Distributed airlift systems design with application to recirculating soft shell crawfish shedding systems

5.1 Conclusions The thesis documents several rules of thumb for the design of airlifts and distribution for specific application to automated soft shell crawfish shedding facilities. It also lay guidelines for design of airlifts for application with low head biofilters. The following are guidelines for: • Airlift Pumps ƒ Airlift pump should be designed for a lift range of20 to 25 percent, with a gas liquid ratio of 1:2. ƒ Airlift riser is sized for the required maximum water flow for a velocity of 1 fps. ƒ Air pump selection should be based on the submergence depth, i.e., depth of injection required for an airlift pump. ƒ The inlet pipe should be designed for an approach velocity of 2-3 fps (This is the minimum velocity required for scour). • Distribution Pipes ƒ Distribution pipe is designed for a minimum velocity of 1.0 fps and maximum velocity of 3.0 fps. ƒ Whenever the criterion for velocity in distribution pipe is not met, a self cleaning port should be provided. ƒ It is recommended to build the facility above ground to avoid construction problems. ƒ Facility design should be engineered to minimize head loss across the entire set up. The above guidelines can be applied for design of recirculating systems for crawfish like abalone, clams, soft crabs, and ornamental fish. There is an Ornamental fish facility in Florida being designed using distributed airlift system

pdf93 trang | Chia sẻ: maiphuongtl | Lượt xem: 1760 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Distributed airlift systems design with application to recirculating soft shell crawfish shedding systems, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
e, 2: 229-254. Ivens, E. M., (1914), Pumping by compressed air, John Wiley and Sons, Inc., New York, pp 244 Lapin Lawerence. (1975), Statistics meaning and method, Harcourt Brace Jovanovich Inc., United States of American, pp 591. Loyless, C.J., (1995), A feasibility study of using airlift pumps for aeration, degasification, and water movement in recirculating aquaculture system, Thesis, Louisiana State University, pp 116. Malone R.F. and Burden D.G. (1988), Design of recirculating soft crawfish shedding systems, Louisiana Sea Grant College Program, Center for Wetland Resources, Louisiana State University, Baton Rouge, LA, pp72. Malone R.F. and D.D. Culley, (1988), Method and apparatus for farming soft-shell aquatic crustaceans, United States Patent N0. 4,726,321. Malone R.F., Rusch K. A. and Christensen J.M. (1996), Design of recirculating crawfish systems employing expandable granular filters, Proceedings from the Successes and Failures in Commercial Recirculating Aquaculture Conference Sponsored by Virginia Polytechnic Institute and State University, Roanoke, Virginia, 467-480. Malone, R. and L. Beecher, (2000). Use of floating bead filters to recondition recirculating waters in warm water Aquaculture Production Systems. Journal of Aquacultural Engineering, 22, 57-73. Parker, N.C., and M.S. Suttle., (1987), Design of airlift pumps for water circulation and aeration in aquaculture. Aquaculture Engineering 6: 97-110. 44 Perry, R.H.D., D.W. Green and J.W. Maloney (eds.), (1993), Perry’s chemical engineer’s handbook, 12th edition, McGraw-Hill, New York, NY. Reinemann, D.J., Timmons, M.B., (1987), Prediction of oxygen transfer and total dissolved gas pressure in airlift pumping, Aquaculture Engineering, 29-46. Reinemann, D.J., Hansen, J., Raabe, M., Mallison, J., Byrd, V., (2001), Demonstration of Airlift Pump and Lignocellulosics in Recirculation Aquaculture Systems, Energy Center of Wisconsin, Madison, Wisconsin, pp 21. Ricketts J.T., Loftin M.K., and Merritt F. S., (2004), Standard handbook for civil engineers, McGraw-Hill, Fifth edition, 1600 pp. Robin J.E., (1992), Water quality and performance of a commercial-scale automated soft-shell crawfish production facility, Master’s Thesis, Louisiana State University, Baton Rouge, Louisiana, pp 129. Romaire P. Robert , W. Ray McClain and C. Greg Lutz1, 2004, Crawfish Production: Harvesting, Fact Sheets published by Southern Regional Aquaculture Center, SRAC Publication No. 2400, 1-6. Rondelle R.F., (1992), Vertical distribution in an automated soft-shell crawfish separator, Master’s Thesis, Louisiana State University, Baton Rouge, Louisiana, pp 154. Steel E. W. and Terence J. McGhee, (1979), Water supply and sewerage, McGraw-Hill; Fifth edition, 665 pp. Stepanoff A.J., (1965), Pumps and blowers, Two - phase flow, John Wiley and Sons, Inc., New York, pp 316 Stenning, A.H., Martin, C.B., (1968), An analytical and experimental study of air-lift pump performance, Transactions of ASME, 90: 106-110. Timmons, M. B., Ebeling, J. M., Wheaton, F. W., Summerfelt, S. T. and Vinci, B. J., (2001), Recirculating aquaculture systems, Cayuga Aqua Ventures, Ithaca, New York, pp 647. Todoroki I., Sato Y., Honda T., (1973), Performance of airlift pump, Bulletin of the Japan Society of Mechanical Engineers, 16: 733-741. Turk, P.E., Lee, P.G., (1991), Design and economic analyses of airlift versus electrical pump driven recirculating aquaculture systems, Engineering Aspects of Aquaculture: Proceedings from the Aquaculture Symposium, Cornell University, April, 271-283. Wagener C., (2003), Evaluation of static low density media filters for use in domestic waste water treatment, Master’s Thesis, Louisiana State University, Baton Rouge, Louisiana, pp 166. 45 Water flow characteristics of thermoplastic pipe. (2000), Techincal Report, Pilastics Pipe Institute, Washington DC. Copyright 2003. Wurts W. A., McNeill S.G., and Overhults D.G., (1994), Performance and design characteristics of airlift pumps for field applications, World Aquaculture, 25(4): 51-54. Zenz F. A., (1993), Explore the potential of airlift pumps and multiphase, Chemical Engineering Progress, 89 (8): 51-56. 46 APPENDIX A: WEIR CALIBRATION DATA SHEETS 47 Symbols H', h2 = Water height in the weir box from the top of the tape measure (cm) H, h1 = 24.92 – H' (Weir head in cm) Q, Qw = Actual discharge through the weir measured using bucket readings (liter/sec) Qm = Average flow over the weir (liter/sec) Cd = Coefficient of discharge Q1, Q2 ……..Q7 = Iterative flow values calculated using varying Cd (liter/sec) t1, t2 ……..t5 = Time taken to fill the bucket to a standard mark (second) 48 Table A-1. Weir Equation Calibration using Least Sum Square Method Cd 0.497 0.496 0.497 0.498 0.499 0.5 0.501 H' H Q Qm Q1 Q2 Q3 Q4 Q5 Q6 Q7S.No. cm cm liters/sec l/sec liters/sec liters/sec liters/sec liters/sec liters/sec liters/sec liters/sec 1 14.500 10.420 0.895 1.862 1.102 1.100 1.102 1.104 1.107 1.109 1.111 2 12.900 12.020 1.394 1.862 1.575 1.572 1.575 1.578 1.582 1.585 1.588 3 12.000 12.920 1.724 1.862 1.887 1.883 1.887 1.891 1.895 1.898 1.902 4 11.100 13.820 2.042 1.862 2.233 2.228 2.233 2.237 2.242 2.246 2.251 5 10.600 14.320 2.277 1.862 2.440 2.435 2.440 2.445 2.450 2.455 2.460 6 10.100 14.820 2.596 1.862 2.659 2.654 2.659 2.664 2.670 2.675 2.680 7 16.000 8.920 0.620 1.862 0.747 0.746 0.747 0.749 0.750 0.752 0.753 8 14.400 10.520 0.952 1.862 1.129 1.127 1.129 1.131 1.133 1.136 1.138 9 13.100 11.820 1.290 1.862 1.511 1.508 1.511 1.514 1.517 1.520 1.523 10 12.600 12.320 1.505 1.862 1.675 1.672 1.675 1.679 1.682 1.686 1.689 11 12.100 12.820 1.683 1.862 1.851 1.847 1.851 1.854 1.858 1.862 1.866 12 12.000 12.920 1.763 1.862 1.887 1.883 1.887 1.891 1.895 1.898 1.902 13 11.700 13.220 1.940 1.862 1.998 1.994 1.998 2.002 2.006 2.010 2.014 14 14.000 10.920 1.035 1.862 1.239 1.237 1.239 1.242 1.244 1.247 1.249 15 13.100 11.820 1.292 1.862 1.511 1.508 1.511 1.514 1.517 1.520 1.523 16 12.100 12.820 1.604 1.862 1.851 1.847 1.851 1.854 1.858 1.862 1.866 17 11.400 13.520 1.901 1.862 2.114 2.109 2.114 2.118 2.122 2.126 2.131 18 11.000 13.920 2.092 1.862 2.273 2.269 2.273 2.278 2.283 2.287 2.292 19 10.700 14.220 2.212 1.862 2.398 2.393 2.398 2.403 2.408 2.412 2.417 20 10.400 14.520 2.399 1.862 2.526 2.521 2.526 2.532 2.537 2.542 2.547 21 10.000 14.920 2.557 1.862 2.704 2.699 2.704 2.710 2.715 2.720 2.726 22 9.400 15.520 2.774 1.862 2.984 2.978 2.984 2.990 2.996 3.002 3.008 23 9.000 15.920 2.978 1.862 3.180 3.174 3.180 3.187 3.193 3.199 3.206 24 8.600 16.320 3.154 1.862 3.384 3.377 3.384 3.391 3.397 3.404 3.411 Mean 1.862 2.036 2.032 2.036 2.040 2.044 2.048 2.052 0.780 0.746 0.780 0.815 0.850 0.887 0.924 10.562 10.562 10.562 10.562 10.562 10.562 10.562 LSSE 0.926 0.929 0.926 0.923 0.919 0.916 0.913 49 Table A-2 Bucket measurements for a 12″ Lift using 20% rule for weir calibration Flow Data Collection Sheet – Simplified Design Rules for Low lift Airlift Pumps Data Collected by: Pavani Date of Experiment: 21-Apr-05 Pipe Diameter = 3″ Submergence = 36″ Lift = 12″ Bucket Measure Weir Flow Wier Head Time (seconds) Qw Qw S.No. h2 (cm) h1(cm) h (cm) t1 t2 t3 t4 t5 t mean Std Dev Std Err gpm lps 1 16.2 24.92 8.72 32.6 31.6 31.7 32 31.9 31.96 0.391 0.175 8.45 0.533 2 14.0 24.92 10.92 16.4 16.5 16.5 16.5 16.4 16.46 0.055 0.024 16.40 1.035 3 13.1 24.92 11.82 13.1 13.4 13.1 13.1 13.2 13.18 0.130 0.058 20.49 1.292 4 12.1 24.92 12.82 10.7 10.6 10.6 10.7 10.5 10.62 0.084 0.037 25.42 1.604 5 11.4 24.92 13.52 8.9 9.1 9 9 8.8 8.96 0.114 0.051 30.13 1.901 6 11.0 24.92 13.92 8 8.2 8.1 8.2 8.2 8.14 0.089 0.040 33.17 2.092 7 10.7 24.92 14.22 7.8 7.6 7.7 7.7 7.7 7.70 0.071 0.032 35.06 2.212 8 10.4 24.92 14.52 7.1 7 7 7.2 7.2 7.10 0.100 0.045 38.03 2.399 Table A-3 Bucket measurements for a 12″ Lift using 25% rule for weir calibration Flow Data Collection Sheet – Simplified Design Rules for Low lift Airlift Pumps Data Collected by: Pavani Date of Experiment: 20-Apr-05 Pipe Diameter = 3″ Submergence = 48″ Lift = 12″ Bucket Measure Weir Flow Wier Head Time (seconds) Qw Qw S.No. h2 (cm) h1(cm) h (cm) t1 t2 t3 t4 t5 t mean Std Dev Std Err gpm lps 1 14.5 24.92 10.42 15.4 16 16.5 15.2 16.1 15.84 0.532 0.238 17.05 1.075 2 12.2 24.92 12.72 9.3 9.7 9.1 9.5 9.2 9.36 0.241 0.108 28.85 1.820 3 11.3 24.92 13.62 7.4 7.4 7.7 7.4 7.7 7.52 0.164 0.073 35.90 2.265 4 10.0 24.92 14.92 6.7 6.6 6.6 6.8 6.6 6.66 0.089 0.040 40.54 2.557 5 9.4 24.92 15.52 6.1 6.2 6 6.2 6.2 6.14 0.089 0.040 43.97 2.774 6 9.0 24.92 15.92 5.8 5.8 5.6 5.7 5.7 5.72 0.084 0.037 47.20 2.978 7 8.6 24.92 16.32 5.4 5.5 5.3 5.3 5.5 5.40 0.100 0.045 50.00 3.154 50 Table A-4 Bucket measurements for a 9″ Lift using 20% rule for weir calibration Flow Data Collection Sheet - Simplified Design Rules for Low lift Airlift Pumps Data Collected by: Pavani Date of Experiment: 23-Apr-05 Pipe Diameter = 3″ Submergence = 36″ Lift = 9″ Bucket Measure Weir Flow Wier Head Time (seconds) Qw Qw S.No. h2 (cm) h1(cm) H (cm) t1 t2 t3 t4 t5 t mean Std Dev Std Err gpm lps 1 14.5 24.92 10.42 19 19 18.9 19 19.3 19.04 0.152 0.068 14.18 0.895 2 12.9 24.92 12.02 12.2 12.2 12.2 12.5 12 12.22 0.179 0.080 22.09 1.394 3 12.0 24.92 12.92 9.9 9.9 9.7 10.1 9.8 9.88 0.148 0.066 27.33 1.724 4 11.1 24.92 13.82 8.2 8.3 8.3 8.4 8.5 8.34 0.114 0.051 32.37 2.042 5 10.6 24.92 14.32 7.3 7.4 7.6 7.5 7.6 7.48 0.130 0.058 36.10 2.277 6 10.1 24.92 14.82 6.3 6.7 6.7 6.6 6.5 6.56 0.167 0.075 41.16 2.596 Table A-5 Bucket measurements for a 9″ Lift using 25% rule for weir calibration Flow Data Collection Sheet - Simplified Design Rules for Low lift Airlift Pumps Data Collected by: Pavani Date of Experiment: 20-Apr-05 Pipe Diameter = 3″ Submergence = 27″ Lift = 9″ Bucket Measure Weir Flow Wier Head Time (seconds) Qw Qw S.No. h2 (cm) h1(cm) h (cm) t1 t2 t3 t4 t5 t mean Std Dev Std Err gpm lps 1 17.5 24.92 7.42 60.9 61.4 61.3 61.7 60.9 61.24 0.344 0.154 4.41 0.278 2 16.0 24.92 8.92 27.3 27.4 27.5 27.7 27.4 27.46 0.152 0.068 9.83 0.620 3 14.4 24.92 10.52 17.7 17.9 17.9 17.9 18.1 17.90 0.141 0.063 15.08 0.952 4 13.1 24.92 11.82 13.2 13.3 13 13.2 13.3 13.20 0.122 0.055 20.45 1.290 5 12.6 24.92 12.32 11.3 11.4 11.3 11.4 11.2 11.32 0.084 0.037 23.85 1.505 6 12.1 24.92 12.82 10.1 10.1 10.2 10.1 10.1 10.12 0.045 0.020 26.68 1.683 7 12.0 24.92 12.92 9.7 9.6 9.6 9.6 9.8 9.66 0.089 0.040 27.95 1.763 8 11.7 24.92 13.22 8.8 8.8 8.7 8.7 8.9 8.78 0.084 0.037 30.75 1.940 51 APPENDIX B: EXPERIMENTAL RESULTS 2″ PVC PIPE 52 Table B-1. Air lift pump flow data for a 2″ diameter PVC Schedule 40 Pipe 20% Lift Rule, 9″ Lift Flow Data Collection Sheet - Simplified Design Rules for Low lift Airlift Pumps Data Collected by: Pavani Date of Experiment: 26-May-05 Pipe Diameter = 2″ Submergence = 36″ Lift = 9″ Pitot Head Flow through Weir Disch Inject AdiabaticQg Qg Airlift Pipe Tank Head (H = h2-h1) Qw Qw Line Temp Press Press Power S.No. cfm scfm cm cm h2 (cm) h1(cm) h (cm) lps gpm gpm (deg C) (in) (in) Kw 1 3 3.09 39.5 36.8 14.5 24.92 10.42 1.09 17.22 17.50 42 42.5 28 0.0052 3 3.09 39.6 36.8 14.4 24.92 10.52 1.11 17.64 42 42.5 28 0.0052 3 3.09 39.6 36.8 14.4 24.92 10.52 1.11 17.64 42 42.5 28 0.0052 2 4 4.13 40.9 36.8 14.1 24.92 10.82 1.19 18.92 18.78 42 42 28.5 0.0065 4 4.13 41 36.9 14.2 24.92 10.72 1.17 18.49 42 42 28.5 0.0065 4 4.13 40.9 36.9 14.1 24.92 10.82 1.19 18.92 42 42 28.5 0.0065 3 5 5.19 41 36.3 13.6 24.92 11.32 1.34 21.19 21.50 43 56 32 0.0145 5 5.19 40.9 36.3 13.5 24.92 11.42 1.37 21.66 43 56 32 0.0145 5 5.19 41 36.3 13.5 24.92 11.42 1.37 21.66 43 56 32 0.0145 4 6 6.22 41.8 36.3 13.3 24.92 11.62 1.43 22.62 22.78 45.5 55.5 33 0.0163 6 6.22 41.8 36.3 13.2 24.92 11.72 1.46 23.11 45.5 55.5 33 0.0163 6 6.22 41.8 36.2 13.3 24.92 11.62 1.43 22.62 45.5 55.5 33 0.0163 5 7 7.26 42 36.2 13.2 24.92 11.72 1.46 23.11 23.27 46.5 55 34 0.0178 7 7.26 42 36.2 13.1 24.92 11.82 1.49 23.60 46.5 55 34 0.0178 7 7.26 42.1 36.2 13.2 24.92 11.72 1.46 23.11 46.5 55 34 0.0178 6 8 8.31 42.1 36.2 13.1 24.92 11.82 1.49 23.60 23.60 48.5 55 36 0.0184 8 8.31 42.1 36.2 13.1 24.92 11.82 1.49 23.60 48.5 55 36 0.0184 8 8.31 42.2 36.2 13.1 24.92 11.82 1.49 23.60 48.5 55 36 0.0184 7 9 9.44 42.7 36.1 13.0 24.92 11.92 1.52 24.11 24.11 48.5 63 40 0.0252 9 9.44 42.5 36.1 13.0 24.92 11.92 1.52 24.11 48.5 63 40 0.0252 9 9.44 42.5 36.1 13.0 24.92 11.92 1.52 24.11 48.5 63 40 0.0252 8 10 10.50 42.5 36.0 13.0 24.92 11.92 1.52 24.11 24.28 51 63 42.5 0.0251 10 10.50 42.6 35.9 12.9 24.92 12.02 1.55 24.62 51 63 42.5 0.0251 10 10.50 42.5 35.9 13.0 24.92 11.92 1.52 24.11 51 63 42.5 0.0251 53 Table B-2. Summary of flow data for a 2″ diameter PVC Schedule 40 Pipe 20% Lift Rule, 9″ Lift Qg Qg Qw Qw G/L Qw(g/L=1) Qw(g/L=2) Qwflux Velocity G/L Qw (g/L=3) cfm scfm lps gpm gpm gpm gpm/sqft Fps gpm 3 3.09 1.09 17.50 1.32 22.44 11.22 356.48 0.794 1.28 7.48 4 4.13 1.19 18.78 1.64 29.92 14.96 382.52 0.852 1.59 9.973333 5 5.19 1.34 21.50 1.81 37.4 18.70 437.95 0.976 1.74 12.46667 6 6.22 1.43 22.78 2.04 44.88 22.44 464.04 1.034 1.97 14.96 7 7.26 1.46 23.27 2.33 52.36 26.18 474.06 1.056 2.25 17.45333 8 8.31 1.49 23.60 2.63 59.84 29.92 480.80 1.071 2.54 19.94667 9 9.44 1.46 24.11 2.93 67.32 33.66 491.03 1.094 2.79 22.44 10 10.50 1.49 24.28 3.24 74.8 37.40 494.49 1.102 3.08 24.93333 54 Table B-3. Air lift pump flow data for a 2″ diameter PVC Schedule 40 Pipe 25% Lift Rule 9″ Lift Flow Data Collection Sheet - Simplified Design Rules for Low lift Airlift Pumps Data Collected by: Pavani Date of Experiment: 26-May-05 Pipe Diameter = 2″ Submergence = 27″ Lift = 9″ Pitot Head Flow through Wier Disch Inject AdiabaticQg Qg Airlift Pipe Tank Head (H = h2-h1) Qw Qw Line Temp Press Press Power S.No. (cfm) scfm cm cm h2 (cm) h1(cm) h (cm) lps gpm gpm (deg C) (in) (in) Kw 1 3 3.04 40.4 39.4 16.6 24.92 8.32 0.62 9.81 10.01 42 47 20 0.0095 3 3.04 40.5 39.4 16.6 24.92 8.32 0.62 9.81 42 47 20 0.0095 3 3.04 40.4 39.4 16.4 24.92 8.52 0.66 10.41 42 47 20 0.0095 2 4 4.06 40.9 39.5 16.0 24.92 8.92 0.74 11.68 11.90 42 47 21 0.0122 4 4.06 41 39.6 15.9 24.92 9.02 0.76 12.01 42 47 21 0.0122 4 4.06 41 39.5 15.9 24.92 9.02 0.76 12.01 42 47 21 0.0122 3 5 5.07 39.9 37.9 15.1 24.92 9.82 0.94 14.85 14.98 44 46 22 0.0141 5 5.07 39.9 37.9 15.1 24.92 9.82 0.94 14.85 44 46 22 0.0141 5 5.07 39.8 37.9 15.0 24.92 9.92 0.96 15.23 44 46 22 0.0141 4 6 6.09 40.3 37.8 14.8 24.92 10.12 1.01 16.01 16.28 45 45 23 0.0156 6 6.09 40.3 37.8 14.7 24.92 10.22 1.04 16.41 45 45 23 0.0156 6 6.09 40.3 37.8 14.7 24.92 10.22 1.04 16.41 45 45 23 0.0156 5 7 7.14 40.4 37.5 14.5 24.92 10.42 1.09 17.22 17.36 46 45 26 0.0158 7 7.14 40.4 37.5 14.5 24.92 10.42 1.09 17.22 46 45 26 0.0158 7 7.14 40.5 37.5 14.4 24.92 10.52 1.11 17.64 46 45 26 0.0158 6 8 8.21 40.9 37.5 14.3 24.92 10.62 1.14 18.06 18.20 47.5 57 30 0.0257 8 8.21 40.9 37.4 14.2 24.92 10.72 1.17 18.49 47.5 57 30 0.0257 8 8.21 41 37.4 14.3 24.92 10.62 1.14 18.06 47.5 57 30 0.0257 7 9 9.27 40.9 37.2 14.1 24.92 10.82 1.19 18.92 18.92 48 56.5 31.5 0.0269 9 9.27 40.8 37.1 14.1 24.92 10.82 1.19 18.92 48 56.5 31.5 0.0269 9 9.27 40.8 37.1 14.1 24.92 10.82 1.19 18.92 48 56.5 31.5 0.0269 8 10 10.35 40.9 37.0 14.0 24.92 10.92 1.22 19.36 19.51 50 55 35 0.0241 10 10.35 40.9 37.0 14.0 24.92 10.92 1.22 19.36 50 55 35 0.0241 10 10.35 40.8 37.0 13.9 24.92 11.02 1.25 19.81 50 55 35 0.0241 55 Table B-4. Summary of flow data for a 2″ diameter PVC Schedule 40 Pipe 25% Lift Rule 9″ Lift Qg Qg Qw Qw G/L Qw(g/L=1) Qw(g/L=2) Qwflux Velocity G/L cfm scfm lps gpm gpm gpm gpm/sqft Fps 3 3.04 0.62 10.01 2.27 22.71 11.35 203.94 0.454 2.24 4 4.06 0.74 11.90 2.55 30.35 15.17 242.35 0.540 2.51 5 5.07 0.94 14.98 2.53 37.9 18.95 305.07 0.680 2.50 6 6.09 1.01 16.28 2.80 45.52 22.76 331.53 0.738 2.76 7 7.14 1.09 17.36 3.08 53.39 26.70 353.65 0.788 3.02 8 8.21 1.09 18.20 3.38 61.44 30.72 370.81 0.826 3.29 9 9.27 1.11 18.92 3.66 69.31 34.65 385.47 0.859 3.56 10 10.35 1.14 19.51 3.97 77.38 38.69 397.47 0.885 3.83 56 Table B- 5. Air lift pump flow data for a 2″ diameter PVC Schedule 40 Pipe 20% Lift Rule, 12″ Lift Flow Data Collection Sheet - Simplified Design Rules for Low lift Airlift Pumps Data Collected by:Pavani Date of Experiment: 26-May-05 Pipe Diameter = 2″ Submergence = 48″ Lift = 12″ Pitot Head Flow through Wier Disch Inject AdiabaticQg Qg Airlift Pipe Tank Head (H = h2-h1) Qw Qw Line Temp Press Press Power S.No. (cfm) scfm cm cm h2 (cm) h1(cm) h (cm) lps gpm gpm (deg C) (in) (in) Kw 1 3 3.19 48.2 44.5 14.1 24.92 10.82 1.19 18.92 19.52 38.5 53 39 0.0052 3 3.17 48.4 44.5 13.9 24.92 11.02 1.25 19.81 40.5 53 38 0.0056 3 3.17 48.2 44.5 13.9 24.92 11.02 1.25 19.81 41 53 38 0.0056 2 4 4.22 48.6 43.6 13.2 24.92 11.72 1.46 23.11 22.94 43.5 55 39 0.0079 4 4.21 48.6 43.5 13.3 24.92 11.62 1.43 22.62 44 55 39 0.0079 4 4.21 48.9 43.4 13.2 24.92 11.72 1.46 23.11 44 55 39 0.0079 3 5 5.27 49.8 43.4 12.9 24.92 12.02 1.55 24.62 24.62 45 54 40 0.0086 5 5.26 49.8 43.4 12.9 24.92 12.02 1.55 24.62 46 54 40 0.0086 5 5.26 49.9 43.4 12.9 24.92 12.02 1.55 24.62 46 54 40 0.0086 4 6 6.36 50.2 43.2 12.6 24.92 12.32 1.65 26.18 26.36 44.5 58 42 0.0119 6 6.35 50.1 43.2 12.6 24.92 12.32 1.65 26.18 45.5 58 42 0.0119 6 6.34 50.2 43.2 12.5 24.92 12.42 1.69 26.71 46.5 58 42 0.0119 5 7 7.41 50.4 43.1 12.5 24.92 12.42 1.69 26.71 26.71 48 63 44 0.0164 7 7.40 50.4 43.1 12.5 24.92 12.42 1.69 26.71 49.5 63 44 0.0164 7 7.39 50.5 43.1 12.5 24.92 12.42 1.69 26.71 50 62 44 0.0155 6 8 8.44 50.6 42.6 12.5 24.92 12.42 1.69 26.71 27.08 52 62 45 0.0168 8 8.41 50.4 42.5 12.4 24.92 12.52 1.72 27.26 54 63 45 0.0177 8 8.40 50.4 42.6 12.4 24.92 12.52 1.72 27.26 55 63 45 0.0176 7 9 9.66 50.4 42.5 12.4 24.92 12.52 1.72 27.26 27.26 45 67 48 0.0214 9 9.62 50.4 42.6 12.4 24.92 12.52 1.72 27.26 47.5 67 48 0.0213 9 9.62 50.4 42.5 12.4 24.92 12.52 1.72 27.26 49 67 49 0.0202 57 Table B- 6. Summary of flow data for a 2″ diameter PVC Schedule 40 Pipe 20% Lift Rule, 12″ Lift Qg Qg Qw Qw G/L Qw(g/L=1) Qw(g/L=2) Qwflux Velocity G/L cfm scfm lps gpm gpm Gpm gpm/sqft fps 3 3.18 1.19 19.52 1.22 23.76 11.88 397.51 0.885 1.15 4 4.22 1.46 22.94 1.37 31.54 15.77 467.37 1.041 1.30 5 5.27 1.55 24.62 1.60 39.39 19.70 501.40 1.117 1.52 6 6.35 1.65 26.36 1.80 47.5 23.75 536.90 1.196 1.70 7 7.40 1.69 26.71 2.07 55.34 27.67 544.16 1.212 1.96 8 8.42 1.69 27.08 2.33 62.95 31.48 551.50 1.229 2.21 9 9.63 1.69 27.26 2.64 72.07 36.03 555.18 1.237 2.47 58 Table B- 7. Air lift pump flow data for a 2″ diameter PVC Schedule 40 Pipe 25% Lift Rule, 12″ Lift Flow Data Collection Sheet - Simplified Design Rules for Low lift Airlift Pumps Data Collected by: Pavani Date of Experiment: 26-May-05 Pipe Diameter = 2″ Submergence = 36″ Lift = 12″ Pitot Head Flow through Wier Disch Inject AdiabaticQg Qg Airlift Pipe Tank Head (H = h2-h1) Qw Qw Line Temp Press Press Power S.No. (cfm) scfm cm cm h2 (cm) h1(cm) h (cm) lps Gpm gpm (deg C) (in) (in) Kw 1 3 3.12 47.5 46.4 15.5 24.92 9.42 0.84 13.38 13.38 40 50 30 0.0073 3 3.12 47.5 46.3 15.5 24.92 9.42 0.84 13.38 40 50 30 0.0073 3 3.12 47.5 46.4 15.5 24.92 9.42 0.84 13.38 40 50 30 0.0073 2 4 4.15 47.8 45.1 14.5 24.92 10.42 1.09 17.22 17.36 42.5 48 31 0.0082 4 4.15 47.8 45.1 14.5 24.92 10.42 1.09 17.22 42.5 48 31 0.0082 4 4.15 47.8 45.1 14.4 24.92 10.52 1.11 17.64 42.5 48 31 0.0082 3 5 5.18 48 44.7 14.1 24.92 10.82 1.19 18.92 18.92 44.5 48 32 0.0097 5 5.18 48.1 44.7 14.1 24.92 10.82 1.19 18.92 44.5 48 32 0.0097 5 5.18 48 44.7 14.1 24.92 10.82 1.19 18.92 44.5 48 32 0.0097 4 6 6.22 48.4 44.7 13.9 24.92 11.02 1.25 19.81 19.66 45.5 47 33 0.0102 6 6.22 48.4 44.6 13.9 24.92 11.02 1.25 19.81 45.5 47 33 0.0102 6 6.22 48.4 44.6 14.0 24.92 10.92 1.22 19.36 45.5 47 33 0.0102 5 7 7.28 48.8 44.5 13.8 24.92 11.12 1.28 20.26 20.42 47 49 35 0.0119 7 7.28 48.9 44.5 13.7 24.92 11.22 1.31 20.72 47 49 35 0.0119 7 7.28 48.9 44.5 13.8 24.92 11.12 1.28 20.26 47 49 35 0.0119 6 8 8.36 48.9 44.2 13.6 24.92 11.32 1.34 21.19 21.50 48 53 38 0.0147 8 8.36 48.8 44.2 13.5 24.92 11.42 1.37 21.66 48 53 38 0.0147 8 8.36 48.9 44.2 13.5 24.92 11.42 1.37 21.66 48 53 38 0.0147 7 9 9.42 48.9 44 13.4 24.92 11.52 1.40 22.13 21.98 49.5 62 40 0.0241 9 9.42 48.9 44.1 13.5 24.92 11.42 1.37 21.66 49.5 62 40 0.0241 9 9.42 48.8 44.1 13.4 24.92 11.52 1.40 22.13 49.5 62 40 0.0241 8 10 10.49 49 44.0 13.3 24.92 11.62 1.43 22.62 22.62 51 61 42 0.0232 10 10.49 48.9 44.0 13.3 24.92 11.62 1.43 22.62 51 61 42 0.0232 10 10.49 49 44.1 13.3 24.92 11.62 1.43 22.62 51 61 42 0.0232 59 Table B- 8. Summary of flow data for a 2″ diameter PVC Schedule 40 Pipe 25% Lift Rule, 12″ Lift Qg Qg Qw Qw G/L Qw(g/L=1) Qw(g/L=2) Qwflux Velocity G/L cfm scfm lps gpm gpm gpm gpm/sqft fps 3 3.12 0.84 13.38 1.74 23.32 11.66 272.61 0.607 1.68 4 4.15 1.09 17.36 1.79 31.03 15.52 353.65 0.788 1.72 5 5.18 1.19 18.92 2.05 38.76 19.38 385.47 0.859 1.98 6 6.22 1.25 19.66 2.37 46.54 23.27 400.50 0.892 2.28 7 7.28 1.28 20.42 2.67 54.42 27.21 415.86 0.926 2.56 8 8.36 1.31 21.50 2.91 62.52 31.26 437.95 0.976 2.78 9 9.42 1.28 21.98 3.21 70.49 35.24 447.63 0.997 3.06 10 10.49 1.34 22.62 3.47 78.49 39.24 460.72 1.026 3.31 60 Table B-9. Air lift pump flow data for a 2″ diameter PVC Schedule 40 Pipe 20% Lift Rule, 15″ Lift Flow Data Collection Sheet - Simplified Design Rules for Low lift Airlift Pumps Data Collected by: Pavani Date of Experiment: 26-May-05 Pipe Diameter = 2″ Submergence = 60″ Lift =15″ Qg Qg Pitot Head Flow through Weir Qw Line Temp Disch Inject Adiabatic Airlift Pipe Tank Head (H = h2-h1) Qw Press Press Power S.No. (cfm) scfm cm cm h2 (cm) h1(cm) h (cm) lps gpm gpm (deg C) (in) (in) Kw 1 3 3.24 56 52 13.7 24.92 11.22 1.31 20.72 20.72 44 65 50 0.0057 3 3.24 55.8 52 13.8 24.92 11.12 1.28 20.26 44 65 50 0.0057 3 3.24 55.8 52 13.6 24.92 11.32 1.34 21.19 44 65 50 0.0057 2 4 4.30 56.8 50.8 13 24.92 11.92 1.52 24.11 24.62 45 64 49 0.0076 4 4.29 57.2 50.9 12.8 24.92 12.12 1.59 25.13 48 65 50 0.0075 4 4.29 56.9 50.8 12.9 24.92 12.02 1.55 24.62 48 65 50 0.0075 3 5 5.35 57.8 50.8 12.6 24.92 12.32 1.65 26.18 25.83 51 67 51 0.0100 5 5.34 57.2 50.9 12.8 24.92 12.12 1.59 25.13 52 67 51 0.0100 5 5.37 57.7 50.9 12.6 24.92 12.32 1.65 26.18 48 67 50 0.0107 4 6 6.44 58.8 51 12.3 24.92 12.62 1.75 27.80 28.17 48 68 50 0.0135 6 6.44 58.8 51 12.2 24.92 12.72 1.79 28.36 49.5 68 51 0.0128 6 6.43 58.8 51.1 12.2 24.92 12.72 1.79 28.36 50 68 51 0.0128 5 7 7.57 59 50.5 12.1 24.92 12.82 1.82 28.92 29.30 46 70 52 0.0159 7 7.57 58.9 50.6 12 24.92 12.92 1.86 29.49 46 70 52 0.0159 7 7.57 59.1 50.5 12 24.92 12.92 1.86 29.49 46 70 52 0.0159 Table B- 10. Summary of flow data for a 2″ diameter PVC Schedule 40 Pipe 20% Lift Rule, 15″ Lift Qg Qg Qw Qw G/L Qw(g/L=1) Qw(g/L=2) Qwflux Velocity G/L cfm scfm lps gpm cfm gpm gpm gpm/sqft fps scfm 3 3.24 1.31 20.72 1.17 24.23 12.12 422.13 0.940 1.08 4 4.30 1.52 24.62 1.31 32.13 16.07 501.44 1.117 1.22 5 5.35 1.65 25.83 1.55 40.04 20.02 526.14 1.172 1.45 6 6.44 1.75 28.17 1.71 48.14 24.07 573.85 1.278 1.59 7 7.57 1.82 29.30 1.93 56.61 28.30 596.74 1.329 1.79 61 Table B- 11. Air lift pump flow data for a 2″ diameter PVC Schedule 40 Pipe 25% Lift Rule, 15″ Lift Flow Data Collection Sheet - Simplified Design Rules for Low lift Airlift Pumps Data Collected by: Pavani Date of Experiment: 26-May-05 Pipe Diameter = 2″ Submergence = 45″ Lift = 15″ Pitot Head Flow through Wier Disch Inject AdiabaticQg Qg Airlift Pipe Tank Head (H = h2-h1) Qw Qw (Mean) Line Temp Press Press Power S.No. cfm scfm cm cm h2 (cm) h1(cm) h (cm) lps gpm gpm (deg C) (in) (in) Kw 1 3 3.20 54.4 52.3 14.9 24.92 10.02 0.99 15.62 15.36 35 53 38 0.0056 3 3.19 55 53.1 15 24.92 9.92 0.96 15.23 36 55 37 0.0067 3 3.19 55.2 53.2 15 24.92 9.92 0.96 15.23 36 55 37 0.0067 2 4 4.25 56.5 53.3 14.4 24.92 10.52 1.11 17.64 18.21 38 54 38 0.0079 4 4.24 56.5 53.4 14.2 24.92 10.72 1.17 18.49 39 54 38 0.0079 4 4.24 56.3 53.4 14.2 24.92 10.72 1.17 18.49 40 54 39 0.0074 3 5 5.23 55.6 51.4 13.6 24.92 11.32 1.34 21.19 21.50 50.5 62 40 0.0134 5 5.23 55.7 51.4 13.5 24.92 11.42 1.37 21.66 50.5 62 40 0.0134 5 5.29 55.6 51.2 13.5 24.92 11.42 1.37 21.66 42.5 62 40 0.0135 4 6 6.42 56.5 51.4 13.2 24.92 11.72 1.46 23.11 22.62 41 62 44 0.0135 6 6.32 56.3 51.3 13.3 24.92 11.62 1.43 22.62 47 62 41 0.0155 6 6.29 56.3 51.3 13.4 24.92 11.52 1.40 22.13 48.5 62 40 0.0161 5 7 7.36 56.9 51.4 13.2 24.92 11.72 1.46 23.11 23.27 50 62 42 0.0171 7 7.35 56.8 51.4 13.1 24.92 11.82 1.49 23.60 52 62 43 0.0163 7 7.33 56.6 51.4 13.2 24.92 11.72 1.46 23.11 52 62 42 0.0171 6 8 8.45 57.1 51.3 13 24.92 11.92 1.52 24.11 23.61 50 64 44 0.0197 8 8.40 57.1 51.3 13.1 24.92 11.82 1.49 23.60 52 62 43 0.0186 8 8.40 57 51.2 13.2 24.92 11.72 1.46 23.11 52 62 43 0.0186 7 9 9.53 57.5 51.3 13 24.92 11.92 1.52 24.11 24.11 51 65 46 0.0211 9 9.51 57.2 51.3 13 24.92 11.92 1.52 24.11 50.5 65 45 0.0222 9 9.54 57 51.3 13 24.92 11.92 1.52 24.11 50.5 65 46 0.0211 62 Table B- 12. Summary of flow data for a 2″ diameter PVC Schedule 40 Pipe 25% Lift Rule, 15″ Lift Qg Qg Qw Qw G/L Qw(g/L=1) Qw(g/L=2) Qwflux Velocity G/L cfm scfm lps gpm gpm gpm gpm/sqft fps 3 3.19 0.99 15.36 1.55 23.87 11.94 312.87 0.697 1.46 4 4.24 1.11 18.21 1.74 31.73 15.87 370.85 0.826 1.64 5 5.25 1.34 21.50 1.83 39.26 19.63 437.95 0.976 1.74 6 6.35 1.46 22.62 2.10 47.47 23.73 460.76 1.026 1.98 7 7.35 1.46 23.27 2.36 54.95 27.48 474.06 1.056 2.25 8 8.42 1.49 23.61 2.67 62.95 31.47 480.84 1.071 2.53 9 9.53 1.46 24.11 2.96 71.25 35.63 491.03 1.094 2.79 63 APPENDIX C: EXPERIMENTAL RESULTS 3″ PVC PIPE 64 Table C- 1. Air lift pump flow data for a 3″ diameter PVC Schedule 30 Pipe 20% Lift Rule, 9″ Lift Flow Data Collection Sheet - Simplified Design Rules for Low lift Airlift Pumps Data Collected by: Pavani Date of Experiment: 26-May-05 Pipe Diameter = 3″ Submergence = 36″ Lift = 9″ Pitot Head Flow through Weir Disch Inject AdiabaticQg Qg Airlift Pipe Tank Head (H = h2-h1) Qw Qw Line Temp Press Press Power S.No. (cfm) scfm cm cm h2 (cm) h1(cm) h (cm) lps gpm gpm (deg C) (in) (in) Kw 1 3 3.04 37.7 37.5 14.7 24.92 10.22 1.04 16.41 16.14 42 47 20 0.0095 3 3.04 37.7 37.5 14.8 24.92 10.12 1.01 16.01 42 47 20 0.0095 3 3.04 37.7 37.5 14.8 24.92 10.12 1.01 16.01 42 47 20 0.0095 2 4 4.06 38 37.6 13.5 24.92 11.42 1.37 21.66 21.82 42 47 21 0.0122 4 4.06 38 37.6 13.5 24.92 11.42 1.37 21.66 42 47 21 0.0122 4 4.06 38 37.6 13.4 24.92 11.52 1.40 22.13 42 47 21 0.0122 3 5 5.07 36.7 35.9 12.4 24.92 12.52 1.72 27.26 27.08 44 46 22 0.0141 5 5.07 36.7 35.9 12.5 24.92 12.42 1.69 26.71 44 46 22 0.0141 5 5.07 36.7 35.9 12.4 24.92 12.52 1.72 27.26 44 46 22 0.0141 4 6 6.09 36 34.9 11.3 24.92 13.62 2.12 33.64 34.06 45 45 23 0.0156 6 6.09 36 34.9 11.2 24.92 13.72 2.16 34.26 45 45 23 0.0156 6 6.09 36 34.9 11.2 24.92 13.72 2.16 34.26 45 45 23 0.0156 5 7 7.14 35.9 34 10.9 24.92 14.02 2.28 36.17 36.17 46 45 26 0.0158 7 7.14 35.9 34 10.9 24.92 14.02 2.28 36.17 46 45 26 0.0158 7 7.14 35.9 34 10.9 24.92 14.02 2.28 36.17 46 45 26 0.0158 6 8 8.21 35.4 33.6 10.2 24.92 14.72 2.58 40.85 41.08 47.5 57 30 0.0257 8 8.21 35.4 33.6 10.2 24.92 14.72 2.58 40.85 47.5 57 30 0.0257 8 8.21 35.4 33.6 10.1 24.92 14.82 2.62 41.55 47.5 57 30 0.0257 7 9 9.27 35.7 33.6 10.1 24.92 14.82 2.62 41.55 42.02 48 56.5 31.5 0.0269 9 9.27 35.7 33.6 10.0 24.92 14.92 2.67 42.25 48 56.5 31.5 0.0269 9 9.27 35.7 33.6 10.0 24.92 14.92 2.67 42.25 48 56.5 31.5 0.0269 8 10 10.35 35.2 32.8 9.6 24.92 15.32 2.85 45.14 45.14 50 55 35 0.0241 10 10.35 35.2 32.8 9.6 24.92 15.32 2.85 45.14 50 55 35 0.0241 10 10.35 35.2 32.8 9.6 24.92 15.32 2.85 45.14 50 55 35 0.0241 65 Table C- 2. Air lift pump flow data for a 3″ diameter PVC Schedule 30 Pipe 20% Lift Rule, 9″ Lift Qg Qg Qw Qw G/L Qw(g/L=1) Qw(g/L=2) Qwflux Velocity G/L cfm scfm lps gpm gpm gpm gpm/sqft fps 3 3.04 1.04 16.14 1.41 22.708 11.35 328.82 0.732 1.39 4 4.06 1.37 21.82 1.39 30.349 15.17 444.39 0.990 1.37 5 5.07 1.72 27.08 1.40 37.904 18.95 551.50 1.229 1.38 6 6.09 2.12 34.06 1.34 45.52 22.76 693.70 1.545 1.32 7 7.14 2.28 36.17 1.48 53.394 26.70 736.70 1.641 1.45 8 8.21 2.28 41.08 1.50 61.442 30.72 836.86 1.864 1.46 9 9.27 2.28 42.02 1.65 69.306 34.65 855.90 1.907 1.60 10 10.35 2.58 45.14 1.71 77.382 38.69 919.53 2.048 1.66 66 Table C- 3. Air lift pump flow data for a 3″ diameter PVC Schedule 30 Pipe 25% Lift Rule, 9″ Lift Flow Data Collection Sheet - Simplified Design Rules for Low lift Airlift Pumps Data Collected by: Pavani Date of Experiment: 26-May-05 Pipe Diameter = 3″ Submergence = 27″ Lift = 9″ Pitot Head Flow through Weir Disch Inject AdiabaticQg Qg Airlift Pipe Tank Head (H = h2-h1) Qw Qw Line Temp Press Press Power S.No. (cfm) scfm cm cm h2 (cm) h1(cm) h (cm) lps gpm gpm (deg C) (in) (in) Kw 1 3 3.13 41.2 41.1 17.6 24.92 7.32 0.45 7.12 7.46 36.5 58 30 0.0102 3 3.13 41.3 41.2 17.4 24.92 7.52 0.48 7.62 36.5 58 30 0.0102 3 3.13 41.3 41.2 17.4 24.92 7.52 0.48 7.62 36.5 58 30 0.0102 2 4 4.16 38.6 38.4 15.4 24.92 9.52 0.87 13.74 13.86 36.5 40 28 0.0059 4 4.16 38.6 38.3 15.4 24.92 9.52 0.87 13.74 36.5 40 28 0.0059 4 4.16 38.6 38.3 15.3 24.92 9.62 0.89 14.11 36.5 40 28 0.0059 3 5 5.19 37.5 37.4 14.4 24.92 10.52 1.11 17.64 17.78 42 56 31 0.0151 5 5.19 37.6 37.3 14.3 24.92 10.62 1.14 18.06 42 56 31 0.0151 5 5.19 37.6 37.3 14.4 24.92 10.52 1.11 17.64 42 56 31 0.0151 4 6 6.22 36.9 36.5 13.5 24.92 11.42 1.37 21.66 21.50 44 55 32 0.0166 6 6.22 36.9 36.5 13.6 24.92 11.32 1.34 21.19 44 55 32 0.0166 6 6.22 36.9 36.5 13.5 24.92 11.42 1.37 21.66 44 55 32 0.0166 5 7 7.25 36.8 36.3 12.9 24.92 12.02 1.55 24.62 24.62 45 55 32 0.0194 7 7.25 36.8 36.3 12.9 24.92 12.02 1.55 24.62 45 55 32 0.0194 7 7.25 36.8 36.3 12.9 24.92 12.02 1.55 24.62 45 55 32 0.0194 6 8 8.30 36.3 35.6 12.4 24.92 12.52 1.72 27.26 27.44 47 54 34 0.0193 8 8.30 36.3 35.5 12.3 24.92 12.62 1.75 27.80 47 54 34 0.0193 8 8.30 36.3 35.5 12.4 24.92 12.52 1.72 27.26 47 54 34 0.0193 7 9 9.36 36.3 35.3 11.9 24.92 13.02 1.90 30.06 30.45 48 54 36 0.0197 9 9.36 36.2 35.3 11.8 24.92 13.12 1.93 30.64 48 54 36 0.0197 9 9.36 36.2 35.3 11.8 24.92 13.12 1.93 30.64 48 54 36 0.0197 8 10 10.45 36.4 35.3 11.8 24.92 13.12 1.93 30.64 30.64 48 58 38.0 0.0243 10 10.45 36.5 35.3 11.8 24.92 13.12 1.93 30.64 48 58 38.0 0.0243 10 10.45 36.5 35.3 11.8 24.92 13.12 1.93 30.64 48 58 38.0 0.0243 67 Table C- 4. Air lift pump flow data for a 3″ diameter PVC Schedule 30 Pipe 25% Lift Rule, 9″ Lift Qg Qg Qw Qw G/L Qw(g/L=1) Qw(g/L=2) Qwflux Velocity G/L cfm scfm lps gpm gpm gpm gpm/sqft fps 3 3.13 0.45 7.46 3.15 23.447 11.72 151.85 0.338 3.01 4 4.16 0.87 13.86 2.24 31.119 15.56 282.38 0.629 2.16 5 5.19 1.11 17.78 2.18 38.824 19.41 362.17 0.807 2.10 6 6.22 1.37 21.50 2.16 46.548 23.27 437.95 0.976 2.09 7 7.25 1.55 24.62 2.20 54.22 27.11 501.40 1.117 2.13 8 8.30 1.55 27.44 2.26 62.054 31.03 558.89 1.245 2.18 9 9.36 1.55 30.45 2.30 70.019 35.01 620.16 1.381 2.21 10 10.45 1.72 30.64 2.55 78.151 39.08 624.10 1.390 2.44 68 Table C- 5. Air lift pump flow data for a 3″ diameter PVC Schedule 30 Pipe 20% Lift Rule, 12″ Lift Flow Data Collection Sheet - Simplified Design Rules for Low lift Airlift Pumps Data Collected by: Pavani Date of Experiment: 26-May-05 Pipe Diameter = 3″ Submergence = 48″ Lift =12″ Pitot Head Flow through Wier Disch Inject AdiabaticQg Qg Airlift Pipe Tank Head (H = h2-h1) Qw Qw Line Temp Press Press Power S.No. (cfm) scfm cm cm h2 (cm) h1(cm) h (cm) lps gpm gpm (deg C) (in) (in) Kw 1 3 3.21 - 44.5 14.5 24.92 10.42 1.09 17.22 17.22 39 51 42 0.0034 2 4 4.29 - 46.8 12.2 24.92 12.72 1.79 28.36 28.36 40 58 44 0.0070 3 5 5.36 42.5 41.3 11.3 24.92 13.62 2.12 33.64 33.64 42 56 45 0.0069 4 6 6.49 42.4 40.4 10 24.92 14.92 2.67 42.25 42.25 40 60 48 0.0091 5 7 7.55 42.2 39.7 9.4 24.92 15.52 2.94 46.63 46.63 42 62 48 0.0124 6 8 8.57 42.2 39.2 9 24.92 15.92 3.13 49.69 49.69 48 65 49 0.0160 7 9 9.60 42.2 39.1 8.6 24.92 16.32 3.34 52.87 52.87 52 68 50 0.0202 Table C- 6. Air lift pump flow data for a 3″ diameter PVC Schedule 30 Pipe 20% Lift Rule, 12″ Lift Qg Qg Qw Qw G/L Qw(g/L=1) Qw(g/L=2) Qwflux Velocity G/L cfm scfm lps gpm gpm gpm gpm/sqft fps 3 3.21 1.09 17.22 1.39 23.995 12.00 350.82 0.781 1.30 4 4.29 1.79 28.36 1.13 32.085 16.04 577.62 1.287 1.06 5 5.36 2.12 33.64 1.19 40.068 20.03 685.27 1.526 1.11 6 6.49 2.67 42.25 1.15 48.555 24.28 860.68 1.917 1.06 7 7.55 2.94 46.63 1.21 56.468 28.23 949.84 2.116 1.12 8 8.57 3.13 49.69 1.29 64.069 32.03 1012.23 2.255 1.20 9 9.60 3.34 52.87 1.36 71.79 35.90 1077.01 2.399 1.27 69 Table C- 7. Air lift pump flow data for a 3″ diameter PVC Schedule 30 Pipe 25% Lift Rule, 12″ Lift Flow Data Collection Sheet - Simplified Design Rules for Low lift Airlift Pumps Data Collected by: Pavani Date of Experiment: 26-May-05 Pipe Diameter = 3″ Submergence =36″ Lift =12″ Pitot Head Flow through Wier Disch Inject AdiabaticQg Qg Airlift Pipe Tank Head (H = h2-h1) Qw Qw Line Temp Press Press Power S.No. (cfm) scfm cm cm h2 (cm) h1(cm) h (cm) lps gpm gpm (deg C) (in) (in) Kw 1 3 3.12 46.3 46.2 16.2 24.92 8.72 0.70 11.03 11.03 40 55 30 0.0090 2 4 4.16 44.5 44.3 14.0 24.92 10.92 1.22 19.36 19.36 43 55 32 0.0111 3 5 5.19 43.9 43.4 13.1 24.92 11.82 1.49 23.60 23.60 44 52 32 0.0121 4 6 6.23 43.3 42.4 12.1 24.92 12.82 1.82 28.92 28.92 45 51 33 0.0131 5 7 7.29 42.9 41.7 11.4 24.92 13.52 2.08 33.03 33.03 45.5 50 35 0.0128 6 8 8.36 42.6 41.3 11.0 24.92 13.92 2.24 35.53 35.53 45 56 36 0.0195 7 9 9.41 42.8 41.3 10.7 24.92 14.22 2.36 37.47 37.47 47.5 56 38 0.0198 8 10 10.47 42.6 40.8 10.4 24.92 14.52 2.49 39.48 39.48 50 61 40 0.0256 Table C- 8. Air lift pump flow data for a 3″ diameter PVC Schedule 30 Pipe 25% Lift Rule, 12″ Lift Qg Qg Qw Qw G/L Qw(g/L=1) Qw(g/L=2) Qwflux Velocity G/L cfm scfm lps gpm gpm gpm gpm/sqft fps 3 3.12 0.70 11.03 2.11 23.315 11.66 224.76 0.501 2.03 4 4.16 1.22 19.36 1.61 31.081 15.54 394.44 0.879 1.55 5 5.19 1.49 23.60 1.64 38.79 19.39 480.80 1.071 1.58 6 6.23 1.82 28.92 1.61 46.581 23.29 589.03 1.312 1.55 7 7.29 2.08 33.03 1.65 54.549 27.27 672.76 1.499 1.59 8 8.36 2.24 35.53 1.76 62.532 31.27 723.63 1.612 1.68 9 9.41 2.36 37.47 1.88 70.39 35.20 763.26 1.700 1.80 10 10.47 2.49 39.48 1.98 78.32 39.16 804.15 1.791 1.89 70 Table C- 9. Air lift pump flow data for a 3″ diameter PVC Schedule 30 Pipe 33% Lift Rule, 12″ Lift Flow Data Collection Sheet - Simplified Design Rules for Low lift Airlift Pumps Data Collected by: Pavani Date of Experiment:26-May-05 Pipe Diameter = 3″ Submergence = 36″ Lift = 12″ Pitot Head Flow through Wier Disch Inject AdiabaticQg Qg Airlift Pipe Tank Head (H = h2-h1) Qw Qw Line Temp Press Press Power S.No. (cfm) scfm cm cm h2 (cm) h1(cm) h (cm) lps gpm gpm (deg C) (in) (in) Kw 1 4 4.04 47.5 47.5 17.0 24.92 7.92 0.55 8.67 8.67 44 52 20 0.0149 2 5 5.06 46.8 46.8 16.4 24.92 8.52 0.66 10.41 10.41 44 52 21 0.0181 3 6 6.15 45.7 45.7 15.3 24.92 9.62 0.89 14.11 14.11 45 52 22 0.0213 4 7 7.16 45.2 45.2 14.5 24.92 10.42 1.09 17.22 17.22 40 44 24 0.0167 5 8 8.18 44.6 44.3 14.0 24.92 10.92 1.22 19.36 19.36 43 48 25 0.0219 6 9 9.24 44.4 44.1 13.6 24.92 11.32 1.34 21.19 21.19 44 48 26 0.0236 7 10 10.31 44.2 43.7 13.3 24.92 11.62 1.43 22.62 22.62 46 52 29 0.0275 8 11 11.40 44 43.4 13.0 24.92 11.92 1.52 24.11 24.11 48 60 32 0.0369 Table C- 10. Air lift pump flow data for a 3″ diameter PVC Schedule 30 Pipe 33% Lift Rule, 12″ Lift Qg Qg Qw Qw G/L Qw(g/L=1) Qw(g/L=2) Qwflux Velocity G/L cfm scfm lps gpm gpm gpm gpm/sqft fps 4 4.04 0.55 8.67 3.49 30.253 15.13 176.70 0.394 3.45 5 5.06 0.66 10.41 3.63 37.845 18.92 212.09 0.472 3.59 6 6.15 0.89 14.11 3.26 45.989 22.99 287.32 0.640 3.18 7 7.16 1.09 17.22 3.11 53.522 26.76 350.82 0.781 3.04 8 8.18 1.22 19.36 3.16 61.214 30.61 394.44 0.879 3.09 9 9.24 1.34 21.19 3.26 69.126 34.56 431.56 0.961 3.18 10 10.31 1.43 22.62 3.41 77.095 38.55 460.72 1.026 3.31 11 11.40 1.52 24.11 3.54 85.241 42.62 491.03 1.094 3.41 71 Table C- 11. Air lift pump flow data for a 3″ diameter PVC Schedule 30 Pipe 20% Lift Rule, 15″ Lift Flow Data Collection Sheet - Simplified Design Rules for Low lift Airlift Pumps Data Collected by: Pavani Date of Experiment: 26-May-05 Pipe Diameter = 3″ Submergence = 60″ Lift =15″ Pitot Head Flow through Weir Disch Inject AdiabaticQg Qg Airlift Pipe Tank Head (H = h2-h1) Qw Qw Line Temp Press Press Power S.No. (cfm) scfm cm cm h2 (cm) h1(cm) h (cm) lps gpm gpm (deg C) (in) (in) Kw 1 3 3.27 54.4 53.7 14.4 24.92 10.52 1.11 17.64 18.21 34 63 47 0.0061 3 3.27 54.3 53.6 14.2 24.92 10.72 1.17 18.49 34 63 47 0.0061 3 3.27 54.3 53.4 14.2 24.92 10.72 1.17 18.49 34 63 47 0.0061 2 4 4.39 51.8 50.8 11.9 24.92 13.02 1.90 30.06 30.06 33 65 49 0.0082 4 4.39 52 50.8 11.8 24.92 13.12 1.93 30.64 33 65 49 0.0082 4 4.39 51.8 50.6 12 24.92 12.92 1.86 29.49 33 65 49 0.0082 3 5 5.42 50.4 48.8 10.7 24.92 14.22 2.36 37.47 37.91 42 68 50 0.0114 5 5.42 50.4 48.7 10.7 24.92 14.22 2.36 37.47 42 68 50 0.0114 5 5.42 50.4 48.7 10.5 24.92 14.42 2.45 38.80 42 68 50 0.0114 4 6 6.51 50.1 48.1 9.9 24.92 15.02 2.71 42.97 43.44 44 69 52 0.0129 6 6.51 50.2 48.1 9.8 24.92 15.12 2.76 43.68 44 69 52 0.0129 6 6.51 50.2 48 9.8 24.92 15.12 2.76 43.68 44 69 52 0.0129 5 7 7.56 50.1 47.6 9.3 24.92 15.62 2.99 47.39 47.89 47 70 52 0.0159 7 7.56 50.4 47.5 9.2 24.92 15.72 3.04 48.15 47 70 52 0.0159 7 7.56 50.2 47.5 9.2 24.92 15.72 3.04 48.15 47 70 52 0.0159 72 Table C- 12. Air lift pump flow data for a 3″ diameter PVC Schedule 30 Pipe 20% Lift Rule, 15″ Lift Qg Qg Qw Qw G/L Qw(g/L=1) Qw(g/L=2) Qwflux Velocity G/L cfm scfm Lps gpm cfm gpm gpm gpm/sqft fps scfm 3 3.27 1.11 18.21 1.34 24.46 12.23 370.85 0.826 1.23 4 4.39 1.90 30.06 1.09 32.81 16.41 612.32 1.364 1.00 5 5.42 2.36 37.91 1.07 40.512 20.26 772.30 1.720 0.99 6 6.51 2.71 43.44 1.12 48.673 24.34 884.94 1.971 1.03 7 7.56 2.99 47.89 1.18 56.518 28.26 975.56 2.173 1.09 73 Table C- 13. Air lift pump flow data for a 3″ diameter PVC Schedule 30 Pipe 25% Lift Rule, 15″ Lift Flow Data Collection Sheet - Simplified Design Rules for Low lift Airlift Pumps Data Collected by: Pavani Date of Experiment: 26-May-05 Pipe Diameter = 3″ Submergence = 45″ Lift = 15″ Pitot Head Flow through Wier Disch Inject AdiabaticQg Qg Airlift Pipe Tank Head (H = h2-h1) Qw Qw Line Temp Press Press Power S.No. (cfm) scfm cm cm h2 (cm) h1(cm) h (cm) lps gpm gpm (deg C) (in) (in) Kw 1 3 3.20 55.1 55.3 16.7 24.92 8.22 0.60 9.52 9.71 35 58 38 0.0075 3 3.20 55 55.3 16.6 24.92 8.32 0.62 9.81 35 58 38 0.0075 3 3.20 55 55.2 16.6 24.92 8.32 0.62 9.81 35 58 38 0.0075 2 4 4.27 53 52.8 14.3 24.92 10.62 1.14 18.06 18.64 34 60 38 0.0109 4 4.27 52.8 52.6 14.1 24.92 10.82 1.19 18.92 34 60 38 0.0109 4 4.27 52.8 52.6 14.1 24.92 10.82 1.19 18.92 34 60 38 0.0109 3 5 5.34 51.5 50.9 12.8 24.92 12.12 1.59 25.13 25.30 37 58 40 0.0112 5 5.34 51.4 50.8 12.8 24.92 12.12 1.59 25.13 37 58 40 0.0112 5 5.34 51.4 50.8 12.7 24.92 12.22 1.62 25.65 37 58 40 0.0112 4 6 6.37 51 49.9 11.8 24.92 13.12 1.93 30.64 31.03 42 58 41 0.0126 6 6.37 51 49.9 11.7 24.92 13.22 1.97 31.23 42 58 41 0.0126 6 6.37 50.9 49.9 11.7 24.92 13.22 1.97 31.23 42 58 41 0.0126 5 7 7.50 50.5 49.1 11.1 24.92 13.82 2.20 34.89 34.47 36 56 41 0.0132 7 7.50 50.4 49 11.2 24.92 13.72 2.16 34.26 36 56 41 0.0132 7 7.50 50.5 49.1 11.2 24.92 13.72 2.16 34.26 36 56 41 0.0132 6 8 8.58 50.9 49.1 10.8 24.92 14.12 2.32 36.82 37.25 37 64 42 0.0220 8 8.58 50.9 49.1 10.7 24.92 14.22 2.36 37.47 37 64 42 0.0220 8 8.58 51 49.1 10.7 24.92 14.22 2.36 37.47 37 64 42 0.0220 7 9 9.61 50.8 48.8 10.3 24.92 14.62 2.53 40.16 40.16 43 64 44 0.0224 9 9.61 50.7 48.8 10.3 24.92 14.62 2.53 40.16 43 64 44 0.0224 9 9.61 50.8 48.8 10.3 24.92 14.62 2.53 40.16 43 64 44 0.0224 8 10 10.63 50.4 48.0 9.8 24.92 15.12 2.76 43.68 43.68 44 64 43 0.0260 10 10.63 50.5 48.1 9.8 24.92 15.12 2.76 43.68 44 64 43 0.0260 10 10.63 50.5 48 9.8 24.92 15.12 2.76 43.68 44 64 43 0.0260 74 Table C- 14. Air lift pump flow data for a 3″ diameter PVC Schedule 30 Pipe 25% Lift Rule, 15″ Lift Qg Qg Qw Qw G/L Qw(g/L=1) Qw(g/L=2) Qwflux Velocity G/L cfm scfm lps gpm gpm gpm gpm/sqft fps 3 3.20 0.60 9.71 2.46 23.935 11.97 197.88 0.441 2.31 4 4.27 1.14 18.64 1.72 31.965 15.98 379.61 0.846 1.61 5 5.34 1.59 25.30 1.58 39.942 19.97 515.43 1.148 1.48 6 6.37 1.93 31.03 1.54 47.655 23.83 632.08 1.408 1.45 7 7.50 2.20 34.47 1.63 56.134 28.07 702.18 1.564 1.52 8 8.58 2.16 37.25 1.72 64.193 32.10 758.81 1.690 1.61 9 9.61 2.16 40.16 1.79 71.848 35.92 818.07 1.822 1.68 10 10.63 2.32 43.68 1.82 79.528 39.76 889.82 1.982 1.71 75 APPENDIX D: DISTRIBUTION PIPE CALCULATIONS 76 DYNAMIC HEAD LOSS CALCULATIONS Head loss in the pipes due to pressured flow is calculated using Hazen Williams Formula. This equation gives the pressure loss in feet per 100 feet of pipe. inchesin diameter inside Piped minuteper gallonsin Rate Flow VolumetricQ pipe plasticfor thermo 150 Factor Flow Williams-HazenC pipe offeet 100per feet in HeadLossHL :Where 1002083.0 8655.4 852.1 852.1 852.1 = = = = = ××= d Q C HL The velocity of water in the pipe is given by inchesin diameter inside Piped minuteper gallonsin Rate Flow VolumetricQ secondper feet in veloctiy FlowV :Where 40085.0 2 = = = ×= d QV This expression was used to calculate the head loss at the end of each tray in the distribution pipe. The cumulative head loss at each airlift is deducted from the submergence to obtain the dynamic submergence at that point. 77 CRITERIA FOR SELECTION OF A TAPERED FOR 5, 10, 15 AND 20 TRAYS 78 Table D-1. Tapered Pipe Details for a set of 5 Trays, Longitudinal Alignment 5 Trays 4″, 3 ″ Pipe Pipe Diameter = 4 inch Taper Pipe Diameter = 3 inch Static Submergence = 48 inch Static Lift = 12 inch HL (Hazen Williams) No of Trays Q gpm Equivalent Pipe Length (ft) ft/100 ft inch/ Length ft Velocity (fps) Dynamic Submergence (inch) Lift % 1 75 14.67 0.34 0.60 1.88 47.40 21.01 2 60 14.67 0.23 0.40 1.50 47.00 21.67 3 45 14.67 0.13 0.23 1.13 46.76 22.07 4 30 16.00 0.26 0.49 1.34 46.27 22.88 5 15 13.00 0.07 0.11 0.67 46.16 23.07 Table D-2. Tapered Pipe Details for a set of 10 Trays, Longitudinal Alignment 10 Trays 6″, 4 ″, 3″ Pipe Pipe Diameter = 6 ″ Taper Pipe Diameter = 4 ″ and 3 ″ Static Submergence = 48 ″ Static Lift = 12 ″ HL (Hazen Williams) No of Trays Q gpm Equivalent Pipe Length (ft) ft/10 0 ft Inch/ Length ft Velocit y (fps) Dynamic Submergenc e (inch) Lift % 1 150 18.00 0.17 0.37 1.67 47.63 20.62 2 135 18.00 0.14 0.31 1.50 47.32 21.13 3 120 18.00 0.11 0.25 1.34 47.07 21.54 4 105 18.00 0.09 0.19 1.17 46.88 21.86 5 90 18.00 0.07 0.14 1.00 46.74 22.10 6 75 18.67 0.34 0.77 1.88 45.97 23.39 7 60 14.67 0.23 0.40 1.50 45.57 24.05 8 45 14.67 0.13 0.23 1.13 45.33 24.44 9 30 16.00 0.26 0.49 1.34 44.84 25.26 10 15 13.00 0.07 0.11 0.67 44.73 25.44 79 Table D-3. Tapered Pipe Details for a set of 15 Trays, Longitudinal Alignment 15 Trays 8 ″ Pipe Pipe Diameter 8 inch Taper Pipe Diameter Static Submergence = 48 inch 6 inch 4 inch Static Lift = 12 inch 3 inch Tray No. Q Pipe Equivalent Length HL (Hazen Williams) DynamicSubmergen ce (inch) (gpm) (ft) ft/100 ft inch/lenghtft Velocit y(fps) HWilliamFo rmula Lift % 1 225 21.33 0.09 0.23 1.41 47.77 20.38 2 210 21.33 0.08 0.20 1.32 47.57 20.72 3 195 21.33 0.07 0.18 1.22 47.39 21.02 4 180 21.33 0.06 0.15 1.13 47.24 21.27 5 165 21.33 0.05 0.13 1.03 47.11 21.49 6 150 21.33 0.04 0.11 0.94 47.00 21.67 7 135 21.33 0.03 0.09 0.85 46.91 21.82 8 120 24.00 0.11 0.33 1.34 46.58 22.37 9 105 18.00 0.09 0.19 1.17 46.39 22.69 10 90 18.00 0.07 0.14 1.00 46.24 22.93 11 75 18.00 0.05 0.10 0.84 46.14 23.10 12 60 18.67 0.23 0.51 1.50 45.63 23.95 13 45 14.67 0.13 0.23 1.13 45.40 24.34 14 30 16.00 0.26 0.49 1.34 44.91 25.16 15 15 13.00 0.07 0.11 0.67 44.80 25.34 80 Table D-4. Tapered Pipe Details for a set of 20 Trays, Longitudinal Alignment 20 Trays 8 ″ Pipe Pipe Diameter 10 inch Taper Pipe Diameter Static Submergence 48 inch 8 inch 6 inch Static Lift 12 inch 4 inch 3 inch No of Trays Q Equivalent Length of the Pipe HL (Hazen Williams) DynamicSubmergence (inch) (gpm) (ft) ft/100 ft inch/len ghtft Velocity (fps) HWilliamF ormula Lift % 1 300 24.67 0.05 0.15 1.20 47.85 20.26 2 285 24.67 0.05 0.14 1.14 47.71 20.49 3 270 24.67 0.04 0.13 1.08 47.58 20.70 4 255 24.67 0.04 0.11 1.02 47.47 20.89 5 240 24.67 0.03 0.10 0.96 47.37 21.06 6 225 29.33 0.09 0.32 1.41 47.05 21.59 7 210 21.33 0.08 0.20 1.32 46.85 21.92 8 195 21.33 0.07 0.18 1.22 46.67 22.22 9 180 21.33 0.06 0.15 1.13 46.52 22.47 10 165 21.33 0.05 0.13 1.03 46.39 22.69 11 150 21.33 0.04 0.11 0.94 46.28 22.87 12 135 24 0.14 0.41 1.50 45.87 23.55 13 120 18 0.03 0.06 1.34 45.81 23.65 14 105 18 0.02 0.05 1.17 45.76 23.73 15 90 18 0.02 0.04 1.00 45.72 23.79 16 75 18 0.01 0.03 0.84 45.70 23.83 17 60 18 0.01 0.02 0.67 45.68 23.86 18 45 18 0.00 0.01 0.50 45.67 23.88 19 30 16 0.26 0.49 1.34 45.18 24.70 20 15 13 0.07 0.11 0.67 45.07 24.88 81 Table D-5. Tapered Pipe Details for a set of 5 Trays, Horizontal Alignment 5 Trays 4 ″ Pipe Pipe Diameter = 4 inch Taper Pipe Diameter 3 inch Static Submergence = 48 inch Static Lift =12inch HL (Hazen Williams) DynamicSubmergence (inch) No of Trays Q (gpm) Equivalent Pipe Length (ft) ft/100 ft inch/ lenghtft Velocity (fps) HWilliam Formula Lift % 1 75 13.67 0.34 0.56 1.88 47.44 20.94 2 60 13.67 0.23 0.37 1.50 47.06 21.56 3 45 13.67 0.13 0.22 1.13 46.85 21.92 4 30 11.00 0.26 0.34 1.34 46.51 22.49 5 15 8.00 0.07 0.07 0.67 46.44 22.60 Table D-6. Tapered Pipe Details for a set of 10 Trays, Horizontal Alignment 10 Trays 8 ″ Pipe Taper Pipe Diameter at Pipe Diameter = 6 inch 4 inch 2 inch Static Submergence = 48 inch Static Lift = 12 inch HL (Hazen Williams) DynamicSubmergence (inch) Tray No Q (gpm) Pipe Equivalent Length (ft) ft/100 ft inch/lenghtf t Velocity (fps) HWilliamFor mula Lift % 1 150 13.00 0.17 0.27 1.67 47.73 20.45 2 135 13.00 0.14 0.22 1.50 47.51 20.82 3 120 13.00 0.11 0.18 3.01 47.33 21.11 4 105 13.67 0.64 1.05 2.63 46.28 22.86 5 90 9.67 0.48 0.56 2.25 45.72 23.79 6 75 9.67 0.34 0.40 1.88 45.32 24.46 7 60 9.67 0.23 0.26 1.50 45.06 24.90 8 45 9.67 0.02 0.02 1.13 45.04 24.93 9 30 8.33 0.01 0.01 3.01 45.03 24.95 10 15 6.33 0.00 0.00 1.50 45.03 24.95 82 Table D-7. Tapered Pipe Details for a set of 15 Trays, Horizontal Alignment 15 Trays 8 ″ Pipe Pipe Diameter = 8 inch Taper Pipe Diameter 6″ 4″ 3″ Static Submergence = 48 inch Static Lift = 12 inch HL (Hazen Williams) DynamicSubmergence (inch) No of Trays Q (gpm) Equivalent Pipe Length (ft) ft/100 ft inch/ lenghtft Velocity (fps) HWilliam Formula Lift % 1 225 16.33 0.09 0.18 1.41 47.82 20.29 2 210 16.33 0.08 0.16 1.32 47.67 20.55 3 195 16.33 0.07 0.14 1.22 47.53 20.78 4 180 16.33 0.06 0.12 1.13 47.42 20.97 5 165 16.33 0.05 0.10 1.03 47.32 21.14 6 150 19.00 0.17 0.39 1.67 46.92 21.80 7 135 13.00 0.14 0.22 1.50 46.70 22.16 8 120 13.00 0.11 0.18 1.34 46.52 22.46 9 105 13.00 0.09 0.14 1.17 46.38 22.69 10 90 13.00 0.07 0.10 1.00 46.28 22.87 11 75 13.67 0.34 0.56 1.88 45.72 23.80 12 60 9.67 0.23 0.26 1.50 45.45 24.24 13 45 9.67 0.13 0.15 1.13 45.30 24.50 14 30 13.67 0.26 0.42 1.34 44.88 25.20 15 15 8.00 0.07 0.07 0.67 44.81 25.31 83 Table D-8. Tapered Pipe Details for a set of 20 Trays, Horizontal Alignment 20 Trays8 ″ Pipe Pipe Diameter = 8 inch Taper Pipe Diameter 6 4 3 Static Submergence = 48 inch Static Lift = 12 inch HL (Hazen Williams) No of Trays Q (gpm) Equivalent Pipe Length (ft) ft/100 ft inch/ lenghtft Velocity (fps) Dynamic Submergence Lift % 1 300 16.33 0.15 0.30 1.88 47.70 20.50 2 285 16.33 0.14 0.27 1.79 47.43 20.96 3 270 16.33 0.13 0.25 1.69 47.18 21.37 4 255 16.33 0.11 0.22 1.60 46.96 21.74 5 240 16.33 0.10 0.20 1.50 46.76 22.07 6 225 16.33 0.09 0.18 1.41 46.58 22.37 7 210 16.33 0.08 0.16 1.32 46.42 22.63 8 195 16.33 0.07 0.14 1.22 46.29 22.85 9 180 16.33 0.06 0.12 1.13 46.17 23.05 10 165 16.33 0.05 0.10 1.03 46.07 23.21 11 150 16.33 0.04 0.08 0.94 45.99 23.35 12 135 13.67 0.14 0.23 3.38 45.76 23.74 13 120 9.67 0.11 0.13 3.01 45.62 23.96 14 105 9.67 0.09 0.10 2.63 45.52 24.13 15 90 9.67 0.07 0.08 2.25 45.44 24.26 16 75 9.67 0.05 0.06 1.88 45.39 24.35 17 60 9.67 0.03 0.04 1.50 45.35 24.42 18 45 9.67 0.02 0.02 1.13 45.33 24.45 19 30 16.00 0.26 0.49 1.34 44.84 25.27 20 15 13.00 0.07 0.11 0.67 44.73 25.45 84 VITA Sripavani Gudipati was born on March 26, 1980, in Hyderabad, Andhra Pradesh, India. She graduated from Osmania University, Hyderabad, India, where she earned a bachelor’s degree in civil engineering in July of 2001. She has been a full time graduate student at Louisiana State University in the Department of Civil and Environmental Engineering since January 2002 and is presently a candidate for the degree of Master of Science in Civil Engineering.

Các file đính kèm theo tài liệu này:

  • pdf41.pdf
Tài liệu liên quan