 1 (i, e, trong hoàn cảnh thực [L,H] và [L,L], nhưng cũng trong tình trạng [H,L] [phá vỡ chiến lược]).
Tuy nhiên, khi tình trạng là [H,H], hãng thích trả R (đã cho, vì R < yH), sau đó nó đạt (yH - R) + (yH - yL) thay vì yH - yL.
Do đó sự hứa là đổ bể, thậm chí nó không hiệu quả, đồng y thị trường tài chính cung cấp việc cho vay là thoả mãn.
p2 (R + yL) + (1 - p2) (A + yL) > 1
Vì vậy , lợi nhuận enpost của việc thương lượng lại ở đây là lý do đối với sự phá vỡ của thị trường đối với vốn vay.
1.5.2. Hiệu quả của các điều khoản cho vay của ngân hàng.
Như đã đề cập, việc thương lượng lại giữa các bên biểu diễn một vai trò chính khi hợp đồng là chưa hoàn thành. Thật vậy, cả hai bên biết hợp đồng là không expost hiệu quả. Do đó, khi họ thương lượng lại tốt hơn hợp đồng kỳ hạn (như là sự chia sẻ dòng tiền lãi đối với mỗi bên và thanh toán nợ), họ không thể tin vào lời hứa cam kết không đối với việc thương lượng lại. Trong hợp đồng nợ con nợ có thể đem đến một sự không hiệu quả hoặc hoạt động rủi ro mà sẽ làm giảm giá trị hiện tại ròng của việc thực hiện dự án trong khi tăng lợi nhuận của con nợ tại phí của chủ nợ, rõ ràng trong trường hợp như vậy việc thương lượng lại có thể cải tiến hiệu quả.
ý kiến này được quan sát bởi GORTON và KAHN (1993) như là để chỉ rõ sự khác nhau giữa ngân hàng cho vay và vấn đề của nợ công chúng (sự sắp xếp thú vị khác là BESTER 1994 mà sự hợp đồng chưa hoàn chỉnh tiến tới chỉ rõ vai trò của sự phụ thuộc vào những hợp đồng nợ). Thật vậy cá nhân bổ nhiệm thích hợp và ngân hàng cho vay thường bao gồm nhiều chi tiết nhiều giới hạn điều khoản hơn trái phiếu công chúng.
Theo GR, sự khác nhau giữa ngân hàng cho vay và vấn đề nợ công chúng là cái: ngân hàng cho vay kiềm chế vị thế mà cho phép ngân hàng gọi khoản vay quá hạn. Khi đó sẽ thu xếp thương lượng lại , nó có thể được cải tiến trong một hợp đồng chưa hoàn thiện.
Vai trò của các điều khoản được nhấn mạnh bởi vì chúng cho phép ngân hàng thương lượng lại khoản vay hiệu quả. Vai trò của sự phụ thuộc giá trị phá sản hãng là điều quan trọng vì, như đã thấy 1.4.2. Sự đe doạ vỡ nợ là có thể xác định chỉ khi nó cho phép ngân hàng đạt được thu hồi cao.
Trong diễn giải này sẽ đơn giản hoá triệt để KR với kết quả mà vài kết quả của họ sẽ bị bỏ đi. Giả thiết rằng: cả hai ngân hàng và hãng đều trung lập rủi ro và kết quả của những việc đó được diễn tả:
Thời điểm 0: hãng đi vay một đơn vị tiền tệ đối với dự án tài chính, đồng ý trả R tại thời điểm t = 2.
Thời điểm 1: z (dấu hiệu không xác định được) là có thể được quan sát bởi hãng và ngân hàng. Ngân hàng và hãng có thể thương lượng lại kỳ hạn của khoản vay. Điều này xảy ra trong trường hợp đặc biệt nếu ngân hàng đe doạ tới sự phá vỡ dự án và nếu sự đe doạ đó là xác định.
Thời điểm 2: Hãng chọn một dự án đầu tư mới (cả G và B) một lợi nhuận xác định từ dự án này là đạt được và được chia sẻ giữa ngân hàng và hãng.
hợp đồng được ký z được quan sát và hoạt động được chọn thương lượng các bên (GARB) và lợi nhuận đã được
t = 0 t = 1 t = 2
Hình 1.5: Đường thẳng thời gian của vấn đề trong mối quan hệ của GORTON và KAHN
Hình 1.5 diễn tả đường thẳng thời gian của các biến cố.
Theo cách chon lựa công nghệ đầu tư không thể quan sát được sẽ minh hoạ hai giai đoạn vấn đề MORAL HAZARD. Cho một giá trị của thông số z (z ≥0), hãng lựa chọn giữa hai dự án đầu tư G và B, dự án mà lợi nhuận được cho bởi:
zyi + A2 với xác suất pi
i = G,B
A2 với xác suất 1- pi
Trong đó A2 là giai đoạn 2 thanh toán giá trị của dự án. Giả định tiêu chuẩn:
pGyG > pByB , yG < yB , sinh ra từ mối liên hệ MORAL HAZARD.
Cho giá trị thanh toán R0 (R0 > A2), sự lựa chọn dự án tối ưu của hãng sẽ là chọn lựa G nếu và chỉ nếu pG (zyG + A2 - R0) ≥ pB (zyB + A2 - R0), điều này tương đương:
(1.11)
Nhưng trong đó
đặt r = (R0 - A2)/z
Phương trình 1.11 có thể được viết r ≤ .
Cho một kết quả, trong tình trạng vắng mặt của việc thương lượng lại, có tồn tại một mức tới hạn z* được xác định bởi R0- A2 ≡ 2* có thể ràng buộc nếu z < z* (điều này là nếu dự án này là thực hiện không tốt ở giai đoạn 2), thì phương án B sẽ được chọn lựa điều đó là không hiệu quả. Lấy A1 là giá trị của dự án gần cân bằng, điều này được giả thiết rằng ở trên A2. Một cách rõ ràng, cho giá trị thấp của z nó không hiệu quả đối với thanh toán dự án ở thời điểm t = 1.
Cho một kết quả, trong tình trạng thiếu sự thương lượng, tổng lợi nhuận kỳ vọng trên vốn vay sẽ là:
1+ρ(R)=Prob[z >z*](PGRO + (1-PG)A2 + Prob[z >z*](PGRO + (1-PB)A2.
Đặt ρ(R) cân bằng tới tỷ lệ sinh lời ít rủi ro.
Giá trị nợ thanh toán ban đầu RO tại cân bằng có thể được xác định. Như một hợp đồng sẽ mang hai nguồn không hiệu quả và sự thiếu hiệu quả gần cân bằng đối với giá trị thấp của z.
l=
l1 Gần sự thanh toán C
A
Tất cả thặng dư
đối với NH
B
r1 r2 yB r=
Hình 1.6: Các loại khác nhau của cân bằng trong mối quan hệ GORTON – KAHN (1993)(với tương ứng khu vực mạnh chính để trả nợ nước ngoài hoặc là Pareto - cải tiến việc thương lượng lại).
Bây giờ thảo luận này sẽ cân nhắc trường hợp mà trong đó ngân hàng là có thể gọi một khoản vay tại thời điểm t=1, và giải quyết trò chơi cân bằng Nash hoàn hảo.
Sự giải quyết vấn đề này sẽ được thông qua bởi phương pháp quy nạp giật lùi. Ngân hàng có thể thương lượng lại kỳ hạn của vốn vay cũng bởi sự giảm khối lượng R (miễn nợ) hoặc bởi sự tăng lên của nó. Nhưng trong trường hợp này nó có thể làm như vậy chỉ khi sự đe doạ tới sự thanh toán là đáng tin, điều này là nếu thanh toán nợ hợp đồng nguyên bản RO như li:
A1>Pi*.RO + (1- Pi*)A2 (1.12)
Trong đó i Є {G,B} diễn tả dự án mà hãng sẽ chọn lựa (cái đó phụ thuộc vào z P).
Giới thiệu một kí hiệu mới l = , điều kiện đó có thể được viết là l>Pi*.r
Nếu 1.13 là không chỉ rõ, sự đe doạ nợ là không đáng tin.
Bây giờ tất cả các loại của vấn đề sẽ được phân tích xác định trong khoảng (l,r). Để bắt đầu với 1.13 là không rõ ràng trong vùng thẳng đứng diễn tả ở 1.6 mà giữa đường thẳng gấp khúc OABC.
Đối với trò chơi thương lượng lại đơn giản, giả thiết rằng ngân hàng có tất cả quyền (khả năng) thương lượng mặc cả. Kết quả nếu 1.13 giữ, ngân hàng sẽ buộc phải thanh toán nợ rủi ro đối với những gì nó đạt được trên thu nhập kỳ vọng tối đa. Điều này có thể là => hoặc . Trường hợp xem xét ở đây sẽ là :
PG < PByB. Vì vậy mà ngân hàng sẽ thực hiện đặt .
Để nghiên cứu giải quyết trò chơi khi sự phá sản bị đe doạ, xác định l1 như bước đầu l1 = pByB. Tuỳ thuộc vào mức của l có 2 trường hợp có thể xẩy ra.
1> Nếu l > l1, thanh toán sớm là chiến lược tốt nhất của ngân hàng, khi l > l1 là tương đương với . Chú ý rằng điều này chỉ có tính hiệu quả tốt thứ 2, khi lựa chọn phương án hiệu quả G sẽ có sự thích hơn.
2> Nếu l ≤ l1 và r như sớm thanh toán là đáng tin cậy, ngân hàng sẽ đặt .
Cuối cùng, nếu sự thanh toán là không tin tưởng được, sẽ vẫn có vị trí đối với thương lượng lại cải tiến Pareto: Ngân hàng có thể vẫn sẽ đàm phán sự giảm khoản nợ nếu điều này tăng lợi nhuận kỳ vọng của (r1,r2) và l dưới BC (tầm nhìn và vùng cột thẳng đứng) trong đó ngân hàng sẽ chọn r = r1, mà là
Vì vậy, có 3 kết quả có thể của việc thông qua đàm phán lại:
1> Cho mức thấp z điều kiện cho vay của ngân hàng: cho phép sớm thanh toán, điều này sẽ cải thiện hiệu quả.
2> Cho (vốn vay ngân hàng cho phép thương lượng lại với một sự tăng lên trong thanh toán, điều đó (nếu tất cả khả năng thương lượng mặc cả được cho vốn vay ngân hàng) có thể rời hãng với lợi nhuận chiết khấu).
3> Cho giá trị của z khoản vay ngân hàng có thể dẫn tới sự miễn nợ.
Khả năng thương lượng cải tiến hiệu quả, thật vậy, một dự án được thanh toán chỉ khi giá trị hiện tại ròng của nó là dưới giá trị thanh toán của nó với miễn nợ cho phép chuyển từ không hiệu quả sang dự án có hiệu quả.
Trong tất cả các trường hợp khác nhau dự án được chọn là không bị ảnh hưởng bởi việc thương lượng lại, chỉ có phân bố của dòng tiền giữa các tác nhân thực hiện điều đó.
Tóm lại, GORTON - KAHN đưa ra sự bào chữa của khoản vay ngân hàng (như đối lập với nợ công chúng), dựa trên sự tồn tại của hiệp ước (thoả thuận) mà có thể sắp xếp thương lượng lại như tác giả đã nói, điều này là sự bào chữa mới đối với sự tồn tại của các ngân hàng. Sự che chắn EX - ANTE của người đi vay hoặc kiểm tra công nghệ sản xuất của những dự án, là sự bào chữa, chọn lựa (đan xen nhau), sẽ không được rõ ràng trong việc giải thích tại sao ngân hàng là đặc trưng không đặt dưới yêu cầu hoặc thậm chí nắm giữ cân bằng (hợp lí). Họ cũng không chỉ ra được trong giải thích tại sao ngân hàng cho vay giới hạn vị thế trong điều khoản
BERLIN và MESTER (1992) đưa ra một vấn đề tương tự trong một mối quan hệ trừu tượng hơn. Theo mô hình của họ, ngân hàng cho vay giới thiệu các điều khoản bởi vì các điều khoản (sự thoả thuận) cho phép ngân hàng thu hồi được vốn vay như GIC đã đồng ý, nhưng vì ngân hàng muốn hạn chế tập hợp các hành động có thể đen tối của hãng. Rõ ràng ngân hàng không muốn hãng đánh bạc (đầu cơ liều ở thị trường chứng khoán để phục hồi). Nhưng tất nhiên như vậy một sự hạn chế hướng vào một hãng trong cảnh khốn cùng có thể giảm cơ hội tăng trưởng của hãng nếu có đem lại thành công. Theo BERLIN - ngân hàng xác định một mối liên hệ hợp đồng không hoàn thiện trong đó ngân hàng có thể quan sát một cách xác định dấu hiệu tăng giảm không biết hãng có thành công hay không và nếu dấu hiệu này được ghi nhận bởi người đi vay hợp đồng sẽ được thương lượng lại nếu nó đem lại thành công. Kết quả họ đạt được dường như chỉ là trực giác: Khi việc thương lượng lại là có thể, các điều khoản sẽ được ràng buộc hơn. Khi việc thương lượng lại của vấn đề trái phiếu công chúng là có giá trị vô cùng, điều này sẽ giải thích tại sao điều khoản cho vay của ngân hàng là hạn chế hơn điều khoản hiệp ước của cổ phiếu.
1.6. Đồ kí quỹ và quy mô vốn vay như phương sách đối với cấu trúc
Phần này sẽ giả thiết tồn tại phạm trù khác nhau của những người đi vay, diễn tả bởi một tham số rủi ro.
Nếu tham số này là nhận biết thông thường. Hợp đồng nợ tối ưu( tương đương cho một mức thích hợp cá nhân đối với người cho vay) sẽ đạt dược như phần 1.1bởi giải quyết chu trình P0đối với mỗi giá trị. Trong trường hợp đặc biệt của độ thoả dụng mũ (thay ở 1) hệ số trong cân bằng tối ưu α sẽ là hằng số, nhưng trả nợ R sẽ cao hơn rủi ro cao hơn.
Trên thực tế, nó thường nhiều hiện thực hơn để giá trị r θ là được quan sát chỉ bởi người đi vay, trong hoàn cảnh này giai đoạn trước hợp đồng (với điều kiện tỉ lệ lãi suất) là không được thực hiện trừ khi sự suy xét khác được giới thiệu, tất cả người đi vay sẽ yêu cầu để được mức rủi ro thấp nhất, theo cách để trả lãi suất nhỏ nhất. Như một kết quả, người cho vay sẽ giới hạn đối với sự bất chấp tuyên bố của người đi vay và sự thay đổi lãi suất đồng loạt. Phần này sẽ kiểm tra những sự linh động có thể được giới thiệu lại bởi sự đưa ra với những người vay phổ biến trong toàn bộ danh sách hợp đồng với điều khoản khác nhau như thế nào ? Ví dụ: người cho vay có thể đưa ra hợp đồng vay khác nhau với những đòi hỏi thêm có thể tăng giảm(như trong BESTER 1985), tỉ lệ lãi suất là một hàm tăng của đồ ky quỹ. Điều xảy ra khác là đưa ra sự khác nhau của qui mô có thể biến thiên (như trong FREIRA và LAFFONT 1990), tỉ lệ lãi suất bây giờ là hàm tăng theo qui mô vốn vay. Trong những danh sách phức tạp cũng có thể được đưa ra (như trong BESUCKE và THAKOR 1987) và danh sách này có thể ghi rõ kỳ hạn của hợp đồng phụ thuộc trên biến quan sát được như thế nào. Nhưng thảo luận này sẽ tập trung đơn giản trong hai ví dụ, khi họ nhận rõ minh hoạ cách mà trong đó người cho vay có thể đạt một sự lựa chọn cá nhân trong cơ cấu người đi vay. Tuy nhiên chú ý rằng đặc trưng chủ yếu của hợp đồng (mà là sẽ đạt được) là nhạy cảm với việc chỉ rõ phân bổ rủi ro.
Thảo luận sẽ đầu tiên xem xét trường hợp 2, rủi ro , trong đó một sự đầu tư (quy mô cho sẵn) có thể đạt:
= 0 nếu thất bại
= y nếu thành công
Thông số rủi ro θ diễn tả xác suất của sự thất bại: Vì vậy θ cao nghĩa là một sự rủi ro tăng trong hoàn cảnh của trội ngẫu nhiên đưa ra đầu tiên. Cho đơn giản vấn đề này sẽ giả thiết rằng chỉ có 2 sự phân loại những người đi vay:
Rủi ro thấp θL, rủi ro cao θH (θL < θH). Tỷ lệ vk (k = L,H) của người đi vay của mỗi loại được biết thông thường. Tất cả các tác nhân là trung lập rủi ro.
1.6.1. Vai trò của đồ kí quỹ.
Giả thiết rằng người đi vay có thể bắt đầu ghi vài đồ kí quỹ C, người cho vay có thể vì vậy mà đưa ra danh sách của hợp đồng cho vay {(Ck,Rk) k = L,H}, trong đó nợ phải thanh toán Rk trong trường hợp thành công phụ thuộc vào đồ kí quỹ Ck ghi bởi người đi vay. Nếu dự án thất bại (= 0), người cho vay có thể thanh toán đồ kí quỹ này: người đi vay mất Ck, ngược lại người cho vay chỉ có δCk (với δ < 1). Do đó có chi phí đóng cửa (công ty phá sản), (1-δ)Ck, cái đó được giả thiết là tỉ lệ theo quy mô của đồ kí quỹ. Nếu theo một cách khác, dự án thành công (= y), không có sự phá sản: người cho vay đạt Rk và người đi vay có y - Rk.
Thực đơn của các hợp đồng đưa ra bởi người cho vay sẽ phụ thuộc vào cơ hội bên ngoài của người đi vay (diễn tả bởi (hàm thoả dụng) giới hạn thoả dụng uk,k = L,H) và trên mối quan hệ khả năng thương lượng của hai bên. Ví dụ giả thiết rằng: tất cả khả năng thương lượng được tập trung trên bàn tay của người cho vay. Cho ví dụ, trong trường hợp làm chuẩn của thông tin cân xứng (i e, khi người cho vay là có thể quan sát được θ), người cho vay sẽ đưa ra hợp đồng như là cái mà giới hạn hợp lí cá nhân của mỗi người đi vay là ràng buộc:
(1 - θk)(y - Rk) - θkCk = uk (k = L,H). Tương đương không khác đường cong trên kế hoạch (C,R), được biểu thị Dk (k = L,H) được diễn tả qua hình 1.7.
Bất phương trình: θL < θH ngụ y rằng DH là dôi hơn DL, giả thiết rằng sự cắt của hai đường cong khác nhau P (nằm trên) được coi là hợp lí trên vị trí góc 1/4, điều đó nghĩa là : . Khi việc thanh toán là xác định, những hợp đồng này được ưa thích bởi người cho vay trên mỗi dòng là M và N (tương ứng M, N) cả hai điều đó tương ứng với sự vắng mặt của đồ kí quỹ (C = 0). Tất nhiên nếu θ là không quan sát được bởi người cho vay và nếu hợp đồng không khác đồ kí quỹ (C = 0), cả hai trường hợp của người đi vay sẽ yêu cầu được mức rủi ro thấp và chọn hợp đồng này. Lợi nhuận kì vọng trung bình của người đi vay sẽ là , trong đó RL là nợ thanh toán lớn nhất mà được chấp nhận đối với kiểu người đi vay:
Nợ phải trả R
M
N
P
Q
RH DL
RL R
DH
C C (đồ kí quỹ)
Hình 1.7. Đường cong khác nhau của người đi vay.
DH: rủi ro cao; DL: rủi ro thấp.
và diễn tả xác suất trung bình của việc thất bại phổ biến của người đi vay:
Trong hoàn cảnh đó, rủi ro cao đạt một "thông tin cho vay" khi kỳ vọng của họ là cao hơn cái mà họ sẽ có nếu rủi ro thấp là không có, trong trường hợp đó họ sẽ trả khối lượng cao hơn:
Một người cho vay, người mà muốn rủi ro cao để trả RH phải đưa ra đồng thời cùng hợp đồng khác, đã kí chỉ rõ đối với rủi ro thấp và đòi hỏi một đồ kí quỹ C và một sự thanh toán nợ phải trả R như:
ưa thích rủi ro cao hợp đồng M đối với hợp đồng mới: p = (C,R) và:
rủi ro thấp chấp công nhận hợp đồng mới này. Tập hợp các hợp đồng chỉ rõ hai điều kiện được diễn tả bởi kết luận đến trong hình 1.7. Rõ ràng rằng (khi đồ kí quỹ là có giá trị), nó sẽ là không hiệu quả để kí một hợp đồng trong đó cả hai loại là đòi hỏi cầm cố trong đồ kí quỹ. Thật vậy chỗ vai trò của đồ kí quỹ là cho phép tự chọn lựa giữa hai loại của rủi ro. Bằng trực giác, sự chọn lựa giữa hai loại của hợp đồng phụ thuộc vào cái mà tác nhân sẽ trả lời câu hỏi, bạn có muốn đánh cuộc một đồ kí quỹ C mà bạn sẽ thất bại để chống lại sự giảm lãi suất hay không?
Chỉ người cho vay rủi ro thấp sẽ dẫn đến đánh cuộc, hình1.7 sử dụng đường cong khác nhau để kiểm tra sự chọn lựa của người đi vay đối với hai hợp đồng (điều này là, nếu họ sẽ làm đánh cuộc) đối với hai thời điểm. Thực đơn của hai hợp đồng sẽ cho phép xem xét giữa hai loại của người đi vay.
Nếu mỗi người họ chọn hợp đồng mà ưa thích hơn (điều này tiến tới gốc của nó), vì vậy, đối với ví dụ, thực đơn (M,Q) là một cái phổ biến rõ ràng hơn nó không hiệu quả. Khi người đi vay rủi ro thấp là đưa ra quyền những (giá trị) của đồ kí quỹ. Bắt đầu từ thời điểm này, lợi nhuận của người cho vay có thể tăng dưới giới hạn bởi việc đưa ra (M,P) trong đó P là cắt của DL và DH trong hình 1.7. Để cải tiến thực đơn của hợp đồng (M,P), xem xét thời điểm (M',P') hình 1.8.
Bởi sự chấp nhận mà người đi vay rủi ro thấp nhận được một vay thông tin (họ trả M' thay thế M), điều đó ngụ ý sự mất đối với người cho vay, khối lượng của đồ kí quỹ giảm và điều này ngụ y sự tăng thu nhập đối với người cho vay. Tối ưu đối với tập hợp những hợp đồng. Vì vậy sẽ đạt được tại cặp như cặp (M',P') trong hình 1.8, trong đó P' nằm giữa N và P. Vùng c/x của N sẽ được quyết định bởi tỉ lệ vH và vL, trong trường hợp đặc biệt, khi vL có xu hướng 1, (N,N) của hình 1.1 sẽ là tập hợp những hợp đồng tối ưu (1.e, một hợp đồng đơn sẽ được đưa ra đối với cả hai loại của người đi vay) và khi vL -> 0 nó sẽ là (M,P).
Kết quả1.6.
Thực đơn của hợp đồng nợ tối ưu kết hợp giữa sự trả nợ và đồ kí quỹ là như thế mà:
* Lãi suất cao được trả rủi ro cao nhưng không đòi hỏi ghi tí nào kí quỹ (không chính xác ở giai đoạn cuối).
* Rủi ro thấp phải ghi kí quỹ nhưng trả tỉ lệ lãi suất thấp hơn.
Cặp tối ưu của hợp đồng nợ trong (quy mô nợ thanh toán) với đường cong diễn tả lợi nhuận tiêu chuẩn của người cho vay.
R (nợ thanh toán)
M
M'
N P
P'
C (đồ kí quỹ)
R DG
Q0G
Q0G
DB
Q0B
Q1B
LG L
Hình 1.8: Thực đơn của những hợp đồng nợ tối ưu.
1.6.2. Vốn vay với biến quy mô
Một sự minh hoạ thứ hai đạt được khi quy mô L của vốn vay được cho phép thay đổi. Lợi nhuận của một khoản vay L đối với một người đi vay của loại k (k=B,G) bây giờ là cân bằng tới kf(L) trong đó k là một biến ngẫu nhiên (trong đó được định nghĩa bởi Є (k = θk), và f(.) là một hàm sản xuất với giảm lợi nhuận để cân bằng (f' > 0, f'' > 0) những việc đầu tư bây giờ khác thu nhập của tư bản của họ), cao hơn đối với phương án tốt G hơn phương án xấu B (θG ≥ θB). Đồ kí quỹ không đòi hỏi nhiều hơn, nhưng sự thanh toán phụ thuộc vào quy mô của vốn vay. Trong trường hợp chuẩn của thông tin cân xứng, thực đơn của hợp đồng tối ưu {(Lk,Rk), k = B,G} đạt được bởi tối đa hoá giá trị kỳ vọng lợi nhuận của người cho vay dưới giới hạn hợp lí cá nhân của người đi vay biểu thị bởi r, chi phí cơ hội của tiền (tỷ lệ lợi suất được trả bởi người cho vay khi tài trợ thêm vốn vay). Theo kết quả đã đạt được
max Rk - (1 + r)Lk
under θkf(Lk) - Rk ≥ uk
Cho ví dụ đơn giản, xác suất vỡ nợ được giả thiết là 0 (ứt Є từng k, f(Lk) ≥ Rk). Cặp hợp đồng tối ưu dưới thông tin cân xứng được diễn tả trong hình 1.9 bởi và (giả thiết uB = uG = 0). Tất nhiên nếu θ là không quan sát được bởi người cho vay, tất cả người đi vay sẽ chọn , và rủi ro tốt sẽ đạt mức thoả dụng cao hơn nếu rủi ro tồi là không có (vắng mặt). Theo trật tự để đạt được một chọn lựa tốt hơn và để trích ra thặng dư từ những rủi ro tốt, người cho vay sẽ đưa ra hai lựa chọn: một vốn vay lớn với thanh toán nợ cao hơn (Q1G) và vốn vay nhỏ hơn với thanh toán nợ thấp hơn (Q1B). Nếu tỷ lệ của rủi ro tốt vG là đủ cao, điều này là vấn đề giải quyết tối ưu đối với người cho vay. Như vậy vG hướng tới một danh sách tối ưu sẽ là (0,Q0G) và nếu nó tiến tới 0 danh sách tối ưu sẽ là (Q0B, Q2G) với Q2G trên đường cong lợi nhuận tiêu chuẩn giống như Q0B kết quả 1.7.
Nếu tỉ lệ rủi ro tốt là đủ cao, danh sách tối ưu của các hợp đồng vay và quy mô vốn vay là như thế.
Rủi ro tốt đặt một khoản vay lớn và trả nợ thanh toán cao hơn, chúng giúp ích từ một việc thuê thông tin.
Rủi ro xấu trả một nợ thanh toán thâp nhưng đạt vốn vay nhỏ hơn. Không có sự vặn vẹo xuyên tạc quy mô của vốn vay đã đạt được bởi rủi ro tốt là hiệu quả.Thiết kế của cơ chế tự chọn lựa để cải thiện sự chỉ định phân phối tin tưởng trong một tập hợp hệ thống thông tin không đối xứng đã được nghiên cứu rộng rãi. Cho ví dụ, web cân nhắc một môi trường trong đó những người cho vay liên tục đầu tư trong hai dự án, vì vậy mà báo cáo thực của dòng tiền và sổ sách kế toán có giá trị (phụ thuộc vào dòng tiền được báo cáo) là cần thiết ở mọi giả thiết. Vì vậy ta có thể làm thời hạn của người đi vay trong suốt giai đoạn 2 phụ thuộc vào dòng tiền giai đoạn 1 được báo cáo. Bởi điều đang làm việc thanh toán có thể giảm và điều này ngụ ý rằng thời hạn cho vay dài có thể trội hơn thời hạn cho vay ngắn vì chi phí kỳ vọng của việc thanh toán nợ là thấp.
Cách khác lợi suất gắn với cơ chế chọn lựa cá nhân được nghiên cứu của sự an toàn hoá. Một trong những đặc trưng của sự an toàn hoá là nó được liên kết với tăng nợ (tiền gửi ngân hàng) (1.7.0) theo cách này nó có thể an toàn trong chi phí còn lại hình thức quỹ tiền gửi ngụ ý chi phí còn lại cao hơn và một mức thấp của rủi ro, trong trường hợp phá sản các nhà đầu tư sẽ chia sẻ đầy đủ khối lượng của vốn ngân hàng. Kết quả sự chọn lựa giữa kiểm quỹ tiền gửi và sự an toàn (bảo mật hoá) sẽ phụ thuộc chi phí còn lại trên cách đó và không ưa thích rủi ro của các nhà đầu tư theo cách đó.
1.7. Những vấn đề:
1.7.1. Chia sẻ rủi ro tối ưu với thông tin cân xứng.
Sử dụng sự thích hợp của phần 1.1 và sự thờ ơ giới hạn nợ phải trả, hợp đồng tối ưu có thể đạt được bởi sự giải quyết theo vấn đề:
maxR(.), EuB(- R())
under EuL(R()) ≥ uL0
1> Nếu μ biểu thị sự liên kết Lagrange với giới hạn thích hợp cá nhân, chứng tỏ rằng đối với tất cả y được ủng hộ của , R(y) có thể đạt được bởi tối đa hoá maximizing uB(y - R) + μ uL(R) với liên quan tới R.
2> Chứng minh điều kiện 1.4: mọi μ Є từng :
3> Chứng minh điều kiện 1.3: mọi y1, y2 Є từng :
4> Khi giới hạn nợ phải trả được giới thiệu (0 ≤ R(y) ≤ y) trình bày cái mà đặc trưng trở thành :
R(y) = 0 nếu
R(y) = 0 nếu
và trong trường hợp khác.
1.7.2. Hợp đồng nợ tối ưu của MORAL HAZARD (từ innes 1987)
Gọi kế hoạch của phần 1.4:
f(y,e) biểu diễn độ phân tán của khi mức ảnh hưởng là e.
c(e) diễn tả (cân bằng tiền tệ của) chi phí ảnh hưởng đối với người đi vay.
v(R,e) là độ thoả dụng kỳ vọng của người đi vay (trung lập rủi ro), như một hàm của nợ thanh toán ghi vào R trong và mức ảnh hưởng e sẽ đạt được như giải quyết của:
max(R,e)v(R,e)
0 ≤ R(y) ≤ y y
v(R,e') ≤ v(R,e) e'
Một kế hoạch đơn giản đã đạt được bởi sự thay thế giới hạn tương hợp nhạy cảm với điều kiện đưa ra đầu trên của vấn đề quyết định chọn lựa kết quả của người đi vay.
Khi v là lõm theo e, nó thích hợp để sử dụng gần sự đưa ra đầu tiên này (bởi ROGERSON 1985). Kế hoạch đơn giản này là cân bằng đối với p, và hợp đồng tối ưu R(.) có thể đạt được với tối đa hoá hàm Lagrange đối với mỗi y.
max0 ≤ R(y) ≤ yl(R(y),y) = [y - R(y)][f(y,e) + μ fe(y,e)] + lR(y)f(y,e)
Trong đó μ và l biểu diễn tương ứng được những liên kết Lagrage với điều kiện đầu tiên đưa ra của kế hoạch của người đi vay và với giới hạn nợ phải trả thích hợp cá nhân của người cho vay.
1> Biểu diễn rằng hợp đồng tối ưu là thoả mãn:
R(y) = y nếu (l - 1)f(y,e) > μfe(y,e)
R(y) = 0 nếu (l - 1)f(y,e) < μfe(y,e)
2> Biểu diễn r: tài sản đều đúng (e1 > e2 y -> là dạng tăng) ngụ y rằng
y -> là cũng tăng.
3> Giả thiết rằng: μ > 0, biểu diễn hợp đồng nợ tối ưu liên quan (đòi hỏi) mức thu hoạch y*, với kết quả (đích) tối ưu (R(y) = y) khi y là ít hơn y* và sự tối đa hoá nên thưởng sự hoàn lại tài sản đã mất (R(y) = 0) khi y là lớn hơn y*.
1.7.3. Sự tối ưu hoá của kế hoạch thanh toán các khoản ngẫu nhiên.
Cân nhắc mối quan hệ giản đơn của TOWNSEND (mối quan hệ giữa người đi vay và người cho vay với xác định tình trạng chi phí – giá trị) trong đó dòng tiền ỹ đạt được của người đi vay tại giai đoạn hai chỉ có thể dẫn đến hai giá trị : gái trị cao yH (với xác suất pH ) giá trị thấp yL (với xác suất 1- pH ). Người cho vay là trung lập rủi ro, nhưng người đi vay là không thích rủi ro và có hàm thoả dụng u lõm. Hợp đồng tối ưu được xác định tối đa hoá kỳ vọng nợ phải trả đối với người cho vay (dòng chi phí sổ sách dưới sự tương thích nhạy cảm và giới hạn thích hợp cá nhân đối với người đi vay). Trường hợp mức thoả dụng của những người đi vay được diễn tả u (C0 >0 ) và chi phí sổ sách γ. Cuối cùng người đi vay đã có giới hạn nợ phải trả: tối đa mục đích mà họ có thể bị trừng phạt (báo cáo yL khi yH đã xảy ra)bị tịch thu yH .
Tính toán hợp đồng nợ tối ưu khi người đi vay là thường xuyên phải thanh toán nợ - kiểm tra sổ sách biểu diễn cái mà nó ít sử dụng để kiểm tra sổ sách nếu trường hợp yH là vô ích .
Giả sử đối với một thời gian mà người cho vay thường xuyên bị kiểm tra số sách khi anh ta báo cáo yL chứng tỏ rằng hợp đồng tối ưu cho mức giả định liên tiếp đối với người đi vay : CH = CL =C0.
Giả sử bây giờ là người cho vay có thể hứa tin đối với chính sách kế toán ngẫu nhiên: kiểm tra với xác suất q khi người đi vay báo cáo yL chứng tỏ rằng giới hạn tương thích nhạy cảm là tương đương với :
q
4> Biểu diễn tối ưu q là mức cân bằng tới 1 (viết ở điều kiện đưa ra đầu tiên).
1.7.4. Vai trò của HARD yêu cầu trong giới hạn quản lý ( trích từ HARD và MOORE 1995).
Xem xét một hãng mà những nhà quản lí của nó là người xây dựng quyền lực trong hoàn cảnh mà họ thường xuyên chọn lựa để cung cấp dự án đầu tư( chúng không giới hạn dòng tiền). Mục tiêu là để biểu diễn công nợ của hãng sẽ giúp kỷ luật hành vi của họ. Giả sử rằng: tất cả các tác nhân là trung lập rủi ro và chuẩn hoá tỷ lệ lãi suất chiết khấu. Xem xét một hãng đặc trưng bởi dòng tiền hiện tại y và một khoản nợ R , điều đó có một thời điểm t =1 một chi phí cơ hội đầu tư I và thu nhập y1 đạt được chắc chắn ở thời điểm t= 2. Các nhà quản lí sẽ đầu tư vào dự án bất chấp dòng tiền vào hiện tại nếu y > R + I, nếu điều đó không phải là trường hợp này họ sẽ quay lại một ngân hàng cho vay mà sẽ đạt được chỉ khi dòng tiền tương lai (nhận được từ dự án hoặc đạt được độc lập ) là tốt đối với sự đầu tư đó .
Nếu hãng phá sản (R > y) thì có chi phí vỡ nợ. Nếu hãng đóng cửa (không thương lượng lại)
Biểu diễn rằng NPV của dự án là luôn dương, sau đó đặt R =0 (tất cả hãng hợp lí sẽ tối đa hoá giá trị hãng )
Biểu diễn rằng nếu y cân bằng vài giá trị liên tiếp nên ( bất biến) với xác suất 1 sau đó R=là tối ưu .
Giả sử hãng đạt giá trị ròng 1 , 2 ( theo thuyết định mệnh )trong suốt giai đoạn 1 và 2 theo thứ tự , sự độc lập chọn lựa đầu tư của hãng biểu diễn sử dụng nợ ngắn hạn với thanh toán nợ R1 = 1 và nợ dài hạn với R2 = 2 sẽ dẫn đến chính sách đầu tư tốt nhất .
1.7.5. Đồ ky quỹ và sự hạn chế ( trích từ BESANKO và THAKOR 1987).
Với kí hiệu sử dụng ở phần 2.5 , giả sử uL = uH và biểu diễn rằng nếu đồ kí quỹ là có giá trị, sự độc quyền mà chuyển khoản vay từ ngắn hạn sang dài hạn tại tỷ lệ lãi suất ngân hàng r sẽ đưa ra một đặc trưng hợp đồng bởi CH = CL và RH = RL = R .
Ước tính hai giá trị R có thể dẫn đến phụ thuộc không biết cả hai loại của tác nhân vay thay đổi không ( gợi ý: điểm cắt p ở góc phần tư là không dương)biểu diễn rằng tỉ lệ thấp của rủi ro cao đối với những người đi vay, hợp đồng sẽ được kí đưa ra lôi cuốn hấp dẫn chỉ khi rủi ro thấp.
Bây giờ xem xét một xuất phát điểm cạnh tranh trong đó rủi ro của những người đi vay thấp chỉ có một mức giá trị w là được gửi đồ kí quỹ, và những hợp đồng (RH , 0) và (RL,w) trong đó lợi tức một lãi suất cổ đông đối với ngân hàng là cái mà cả hai những người đi vay ưa thích (RL,w) đồ kí quỹ là quá thấp để đồng ý cho lựa chọn cá nhân, giới thiệu xác suất pk đối với loại k người đi vay là bị hạn chế, vì vậy mà cơ chế mới trở thành (πk , Rk , Ck ) cho k = L,H. Biểu diễn điều kiện πL > 0 là cần thiết để đạt được một cơ chế tương thích nhạy cảm.
1.7.6. Sự bảo đảm ( từ GREENBAUM và THAKOR 1987)
Một trong những đặc trưng chính của sự bảo đảm hoá là cái mà các nhà đầu tư thường đạt được thu nhập từ vốn vay và tăng uy tín để giới hạn rủi ro tín dụng. Vận dụng này sẽ được biểu diễn như thế nào tăng tiền gửi có thể được sử dụng để cho phép quan hệ thực của rủi ro tín dụng, với rủi ro tốt hơn mua nhiều tiền gửi như vậy là thường xuyên sử dụng trong bảo vệ an toàn vốn vay .
Xem xét một nền kinh tế trong đó hãng trung lập rủi ro có một dự án đầu tư với thu nhập x trong trường hợp thành công ,trường hợp đó xảy ra với xác suất p và thu nhập . Trong trường hợp thất bại (xác suất 1-p). xác suất p được biết đối với hãng nhưng các nhà đầu tư không biết .
Ngân hàng đưa ra hợp đồng nợ tín dụng đặc trưng bởi mức khác nhau của sự tăng tin tưởng (tiền gửi)u, trong đó u là một phần nhỏ của thanh toán nợ phải trả đã hứa ban đầu R(u) mà nhà đầu tư sẽ nhận được nếu dự án hãng thất bại.
Một hợp đồng tín dụng sẽ chỉ rõ sự trả tiền thù lao bởi hãng Q (u) tương ứng với mức của u và thanh toán nợ phải trả R(u) - Q(u) đối với nhà đầu tư thông qua ngân hàng. Kết quả hợp đồng sẽ xác định một cơ chế (R(u()), Q(u())) liên kết với xác suất tuyên bố đưa ra của từng sự thành công một mức tăng tín dụng và tương ứng bảo đảm trên thù lao và thanh toán nợ phải trả đối với nhà đầu tư cuối cùng (quyết định).
1> Viết điều kiện đầu tiên và thứ hai đưa ra đối với hợp đồng là tương thích nhạy cảm.
2> Viết giới hạn hợp lí cá nhân (IR) đối với người bảo hiểm ngân hàng.
3> Giả thiết IR giới hạn nắm giữ với sự ngang bằng, bởi đặc trưng đó biểu diễn rằng cơ chế là như thế đó:
Rủi ro tốt hơn xu hướng mua nhiều sự tăng tín dụng (tiền gửi) an toàn.
Quan tâm thanh toán nợ phải trả R giảm với sự bảo đảm u.
1.8. Những cách giải quyết.
1.8.1. Tối ưu việc chia sẻ rủi ro với thông tin cân xứng.
1> Hàm Lagrangian của vấn đề này là đơn giản:
l .
Tối đa hoá lưu tâm xem xét R(.) có thể được tiến hành tách biệt đối với mỗi giá trị của y, dẫn tới tối đa hoá uB(y - R) + μ.uL(R) theo k.
2> R(y) vì vậy được xác định đơn giản bởi điều kiện đưa ra đầu tiên này.
-u'B(y - R(y)) + μ.u'L(R(y)) = 0, với điều kiện cho 1.4
3> 1.3 là gần suy diễn bởi cho 1.4 đối với y và yz.
4> Khi giới hạn 0 ≤ R(y) ≤ y là được thêm, điều kiện đưa ra đầu tiên này thay đổi chỉ khi R(y) = 0 hoặc y, trong trường hợp này nó trở thành:
-u'B(y) + μ.u'L(0) ≤ 0 nếu R(y) = 0.
-u'B(0) + μ.u'L(y) ≥ 0 nếu R(y) = y.
1.8.2. Những hợp đồng nợ tối ưu với MORAL HAZARD.
1> Để đạt hợp đồng nợ tối ưu, nó chỉ cần tối đa hoá giá trị hàm l với y' xem xét R(y) cho y. Nhưng l là đường của R(y). Vì vậy mà ảnh hưởng kết quả hàm số R(y) là dương, điều đó là đúng nếu: (l - 1)f(y,e) – μ.f(y.e) > 0 thì l là tăng và max đạt được ở R(y) = y. Ngược lại nếu hàm số là âm, R(y) = 0 đạt được.
2> Khi là tăng theo y, do đó là hàm khi e1 -> e2, giới hạn của hàm vì vậy cũng tăng theo y. Nhưng giới hạn đó là
3> Kết quả đạt được trong vấn đề 1 biểu diễn r: hàm tối ưu R(y) được đặc trưng bởi
R(y) = y đối với <
R(y) = 0 đối với >
Khi fe / f là liên tục và tăng theo y, có tồn tại duy nhất y* mà và vì vậy sự giải quyết này sẽ được cho bởi:
y nếu y < y*
R(y) = 0 nếu y > y*
1.8.3. Tối ưu của kế hoạch thanh toán sổ sách ngẫu nhiên.
1,2> Nếu người đi vay thường xuyên bị kiểm tra kế toán, vấn đề thông tin không cân xứng biến mất và hợp đồng tối ưu cho một mức bất biến tiêu thụ đối với những người đi vay (bởi vì trung lập rủi ro): CH = CL = C0. Điều này ngụ y rằng sự thanh toán nợ phải trả đối với người cho vay là cao hơn khi = yH. Vì vậy người đi vay không có lợi suất trên báo cáo yH khi = yL và nó ít khi để kiểm tra sổ sách khi người đi vay báo cáo yH.
3> Khi những người đi vay bị bắt lừa, nó là tối ưu đối với người cho vay sẽ sử dụng kết quả tối ưu (để tịch thu tất cả dòng tiền của họ). Do đó, giới hạn tương thích nhạy cảm (IC) là tương đương với:
u(CH) ≥ q.u(0) + (1 - q).u.(CH + yH - yC), hoặc:
4> Nếu tối ưu q là cân bằng tới một điều đó, câu hỏi 2 sẽ ngụ y rằng CL=CH= C0 > 0
Vì vậy mức quan trọng q* sẽ là nghiêm ngặt nhỏ hơn q = 1 và IC sẽ không được tìm ra điều đó là không hiệu quả. Do đó xác suất tối ưu của việc kiểm tra sổ sách là nghiêm nghặt ít hơn 1. Viết điều kiện đưa ra đầu tiên của kế hoạch tối ưu liên quan, rất dễ thấy rằng CH > CL. Lí do là điều q* là hàm giảm của CH bởi sự tăng CH, và người cho vay có thể kiểm tra sổ sách ít thường xuyên hơn.
1.8.4. Vai trò của yêu cầu HARD trong quản lí giới hạn.
Giá trị của hãng v là giá trị kỳ vọng của dòng tiền của nó, điều này được tính ra trong 3 trường hợp khác nhau:
y < R v = y - c
R ≤ y < R + I v = y + max(y1 - I,0)
R + I ≤ 0 v = y + yI - I
Vì vậy mà:
v =E(y) - cF(R) +
Trong đó f(y,yI,I) là hàm xác định liên kết của (y,yI,I) và F(t) là phân bổ tăng dần của y.
1> Nếu yI - I có xẩy ra với xác suất 0.
v = E(y) - cF(R) +
và vì vậy mà R = 0 tối ưu v
2> Cơ sở đầu tư hiệu quả là đầu tư nếu và chỉ nếu E(yI) ≥ I. Đặt R = , vì vậy F(R)=0 và sự xảy ra {y ≥ R + I} với xác suất 0 (giả thiết I > 0). Do đó cơ sở đầu tư hiệu quả được cho phép, bởi vì sự có sẵn của quỹ ngân hàng.
3> Lại đặt R1 = 1 và R2 = 2, ngân hàng sẽ kí quỹ dự án khi và chỉ khi y1 > I. Ghi nhận là R2 < 2 sẽ dẫn đến một mức dưới cơ sở đầu tư nghiêm trọng ở mức dưới.
1.8.5. Đồ kí quỹ và giới hạn.
1> Tính toán đầu tiên giải quyết thông tin đầy đủ. Mỗi người đi vay là ở mức hạn chế của nó, sau đó:
(1 - uL)(y-RL) - uLCL = u
(1 - uH)(y-RH) - uHCH = u
Sử dụng uL < uH, hai đường khác nhau có thể vẽ:
2
H
K
C
Hợp đồng tối ưu sẽ là (2,0) và (H,0) với thông tin không hoàn hảo không có cách nào để phân bổ giữa hai loại đi vay sử dụng mức đồ kí quỹ, bởi vì bắt đầu từ (H,0) đối với hai loại. Kết hợp đối với đồ kí quỹ cao hơn (như hình vẽ) sẽ được tách biệt nhưng sẽ đem lại lợi tức độc quỹ thu nhập thấp.
Hiệu quả, nếu có sự lựa chọn bất lợi, sự độc quyền sẽ thích hợp đồng (H,0) kí để hấp dẫn cả hai người đi vay trên hợp đồng L để thu hút chỉ một mức rủi ro thấp nếu: (1-)H - r > vL[(1 - θL)L - ry]
trong đó = vLθL + vHθH , điều này tương đương với:
vH(1 - θH)( H- r) - vL(1 - θL)( L - H) > 0
điều đó là, lần nữa đạt trên H thay đổi loại người đi vay phải làm nhiều hơn chi phí cơ hội của trích từ tỉ lệ lãi suất thấp H cho mức thấp vH, điều diễn tả sẽ là chứng minh và độc quyền sẽ cho vay chỉ đối với những người đi vay rủi ro thấp ở tỷ lệ lãi suất cao.
2> IC đối với người đi vay rủi ro thấp là:
(1 - πH)(1 - θH)(y - RH) ≥ (1 - πL){(1 - θH)(y - RL) - θHw}
nhưng w quá nhỏ được đồng y cho phép tách điều đó là:
(1 - θH)(y - RH) ≥ (1 - θH)(y - RL) - θHw
không cân bằng đầu tiên có thể đạt được khi và chỉ khi 1 - πL πH do đó πL > 0.
1.8.6. Sự bảo mật hoá:
1> Hàm mục tiêu của hãng là:
P[x - R(θ())] – Q(θ())
Kết quả tối đa hoá xem xét lợi tức tại điểm p = theo điều kiện đầu tiên đưa ra:
-pR'(θ(p)) - Q'(θ()) = 0 (IC)
Khi điều kiện đưa ra đầu tiên đối với mọi p, nó có thể được xác định khác và được thay thế trong điều kiện 2 đưa ra trong đó lợi tức: -R'(θ(p)) > 0
2> Tiền thù lao phải cố định giá trị kỳ vọng của nợ thanh toán đối với nhà đầu tư trong trường hợp thất bại vì vậy mà: Q(θ(p)) = (1 - p) θ(p)R(θ(p)) (IR)
3> Sự khác nhau hoá của IR ngụ y rằng:
[Q'(θ(p)) - (1 - p)(R(θ(p)) + θ(p)R'(θ(p)))] = θ(p)R(θ(p))
Thay thế điều kiện đầu tiên đưa ra (IC):
(1 - p)(R(θ(p)) = θ(p)R(θ(p)) - [pR'(θ(p)) + (1 - p)R'(θ(p)) θ(p)]
Do điều kiện thứ hai đưa ra, vị trí đúng của sự cân bằng là lớn hơn 0 ngụ y rằng > 0,
vì vậy mà rủi ro tốt hơn xu hướng mua nhiều tăng tín dụng. Sử dụng điều kiện đưa ra thứ hai lợi tức kết quả R'(θ) < 0, điều đó là lãi suất nợ phải trả giảm theo bảo đảm θ.
II. Mở rộng và ứng dụng
Trên thực tế việc ứng dụng các mô hình gặp rất nhiều khó khăn và phức tạp.Vì vậy em xin trình bày mở rộng và ứng dụng một mô hình phổ biến nhất đó là mô hình chia sẻ rủi ro.
Kết quả trước mô tả hợp đồng chia sẻ rủi ro tối ưu khi dòng tiền y là quan sát được. Những phân tích này có thể mở rộng đối với nhiều nguồn rủi ro, được đưa ra mà có thể quan sát. Vì sự mở rộng sẽ không đưa ra chiều sâu trong việc chia sẻ rủi ro, từ đó mô hình này hình thức giống nhau. Nó vẫn ứng dụng vào thực hành đối với các loại ngân hàng cho vay mà có thể đề cập tới.
* Khi lạm phát được tiến hành tính toán., mức độ thoả dụng của người đi vay và cho vay là hàm của dòng tiền hiện tại ( trái với không thực). Sau đó thật dễ thấy rằng tối ưu nợ phải trả (những số hạng thực) là phụ thuộc vào mức giá, độc lập, rằng có chỉ số giá đầy đủ của việc thanh toán nợ.
* Khi chi phí tiền quỹ đối với người cho vay là ngẫu nhiên (theo cách đó có lãi suất phi rủi ro), hợp đồng tối ưu là như vậy mà việc thanh toán nợ là không chắc chắn trên tỷ lệ lãi xuất. ở đây mức thoả dụng của 2 tác nhân sẽ là : UB( y – R(y, r)) và UL(R(y, r) – L(1+r)). Phương trình từ kết quả 2.1 sẽ là : . Điều này nghĩa là tỷ lệ lãi suất phi rủi ro là được chia ra trong quan hệ cân đối từ chỉ số tuyệt đối rủi ro không mong muốn của các hãng .
Nếu thu nhập của người đi vay không thể quan sát trực tiếp được, người cho vay sẽ cố gắng lựa chọn thông tin gián tiếp về thu nhập đó. Trên thực tế hợp đồng tối ưu sẽ làm nợ phải trả không chắc chắn trên những quan sát có thể biến đổi mà là tất cả thông tin dựa trên thu nhập của người đi vay.
Sự biến động gần đây trên thị trường cầm cố tài sản ở Mỹ có thể được cho là khả quan trên điểm nổi bật của sự cân nhắc chia sẻ rủi ro. Khi lạm phát là phải chăng việc thế chấp tài sản ấn định thanh toán theo một tiêu chuẩn ngụ ý dòng thanh toán nợ thật đang tăng trên thời gian. Nhưng khi tỷ lệ lạm phát trở lên cao thì chỉ số là mang lại lợi nhuận, điều này giải thích tại sao việc thế chấp tài sản cầm cố thanh toán lại tăng dần với sự tăng thanh toán tài sản cầm cố tại một vài tỷ lệ cụ thể và tài sản cầm cố điều chỉnh mức giá, với chỉ số giá đầy đủ của thanh toán tài sản cầm cố đã được giới thiệu. Tài sản cầm cố tăng giá đã được chia sẻ ( trong đó người cho vay giả sử về các cấu trúc của rủi ro trên giá trị của hộ gia đình ) có thể được phân tích giữa những đường của Alm và Follain 1982, Statmm 1982 và Artas và Freixas 1990.
III. kết luận
Trên đây em đã trình bày một số mô hình tối đa hoá lợi ích của người đi vay và cho vay.Việc ứng dụng các mô hình này vào Việt Nam còn nhiều phức tạp song nó cũng đưa ra những cách giải quyết khác nhau cho mối quan hệ này. Trong tương lai các mô hình này sẽ được ứng dụng nhiều hơn nên việc nghiên cứu nó là điều nên làm.Với đề tài của mình em cũng hiểu thêm một phần việc tối đa hoá lợi ích của người đi vay và cho vay và em hy vọng các mô hình này sẽ được ứng dụng rộng rãi ở Việt nam trong thời gian tới.
MỤC LỤC
Các file đính kèm theo tài liệu này:
- V0035.doc