Giải pháp truyền thông trong tòa nhà In - Building Solutions
Giải pháp truyền thông trong tòa nhà In-Building Solutions
CẤU TRÚC ĐỒ ÁN
Chương 1: Các mô hình truyền sóng - truyền sóng trong nhà
Chương 2: Giải pháp truyền thông trong tòa nhà
Chương 3: Lập dự án cho hệ thống phủ sóng tín hiệu trong tòa nhà
9 trang |
Chia sẻ: banmai | Lượt xem: 3181 | Lượt tải: 1
Bạn đang xem nội dung tài liệu Giải pháp truyền thông trong tòa nhà In - Building Solutions, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
1
GIẢI PHÁP PHỦ SÓNG DI ĐỘNG GSM TRONG CÁC CÔNG TRÌNH ĐẶC BIỆT
KS. ĐINH THỊ MINH NGUYỆT
1. Mở đầu
Để mở rộng thị phần, ngoài việc cạnh tranh về giá cả, dịch vụ giá trị gia tăng, chăm sóc khách
hàng... các nhà cung cấp dịch vụ di động cũng không ngừng tập trung phát triển mạng lưới để có
vùng phủ rộng, phủ sâu, chất lượng phủ sóng tốt. Tuy nhiên, ngay cả đối với các công ty cung
cấp dịch vụ di động đã phủ sóng 64/64 tỉnh thành có một vấn đề cần quan tâm là tại một số thành
phố lớn như Hà Nội, TP. Hồ Chí Minh…chất lượng phủ sóng trong các toà nhà, đặc biệt là các
toà nhà cao tầng của khách sạn, văn phòng…chưa được đảm bảo. Tại các tầng thấp thường có
tình trạng sóng yếu, chập chờn, ở các tầng cao thì nhiễu (nhất là đối với các nhà khai thác chia sẻ
chung băng tần GSM) dẫn đến khó thực hiện và rớt cuộc gọi. Một trong các giải pháp nhằm khắc
phục hiện tượng trên và đảm bảo chất lượng cho khách hàng được các công ty áp dụng đó là giải
pháp phủ sóng trong nhà (inbuilding). Bài viết sẽ giới thiệu về giải pháp trên.
2. Giới thiệu về hệ thống inbuilding
Có thể nói hiện nay đối với các tòa nhà lớn như là sân bay, ga điện ngầm, văn phòng cao tầng,
siêu thị kinh doanh hàng hóa rộng lớn… thì vấn đề vùng phủ và dung lượng đều rất quan trọng vì
chất lượng thoại di dộng ảnh hưởng trực tiếp đến uy tín của nhà cung cấp dịch vụ. Tuy nhiên, do
đặc trưng vùng phủ của những khu vực này rộng hoặc trải dài theo chiều dọc, sóng vô tuyến từ
trạm BTS bên ngoài tòa nhà (BTS outdoor macro) bị suy hao nhiều khi xuyên qua các bức tường
bê tông dẫn đến cường độ tín hiệu không đạt yêu cầu, nên giải pháp phủ sóng trong tòa nhà hiện
nay được nhiều nhà cung cấp dịch vụ di động lựa chọn.
Hệ thống inbuilding bao gồm 3 phần chính: nguồn tín hiệu, hệ thống phân phối tín hiệu và phần
tử bức xạ. Trong đó hệ thống phân phối tín hiệu là điểm khác biệt điển hình giữa hệ thống
inbuilding so với hệ thống mạng BTS outdoor macro thông thường.
Hình 1. Thành phần chính của một hệ thống phủ sóng trong nhà
a. Nguồn tín hiệu
Để phủ sóng cho inbuilding ta có thể dùng:
Nguồn tín hiệu bằng trạm outdoor:
Đây là giải pháp đơn giản nhất để cung cấp vùng phủ cho các toà nhà với tín hiệu từ các trạm
macro bên ngoài toà nhà. Giải pháp này được khuyến nghị nếu lưu lượng trong tòa nhà không
Bộ lặp
hoặc
BTS
Hệ thống phân phối thụ động
hoặc
Hệ thống phân phối tích cực
hoặc
Hệ thống phân phối lai ghép
Nguồn tín hiệu Hệ thống phân phối tín hiệu
Cáp rò
hoặc
Anten
Phần tử bức xạ
2
cao, hoặc chủ tòa nhà không cho phép lắp đặt thiết bị và đi cáp trong tòa nhà hoặc việc triển khai
giải pháp dành riêng cho nó không kinh tế. Khi đó vùng phủ được cung cấp bằng cách:
- Tín hiệu sẽ thâm nhập vào toà nhà từ bên ngoài. Điều này chỉ thực hiện được đối với các tòa
nhà có khoảng hở lớn đối với bên ngoài hoặc ít tường, cửa sổ kim loại.
- Đặt BTS trên các tòa nhà xung quanh và hướng anten tới tòa nhà cần phủ. Khi đó không cần
đến hệ thống phân phối tín hiệu nữa và phần tử bức xạ chính là anten của trạm BTS outdoor
macro đó.
Hình 2: Vùng phủ cho trong tòa nhà từ một tÕ bµo macro trong mạng BTS outdoor macro
Ưu điểm của giải pháp này là chi phí thấp, không mất nhiều thời gian trong triển khai, có thể phủ
cả ngoài nhà (outdoor) và trong nhà (indoor). Nhược điểm của giải pháp này là vùng phủ hạn chế,
tốc độ bit thấp đối với các dịch vụ dữ liệu, dung lượng thấp và chất lượng không thể chấp nhận
được ở một số phần trong toà nhà. Suy hao tăng dần khi tần số càng cao, do vậy khó cung cấp
vùng phủ cho toà nhà mức tín hiệu tốt. Suy hao có thể khắc phục bằng cách tăng công suất từ các
trạm ngoài nhà nhưng nhiễu sẽ tăng. Việc thiết kế tần số gặp nhiều khó khăn do quỹ tần số hạn
hẹp (nhất là đối với các nhà khai thác chia sẻ chung băng tần GSM).
Ngoài cách phủ sóng trong nhà bằng trạm outdoor ta có thể sử dụng trạm lặp (repeater) làm
nguồn vô tuyến cung cấp cho hệ thống phân phối. Khi đó vùng phủ của trạm outdoor hiện có
được mở rộng. Nhưng giải pháp này ít được sử dụng trong thực tế vì cường độ tín hiệu, chất
lượng, sự ổn định, dung lượng phụ thuộc vào trạm BTS bên ngoài và việc thiết kế cho trạm lặp
(quỹ đường truyền, mức độ cách ly 2 hướng) mặc dù giá thành thấp, triển khai nhanh, dễ dàng.
Vì có nhiều nhược điểm nói trên nên trên thực tế rất ít nhà cung cấp dịch vụ di động sử dụng giải
pháp này, trừ trường hợp bất khả kháng.
Hình 3: Vùng phủ cho toµ nhµ được cung cấp bởi trạm indoor dành riêng
3
Nguồn tín hiệu bằng trạm indoor dành riêng:
Giải pháp này có thể tăng thêm dung lượng cho những vùng trong nhà yêu cầu lưu lượng cao.
Vấn đề chính ở đây là cung cấp dung lượng yêu cầu trong khi vẫn đảm bảo vùng phủ tốt của toà
nhà mà không làm ảnh hưởng tới chất lượng dịch vụ của mạng BTS outdoor macro. Vì vậy giải
pháp này được các nhà cung cấp dịch vụ di động trong khu vực sử dụng như SingTel, Digi...
Ưu điểm của giải pháp này là nguồn tín hiệu từ bên ngoài ổn định, mức tín hiệu tốt, mở rộng
dung lượng hệ thống dễ dàng. Nhược điểm của giải pháp là giá thành cao, yêu cầu phải có cách
bố trí tần số/kênh cụ thể và xây dựng hệ thống truyền dẫn đảm bảo tính mỹ thuật.
b. Hệ thống phân phối tín hiệu
Hệ thống phân phối tín hiệu có nhiệm vụ phân phối tín hiệu từ nguồn cung cấp đi đến các anten
hoặc phần tử bức xạ khác và được phân loại thành:
Hệ thống thụ động:
Hệ thống thụ động là hệ thống anten được phân phối bằng cáp đồng tru ̣c và các phần tử thụ động.
Đây là giải pháp phổ biến nhất cho các khu vực phủ sóng inbuilding không quá rộng, có đặc
điểm:
Hình 4: Giải pháp hệ thống anten phân phối cáp đồng thụ động
- Trạm gốc được dành riêng cho toà nhà: Tín hiệu vô tuyến từ trạm gốc được phân phối qua hệ
thống đến các anten. Vùng phủ cho toà nhà được giới hạn đồng thời không làm ảnh hưởng đến
chất lượng mạng BTS outdoor macro. Nhưng yêu cầu kỹ sư thiết kế phải tính toán quỹ đường
truyền cẩn thận vì mức công suất ở mỗi anten phụ thuộc vào sự tổn hao mà các thiết bị thụ động
được sử dụng, đặc biệt là chiều dài cáp.
- Các thiết bị chính gồm: cáp đồng trục, bộ chia (splitter/tapper), bộ lọc (filter), bộ kết hợp
(combiner), anten.
Hệ thống chủ động:
Hệ thống chủ động là hệ thống anten phân phối sử dụng cáp quang và các thành phần chủ động
(bộ khuếch đại công suất). Việc sử dụng cáp quang từ BTS tới khối điều khiển từ xa có thể mở
rộng tới từng vị trí anten riêng lẻ bằng cách: tín hiệu RF từ BTS được chuyển đổi thành tín hiệu
quang rồi truyền đến và được biến đổi ngược lại thành tín hiệu RF tại khối điều khiển từ xa trước
khi được phân phối tới một hệ thống cáp đồng nhỏ. Ngoài ra, hệ thống còn sử dụng các thiết bị
khác trong việc phân phối tín hiệu: Hub quang chính, cáp quang, Hub mở rộng, khối anten từ xa.
4
RAU (Remote bi-direction antenna unit): Thiết bị anten song hướng từ xa
Hình 5 (a): Sơ đồ một hệ thống anten phân phối chủ động cho khu trường sở
Giải pháp này thường được sử dụng cho những khu vực phủ sóng inbuilding rất rộng, khi mà hệ
thống thụ động không đáp ứng được chỉ tiêu kỹ thuật suy hao cho phép. Khi đó một BTS phục vụ
được nhiều tòa nhà trong một vùng, thường là các khu trường sở. Các kết nối khoảng cách xa
(hơn 1 km) sử dụng cáp quang, sự phân phối giữa một tầng và các phần trong toà nhà có thể dùng
cáp xoắn đôi dây. Nhưng nhược điểm dễ nhận thấy là chi phí cao.
MU (Main unit (E/O conversion)): Thiết bị chính (Chuyển đổi E/O)
RU (Remote unit (O/E conversion)): Thiết bị từ xa (Chuyển đổi O/E)
Hình 5 (b): Sơ đồ một hệ thống anten phân phối chủ động cho một toà nhà cao tầng
Hệ thống lai ghép
Hình 6: Sơ đồ hệ thống lai ghép
Hệ thống này là sự kết hợp giữa hệ thống thụ động và chủ động. Giải pháp này dung hoà được cả
ưu nhược điểm của hai hệ thống thụ động và chủ động. Vì nó vừa đảm bảo chất lượng tín hiệu
cho những khu vực phủ sóng trong nhà có quy mô lớn lại vừa tiết kiệm chi phí.
c. Phần tử bức xạ
5
Phần tử bức xạ có nhiệm vụ biến đổi năng lượng tín hiệu điện thành sóng điện từ phát ra ngoài
không gian và ngược lại. Do hệ thống trong nhà được sử dụng ở những khu vực có vùng phủ
sóng đặc biệt như nên đối với từng công trình cụ thể đòi hỏi phải có phần tử bức xạ thích hợp. Cụ
thể:
Anten: sử dụng thích hợp với những vùng phủ có khuynh hướng hình tròn hoặc hình chữ nhật.
Đó là vì anten cho vùng phủ sóng không đồng đều, việc tính quỹ đường truyền phụ thuộc nhiều
vào cấu trúc của toà nhà. Phạm vi phủ sóng của anten ở dải GSM900 là 25m ÷ 30m; GSM1800 là
15m ÷ 18m. Có 2 loại anten thường được sử dụng là anten vô hướng (omni) và anten có hướng
(yagi). Anten vô hướng có tính thẩm mỹ, nhỏ gọn dễ lắp đặt nên có thể kết hợp hài hoà với môi
trường trong toà nhà, còn anten có hướng có độ tăng ích cao thích hợp khi phủ sóng trong thang
máy.
Cáp rò: Đặc điểm của cáp rò (còn gọi là cáp tán xạ) là có cường độ tín hiệu đồng đều theo một
trục chính nên thường được dùng cho các vùng phủ phục vụ kéo dài đặc biệt như: hành lang dài,
xe điện ngầm, đường hầm... Phạm vi phủ sóng của cáp dò chỉ vào khoảng 6m nhưng lại có ưu
điểm hơn hẳn so với anten là hỗ trợ được dải tần số rộng từ 1 MHz ÷ 2500 MHz.
Hình 7: Hệ thống phân phối cáp rò
3. Mô hình truyền sóng và tính toán quỹ đường truyền
Trong hệ thống inbuilding thì tín hiệu sau khi từ nguồn tín hiệu đi qua hệ thống phân phối tín
hiệu đến phần tử bức xạ và phát ra không gian sẽ chịu thêm một lượng suy hao phụ thuộc vào số
tầng cũng như số bức tường mà sóng trực tiếp truyền qua rồi mới đến được thiết bị đầu cuối của
thuê bao di động. Để dự đoán được những suy hao này nhà thiết kế sẽ sử dụng mô hình truyền
sóng trong nhà từ đó tính toán ra quỹ đường truyền yêu cầu tương ứng. Thực chất mô hình truyền
sóng là công thức tính suy hao sóng vô tuyến khi truyền qua các vật cản và được xây dựng từ rất
nhiều quá trình đo đạc thực nghiệm cụ thể, còn quỹ đường truyền sẽ xác định tất cả các tham số
suy hao tối đa cho phép tính từ nguồn tín hiệu đến máy di động để từ đó có được cái nhìn tổng
quan hơn về hệ thống.
Mô hình truyền sóng:
Khác với truyền dẫn hữu tuyến chỉ truyền trên những đôi dây đã được thiết kế định trước, suy
hao có thể lường trước và tính toán được thì việc tính toán trong truyền dẫn vô tuyến là rất đa
dạng và phức tạp do đặc điểm kênh truyền mở. Thông tin di động là một trong những dịch vụ
thông tin đặc biệt, cho phép thuê bao trao đổi thông tin ngay cả khi đang di chuyển nên kênh
truyền sóng liên tục thay đổi trong quá trình thuê bao di động. Vì vậy, yêu cầu hàng đầu đối với
nhà thiết kế là phải dự đoán tương đối chính xác mức thu năng lượng tại từng vị trí của thuê bao
di động. Do môi trường truyền sóng của mạng BTS outdoor macro (không gian tự do) không còn
6
đúng với môi trường truyền sóng của hệ thống trong nhà nên một yêu cầu đặt ra là cần phải có
một mô hình truyền sóng trong nhà dành riêng.
Có nhiều mô hình truyền sóng trong nhà được các nhà nghiên cứu đưa ra như mô hình của
Bertoni, N.Yarkoni-N.Blaunstein, Rappaport... do đặc trưng của môi trường truyền sóng phức
tạp, do cấu trúc và vật liệu xây dựng đa dạng...nhưng vì khuôn khổ bài viết có hạn nên ở đây chỉ
giới thiệu mô hình Motley & Keenan vì những ưu điểm của nó.
Motley & Keenan cho rằng tổn hao trung bình pl(d) là một hàm của khoảng cách d có thể được
tính từ tổn hao không gian tự do plfs(d) và từ số các bức tường I giữa Tx và Rx.
( ) ( ) ∑+= I
i
wifseyKeenanMotl Ldpldpl (1)
trong đó Lwi là tổn hao của bức tường thứ i.
Cụ thể:
L(dB)= 32.5 + 20 * log f + 20 * log d + k * F(k) + p * W(k) + D(d-db) (2)
(công thức tính cho không gian tự do)
Trong đó:
L : Tổn hao đường truyền (dB).
f : Tần số (MHz).
d : khoảng cách từ máy phát đến máy thu (km).
k : số tầng mà sóng trực tiếp truyền qua.
F : hệ số tổn hao của tầng (dB).
p : số bức tường mà sóng trực tiếp truyền qua.
W: hệ số tổn hao của tường (dB) (note 1).
D : hệ số tổn hao tuyến tính (dB/m) (note 2).
db : điểm ngắt trong nhà (indoor breakpoint) (m) (note 2).
note 1: Các bức tường mỏng thông thường có tổn hao 7 dB còn các bức tường dày có tổn hao 10
dB.
note 2: Đối với khoảng cách ở trên điểm ngắt, trung bình cộng thêm vào 0.2dB/m.
Điểm ngắt điển hình: 65m.
Hình 8: So sánh suy hao tường theo mô hình Keenan Motley với suy hao không gian tự do và
công thức xấp xỉ
7
Trên thực tế mô hình truyền sóng Keenan Motley hay được sử dụng để dự đoán sơ bộ suy hao
truyền sóng trong nhà bởi lẽ không quá phức tạp, mô hình này có ưu điểm là tính toán đơn giản,
không có nhiều thông số phải giả định hoặc thực nghiệm. Ngoài ra cũng từ mô hình truyền sóng
này, có thể nhận thấy suy hao truyền sóng trong nhà phụ thuộc chủ yếu vào số tầng và số bức
tường mà sóng trực tiếp truyền qua. Kết quả đo đạc thực tế của các mô hình truyền sóng khác
cũng đã chỉ ra sự phức tạp của truyền sóng trong môi trường trong nhà và khó mô phỏng nó một
cách chính xác vì kết cấu của các toà nhà khác nhau, vật liệu sử dụng khác nhau...
Tính toán quỹ đường truyền
Mục đích chính của việc tính toán quỹ đường truyền (link budget) là xác định tất cả các tham số
suy hao tối đa cho phép giữa trạm BTS và máy di động MS để từ đó có được cái nhìn tổng quan
về công suất, tăng ích và tổn hao của hệ thống. Đồng thời giúp cho nhà thiết kế dễ dàng dự phòng
mức dự trữ hợp lý dành cho khi cần nâng cấp hoặc mở rộng hệ thống.
Pout_bts > SSdes + Lp - Ga + Lf + Lps + Lc (3)
Trong đó:
Pout_bts: Công suất đầu ra của tại đầu nối anten.
Lp: Suy hao đường truyền từ anten tới MS tại biên tế bào (mô hình truyền sóng
Keenan Motley).
Ga: Hệ số tăng ích của anten BTS, hệ số tăng ích của anten MS xem như là 0 dB.
Lf: Suy hao fiđơ.
Lps: Suy hao ở bộ công suất bộ chia.
Lc: Suy hao trong các bộ mở rộng, kết hợp, bộ xong công, bộ phối hợp...
SSdes: Cường độ tín hiệu thiết kế.
SSdes = EiRP – Lp.
EiRP: Công suất bức xạ đẳng hướng tương đương.
EiRP= Pout_bts – Lc – Lf + Ga (4)
Hình 9: Sơ đồ một hệ thống phân phối antenna thụ động đơn giản
Ví dụ: Tính toán EIRP cho một hệ thống phân phối anten thụ động đơn giản.
EiRP = 29dBm(Pout_bts) – 18dB(6 x bộ chia) – 11dB(suy hao feeder) + 2dBi(Ant. Gain)
8
= + 2dBm
Tóm lại: EIRP có thể phụ thuộc các yếu tố sau:
- Vị trí đặt anten.
- Loại anten.
- Đặc thù của vùng phủ: mở, khép kín, trần cao hay trần thấp.
- Loại tường bao: tường dày thì có thể dùng EIRP cao mà không lo tín hiệu thoát ra ngoài quá
mạnh.
- Số lượng và tính chất tường ngăn quanh anten.
Tuy nhiên đối với các toà nhà cao tầng thường gặp, cấu trúc các tầng thường giống nhau nên để
đơn giản hoá thì nên làm EIRP đồng đều trong từng tế bào.
Sau khi tính toán EIRP, cần phải tính toán kiểm tra các chỉ tiêu truyền sóng khác, cụ thể:
+ Total loss là tổng tổn hao từ đầu ra máy phát đến anten:
Total loss = (hybrid couple loss + tổn hao bộ chia + suy hao coupler + suy hao cáp).
+ Năng lượng bức xạ đẳng hướng tương đương EIRP:
EIRP = (TxBTS + Ant. Gain) – tổng suy hao + Booster
Trong đó:
TxBTS là công suất phát của trạm BTS, TxBTS = 47 dBm đối với dải tần 900 MHz và 45 dBm đối
với 1800 MHz.
Booster là bộ khuếch đại sử dụng khi tuyến truyền dẫn từ BTS đến anten quá dài không đảm bảo
công suất đầu ra tại anten.
Ant. Gain = 5 dB.
+ Hiệu quả phủ sóng ở đường xuống:
- Mức công suất MS thu được nhỏ nhất:
MS minimum receivable level (dB) = EIRP – tổn hao không gian tự do – fading margin – tổn
hao thân nhiệt – att. Wall loss.
- Mức dự trữ hệ thống đường xuống (dành cho khi nâng cấp, mở rộng hệ thống):
System margin left over (dB) = tiêu chí vùng phủ + MS minimum receivable level.
- Tổn hao đường truyền lớn nhất cho phép:
Max allowable path loss (dB) = EIRP – fading margin – suy hao thân nhiệt – tiêu chí vùng
phủ.
+ Hiệu quả phủ sóng ở đường lên:
- Mức công suất BTS thu được nhỏ nhất:
BTS minimum receivable level (dB) = TxMS – tổng suy hao – suy hao không gian tự do –
fading margin – suy hao thân nhiệt.
- Mức dự trữ hệ thống đường lên (dành cho khi nâng cấp, mở rộng hệ thống):
System margin left over (dB) = RxBTS + BTS minimum receivable level.
4. Kết luận:
Quá trình truyền sóng trong môi trường trong nhà rất phức tạp và khó dự đoán chính xác do cấu
trúc, kết cấu, vật liệu xây dựng của các công trình khác nhau, mục đích sử dụng cũng khác nhau:
9
sân bay, ga điện ngầm, văn phòng cao tầng, khu vực kinh doanh hàng hóa rộng lớn... Vì vậy phải
cân nhắc khi chọn giải pháp thiết kế sao cho phù hợp nhất với từng công trình bằng cách kết hợp
linh hoạt các lựa chọn trong 3 khối thành phần chính của hệ thống trong nhà. Trong những năm
gần đây, các giải pháp inbuilding ngày càng được triển khai nhiều và được các mạng di động
quan tâm nhằm đáp ứng nhu cầu của người sử dụng “vùng phủ mọi nơi”. Đồng thời đây cũng là
cơ hội để các nhà khai thác mở rộng vùng phủ, cải thiện dịch vụ, gia tăng lưu lượng mới cho
những vùng mà trước đây gọi là “hố đen” do mạng macro không có khả năng phục vụ được. Với
vùng phủ trong nhà chồng lên và cùng với vùng phủ mạng macro sẽ làm tăng tổng dung lượng và
vùng phủ của toàn mạng di động.
Tài liệu tham khảo:
[1]. J. D. Parsons. DSc(Eng), FREng, FIEE Emeritus Professor of Electrical Engineering
University of Liverpool. UK: Chapter 7, The mobile radio propagation channel, second edition.
[2]. N. Yarkoni and N. Blaunstein. Department of Communication Systems Engineering, Ben-
Gurion University of the Negev, Beer Sheva, Israel: Progress In Electromagnetics Research,
PIER 59, 151–174, 2006,
[3]. In-building/In-Tunnel user considerations, Public Safety Wireless Network Programs,
August 2002
[4]. Jarmo kivinen, Helsinki University of Technology Radio Laboratory Publications,
Teknillisen korkeakoulun Radiolaboratorion julkaisuja, Espoo: Delvelopment of wideband radio
channel measurement and modelling techniques for future radio systems, February, 2001
REPORT S 244.
[5]. Matthias Lott-Siemens AG-Information and communication mobile-Hofmann str.51-D
81359 Munchen-Germany, and Ingo Forkel-RWTH Aachen-communication networks-
Kopernikus str.16-D 52074 Aachen-Germany: A multi-wall-and-floor model for indoor radio
propagation.
[6]. Inbuilding system solution slide of: Ericsson, Alcatel, Singtel, Digi Business Confidential;
Chunhwa Telecom Co., Ltd;