Các ứng dụng của địa cơ học có một vai
trò rất quan trọng trong kỹ thuật dầu khí bao gồm
nhiều ứng dụng trong tìm kiếm thăm dò, khoan, khai
thác, hoàn thiện và phát triển mỏ. Một số các thông
tin thường được yêu cầu tính toán như hệ số nén một
trục UCS, hệ số Poisson, hệ số ma sát trong, độ
rỗng Để ước lượng các thông số này, có nhiều
phương pháp truyền thống được sử dụng. Tuy nhiên,
phương pháp địa thống kê đang được áp dụng rộng
rãi trong lĩnh vực dầu khí vì có nhiều ưu điểm vượt
trội. Các kết quả của nghiên cứu này đã đưa ra cách
tính các thông số địa cơ 1D từ hai giếng đã khoan
(XX2P và XX3P) bằng các mối tương quan thực
nghiệm đang được sử dụng. Từ các thông số địa cơ
thu được, phương pháp địa thống kê được ứng dụng
để xây dựng và lực chọn mô hình variogram phù hợp
và phân tích tính liên tục trong không gian 2D của
mặt cắt giữa 2 giếng. Sau đó, phương pháp
Ordinary-Kriging (OK) được sử dụng để nội suy các
thông số cho cho không gian giữa 2 giếng dữ liệu và
sau đó trích xuất các kết quả nội suy một giếng sắp
khoan XX4P. Các giá trị nội suy được so sánh với giá
trị thực đo tại giếng sau khi khoan dựa trên hệ số
tương quan. Hầu hết các hệ số này có giá trị gần
bằng 1 chứng tỏ mô hình nội suy có độ chính xác cao
và đáng tin cậy. Các kết quả tính toán của mô hình
này có thể được sử dụng để dự báo các mô hình địa
cơ cho các giếng sắp khoan khác trong vùng lân cận
và ứng dụng kết quả dự báo trong tính toán ổn định
thành giếng hoặc nghiên cứu khả năng sinh cát của
giếng khai thác.
9 trang |
Chia sẻ: honghp95 | Lượt xem: 726 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Geostatistics application in spatial analysis of geomechanical properties, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Tạp chí Phát triển Khoa học và Công nghệ, tập 20, số K4-2017
21
Abstract—Geomechanics applications play an
important role in both drilling and production of oil
and gas field. There are many important properties
such as Unconfined compression strength (UCS),
Poison ratio (PR), Internal Friction Coefficient (IF)
and Porosity (PHIE) need to be estimated properly.
To estimate these properties, there are many
methods that can be used but geostatistics has more
advantages. This research presents geomecanical
propertiesfor two offset wells according to
experiment relations existing. Then, variogramand
spatial continuity will be analyzed. The Ordinary-
Kriging (OK) methods will be used to interpolatethe
properties in the cross section between two offset
wells and then for a planned well. The predicted
properties were compared with the actual measured
data to find the linear correlation coefficient. Most of
these values arenearly 1. As a result, the quality of
the modelbuilt could be practically accurate and
reliable to predict geomechanical properties for
planned wells used in wellbore stability, sanding
studies.
Index Terms—Geostatistics, Variogram, Kriging,
Geomechanics Model, WellboreStability.
1 INTRODUCTION
he better understanding and demand of
accurate geomechanicial properties are vital
for wellbore stability analysis, sand control and
other geomechanics applications. These properties
are primarily calculatedbased on petrophysical
data, then calibrated where possible against limited
Manuscript Received on August 7th, 2017. Manuscript
Revised December 25th, 2017
This research is funded by Ho Chi Minh City University of
Technology – VNU-HCM, under grant number C2017-20-25.
Ta Quoc Dung - Faculty of Geology and Petroleum
Engineering, Ho Chi Minh city University of Technology –
VNU-HCM (e-mail: tqdung@hcmut.edu.vn).
Vu Duc Thinh - Faculty of Geology and Petroleum
Engineering, Ho Chi Minh city University of Technology –
VNU-HCM.
* Corresponding author: Email: tqdung@hcmut.edu.vn
core data. There are a number of empirical
correlations that can be used for calculation,
suitable for various rock type, age, depth range and
field. In 2009, Khaksar et al [2] presenteda variety
of published log-core strength correlations for rock
strength modeling and combined with some
applications of computing technique such as fuzzy
logic and cluster pattern recognition. This
combination, coupled also with sedimentary facies
analysis can improve rock strength estimation.
However, similar to other conventional
geomechanics studies, the results shown estimated
geomechanical properties with depth-stretched
method that is equivalent to correlation in
petrophysics study. The other study and papers
currently are still used the same workflow with
applying correlation and choosing the closest well
for estimation geomechanical properties [8, 11]. In
oil price downturn situation, it is more difficult to
drill new exploration wells and challenge to drill
successfully. Furthermore, the geologic pattern has
become more complex and extremely risky. In
addition, the budget for core test also reduced and
limited. Because of insufficiency of information
required, right access to a method capable to
determine properly geomechanics information on
the existing information is highly interested. This
study will utilized the concepts of variogram,
krigingand spatial analysisto predict geomechanics
properties with high accuracy. The properties used
in this study are: Unconfined compression strength
(UCS), Poison ratio (PR), Internal Friction
Coefficient (IFC) and Porosity (PHIE).
2 FUNDAMENTAL THEORY
2.1 Geostatistics estimation
Geostatistics offers a way of characterizing the
spatial continuity of natural phenomena by
analyzing them as random variables [1]. -
Geostatistics can describe data distribution in
various spatial directions. This technique is
suitable for heterogeneity of the reservoir hence
Geostatistics application in spatial analysis of
geomechanical properties
Ta Quoc Dung, Vu Duc Thinh
T
22 Science and Technology Development Journal, vol 20, no.K4- 2017
geostatistics has been seen as the core hypothesis
for model generation in major modeling software
like Petrel (Slb), RMS (Roxar) [2]. Basic
components of Geostatistics are variogram and
Kriging techniques.
2.2 Variogram and Covariance
Variogram is a mathematical function, basic tool
to quantify correlation of spatial variables [1],
defined as:
22 ( ) {[ ( ) ( )] }h E Z u h Z u (1)
1
1
( ) [ ( ) ( )]
2 ( )
N
i
h Z u Z u h
N h
(2)
Where:
h: Lag Distance
N(h): Total number of pairs for lag h
( )h : Variogram
Z(u) and Z(u+h): Head and tail value for pair i.
There are three standard variogram models:
Spherical, Exponential and Gaussian. In practice,
we need to replace empirical variogram with a
most matched variogram model.
Covariance measures similar variation of 2
random variables, defined as:
2( ) E{Z(u h) Z(u)} [ {Z(u)}]C h E
(3)
And obeyed the following relationship:
( ) (0) (h)C h C
(4)
Where:
2
2 2 2
(0) E{Z(u 0) Z(u)} [ {Z(u)}]
{Z(u) }-[ {Z(u)}]
C E
E E
(5)
2.3 Kriging:
Kriging is a geostatistical technique for
optimally interpolating values at unsampled
locations. Kriging employs variogram model, so it
is a weighted method with respect to both distance
and trend of data. It generates Best Linear
Unbiased Estimation (BLUE) at each location.
Simple Kriging (SK): The simplest kriging and
rarely applied in reality. Global mean is assumed
known and constant in the study area, which is not
really actual [2]. The value at an unsampled
location can be estimated by:
0 0
1
*( ) . (u )
n
i i
i
Z u Z
(6)
𝑙0 = 𝑚(1 ∑ 𝑙1
𝑛
𝑖=1
)
(7)
λi are calculated from minimum variance
condition, as below simplified covariance matrix:
∑𝑙𝑗
𝑛
𝑗=1
𝐶(𝑢𝑖, 𝑢𝑗)
= 𝐶(𝑢𝑖, 𝑢0) 1, , 𝑛 (8)
Where:
Z*(u0): Estimated value at location u0.
Z(ui): Nearby sample value at location ui.
n: Total number of samples selected in the
study area.
λi: Weights assigned to each sample
λ0 = a constant.
m: Global mean value in area .
C(ui, uj): Covariance value between points
located at ui and uj.
C(ui, u0): Covariance between sampled location
ui and unsampled location u0
Ordinary Kriging (OK): Assuming that there are
many local means and calculated from nearby
values [2]. This also assumes true global mean is
unknown so it is “ordinarily” used more than SK.
The estimation is written as:
*
0
1
( ) .Z( )
n
i i
i
Z u u (9)
1
1
n
i
i
or λ0 = 0 (10)
By forcing λ0 to be zero, the necessity of mean
m is eliminated which constitutes Eq.(6) by Eq.(9)
λi are calculated from minimum variance
condition, as below simplified covariance matrix:
0
1
( , ) ( , )
n
j i j i
j
C u u C u u
i= 1,, n
(11)
Where μ is Lagrange parameter.
CoKriging: Cokriging is used to estimate one
variable value with co-variable. Two common
examples are the estimation of permeability using
porosity data and the estimation of porosity data
using seismic data [1]. Estimation equation is:
Tạp chí Phát triển Khoa học và Công nghệ, tập 20, số K4-2017
23
*
0
1 1
( ) Z( ) Y( )
i i k k
n m
Z Z Y Y
i k
Z u u u
(12)
1
1
i
n
Z
i
and
1
0
k
m
Y
k
(13)
iZ and kY are calculated from minimum
variance condition, as below covariance matrix:
1 1
0
C ( , ) C ( , )
( , );i 1,..., .
j i j k i k
i
n m
Z Z Z Z Y C Z Y Z
j k
Z Z
u u u u
C u u n
1 1
0
C ( , ) C ( , )
( , );k 1,...,m.
i i i l k l
k
n m
Z C Z Y Y Y Y Y Y
i l
C Y
u u u u
C u u
(14)
Where:
iZ
: weights assigned to Z( )
iZ
u at
iZ
u
kY
: weights assigned to Y( )
kY
u at
kY
u
CZ and CY: covariance for the Z and Y
variables, respectively.
CC: Cross-variance between 2 variables.
μZ and μY: Lagrange parameters.
3 GEOMECHANICAL MODEL
The geomechanical properties were calculated
from correlations based on well-logging data.
Then, core and experiments data were used to
calibrate.
Unconfined compressive strength:
Unconfined compressive strength is defined as
the maximum axial compressive strength that a
right-cylindrical sample can withstand under
unconfined conditions.There are many correlations
to determine UCS based on seismic and well
logging data. This study used MsNally’s
correlation which can be applied for sand reservoir
[3].
185165* 0.037* UCS exp DTC
(15)
Poisson’s ratio:
Defined as the ratio of transverse contraction
strain to longitudinal extension strain in the
direction of stretching force, calculated based on
velocity log [4]
2
2 2
2 2
2
0.5( ) 12
2( )
( ) 1
p s
p s
DTS
v v DTC
DTSv v
DTC
(16)
Internal friction coefficient (IFC): IFC measures
the ability of an unit rock or soil to with stand a
shear stress, calculated based on velocity log
3.51
1
1000tan sin 0.7
1
1000
17.232
3.14
1000
tan 0.7
185
p
p
p
v
IFC a if Vcl
v
v
IFC if Vcl
(17)
Porosity (PHIE):
PHIE were calculated based on correlation with
UCS [3]:
0.1ln
20144
UCS
PHIE
(18)
Where:
vp: Compressional wave velocity
vs: Shear wave velocity
DTC: Compressional wave travel time (μs/ft)
DTS: Shear wave travel time (μs/ft),
Vcl: Clay volume
4 ROCK PROPERTIES PREDICTION
4.1 Prediction workflow
Step 1: Building geomechanical models
Getting the input – petrophysical data
(velocity and density)
Build geomechanical models for along the
offset wells by using the above empirical
correlations.
Validate rock properties estimated with core
samples.
Step 2: Building variogram models
Calculating experimental variogram for the
cross section based on the data between 2
offset wells,
Choosing the standard variogram models.
Cross-validating to find the best-fit variogram
model for each property.
Step 3: Predicting geomechanical model
Using chosen variogram models to
interpolatethe 2D geomechanical model between 2
offset wells and then for the planned well using
Ordianary Kriging (OK).
24 Science and Technology Development Journal, vol 20, no.K4- 2017
4.2 Geomechanics model and results
Petrophysics offset data from field A of Cuu
Long basin, Vietnam is used in this research to
build geomechanics model along the well path.
The study presented the fundamental ideas of
geostatistics for interpolating the geomechanics
detail of the area with the boundaries from 2 offset
well: XX-2P and XX-3P (Figure 1). The distance
between two offset wells is about 2.6 km.
Estimated points are compared with the actual
points based on regression value and coefficient of
correlation.
Building geomechanical models
The input data from XX-2P and XX-3P
included: velocity (DTC, DTS) and density log
(Rho). Because DTC data just only for the section
(3470m – 4247m), so we must combine with the
velocity log(Vel) from seismic(Vp) to have a full
DTC log. Due to a more limited data of DTS, we
ought to calculate the DTC-DTS regression to
build the full DTS log. Similarly, density log
cannot be measured for the whole wellbore. So
that, we might use Garner’s correlation to build
density log based on velocity log for unmeasured
well sections:
𝑅ℎ𝑜 = 0.24(vel)0.25
(19)
Building variogram models: For each property,
the unique experimental variograms for both of
two wells were calculated, then checked with the
standar variogram models. Overall, these
variogram had a very good correlation coefficient
(r2).
The above variogram model of UCS (Figure 4)
is shown to be the best-fit with Gaussian model
with r2= 99.7%
Figure 1. The cross section between 2 offset wells, field A
Figure 4. The geomechanical properties for XX-2P and XX-3P
Figure 2. The input data for well XX-2P
Figure 3. The input data for well XX-3P
Figure 5. Variogram model for UCS
Tạp chí Phát triển Khoa học và Công nghệ, tập 20, số K4-2017
25
The variogram model of PR (Figure 6) is shown
to be the best-fit with Gaussian model with
r2=94%.
The variogram model of IFC (Figure 7) is
shown to be the best-fit with Gaussian model with
r2=99.2%.
The above variogram model of PHIE (Figure 8)
is shown to be the best-fit as Exponential model
with r2=98.1%.
Cross-validation for best-fit variogram model
Each of these variogram models was then used
for cross-validated to evaluate the accuracy
variogram model before applying Kriging
techniques. To obtain the best-fit variogram, we
may eliminate or edit some outliner points which
may be due to invalid measurements. As shown
below figures, all of correlation factors are higher
than 95%.
Cross-validated correlation factor (r2) of UCS
equals to 99%.
Cross-validated correlation factor (r2) of PR
equals to 97.4%
Cross-validated correlation factor (r2) of IFC
equals to 99.6%.
Figure 7. Variogram model for IFC
Figure 8. Variogram model for PHIE
Figure 9. The cross-validation results of UCS
Figure 10. The cross-validation results of PR
Figure 6. Variogram model for PR
Figure 11. The cross-validation results of IFC
26 Science and Technology Development Journal, vol 20, no.K4- 2017
Cross-validated correlation factor (r2) of PHIE
equals to 95%
Predicting geomechanical model
The best-fit variogram models are used to
predict geomechanical properties for well XX-4P.
Cross-checking the predicted values
To validate the model used for prediction, cross-
check is used for verifying all geomechanical
properties. This process is used variogram model
choosen to re-estimate all measured data.
Cross-checking UCS between actual and
estimated values with r2= 77.73%.
Cross-checking PR between actual and
estimated values with r2= 58.5%.
Cross-checking IFC between actual and
estimated values with r2= 94.19%
Figure 12. Thecross-validation results of PHIE
Figure 15. The cross-checking of UCS
Figure 16. The cross-checking of PR
Figure 17. The cross-checking of IFC
Figure 18. The cross-checking of PHIE
Figure 13. Well-correlation with UCS of XX-2P (in pink),
XX-3P (in red) and predicted well XX-4P (in green)
Figure 14. Predicted properties of well XX-4P (in black)
compared with XX-2P (in red) and XX-3P (in blue)
Tạp chí Phát triển Khoa học và Công nghệ, tập 20, số K4-2017
27
Cross-checking PHIE between actual and
estimated values with r2=88.13%.
5 CONCLUSION
In this study, geomechanical model has been
studied using empirical correlations to calculate
geomechanical properties of between two wells
XX-2P and XX-3P from petrophysical data. Then
geostatistics was applied to predict 2D
geomechanical model between two offset wells
and then the planned well XX-4P, including
properties: UCS, PR, IFC and PHIE. The best-fit
variogram have been choose and validated as
following tables.
Clearly, these correlation factors (r2) for
variogram models are similar to each other. The
best-fit variogram had the highest r2 (in bold). The
calculation results were summarized in table 3.
In table 3, the variogram models for UCS, PR
and IFC were Gaussian. It means that there was a
high correlation over short range and these were
continuous phenomena. Where as, the PHIE
variogram model was Exponential, which means
this had a short scale variability.
As also in Table 3, these variogram had a good
correlation coefficient (r2). These greatly good r2
(>95%) of all variogram models and cross-
validations showed that these chosen variogram
models are greatly accurate.
In Table 4, the correlation coefficient (r2) of all
properties are fairly high, roughly 80%. However,
Poisson’s ratio (PR) with r2=58.5% may be due to
lack of solid actual data for calibration.
DISCUSSION
There were just two wells used in calculating
variograms which are applied isotropic analysis. If
more wells were used, anisotropic variograms
would have been calculated and compared with
isotropic ones to select the best-fit variogram,
resulting more accurate models.
The log-derived rock strengths should be
calibrated by more rock test data to initiate better
accuracy. So that, the predicted model will
minimize the uncertainties of consequent
geomechanics application, particularly in well bore
stability.
The results could be sustainably improved if the
data was coupled with sedimentary analysis and
diagenetic classification using a couple of new
computing methods such as fuzzy logic, Artificial
Neural Network (ANN).
REFERENCE
[1] R. Gonzalez, K. Schepers, S.R. Reeves, Integrated
Clustering/ Geostatistical/ Evolutionary Strategies
Approach for 3D Reservoir Characterization and
Assisted History-Matching in a Complex Carbonate
Reservoir, SACROC Unit, Permian Basin, SPE 113978.
2008.
[2] A. Khaksar, P.G Taylor, Z. Fang, Rock Strength from
Core and Logs. 2009.
[3] William L. Power, Toru Sano, Kiam Chai Ooi, David
Andrew Castillo, Marian Magee, Katharine Burgdorff,
"Insitu Stress and Rock Strength in Rang Dong Field -
TABLE 1
COMPARISON BETWEEN VARIOGRAM MODELS
WITH r2 FOR EACH TYPES OF MODELS
Properties UCS PR IFC PHIE
Spherical 96.90% 83.30% 90.10% 95.90%
Gaussian 99.70% 94.00% 99.20% 97.20%
Exponenial 93.40% 81.50% 88.30% 98.00%
TABLE 2
COMPARISON BETWEEN CROSS-VALIDATED
CORRELATION FOR EACH TYPE OF MODELS
Properties UCS PR IFC PHIE
Spherical 98.10% 92.40% 99.30% 92.00%
Gaussian 99.00% 97.40% 99.60% 91.20%
Exponential 96.00% 93.20% 99.10% 95.00%
TABLE 3
SUMMARY OF CORRELATION COEFFICIENT OF
VARIOGRAM MODELS
Properties UCS PR IFC PHIE
Variogram
Model
Gaussian Gaussian Gaussian Exponential
Cross-
validation
r2
99% 97.4% 99.6% 95%
TABLE 4
SUMMARY OF CORRELATION COEFFICIENT (r2) OF
XX-4P GEOMECHANICAL MODEL
Properties UCS PR IFC PHIE
r2 77.73% 58.5% 94.19% 88.13%
28 Science and Technology Development Journal, vol 20, no.K4- 2017
Off shore Vietnam - Implications for Drilling in
Basement Rocks," in IADC/SPE Asia Pacific Drilling
Technology Conference and Exhibition, Ho Chi Minh
City, Vietnam, 2010
[4] Asadi, M.S Khaksar, White, A. Challenge in defining
fracture gradient for highly deviated wells in the
presence of natural frectures in deep water enviroments.
ARMA 14-7010. 48th US rock mechanics/geomechanics
symposium. USA June 2014.
[5] N. V. Thuận, Luận văn tốt nghiệp. Hồ Chí Minh, 2015.
[6] Lâm Hoàng Quốc Việt, Trà Thanh Sang, Tạ Quốc Dũng,
Ứng dụng địa thống kê xác định vùng phân bố tầng chứa
nước Pleistocen trên (qp3) tỉnh Hậu Giang. 2014.
[7] E.H. Isaaks, R.M. Srivastava, An Introduction to Applied
Geostatistics. Oxford: Oxford University Press, 1989.
[8] Clark, I. Harper, Practical Geostatistics. Ecosse North
Ameria, 2000.
[9] Clark, I. Harper, Practical Geostatistics. Ecosse North
Ameria, 2000.
[10] Mohan Kelkar, Godofredo Perez, Applied Geostatistics
for Reservoir Characterization. New York, 2002.
[11] Deutsch, Clayton V., Geostatistical Reservoir
Modeling. 2002.
[12] Nguyễn Hiệp, Nguyễn Văn Đắc, Địa chất và tài nguyên
dầu khí Việt Nam. 2007.
Ta Quoc Dung PhD., Geomechanics
Specialist. He graduated with bachelor degree in
Petroleum engineering from Ho Chi Minh City
University of Technology - VNU-HCM in 1997.
He received his aster degree in applied mechanics
in Drilling Engineering from Liege University in
2004 and PhD degree in Petroleum Engineering
from The University of Adelaide, Australia in
2010. He worked more than 20 years in different
academic positions at Ho Chi Minh City
University of Technology - VNU-HCM and
supervised more than 40s honored projects and 10s
MSc students. He has been involved in training
and significantly consulting for several oil and gas
companies operated in Vietnam. For the last 10
years he participated in various G&G projects,
geomechanics projects in certain Vietnamese
offshore fields. Dr. Ta Quoc Dung has expertise in
Coupled reservoir simulation and Geostatistics
applications. He currently is Dean, Faculty of
Geology and Petroleum engineering at Ho Chi
Minh City University of Technology - VNU-
HCM.
Vu Duc Thinh was born in Lagi Town, Binh
Thuan Province, Vietnam in 1996. He enrolled as
a first-year student of Petroleum Engineering in
Ho Chi Minh City University of Technology -
VNU-HCM (HCMUT) in 2014. From September
2017, he has been studying Petroleum Engineering
at Politecnico di Torino – Italy as an international
exchange student.
From 2015, he has been a Research Assistant for
the Faculty of Geology and Petroleum Engineering
in Ho Chi Minh City University of Technology -
VNU-HCM. From 2015 to 2017, he was
a Teaching Assistant for the articulation program
with University of Adelaide- Australia for three
Petroleum Engineering courses. He is the co-
author of two articles. His research interests
include Geostatistics applications in exploration,
drilling and production.
Tạp chí Phát triển Khoa học và Công nghệ, tập 20, số K4-2017
29
Ứng dụng địa thống kê dự đoán phân bố
không gian của thuộc tính địa cơ trong lĩnh
vực dầu khí
Tạ Quốc Dũng, Vũ Đức Thịnh
Tóm tắt—Các ứng dụng của địa cơ học có một vai
trò rất quan trọng trong kỹ thuật dầu khí bao gồm
nhiều ứng dụng trong tìm kiếm thăm dò, khoan, khai
thác, hoàn thiện và phát triển mỏ. Một số các thông
tin thường được yêu cầu tính toán như hệ số nén một
trục UCS, hệ số Poisson, hệ số ma sát trong, độ
rỗng Để ước lượng các thông số này, có nhiều
phương pháp truyền thống được sử dụng. Tuy nhiên,
phương pháp địa thống kê đang được áp dụng rộng
rãi trong lĩnh vực dầu khí vì có nhiều ưu điểm vượt
trội. Các kết quả của nghiên cứu này đã đưa ra cách
tính các thông số địa cơ 1D từ hai giếng đã khoan
(XX2P và XX3P) bằng các mối tương quan thực
nghiệm đang được sử dụng. Từ các thông số địa cơ
thu được, phương pháp địa thống kê được ứng dụng
để xây dựng và lực chọn mô hình variogram phù hợp
và phân tích tính liên tục trong không gian 2D của
mặt cắt giữa 2 giếng. Sau đó, phương pháp
Ordinary-Kriging (OK) được sử dụng để nội suy các
thông số cho cho không gian giữa 2 giếng dữ liệu và
sau đó trích xuất các kết quả nội suy một giếng sắp
khoan XX4P. Các giá trị nội suy được so sánh với giá
trị thực đo tại giếng sau khi khoan dựa trên hệ số
tương quan. Hầu hết các hệ số này có giá trị gần
bằng 1 chứng tỏ mô hình nội suy có độ chính xác cao
và đáng tin cậy. Các kết quả tính toán của mô hình
này có thể được sử dụng để dự báo các mô hình địa
cơ cho các giếng sắp khoan khác trong vùng lân cận
và ứng dụng kết quả dự báo trong tính toán ổn định
thành giếng hoặc nghiên cứu khả năng sinh cát của
giếng khai thác.
Từ khóa—Địa thống kê, variogram, kriging, mô
hình địa cơ học, ổn định thành giếng.
Các file đính kèm theo tài liệu này:
- ta_quoc_dung_9479_2099174.pdf