mục lục
chương i: Giới thiệu . 1
chương ii: Giới thiệu bộ xử lý tín hiệu số và khối đánh giá dsp56002 3
a. Mô tả tổng quát bộ xử lý tín hiệu số dsp56002 3
b. Giới thiệu dsp56002evm . 5
c. Giới thiệu tổng quát các chân . 6
chương iii: Mô tả chức năng dsp56002 11
a. Cấu trúc dsp56002 . 11
b. đơn vị alu dữ liệu 13
c. Bộ điều khiển chương trình 16
d. đơn vị cấp phát địa chỉ 18
e. Các chế độ định địa chỉ . 20
f. Port a của dsp56002 22
g. Port b của dsp56002 26
h. Port c của dsp56002 31
i. Thanh ghi ưu tiên ngắt (ipr) của dsp56002 43
j. Bộ dao động xung vòng giữ pha (pll) 45
k. Mô phỏng trên chip (once) . 48
l. Bộ định thời và đếm sự kiện của dsp56002 . 52
chương iv: Tập lệnh dsp56002 . 57
a. Dạng lệnh 57
b. Các thao tác truyền dữ liệu song song . 58
c. Các loại truyền dữ liệu song song 58
d. Tập lệnh dsp56002 59
chương v: Codec giao tiếp âm thanh đa năng 67
i. Giớithiệu 67
ii. Mô tả chức năng các chân . 69
iii. đặc tính tương tự . 70
iv. Các đặc tính chuyển đổi 74
v.chế độ điều khiển . 74
vi.chế độ dữ liệu . 79
chương vi: Mở rộng bộ nhớ cho dsp56002 83
a. Các linh kiện sử dụng 83
b. Sơ đồ mạch . 86
chương vii: Biến đổi fourier . 94
a. Biến đổi fourier liên tục . 94
b. Biến đổi fourier rời rạc . 96
c. Phân tích biến đổi nhanh fourier . 96
chương viii: Biến đổi fourier thời gian ngắn 101
a. Công thức biến đổi 102
b. Tính chất 103
c. Hạn chế của phép biến đổi fourier thời gian ngắn . 103
chương ix : Xử lý tín hiệu tiếng nói . 104
i. Trích đặc trưng tiếng nói dùng phép phân tích stft . 104
ii. Nhận dạng tiếng nói . 122
iii.chương trình nhận dạng tiếng nói . 126
kết quả 167
kết luận 168
hướng phát triển 169
phụ lục a . 170
phụ lục b . 176
tài liệu tham khảo
110 trang |
Chia sẻ: banmai | Lượt xem: 2119 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Điều khiển và nhận dạng tiếng nói dùng DSP56002, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
— ns
244 Last DSCK Low of Read Register to First DSCK
High of Next Command
7TC + 10 — ns
245 Last DSCK Low to DSO Invalid (Hold) 3 — ns
246 DR Assertion to second CKOUT transition for Wake
Up from Wait state
12 TC ns
247 Second CKOUT transition to DSO after Wake Up
from Wait state
17TC — ns
248 DR Assertion Width
• To recover from Wait state
• To recover from Wait state and enter Debug
mode
15
13TC + 15
12TC – 15
—
ns
249 DR Assertion to DSO (ACK) Valid (enter Debug
mode) After Asynchronous Recovery from Wait State
17TC — ns
250A DR Assertion Width to Recover from Stop state1
• Stable External Clock, OMR Bit 6 = 0
• Stable External Clock, OMR Bit 6 = 1
• Stable External Clock, PCTL Bit 17= 1
15
15
15
65548TC + TL
20TC + TL
13TC + TL
ns
ns
ns
2-36 DSP56002/D, Rev. 3 MOTOROLA
Specifications
OnCE Port Timing250B DR Assertion Width to Recover from Stop state and
enter Debug mode1
• Stable External Clock,OMR Bit 6 = 0
• Stable External Clock,OMR Bit 6 = 1
• Stable External Clock,PCTL Bit 17= 1
65549TC + TL
21TC + TL
14TC + TL
—
—
—
ns
ns
ns
251 DR Assertion to DSO (ACK) Valid (enter Debug
mode) after recovery from Stop state1
• Stable External Clock, OMR Bit 6 = 0
• Stable External Clock, OMR Bit 6 = 1
• Stable External Clock, PCTL Bit 17= 1
65553TC + TL
25TC + TL
18TC + TL
—
—
—
ns
ns
ns
Notes: 1. A clock stabilization delay is required when using the on-chip crystal oscillator in two cases:
• after power-on Reset, and
• when recovering from Stop mode.
During this stabilization period, TC, TH, and TL will not be constant. Since this stabilization period
varies, a delay of 75,000 · TC is typically allowed to assure that the oscillator is stable before executing
programs. While it is possible to set OMR bit 6 = 1 when using the internal crystal oscillator, it is not
recommended and these specifications do not guarantee timings for that case.
2. The maximum specified is periodically sampled and not 100% tested.
Figure 2-27 OnCE Serial Clock Timing
Figure 2-28 OnCE Acknowledge Timing
Table 2-15 OnCE Port Timing
Num Characteristics Min Max Unit
DSCK
(Input)
230
231
232
AA0399
DR
(Input)
DSO
(Output) (ACK)
233
AA0400
MOTOROLA DSP56002/D, Rev. 3 2-37
Specifications
OnCE Port Timing
Figure 2-29 OnCE Data I/O To Status Timing
Figure 2-30 OnCE Read Timing
Figure 2-31 OnCE Data I/O To Status Timing
Note: High Impedance, external pull-down resistor
DSCK
(Input)
DSO
(Output) (ACK)
(OS1)
DSI
(Input) (OS0)
(See Note)
(Last)
236 237 238
AA0501
Note: High Impedance, external pull-down resistor
DSCK
(Input)
DSO
(Output)
(See Note)
(Last)
234 235 245
AA0502
Note: High Impedance, external pull-down resistor
(DSCK Input)
(DSO Output)
(DSI Input)
OS1(Output)
DSO
(Output)
OS0
(Output)
(See Note)
(See Note)
239
241
240
241 236
237
AA0503
2-38 DSP56002/D, Rev. 3 MOTOROLA
Specifications
OnCE Port Timing
Figure 2-32 OnCE CKOUT To Status Timing
Figure 2-33 OnCE Read Register to Next Command Timing
Figure 2-34 Synchronous Recovery from Wait State
Figure 2-35 Asynchronous Recovery from Wait State
Note: High Impedance, external pull-down resistor
CKOUT
OS0–OS1
(Output)
(See Note)
242 243
AA0504
DSCK
(Input) (Next Command)
244
AA0505
T0, T2 T1, T3CKOUT
DR
(Input)
DSO
(Output)
248
246 247
AA0506
DR
(Input)
DSO
(Output)
248
249
AA0507
MOTOROLA DSP56002/D, Rev. 3 2-39
Specifications
OnCE Port TimingFigure 2-36 Asynchronous Recovery from Stop State
DR
(Input)
DSO
(Output)
250
251
AA0508
2-40 DSP56002/D, Rev. 3 MOTOROLA
Specifications
Timer TimingTIMER TIMING
CL = 50 pF + 2 TTL loads
Table 2-16 Timer Timing
Num Characteristics Min Max Unit
260 TIO Low 2TC + 7 — ns
261 TIO High 2TC + 7 — ns
262 Synchronous Timer Setup Time from TIO (input)
Assertion to CKOUT Rising Edge
10 TC ns
263 Synchronous Timer Delay Time from CKOUT Rising Edge
to the External Memory Access Address Out Valid Caused
by First Interrupt Instruction Execution
5TC + TH — ns
264 CKOUT Rising Edge to TIO (output) Assertion 0 8 ns
265 CKOUT Rising Edge to TIO (output) Deassertion 0 8 ns
266 CKOUT Rising Edge to TIO (General Purpose Output) 0 8 ns
Figure 2-37 TIO Timer Event Input
Figure 2-38 Timer Interrupt Generation
TIO
261260
AA0509
CKOUT
TIO (Input)
First Interrupt Instruction Execution
ADDRESS
262
263
AA0510
MOTOROLA DSP56002/D, Rev. 3 2-41
Specifications
Timer TimingFigure 2-39 External Pulse Generation
Figure 2-40 GPIO Output Timing
CKOUT
TIO (Output)
264 265
AA0511
CKOUT
TIO (Output)
A0–A15
fetch the instruction MOVE X0,X:(R0); X0 contains the new value of TIO
; and R0 contains the address of TCSR
EXTP, X/Y
PS, DS
266
AA0512
2-42 DSP56002/D, Rev. 3 MOTOROLA
SECTION 3
PACKAGING
PIN-OUT AND PACKAGE INFORMATION
This sections provides information about the available packages for this product,
including diagrams of the package pinouts and tables describing how the signals
described in Section 1 are allocated for each package.
The DSP56002 is available in three package types:
• 132-pin Plastic Quad Flat Pack (PQFP)
• 144-pin Thin Quad Flat Pack (TQFP)
• 132-pin Ceramic Pin Grid Array (PGA)
MOTOROLA DSP56002/D, Rev. 3 3-1
Packaging
Pin-out and Package Information
PQFP Package Description
Top and bottom views of the PQFP package are shown in Figure 3-1 and Figure 3-2
with their pin-outs.
Figure 3-1 Top View of the 132-pin Plastic Quad Flat Pack (PQFP) Package
Note: 1. “NC” are No Connection pins that are reserved for possible future enhancements. Do not
connect these pins to any power, ground, signal traces, or vias.
2. An OVERBAR indicates the signal is asserted when the voltage = ground (active low).
3. To simplify locating the pins, each fifth pin is shaded in the illustration.
Orientation Mark
1
84
51
(Chamfered Edge)
18
11
7
(Top View)
H4/PB4
H3/PB3
VCCH
H2/PB2
GNDH
H1/PB1
H0/PB0
RXD/PC0
TXD/PC1
GNDS
SCLK/PC2
SC0/PC3
VCCS
SCK/PC6
SC2/PC5
STD/PC8
GNDS
SC1/PC4
GNDQ
VCCQ
SRD/PC7
TIO
NC
BN
WT
BG
BR
VCCC
WR
RD
GNDC
NC
DSCK/OS1
GNDD
D21
D20
VCCD
D19
D18
GNDD
D17
D16
D15
D14
GNDD
D13
D12
VCCD
D11
D10
GNDD
GNDQ
VCCQ
D9
D8
D7
D6
GNDD
D5
D4
VCCD
D3
D2
GNDD
D1
D0
H
5/
PB
5
G
ND
H
H
6/
PB
6
H
7/
PB
7
H
R
EQ
/P
B1
3
H
R
/W
/P
B1
1
G
ND
H
H
EN
/P
B1
2
V C
CH
H
AC
K/
PB
14
H
A0
/P
B8
H
A1
/P
B9
G
ND
H
H
A2
/P
B1
0
G
ND
Q
V C
CQ
EX
TA
L
XT
AL
PI
N
IT
PL
O
CK
G
ND
P
PC
AP
V C
CP
CK
P
R
ES
ET
V C
CC
K
CK
O
UT
G
ND
CK
M
O
DA
/IR
QA
M
O
DB
/IR
QB
M
O
DC
/N
M
I
D
23
D
22
D
R
D
SO
D
SI
/O
S0 BS X/
Y
G
ND
A
D
S
V C
CA PS A
0 A1
G
ND
A A2 A3 A4
V C
CQ
G
ND
Q A5
V C
CA
G
ND
A A6 A7 A8 A9
G
ND
A
A1
0
A1
1
A1
2
V C
CA A1
3
G
ND
A
A1
4
A1
5
AA0611
3-2 DSP56002/D, Rev. 3 MOTOROLA
Packaging
Pin-out and Package Information
Figure 3-2 Bottom View of the 132-pin Plastic Quad Flat Pack (PQFP) Package
Note: 1. “NC” are No Connection pins that are reserved for possible future enhancements. Do not
connect these pins to any power, ground, signal traces, or vias.
2. An OVERBAR indicates the signal is asserted when the voltage = ground (active low).
3. To simplify locating the pins, each fifth pin is shaded in the illustration.
Orientation Mark
1
84 51
(Chamfered Edge
18
11
7
(Bottom View)
H4/PB4
H3/PB3
VCCH
H2/PB2
GNDH
H1/PB1
H0/PB0
RXD/PC0
TXD/PC1
GNDS
SCLK/PC2
SC0/PC3
VCCS
SCK/PC6
SC2/PC5
STD/PC8
GNDS
SC1/PC4
GNDQ
VCCQ
SRD/PC7
TIO
NC
BN
WT
BG
BR
VCCC
WR
RD
GNDC
NC
DSCK/OS1
GNDD
D21
D20
VCCD
D19
D18
GNDD
D17
D16
D15
D14
GNDD
D13
D12
VCCD
D11
D10
GNDD
GNDQ
VCCQ
D9
D8
D7
D6
GNDD
D5
D4
VCCD
D3
D2
GNDD
D1
D0
H
5/
PB
5
G
ND
H
H
6/
PB
6
H
7/
PB
7
H
R
EQ
/P
B1
3
H
R
/W
/P
B1
1
G
ND
H
H
EN
/P
B1
2
V C
CH
H
AC
K/
PB
14
H
A0
/P
B8
H
A1
/P
B9
G
ND
H
H
A2
/P
B1
0
G
ND
Q
V C
CQ
EX
TA
L
XT
AL
PI
N
IT
PL
O
CK
G
ND
P
PC
AP
V C
CP
CK
P
R
ES
ET
V C
CC
K
CK
O
UT
G
ND
CK
M
O
DA
/IR
QA
M
O
DB
/IR
QB
M
O
DC
/N
M
I
D
23
D
22
D
R
D
SO
D
SI
/O
S0BSX/
Y
G
ND
AD
S
V C
CAPSA
0A1
G
ND
AA2A3A4
V C
CQ
G
ND
QA5
V C
CA
G
ND
AA6A7A8A9
G
ND
A
A1
0
A1
1
A1
2
V C
CAA1
3
G
ND
A
A1
4
A1
5
AA0612
on Top Side)
MOTOROLA DSP56002/D, Rev. 3 3-3
Packaging
Pin-out and Package Information
The DSP56002 signals that may be programmed as General Purpose I/O are listed
with their primary function in Table 3-9.
Table 3-1 DSP56002 General Purpose I/O Pin Identification in PQFP Package
Pin Number Primary Function Port GPIO ID
24 H0 B PB0
23 H1 PB1
21 H2 PB2
19 H3 PB3
18 H4 PB4
17 H5 PB5
15 H6 PB6
14 H7 PB7
7 HA0 PB8
6 HA1 PB9
4 HA2 PB10
12 HR/W PB11
10 HEN PB12
13 HREQ PB13
8 HACK PB14
25 RXD C PC0
26 TXD PC1
28 SCLK PC2
29 SC0 PC3
35 SC1 PC4
32 SC2 PC5
31 SCK PC6
38 SRD PC7
33 STD PC8
39 TIO No port assigned
3-4 DSP56002/D, Rev. 3 MOTOROLA
Packaging
Pin-out and Package Information
Table 3-2 DSP56002 Signal Identification by PQFP Pin Number
Pin No. Signal Name Pin No. Signal Name Pin No. Signal Name
1 EXTAL 26 TXD/PC1 51 DR
2 VCCQ 27 GNDS 52 DSO
3 GNDQ 28 SCLK/PC2 53 DSI/OS0
4 HA2/PB10 29 SC0/PC3 54 BS
5 GNDH 30 VCCS 55 X/Y
6 HA1/PB9 31 SCK/PC6 56 GNDA
7 HA0/PB8 32 SC2/PC5 57 DS
8 HACK/PB14 33 STD/PC8 58 VCCA
9 VCCH 34 GNDS 59 PS
10 HEN/PB12 35 SC1/PC4 60 A0
11 GNDH 36 GNDQ 61 A1
12 HR/W/PB11 37 VCCQ 62 GNDA
13 HREQ/PB13 38 SRD/PC7 63 A2
14 H7/PB7 39 TIO* 64 A3
15 H6/PB6 40 NC 65 A4
16 GNDH 41 BN 66 VCCQ
17 H5/PB5 42 WT 67 GNDQ
18 H4/PB4 43 BG 68 A5
19 H3/PB3 44 BR 69 VCCA
20 VCCH 45 VCCC 70 GNDA
21 H2/PB2 46 WR 71 A6
22 GNDH 47 RD 72 A7
23 H1/PB1 48 GNDC 73 A8
24 H0/PB0 49 NC 74 A9
25 RXD/PC0 50 DSCK/OS1 75 GNDA
MOTOROLA DSP56002/D, Rev. 3 3-5
Packaging
Pin-out and Package Information76 A10 95 D8 114 D20
77 A11 96 D9 115 D21
78 A12 97 VCCQ 116 GNDD
79 VCCA 98 GNDQ 117 D22
80 A13 99 GNDD 118 D23
81 GNDA 100 D10 119 MODC/NMI
82 A14 101 D11 120 MODB/IRQB
83 A15 102 VCCD 121 MODA/IRQA
84 D0 103 D12 122 GNDCK
85 D1 104 D13 123 CKOUT
86 GNDD 105 GNDD 124 VCCCK
87 D2 106 D14 125 RESET
88 D3 107 D15 126 CKP
89 VCCD 108 D16 127 VCCP
90 D4 109 D17 128 PCAP
91 D5 110 GNDD 129 GNDP
92 GNDD 111 D18 130 PLOCK
93 D6 112 D19 131 PINIT
94 D7 113 VCCD 132 XTAL
Note: 1. “NC” are No Connection pins that are reserved for possible future enhancements.
Do not connect these pins to any power, ground, signal traces, or vias.
2. An OVERBAR indicates the signal is asserted when the voltage = ground (active
low).
Table 3-2 DSP56002 Signal Identification by PQFP Pin Number (Continued)
Pin No. Signal Name Pin No. Signal Name Pin No. Signal Name
3-6 DSP56002/D, Rev. 3 MOTOROLA
Packaging
Pin-out and Package InformationTable 3-3 DSP56002 PQFP Pin Identification by Signal Name
Signal Name Pin No. Signal Name Pin No. Signal Name Pin No.
A0 60 D3 114 DSO 52
A1 61 D4 116 EXTAL 1
A2 63 D5 117 GNDA 56
A3 64 D6 119 GNDA 62
A4 65 D7 94 GNDA 70
A5 68 D8 95 GNDA 75
A6 71 D9 96 GNDA 81
A7 72 D10 100 GNDC 48
A8 73 D11 101 GNDCK 122
A9 74 D12 103 GNDD 86
A10 76 D13 104 GNDD 92
A11 77 D14 106 GNDD 99
A12 78 D15 107 GNDD 105
A13 80 D16 108 GNDD 110
A14 82 D17 109 GNDD 116
A15 83 D18 111 GNDH 5
BG 43 D19 112 GNDH 11
BN 41 D20 114 GNDH 16
BR 44 D21 115 GNDH 22
BS 54 D22 117 GNDP 129
CKOUT 123 D23 118 GNDQ 3
CKP 126 DR 51 GNDQ 36
D0 84 DS 57 GNDQ 67
D1 85 DSCK 50 GNDQ 98
D2 87 DSI 53 GNDS 27
MOTOROLA DSP56002/D, Rev. 3 3-7
Packaging
Pin-out and Package InformationGNDS 34 PB1 23 PLOCK 130
H0 24 PB2 21 PS 59
H1 23 PB3 19 RD 47
H2 21 PB4 18 RESET 125
H3 19 PB5 17 RXD 25
H4 18 PB6 15 SC0 29
H5 17 PB7 14 SC1 35
H6 15 PB8 7 SC2 32
H7 14 PB9 6 SCK 31
HA0 7 PB10 4 SCLK 28
HA1 6 PB11 12 SRD 38
HA2 4 PB12 10 STD 33
HACK 8 PB13 13 TIO 39
HEN 10 PB14 8 TXD 26
HR/W 12 PC0 25 VCCA 58
HREQ 13 PC1 26 VCCA 69
IRQA 121 PC2 28 VCCA 79
IRQB 120 PC3 29 VCCC 45
MODA 121 PC4 35 VCCCK 124
MODB 120 PC5 32 VCCD 89
MODC 119 PC6 31 VCCD 102
NMI 119 PC7 38 VCCD 113
OS0 53 PC8 33 VCCH 9
OS1 50 PCAP 128 VCCH 20
PB0 24 PINIT 131 VCCP 127
VCCQ 2 VCCS 30 XTAL 132
VCCQ 37 WR 46 nc 40
VCCQ 66 WT 42 nc 49
VCCQ 97 X/Y 55
Table 3-3 DSP56002 PQFP Pin Identification by Signal Name (Continued)
Signal Name Pin No. Signal Name Pin No. Signal Name Pin No.
3-8 DSP56002/D, Rev. 3 MOTOROLA
Packaging
Pin-out and Package InformationPower and ground pins have special considerations for noise immunity.
See Section 4 Design Considerations.
Table 3-4 DSP56002 Power Supply Pins in PQFP Package
Pin Number Power Supply Circuit Supplied
58
VCCA
Address
Bus
Buffers
69
79
56
GNDA
62
70
75
81
45 VCCC Bus Control
Buffers48 GNDC
124 VCCCK Clock
122 GNDCK
89
VCCD
Data
Bus
Buffers
102
113
86
GNDD
92
99
105
110
116
9
VCCH
Host
Interface
Buffers
20
5
GNDH
11
16
22
MOTOROLA DSP56002/D, Rev. 3 3-9
Packaging
Pin-out and Package Information2
VCCQ
Internal Logic
37
66
97
3
GNDQ
36
67
98
127 VCCP PLL
129 GNDP
30 VCCS
Serial Port27
GNDS34
Table 3-4 DSP56002 Power Supply Pins in PQFP Package (Continued)
Pin Number Power Supply Circuit Supplied
3-10 DSP56002/D, Rev. 3 MOTOROLA
Packaging
Pin-out and Package InformationFigure 3-3 132-Pin Plastic Quad Flat Pack (PQFP) Mechanical Information
L
L-M0.016 NH
A1
S
J
A
S1
J11
17 117
18 116
50 84
51 83
VIEW AB
PIN 1
IDENT
AA
AA
V1 B1
P
V
B
P1
2X0.002 L-M
4X
2X0.002 N
4X
0.004 T
C1
4X 33 TIPS
C2C
SEATING
PLANE
D1132X
GAGE
PLANE
AC AC
128X G
X=L, M, OR N
CL
VIEW AB
(D)
BASE
D2
E
E1
PLATING
SECTION AC-AC
KD132X
U W
q
L-MM0.008 NT
R R1
M
N
L-M0.010 NT
L-M0.012 NH
T
132X
L-MM0.008 NT
H
K1
X
SECTION AA-AA
DIM MIN MAX
INCHES
A 1.100 BSC
A1 0.550 BSC
B 1.100 BSC
B1 0.550 BSC
C 0.160 0.180
C1 0.020 0.040
C2 0.135 0.145
D 0.008 0.012
D1 0.012 0.016
D2 0.008 0.011
E 0.006 0.008
E1 0.005 0.007
F 0.014 0.014
G 0.025 BSC
J 0.950 BSC
J1 0.475 BSC
K 0.034 0.044
K1 0.010 BSC
P 0.950 BSC
P1 0.475 BSC
S 1.080 BSC
S1 0.540 BSC
U 0.025 REF
V 1.080 BSC
V1 0.540 BSC
W 0.006 0.008
q 0 ° 8 °
R1 0.013 REF
METAL
NOTES:
1. DIMENSIONING AND TOLERANCING
PER ASME Y14.5M, 1982.
2. DIMENSIONS IN INCHES.
3. DIMENSIONS A, B, J, AND P DO NOT
INCLUDE MOLD PROTRUSION.
ALLOWABLE MOLD PROTRUSION
FOR DIMENSIONS A AND B IS 0.007,
FOR DIMENSIONS J AND P IS 0.010.
4. DATUM PLANE H IS LOCATED AT THE
UNDERSIDE OF LEADS WHERE
LEADS EXIT PACKAGE BODY.
5. DATUMS L, M, AND N TO BE
DETERMINED WHERE CENTER
LEADS EXIT PACKAGE BODY AT
DATUM H.
6. DIMENSIONS S AND V TO BE
DETERMINED AT SEATING PLANE,
DATUM T.
7. DIMENSIONS A, B, J, AND P TO BE
DETERMINED AT DATUM PLANE H.
8. DIMENSION F DOES NOT INCLUDE
DAMBAR PROTRUSIONS. DAMBAR
PROTRUSION SHALL NOT CAUSE THE
LEAD WIDTH TO EXCEED 0.019.
CASE 831A-02
ISSUE C
MOTOROLA DSP56002/D, Rev. 3 3-11
Packaging
Pin-out and Package InformationTQFP Package Description
Top and bottom views of the TQFP package are shown in Figure 3-4 and Figure 3-5
with their pin-outs.
Figure 3-4 Top View of the 144-pin Thin Quad Flat Pack (TQFP) Package
Note: 1. “NC” are No Connection pins that are reserved for possible future enhancements. Do not
connect these pins to any power, ground, signal traces, or vias.
2. An OVERBAR indicates the signal is asserted when the voltage = ground (active low).
3. To simplify locating the pins, each fifth pin is shaded in the illustration.
Orientation Mark
109
1 37
73NC
D0
D1
GNDD
D2
D3
VCCD
D4
D5
GNDD
D6
D7
D8
D9
VCCQ
GNDQ
GNDD
D10
NC
D11
VCCD
D12
D13
GNDD
D14
D15
D16
D17
GNDD
D18
D19
VCCD
D20
D21
GNDD
NC
NC
DSCK/OS1
NC
GNDC
RD
WR
VCCC
BR
BG
WT
BN
NC
TIO
SRD/PC7
VCCQ
GNDQ
SC1/PC4
NC
GNDS
STD/PC8
SC2/PC5
SCK/PC6
VCCS
SC0/PC3
SCLK/PC2
GNDS
TXD/PC1
RXD/PC0
H0/PB0
H1/PB1
GNDH
H2/PB2
VCCH
H3/PB3
H4/PB4
NC
N
C
D
22
D
23
M
O
DC
/N
M
I
M
O
DB
/IR
QB
M
O
DA
/IR
QA
G
ND
CK
CK
O
UT
V C
CC
K
R
ES
ET
CK
P
V C
CP
PC
AP
G
ND
P
PL
O
CK
PI
N
IT
XT
AL N
C
EX
TA
L
V C
CQ
G
ND
Q
H
A2
/P
B1
0
G
ND
H
H
A1
/P
B9
H
A0
/P
B8
H
AC
K/
PB
14
V C
CH
H
EN
/P
B1
2
G
ND
H
H
R
/W
/P
B1
1
H
R
EQ
/P
B1
3
H
7/
PB
7
H
6/
PB
6
G
ND
H
H
5/
PB
5
N
C
N
C
A1
5
A1
4
G
ND
A
A1
3
V C
CA
A1
2
A1
1
A1
0
G
ND
A
A9 A8 A7 A6 G
ND
A
V C
CA
A5 N
C G
ND
Q
V C
CQ
A4 A3 A2 G
ND
A
A1 A0 PS V C
CA
D
S G
ND
A
X/
Y
BS DS
I/O
S0
D
SO
D
R
N
C
AA0613
(Top View)
3-12 DSP56002/D, Rev. 3 MOTOROLA
Packaging
Pin-out and Package InformationFigure 3-5 Bottom View of the144-pin Thin Quad Flat Pack (TQFP) Package
Note: 1. “NC” are No Connection pins that are reserved for possible future enhancements. Do not
connect these pins to any power, ground, signal traces, or vias.
2. An OVERBAR indicates the signal is asserted when the voltage = ground (active low).
3. To simplify locating the pins, each fifth pin is shaded in the illustration.
Orientation Mark
109
137
73 NC
D0
D1
GNDD
D2
D3
VCCD
D4
D5
GNDD
D6
D7
D8
D9
VCCQ
GNDQ
GNDD
D10
NC
D11
VCCD
D12
D13
GNDD
D14
D15
D16
D17
GNDD
D18
D19
VCCD
D20
D21
GNDD
NC
NC
DSCK/OS1
NC
GNDC
RD
WR
VCCC
BR
BG
WT
BN
NC
TIO
SRD/PC7
VCCQ
GNDQ
SC1/PC4
NC
GNDS
STD/PC8
SC2/PC5
SCK/PC6
VCCS
SC0/PC3
SCLK/PC2
GNDS
TXD/PC1
RXD/PC0
H0/PB0
H1/PB1
GNDH
H2/PB2
VCCH
H3/PB3
H4/PB4
NC
N
C
D
22
D
23
M
O
DC
/N
M
I
M
O
DB
/IR
QB
M
O
DA
/IR
QA
G
ND
CK
CK
O
UT
V C
CC
K
R
ES
ET
CK
P
V C
CP
PC
AP
G
ND
P
PL
O
CK
PI
N
IT
XT
ALN
C
EX
TA
L
V C
CQ
G
ND
Q
H
A2
/P
B1
0
G
ND
H
H
A1
/P
B9
H
A0
/P
B8
H
AC
K/
PB
14
V C
CH
H
EN
/P
B1
2
G
ND
H
H
R
/W
/P
B1
1
H
R
EQ
/P
B1
3
H
7/
PB
7
H
6/
PB
6
G
ND
H
H
5/
PB
5
N
C
N
C
A1
5
A1
4
G
ND
A
A1
3
V C
CA
A1
2
A1
1
A1
0
G
ND
A
A9A8A7A6G
ND
A
V C
CA
A5N
CG
ND
Q
V C
CQ
A4A3A2G
ND
A
A1A0PSV C
CA
D
SG
ND
A
X/
Y
BSDS
I/O
S0
D
SO
D
R
N
C
AA0614
(Bottom View)
(on Top Side)
MOTOROLA DSP56002/D, Rev. 3 3-13
Packaging
Pin-out and Package InformationThe DSP56002 signals that may be programmed as General Purpose I/O are listed
with their primary function in Table 3-9.
Table 3-5 DSP56002 General Purpose I/O Pin Identification in TQFP Package
Pin Number Primary Function Port GPIO ID
44 H0 B PB0
43 H1 PB1
41 H2 PB2
39 H3 PB3
38 H4 PB4
35 H5 PB5
33 H6 PB6
32 H7 PB7
25 HA0 PB8
24 HA1 PB9
22 HA2 PB10
30 HR/W PB11
28 HEN PB12
31 HREQ PB13
26 HACK PB14
45 RXD C PC0
46 TXD PC1
48 SCLK PC2
49 SC0 PC3
56 SC1 PC4
52 SC2 PC5
51 SCK PC6
59 SRD PC7
53 STD PC8
60 TIO No port assigned
3-14 DSP56002/D, Rev. 3 MOTOROLA
Packaging
Pin-out and Package InformationTable 3-6 DSP56002 Signal Identification by TQFP Pin Number
Pin No. Signal Name Pin No. Signal Name Pin No. Signal Name
1 NC 26 HACK/PB14 51 SCK/PC6
2 D22 27 VCCH 52 SC2/PC5
3 D23 28 HEN/PB12 53 STD/PC8
4 MODC/NMI 29 GNDH 54 GNDS
5 MODB/IRQB 30 HR/W/PB11 55 NC
6 MODA/IRQA 31 HREQ/PB13 56 SC1/PC4
7 GNDCK 32 H7/PB7 57 GNDQ
8 CKOUT 33 H6/PB6 58 VCCQ
9 VCCCK 34 GNDH 59 SRD/PC7
10 RESET 35 H5/PB5 60 TIO
11 CKP 36 NC 61 NC
12 VCCP 37 NC 62 BN
13 PCAP 38 H4/PB4 63 WT
14 GNDP 39 H3/PB3 64 BG
15 PLOCK 40 VCCH 65 BR
16 PINIT 41 H2/PB2 66 VCCC
17 XTAL 42 GNDH 67 WR
18 NC 43 H1/PB1 68 RD
19 EXTAL 44 H0/PB0 69 GNDC
20 VCCQ 45 RXD/PC0 70 NC
21 GNDQ 46 TXD/PC1 71 DSCK/OS1
22 HA2/PB10 47 GNDS 72 NC
23 GNDH 48 SCLK/PC2 73 NC
24 HA1/PB9 49 SC0/PC3 74 DR
25 HA0/PB8 50 VCCS 75 DSO
MOTOROLA DSP56002/D, Rev. 3 3-15
Packaging
Pin-out and Package Information76 DSI/OS0 99 GNDA 122 D9
77 BS 100 A10 123 VCCQ
78 X/Y 101 A11 124 GNDQ
79 GNDA 102 A12 125 GNDD
80 DS 103 VCCA 126 D10
81 VCCA 104 A13 127 NC
82 PS 105 GNDA 128 D11
83 A0 106 A14 129 VCCD
84 A1 107 A15 130 D12
85 GNDA 108 NC 131 D13
86 A2 109 NC 132 GNDD
87 A3 110 D0 133 D14
88 A4 111 D1 134 D15
89 VCCQ 112 GNDD 135 D16
90 GNDQ 113 D2 136 D17
91 NC 114 D3 137 GNDD
92 A5 115 VCCD 138 D18
93 VCCA 116 D4 139 D19
94 GNDA 117 D5 140 VCCD
95 A6 118 GNDD 141 D20
96 A7 119 D6 142 D21
97 A8 120 D7 143 GNDD
98 A9 121 D8 144 NC
Note: 1. “NC” are No Connection pins that are reserved for possible future enhancements.
Do not connect these pins to any power, ground, signal traces, or vias.
2. An OVERBAR indicates the signal is asserted when the voltage = ground (active
low).
Table 3-6 DSP56002 Signal Identification by TQFP Pin Number (Continued)
Pin No. Signal Name Pin No. Signal Name Pin No. Signal Name
3-16 DSP56002/D, Rev. 3 MOTOROLA
Packaging
Pin-out and Package InformationTable 3-7 DSP56002 TQFP Pin Identification by Signal Name
Signal Name Pin No. Signal Name Pin No. Signal Name Pin No.
A0 83 D3 114 DSO 75
A1 84 D4 116 EXTAL 19
A2 86 D5 117 GNDA 79
A3 87 D6 119 GNDA 85
A4 88 D7 120 GNDA 94
A5 92 D8 121 GNDA 99
A6 95 D9 122 GNDA 105
A7 96 D10 126 GNDC 69
A8 97 D11 128 GNDCK 7
A9 98 D12 130 GNDD 112
A10 100 D13 131 GNDD 118
A11 101 D14 133 GNDD 125
A12 102 D15 134 GNDD 132
A13 104 D16 135 GNDD 137
A14 106 D17 136 GNDD 143
A15 107 D18 138 GNDH 23
BG 64 D19 139 GNDH 29
BN 62 D20 141 GNDH 34
BR 65 D21 142 GNDH 42
BS 77 D22 2 GNDP 14
CKOUT 8 D23 3 GNDQ 21
CKP 11 DR 74 GNDQ 57
D0 110 DS 80 GNDQ 90
D1 111 DSCK 71 GNDQ 124
D2 113 DSI 76 GNDS 47
MOTOROLA DSP56002/D, Rev. 3 3-17
Packaging
Pin-out and Package InformationGNDS 54 PB1 43 PLOCK 15
H0 44 PB2 41 PS 82
H1 43 PB3 39 RD 68
H2 41 PB4 38 RESET 10
H3 39 PB5 35 RXD 45
H4 38 PB6 33 SC0 49
H5 35 PB7 32 SC1 56
H6 33 PB8 25 SC2 52
H7 32 PB9 24 SCK 51
HA0 25 PB10 22 SCLK 48
HA1 24 PB11 30 SRD 59
HA2 22 PB12 28 STD 53
HACK 26 PB13 31 TIO 60
HEN 28 PB14 26 TXD 46
HR/W 30 PC0 45 VCCA 81
HREQ 31 PC1 46 VCCA 93
IRQA 6 PC2 48 VCCA 103
IRQB 5 PC3 49 VCCC 66
MODA 6 PC4 56 VCCCK 9
MODB 5 PC5 52 VCCD 115
MODC 4 PC6 51 VCCD 129
NMI 4 PC7 59 VCCD 140
OS0 76 PC8 53 VCCH 27
OS1 71 PCAP 13 VCCH 40
PB0 44 PINIT 16 VCCP 12
Table 3-7 DSP56002 TQFP Pin Identification by Signal Name (Continued)
Signal Name Pin No. Signal Name Pin No. Signal Name Pin No.
3-18 DSP56002/D, Rev. 3 MOTOROLA
Packaging
Pin-out and Package InformationVCCQ 20 XTAL 17 nc 72
VCCQ 58 nc 70 nc 73
VCCQ 89 nc 1 nc 91
VCCQ 123 nc 18 nc 108
VCCS 50 nc 36 nc 109
WR 67 nc 37 nc 127
WT 63 nc 55 nc 144
X/Y 78 nc 61
Table 3-7 DSP56002 TQFP Pin Identification by Signal Name (Continued)
Signal Name Pin No. Signal Name Pin No. Signal Name Pin No.
MOTOROLA DSP56002/D, Rev. 3 3-19
Packaging
Pin-out and Package InformationPower and ground pins have special considerations for noise immunity. See the
section Design Considerations.
Table 3-8 DSP56002 Power Supply Pins in TQFP Package
Pin Number Power Supply Circuit Supplied
81
VCCA
Address
Bus
Buffers
93
103
79
GNDA
85
94
99
105
66 VCCC Bus Control
Buffers69 GNDC
9 VCCCK Clock
7 GNDCK
115
VCCD
Data
Bus
Buffers
129
140
112
GNDD
118
125
132
137
143
27
VCCH
Host
Interface
Buffers
40
23
GNDH
29
34
42
3-20 DSP56002/D, Rev. 3 MOTOROLA
Packaging
Pin-out and Package Information20
VCCQ
Internal Logic
58
89
123
21
GNDQ
57
90
124
12 VCCP PLL
14 GNDP
50 VCCS
Serial Port47
GNDS54
Table 3-8 DSP56002 Power Supply Pins in TQFP Package (Continued)
Pin Number Power Supply Circuit Supplied
MOTOROLA DSP56002/D, Rev. 3 3-21
Packaging
Pin-out and Package InformationFigure 3-6 144-pin Thin Plastic Quad Flat Pack (TQFP) Mechanical Information
SEATING
PLANE
0.1 T 144XC 2q
VIEW AB
2q
T
PLATING
F AAJ
D BASEMETAL
SECTION J1-J1
(ROTATED 90)
144 PL
M0.08 NT L-M
N0.20 T L-M
144
73
109
37
1081
36
72
4X 4X 36 TIPS
PIN 1
IDENT
VIEW Y
B
B1 V1
A1
S1
V
A
S
N0.20 T L-M
ML
N
P4X
G140X
J1
J1
VIEW Y
CL
X
X=L, M OR N
GAGE PLANE
q
0.05
(Z)
R2
E
C2
(Y)
R1
(K)
C1
1q
0.25
VIEW AB
DIM MIN MAX
MILLIMETERS
A 20.00 BSC
A1 10.00 BSC
B 20.00 BSC
B1 10.00 BSC
C 1.40 1.60
C1 0.05 0.15
C2 1.35 1.45
D 0.17 0.27
E 0.45 0.75
F 0.17 0.23
G 0.50 BSC
J 0.09 0.20
K 0.50 REF
P 0.25 BSC
R1 0.13 0.20
R2 0.13 0.20
S 22.00 BSC
S1 11.00 BSC
V 22.00 BSC
V1 11.00 BSC
Y 0.25 REF
Z 1.00 REF
AA 0.09 0.16
q 0 °
q 0° 7 °
q 11 ° 13 °
1
2
NOTES:
9. DIMENSIONS AND TOLERANCING PER ASME
Y14.5, 1994.
10.DIMENSIONS IN MILLIMETERS.
11.DATUMS L, M AND N TO BE DETERMINED AT
THE SEATING PLANE, DATUM T.
12.DIMENSIONS S AND V TO BE DETERMINED AT
SEATING PLANE, DATUM T.
13.DIMENSIONS A AND B DO NOT INCULDE
MOLD PROTRUSION. ALLOWABLE
PROTRUSION IS 0.25 PER SIDE. DIMENSIONS
A AND B DO INCLUDE MOLD MISMATCH AND
ARE DETERMINED AT DATUM PLANE H.
14.DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLED DAMBAR
PROTRUSION SHALL NOT CAUSE THE D
DIMENSION TO EXCEED 0.35.
CASE 918-03
—
ISSUE C
3-22 DSP56002/D, Rev. 3 MOTOROLA
Packaging
Pin-out and Package InformationPGA Package Description
Top and bottom views of the PGA package are shown in Figure 3-7 and Figure 3-8
with their pin-outs.
Figure 3-7 Top View of the 132-pin Ceramic (RC) 13 · 13 Pin Grid Array Package
Note: 1. “NC” are No Connection pins that are reserved for possible future enhancements. Do not
connect these pins to any power, ground, signal traces, or vias.
2. An OVERBAR indicates the signal is asserted when the voltage = ground (active low).
Orientation
Mark
A
B
C
D
E
F
G
H
J
K
L
M
N
1 2 3 4 5 6 7 8 9 10 11 12 13
GNDQ
GNDD
VCCD
GNDD
GNDD
D15
D14
D11
VCCD
GNDD
GNDD
VCCD
GNDD
GNDQ
RESET
D21
D19
D17
D12
D9
D7
D5
D3
D1
GNDA
VCCQ
CKP
GNDCK
D23
D22
A15
A14
A13
A12
VCCA
GNDQ
VCCP
CKOUT
MODC/
NMI
A11
A10
A9
GNDA
VCCQ
PCAP
GNDP
A8
A7
GNDA
GNDQ
PLOCK
PINIT
A6
A5
VCCA
VCCQ
XTAL
EXTAL
A3
A4
GNDA
HA2
HA1
HA0
HR/W
A0
A1
A2
VCCA
HACK
HEN
HREQ
H4
H3
RD
X/Y
DS
PS
GNDA
H6
H7
H2
H1
H0
SC0
STD
TIO
WR
DR
DSO
DSI/OS0
BS
GNDH
H5
RXD
TXD
SCLK
SCK
SC1
NC
WT
BG
BR
NC
DSCK/
OS1
GNDH
VCCH
GNDH
VCCH
GNDH
SC2
SRD
BN
GNDS
VCCS
GNDS
VCCC
GNDC
VCCQ
VCCCK
MODB/
IRQB
D20
D18
D16
D13
D10
D8
D6
D4
D2
D0
MODA/
IRQA
AA0615
Top View
MOTOROLA DSP56002/D, Rev. 3 3-23
Packaging
Pin-out and Package InformationFigure 3-8 Bottom View of the 132-pin Ceramic (RC) 13 · 13 Pin Grid Array Package
Note: 1. “NC” are No Connection pins that are reserved for possible future enhancements. Do not
connect these pins to any power, ground, signal traces, or vias.
2. An OVERBAR indicates the signal is asserted when the voltage = ground (active low).
Orientation Mark
(on Top Side)
A
B
C
D
E
F
G
H
J
K
L
M
N
12345678910111213
GNDQ
GNDD
VCCD
GNDD
GNDD
D15
D14
D11
VCCD
GNDD
GNDD
VCCD
GNDD
GNDQ
RESET
D21
D19
D17
D12
D9
D7
D5
D3
D1
GNDA
VCCQ
CKP
GNDCK
D23
D22
A15
A14
A13
A12
VCCA
GNDQ
VCCP
CKOUT
MODC/
NMI
A11
A10
A9
GNDA
VCCQ
PCAP
GNDP
A8
A7
GNDA
GNDQ
PLOCK
PINIT
A6
A5
VCCA
VCCQ
XTAL
EXTAL
A3
A4
GNDA
HA2
HA1
HA0
HR/W
A0
A1
A2
VCCA
HACK
HEN
HREQ
H4
H3
RD
X/Y
DS
PS
GNDA
H6
H7
H2
H1
H0
SC0
STD
TIO
WR
DR
DSO
DSI/OS0
BS
GNDH
H5
RXD
TXD
SCLK
SCK
SC1
NC
WT
BG
BR
NC
DSCK/
OS1
GNDH
VCCH
GNDH
VCCH
GNDH
SC2
SRD
BN
GNDS
VCCS
GNDS
VCCC
GNDC
VCCQ
VCCCK
MODB/
IRQB
D20
D18
D16
D13
D10
D8
D6
D4
D2
D0
MODA/
IRQA
AA0616
Bottom View
3-24 DSP56002/D, Rev. 3 MOTOROLA
Packaging
Pin-out and Package InformationThe DSP56008 signals that may be programmed as General Purpose I/O are listed
with their primary function in Table 3-9.
Table 3-9 DSP56002 General Purpose I/O Pin Identification in PGA Package
Pin Number Primary Function Port GPIO ID
E11 H0 B PB0
D11 H1 PB1
C11 H2 PB2
E10 H3 PB3
D10 H4 PB4
B12 H5 PB5
A11 H6 PB6
B11 H7 PB7
C9 HA0 PB8
B9 HA1 PB9
A9 HA2 PB10
D9 HR/W PB11
B10 HEN PB12
C10 HREQ PB13
A10 HACK PB14
C12 RXD C PC0
D12 TXD PC1
E12 SCLK PC2
F11 SC0 PC3
G12 SC1 PC4
F13 SC2 PC5
F12 SCK PC6
G13 SRD PC7
G11 STD PC8
H11 TIO No port assigned
MOTOROLA DSP56002/D, Rev. 3 3-25
Packaging
Pin-out and Package InformationTable 3-10 DSP56002 Signal Identification by PGA Pin Number
Pin No. Signal Name Pin No. Signal Name Pin No. Signal Name
A1 GNDQ B13 VCCH E2 D18
A2 VCCQ C1 VCCD E3 D19
A3 GNDQ C2 MODB/IRQB E4 D22
A4 VCCQ C3 MODA/IRQA E10 H3/PB3
A5 GNDQ C4 GNDCK E11 H0/PB0
A6 VCCQ C5 CKOUT E12 SCLK/PC2
A7 GNDQ C6 GNDP E13 GNDH
A8 VCCQ C7 PINIT F1 D15
A9 HA2/PB10 C8 EXTAL F2 D16
A10 HACK/PB14 C9 HA0/PB8 F3 D17
A11 H6/PB6 C10 HREQ/PB13 F11 SC0/PC3
A12 GNDH C11 H2/PB2 F12 SCK/PC6
A13 GNDH C12 RXD/PC0 F13 SC2/PC5
B1 GNDD C13 GNDH G1 D14
B2 VCCCK D1 GNDD G2 D13
B3 RESET D2 D20 G3 D12
B4 CKP D3 D21 G11 STD/PC8
B5 VCCP D4 D23 G12 SC1/PC4
B6 PCAP D5 MODC/NMI G13 SRD/PC7
B7 PLOCK D9 HR/W/PB11 H1 D11
B8 XTAL D10 H4/PB4 H2 D10
B9 HA1/PB9 D11 H1/PB1 H3 D9
B10 HEN/PB12 D12 TXD/PC1 H11 TIO*
B11 H7/PB7 D13 VCCH H12 NC
B12 H5/PB5 E1 GNDD H13 BN
3-26 DSP56002/D, Rev. 3 MOTOROLA
Packaging
Pin-out and Package InformationJ1 VCCD L2 D4 M8 A4
J2 D8 L3 D3 M9 A2
J3 D7 L4 A13 M10 PS
J4 A15 L5 A10 M11 DSI/OS0
J10 RD L6 A8 M12 NC
J11 WR L7 A6 M13 VCCC
J12 WT L8 A3 N1 GNDD
J13 GNDS L9 A1 N2 D0
K1 GNDD L10 DS N3 GNDA
K2 D6 L11 DSO N4 VCCA
K3 D5 L12 BR N5 GNDA
K4 A14 L13 GNDS N6 GNDA
K5 A11 M1 VCCD N7 VCCA
K9 A0 M2 D2 N8 GNDA
K10 X/Y M3 D1 N9 VCCA
K11 DR M4 A12 N10 GNDA
K12 BG M5 A9 N11 BS
K13 VCCS M6 A7 N12 DSCK/OS1
L1 GNDD M7 A5 N13 GNDC
Note: 1. NC” are No Connection pins that are reserved for possible future enhancements.
Do not connect these pins to any power, ground, signal traces, or vias.
2. An OVERBAR indicates the signal is asserted when the voltage = ground (active
low).
Table 3-10 DSP56002 Signal Identification by PGA Pin Number (Continued)
Pin No. Signal Name Pin No. Signal Name Pin No. Signal Name
MOTOROLA DSP56002/D, Rev. 3 3-27
Packaging
Pin-out and Package InformationTable 3-11 DSP56002 PGA Pin Identification by Signal Name
Signal Name Pin No. Signal Name Pin No. Signal Name Pin No.
A0 K9 D3 L3 DSO L11
A1 L9 D4 L2 EXTAL C8
A2 M9 D5 K3 GNDA N10
A3 L8 D6 K2 GNDA N8
A4 M8 D7 J3 GNDA N6
A5 M7 D8 J2 GNDA N5
A6 L7 D9 H3 GNDA N3
A7 M6 D10 H2 GNDC N13
A8 L6 D11 H1 GNDCK C4
A9 M5 D12 G3 GNDD N1
A10 L5 D13 G2 GNDD L1
A11 K5 D14 G1 GNDD K1
A12 M4 D15 F1 GNDD E1
A13 L4 D16 F2 GNDD D1
A14 K4 D17 F3 GNDD B1
A15 J4 D18 E2 GNDH A12
BG K12 D19 E3 GNDH A13
BN H13 D20 D2 GNDH C13
BR L12 D21 D3 GNDH E13
BS N11 D22 E4 GNDP C6
CKOUT C5 D23 D4 GNDQ A1
CKP B4 DR K11 GNDQ A2
D0 N2 DS L10 GNDQ A5
D1 M3 DSCK N12 GNDQ A7
D2 M2 DSI M11 GNDS J13
3-28 DSP56002/D, Rev. 3 MOTOROLA
Packaging
Pin-out and Package InformationGNDS L13 PB5 B12 SCK F12
H0 E11 PB6 A11 SCLK E12
H1 D11 PB7 B11 SRD G13
H2 C11 PB8 C9 STD G11
H3 E10 PB9 B9 TIO H11
H4 D10 PB10 A9 TXD D12
H5 B12 PB11 D9 VCCA N9
H6 A11 PB12 B10 VCCA N7
H7 B11 PB13 C10 VCCA N4
HA0 C9 PB14 A10 VCCC M13
HA1 B9 PC0 C12 VCCCK B2
HA2 A9 PC1 D12 VCCD M1
HACK A10 PC2 E12 VCCD J1
HEN B10 PC3 F11 VCCD C1
HR/W D9 PC4 G12 VCCH B13
HREQ C10 PC5 F13 VCCH D13
IRQA C3 PC6 F12 VCCP B5
IRQB C2 PC7 G13 VCCQ A2
MODA C3 PC8 G11 VCCQ A4
MODB C2 PCAP B6 VCCQ A6
MODC D5 PINIT C7 VCCQ A8
NMI D5 PLOCK B7 VCCS K13
OS0 M11 PS M10 WR J11
OS1 N12 RD J10 WT J12
PB0 E11 RESET B3 X/Y K10
PB1 D11 RXD C12 XTAL B8
PB2 C11 SC0 F11 nc H12
PB3 E10 SC1 G12 nc M12
PB4 D10 SC2 F13
Table 3-11 DSP56002 PGA Pin Identification by Signal Name (Continued)
Signal Name Pin No. Signal Name Pin No. Signal Name Pin No.
MOTOROLA DSP56002/D, Rev. 3 3-29
Packaging
Pin-out and Package InformationPower and ground pins have special considerations for noise immunity. See the
section Design Considerations.
Table 3-12 DSP56002 Power Supply Pins in PGA Package
Pin Number Power Supply Circuit Supplied
N9
VCCA
Address
Bus
Buffers
N7
N4
N10
GNDA
N8
N6
N5
N3
M13 VCCC Bus Control
BuffersN13 GNDC
B2 VCCCK Clock
C4 GNDCK
M1
VCCD
Data
Bus
Buffers
J1
C1
N1
GNDD
L1
K1
E1
D1
B1
B13
VCCH
Host
Interface
Buffers
D13
A12
GNDH
A13
C13
E13
3-30 DSP56002/D, Rev. 3 MOTOROLA
Packaging
Pin-out and Package InformationA8
VCCQ
Internal Logic
A6
A4
A2
A1
GNDQ
A2
A5
A7
B5 VCCP PLL
C6 GNDP
K13 VCCS
Serial PortJ13
GNDSL13
Figure 3-9 132-pin Ceramic Pin Grid Array (PGA) Package Mechanical Information
Table 3-12 DSP56002 Power Supply Pins in PGA Package (Continued)
Pin Number Power Supply Circuit Supplied
NOTES:
1. 1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. 2. CONTROLLING DIMENSION: INCH.
DIM MIN MAX
INCHES
A 1.340 1.380
B 1.340 1.380
C 0.100 0.150
D 0.017 0.022
G 0.100 BSC
K 0.170 0.195
-A-
-B-
C
K
D 132 PL
-T-
SAM0.005 B ST
1 2 3 4 5 6 7 8 9 10 11 12 13
A
B
C
D
E
F
G
H
J
K
L
M
N G
G
CASE 789B-01
ISSUE O
MOTOROLA DSP56002/D, Rev. 3 3-31
Packaging
Ordering DrawingsORDERING DRAWINGS
Complete mechanical information regarding DSP56002 packaging is available by
facsimile through Motorola's Mfax™ system. Call the following number to obtain
information by facsimile:
The Mfax automated system requests the following information:
• The receiving facsimile telephone number including area code or country
code
• The caller’s Personal Identification Number (PIN)
Note: For first time callers, the system provides instructions for setting up a PIN,
which requires entry of a name and telephone number.
• The type of information requested:
– Instructions for using the system
– A literature order form
– Specific part technical information or data sheets
– Other information described by the system messages
A total of three documents may be ordered per call.
The DSP56002 132-pin PQFP package mechanical drawing is referenced as 831A-02.
The reference number for the 144-pin TQFP package is 918-03. The reference number
for the 132-pin ceramic PGA package is 789B-01.
(602) 244-6591
3-32 DSP56002/D, Rev. 3 MOTOROLA
SECTION 4
DESIGN CONSIDERATIONS
HEAT DISSIPATION
An estimation of the chip junction temperature, TJ, in ° C can be obtained from the
equation:
Equation 1:
Where:
TA = ambient temperature ˚C
R
q JA = package junction-to-ambient thermal resistance ˚C/W
PD = power dissipation in package
Historically, thermal resistance has been expressed as the sum of a junction-to-case
thermal resistance and a case-to-ambient thermal resistance:
Equation 2:
Where:
R
q JA = package junction-to-ambient thermal resistance ˚C/W
R
q JC = package junction-to-case thermal resistance ˚C/W
R
q CA = package case-to-ambient thermal resistance ˚C/W
R
q JC is device-related and cannot be influenced by the user. The user controls the
thermal environment to change the case-to-ambient thermal resistance, R
q CA. For
example, the user can change the air flow around the device, add a heat sink, change
the mounting arrangement on the Printed Circuit Board, or otherwise change the
thermal dissipation capability of the area surrounding the device on a Printed Circuit
Board. This model is most useful for ceramic packages with heat sinks; some 90% of
the heat flow is dissipated through the case to the heat sink and out to the ambient
environment. For ceramic packages, in situations where the heat flow is split between
a path to the case and an alternate path through the Printed Circuit Board, analysis of
the device thermal performance may need the additional modeling capability of a
system level thermal simulation tool.
The thermal performance of plastic packages is more dependent on the temperature
of the Printed Circuit Board to which the package is mounted. Again, if the
TJ TA PD R q JA·( )+=
R
q JA R q JC R q CA+=
MOTOROLA DSP56002/D, Rev. 3 4-1
Design Considerations
Heat Dissipation
estimations obtained from R
q JA do not satisfactorily answer whether the thermal
performance is adequate, a system level model may be appropriate.
A complicating factor is the existence of three common ways for determining the
junction-to-case thermal resistance in plastic packages:
• To minimize temperature variation across the surface, the thermal resistance
is measured from the junction to the outside surface of the package (case)
closest to the chip mounting area when that surface has a proper heat sink.
• To define a value approximately equal to a junction-to-board thermal
resistance, the thermal resistance is measured from the junction to where the
leads are attached to the case.
• If the temperature of the package case (TT) as determined by a thermocouple,
the thermal resistance is computed using the value obtained by the equation
(TJ – TT)/PD.
As noted above, the junction-to-case thermal resistances quoted in this data sheet are
determined using the first definition. From a practical standpoint, that value is also
suitable for determining the junction temperature from a case thermocouple reading
in forced convection environments. In natural convection, using the junction-to-case
thermal resistance to estimate junction temperature from a thermocouple reading on
the case of the package will estimate a junction temperature slightly hotter than
actual temperature. Hence, the new thermal metric, Thermal Characterization
Parameter or Y JT, has been defined to be (TJ – TT)/PD. This value gives a better
estimate of the junction temperature in natural convection when using the surface
temperature of the package. Remember that surface temperature readings of
packages are subject to significant errors caused by inadequate attachment of the
sensor to the surface and to errors caused by heat loss to the sensor. The
recommended technique is to attach a 40-gauge thermocouple wire and bead to the
top center of the package with thermally conductive epoxy.
Note: Table 2-2 Thermal Characteristics on page 2-2 contains the package thermal
values for this chip.
4-2 DSP56002/D, Rev. 3 MOTOROLA
Design Considerations
Electrical Design Considerations
ELECTRICAL DESIGN CONSIDERATIONS
Use the following list of recommendations to assure correct DSP operation:
• Provide a low-impedance path from the board power supply to each VCC pin
on the DSP, and from the board ground to each GND pin.
• Use at least four 0.1 m F bypass capacitors positioned as close as possible to the
four sides of the package to connect the VCC power source to GND.
• Ensure that capacitor leads and associated printed circuit traces that connect
to the chip VCC and GND pins are less than 0.5 inch per capacitor lead.
• Use at least a four-layer Printed Circuit Board (PCB) with two inner layers for
VCC and GND.
• Because the DSP output signals have fast rise and fall times, PCB trace lengths
should be minimal. This recommendation particularly applies to the address
and data buses as well as the RD, WR, IRQA, IRQB, NMI, HEN, and HACK
pins.
• Consider all device loads as well as parasitic capacitance due to PCB traces
when calculating capacitance. This is especially critical in systems with higher
capacitive loads that could create higher transient currents in the VCC and
GND circuits.
• All inputs must be terminated (i.e., not allowed to float) using CMOS levels.
• Take special care to minimize noise levels on the PLL supply pins (both VCC
and GND).
CAUTION
This device contains protective circuitry to
guard against damage due to high static
voltage or electrical fields. However, normal
precautions are advised to avoid application
of any voltages higher than maximum rated
voltages to this high-impedance circuit.
Reliability of operation is enhanced if unused
inputs are tied to an appropriate logic voltage
level (e.g., either GND or VCC).
MOTOROLA DSP56002/D, Rev. 3 4-3
Design Considerations
Power Consumption
POWER CONSUMPTION
Power dissipation is a key issue in portable DSP applications. The following describes
some factors which affect current consumption. Current consumption is described by
the formula:
Equation 3:
where: C = node/pin capacitance
V = voltage swing
f = frequency of node/pin toggle
For example, for an address pin loaded with a 50 pF capacitance and operating at 5.5
V with a 40 MHz clock, toggling at its maximum possible rate (which is 10 MHz), the
current consumption is:
Equation 4:
The maximum internal current value (ICCI-max), reflects the maximum ICC expected
when running the code given below. This represents “typical” internal activity, and is
included as a point of reference. Some applications may consume more or less current
depending on the code used. The typical internal current value (ICCI-typ) reflects
what is typically seen when running the given code.
The following steps are recommended for applications requiring very low current
consumption:
1. Minimize external memory accesses; use internal memory accesses instead.
2. Minimize the number of pins that are switching.
3. Minimize the capacitive load on the pins.
4. Connect the unused inputs to pull-up or pull-down resistors.
I C V f··=
I 50 10 12–· 5.5· 10· 106· 2.75mA= =
4-4 DSP56002/D, Rev. 3 MOTOROLA
Design Considerations
Power Consumption
Current consumption test code:
org p:RESET
jmp MAIN
org p:MAIN
movep #$180000,x:$FFFD
move #0,r0
move #0,r4
move #$00FF, m0
move #$00FF, m4
nop
rep #256
move r0,x:(r0)+
rep #256
mov r4,y:(r4)+
clr a
move l:(r0)+,a
rep #30
mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0
move a,p:(r5)
jmp TP1
TP1 nop
jmp MAIN
MOTOROLA DSP56002/D, Rev. 3 4-5
Design Considerations
Host Port Considerations
HOST PORT CONSIDERATIONS
Careful synchronization is required when reading multibit registers that are written
by another asynchronous system. This is a common problem when two
asynchronous systems are connected. The situation exists in the host interface. The
following paragraphs present considerations for proper operation.
Host Programming Considerations
UNSYNCHRONIZED READING OF RECEIVE BYTE REGISTERS
When reading receive byte registers (RXH, RXM, and RXL) the host programmer
should use interrupts or poll the RXDF flag that indicates that data is available. This
assures that the data in the receive byte registers will be stable.
OVERWRITING TRANSMIT BYTE REGISTERS
The host programmer should not write to the transmit byte registers (TXH, TXM, and
TXL) unless the TXDE bit is set indicating that the transmit byte registers are empty.
This guarantees that the transmit byte registers will transfer valid data to the HRX
register.
SYNCHRONIZATION OF STATUS BITS FROM DSP TO HOST
HC, HREQ, DMA, HF3, HF2, TRDY, TXDE, and RXDF status bits are set or cleared
from inside the DSP and read by the host processor. The host can read these status
bits very quickly without regard to the clock rate used by the DSP, but the possibility
exists that the state of the bit could be changing during the read operation. This is
generally not a system problem, since the bit will be read correctly in the next pass of
any host polling routine.
Note: Refer to DSP56002 User’s Manual sections describing the I/O Interface and
Host/DMA Interface Programming Model for descriptions of these status
bits.
OVERWRITING THE HOST VECTOR
The Host programmer should change the Host Vector register only when the Host
Command bit (HC) is clear. This change guarantees that the DSP interrupt control
logic will receive a stable vector.
4-6 DSP56002/D, Rev. 3 MOTOROLA
Design Considerations
Host Port Considerations
CANCELLING A PENDING HOST COMMAND EXCEPTION
The host processor may elect to clear the HC bit to cancel the Host Command
Exception request at any time before it is recognized by the DSP. Because the host
does not know exactly when the exception will be recognized (due to exception
processing synchronization and pipeline delays), the DSP may execute the Host
Command Exception after the HC bit is cleared. For these reasons, the HV bits must
not be changed at the same time the HC bit is cleared.
VARIANCE IN THE HI TIMING
HI timing may vary during initial startup during the time after reset before the PLL
locks. Therefore, before a host attempt to load (i.e., bootstrap) the DSP, the host
should first make sure that the HI port programming has been completed. The
following steps can be used to ensure that the programming is complete:
1. Set the INIT bit in the ICR
2. Poll the INIT bit until it is cleared.
3. Read the ISR.
An alternate method is:
1. Write the TREQ/RREQ together with INIT.
2. Poll INIT, ISR, and the HREQ pin.
DSP Programming Considerations
SYNCHRONIZATION OF STATUS BITS FROM HOST TO DSP
DMA, HF1, HF0, and HCP, HTDE, and HRDF status bits are set or cleared by the host
processor side of the interface. These bits are individually synchronized to the DSP
clock.
Note: Refer to DSP56002 User’s Manual sections describing the I/O Interface and
Host/DMA Interface Programming Model for descriptions of these status
bits.
READING HF0 AND HF1 AS AN ENCODED PAIR
A potential problem exists when reading status bits HF0 and HF1 as an encoded pair
(i.e., the four combinations 00, 01, 10, and 11 each have significance). A very small
probability exists that the DSP will read the status bits synchronized during
transition. The solution to this potential problem is to read the HF0 and HF1 bits
twice and check for consensus.
MOTOROLA DSP56002/D, Rev. 3 4-7
Design Considerations
Package Compatibility
PACKAGE COMPATIBILITY
The PQFP and TQFP packages are designed so that a single Printed Circuit Board
(PCB) can accommodate either package. The two package pinouts are similarly
sequenced. Proper orientation of each package with the smaller TQFP footprint
inside the PQFP footprint allow connection of PCB traces to either package. For
example, the D0 pin is near the corner of both the PQFP package (pin 84) and the
TQFP package (pin 109), and is adjacent to D1 on both packages.
Note: Some “no connect” pins in the TQFP pin sequence are excluded from the
PQFP pin sequence.
4-8 DSP56002/D, Rev. 3 MOTOROLA
MOTOROLA DSP56002/D, Rev. 3 5-1
SECTION 5
ORDERING INFORMATION
DSP56002 ordering information in the table below lists the pertinent information
needed to place an order. Consult a Motorola Semiconductor sales office or
authorized distributor to determine availability and to order parts.
Table 5-1
DSP56002 Ordering Information
Part
Supply
Voltage
Package Type Pin Count
Frequency
(MHz)
Order Number
DSP56002 5 V
Plastic Quad Flat Pack
(PQFP) 132
40 DSP56002FC40
66 DSP56002FC66
80 DSP56002FC80
Plastic Thin Quad Flat
Pack (TQFP) 144
40 DSP56002PV40
66 DSP56002PV66
80 DSP56002PV80
Ceramic Pin Grid Array 132 40 DSP56002RC40
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no
warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does
Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims
any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may
be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual
performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights
of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support life, or for any other application in which the
failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer
purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and
hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,
damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent
regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc.
Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
How to reach us:
USA/Europe/Locations Not Listed
:
Motorola Literature Distribution
P.O. Box 5405
Denver, Colorado 80217
303-675-2140
1 (800) 441-2447
Mfax™
:
RMFAX0@email.sps.mot.com
TOUCHTONE (602) 244-6609
US & Canada ONLY (800) 774-1848
Asia/Pacific
:
Motorola Semiconductors H.K. Ltd.
8B Tai Ping Industrial Park
51 Ting Kok Road
Tai Po, N.T., Hong Kong
852-26629298
Technical Resource Center:
1 (800) 521-6274
DSP Helpline
dsphelp@dsp.sps.mot.com
Japan
:
Nippon Motorola Ltd.
SPD, Strategic Planning Office
4-32-1, Nishi-Gotanda
Sinagawa-ku, Tokyo 141, Japan
81-3-5487-8488
Internet
:
OnCE and Mfax are trademarks of Motorola, Inc.
Các file đính kèm theo tài liệu này:
- DSP56002DS.pdf