Các loài vi nấm Aspergillus được xem là nguồn quan trọng cho các hợp chất tự nhiên ứng dụng trong y
dược, nông nghiệp và công nghiệp. Trong tiến trình nghiên cứu của chúng tôi về các hợp chất kháng sinh mới
từ vi nấm biển, một hợp chất mới phomaligol A2 (1), cùng với ba hợp chất đã biết wasabidienone E (2),
aspertetranone D (3) và mactanamide (4) được thu nhận từ dịch chiết etyl acetate môi trường lên men chủng vi
nấm biển Aspergillus flocculosus (A. flocculosus) 01NT.1.1.5 phân lập từ loài bọt biển Stylissa sp. thu ở vịnh
Nha Trang, Việt Nam. Cấu trúc hoá học của các hợp chất này được xác định bởi phân tích dữ liệu phổ công
hưởng từ hạt nhân 1 chiều, 2 chiều và phổ khối, đồng thời so sánh với các dữ liệu tương ứng với các công trình
nghiên cứu trước đây. Bên cạnh đó, nghiên cứu cũng tiến hành đánh giá hoạt tính kháng sinh của các hợp chất
thu được đối với các chủng vi sinh gây bệnh bao gồm Escherichia coli (E. coli) ATCC 25922, Pseudomonas
aeruginosa (P. aeruginosa) ATCC 27853, Staphylococcus aureus (S. aureus) ATCC 25923, Bacillus cereus
(B. cereus) ATCC 11778, Streptococcus faecalis (S. faecalis) ATCC 19433, Listeria monocytogenes (L.
monocytogenes) ATCC 19111, and Candida albicans (C. albicans) ATCC 10231. Trong số các hợp chất này,
hợp chất 1-3 ức chế sự tăng trưởng của nấm men C. albicans với nồng độ ức chế tối thiểu (MIC) là 16 µg/mL.
Hoạt tính của các hợp chất này hiệu quả hơn khi so sánh với amoxicillin và cefotaxime (MIC > 256 µg/mL),
thuốc kháng sinh được sử dụng làm đối chứng dương. Bên cạnh đó, các hợp chất 1-4 cũng thể hiện hoạt tính
kháng các chủng vi khuẩn gây bệnh khác bao gồm P. aeruginosa và S. faecalis với MIC lần lượt 16 µg/mL và
32 µg/mL. Hợp chất 4 không có hoạt tính ức chế đối với chủng L. monocytogenes, trong khi các hợp chất 1-3
có khả năng kháng chủng này với MIC từ 32 đến 64 µg/mL. Bốn hợp chất thử nghiệm đều thể hiện hoạt tính
kháng khuẩn đối với chủng B. cereus và E. coli với các giá trị MIC 64-128 µg/mL. Đây là báo cáo đầu tiên về
các hợp chất có hoạt tính kháng sinh thu được từ chủng vi nấm biển A. flocculosus phân lập tại Việt Nam.
7 trang |
Chia sẻ: hachi492 | Lượt xem: 3 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Hoạt tính kháng sinh của hợp chất tự nhiên từ chủng Aspergillus Flocculosus 01NT.1.1.5 phân lập từ bọt biển, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Journal of Biotechnology 16(4): 729-735, 2018
729
ANTIMICROBIAL ACTIVITY OF NATURAL COMPOUNDS FROM SPONGE –
DERIVED FUNGUS ASPERGILLUS FLOCCULOSUS 01NT.1.1.5
Phan Thi Hoai Trinh1,4,*, Tran Thi Thanh Van1,4, Bui Minh Ly1,4, Byeoung Kyu Choi2, Hee Jae Shin2,
Jong Seok Lee2, Hyi Seung Lee2, Phi Quyet Tien3,4
1Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology
2Korea Institute of Ocean Science and Technology, Busan, Korea
3Institute of Biotechnology, Vietnam Academy of Science and Technology
4Graduate University of Science and Technology, Vietnam Academy of Science and Technology
* To whom correspondence should be addressed. E-mail: phanhoaitrinh84@gmail.com
Received: 28.6.2018
Accepted: 20.12.2018
SUMMARY
The Aspergillus fungi have been an important source of natural products that are useful for exploration in
medicine, agriculture and industry. In our continuous investigation to search for new antimicrobial agents from
marine-derived fungi, one new phomaligol A2 (1), together with three known compounds, wasabidienone E
(2), aspertetranone D (3) and mactanamide (4), were obtained from the EtOAc extract of the culture medium of
the marine-derived fungus Aspergillus flocculosus (A. flocculosus) 01NT.1.1.5 isolated from the sponge
Stylissa sp. at Nhatrang Bay, Vietnam. Their chemical structures were elucidated by analysis of 1D and 2D
NMR and mass spectroscopic data, as well as by comparison of the corresponding data to those previously
reported in the literature. Furthermore, the aim of this study was also to evaluate the antimicrobial activity of
these compounds against pathogenic microbes including Escherichia coli (E. coli) ATCC 25922, Pseudomonas
aeruginosa (P. aeruginosa) ATCC 27853, Staphylococcus aureus (S. aureus) ATCC 25923, Bacillus cereus
(B. cereus) ATCC 11778, Streptococcus faecalis (S. faecalis) ATCC 19433, Listeria monocytogenes (L.
monocytogenes) ATCC 19111, and Candida albicans (C. albicans) ATCC 10231. Among the compounds, 1-3
were inhibitory on the growth of the yeast C. albicans with minimum inhibitory concentration (MIC) value of
16 µg/mL, which was more potent than amoxicillin and cefotaxime (MIC > 256 µg/mL), antimicrobial drugs as
positive references. Moreover, compounds 1-4 were also found to be active against other pathogens including
P. aeruginosa and S. faecalis with MIC values of 16 µg/mL and 32 µg/mL, respectively. Compound 4 had no
inhibitory activity against L. monocytogenes, whereas compounds 1-3 had ability to against this strain with
MICs of 32 to 64 µg/mL. Four of tested compounds exhibited antibacterial activity against B. cereus and E.
coli with MIC values of 64-128 µg/mL. This is the first report about these compounds with antimicrobial
activity obtained from marine fungus A. flocculosus isolated in Vietnam.
Keywords: Aspergillus flocculosus, antimicrobial activity, aspertetranone D, mactanamide, phomaligol A2,
wasabidienone E.
INTRODUCTION
Nowadays, in spite of the advance in human
drugs, infectious diseases related to the emergence of
pathogens, are still major issues in public healthy
worldwide, especially in developing countries. The
widespread of antimicrobial resistance microbes has
been reported over the world that demands more
effective antimicrobial compounds. Despite the
impressive advance in producing antimicrobial
substances by chemical and bio-engineered synthesis,
nature particularly marine environment has still
considered as the richest source for new antimicrobial
compounds (Blunt et al., 2010). Novel antimicrobial
compounds from marine microbes have been
increasingly discovered in recent years (Du et al.,
2014; Habbu et al., 2016; Handayani et al., 2015). So
far, a great number of antimicrobial compounds have
been found in a handful of the one million different
microbial species (Brown et al., 2014).
Natural metabolites from marine fungi are
considered an important source for novel
Phan Thi Hoai Trinh et al.
730
antimicrobial compounds because of their abundant
fungal species diversity, their rich secondary
metabolites and the improvements in their genetic
breeding and fermentation processes (Li et al., 2014;
Du et al., 2014).
The Aspergillus genus has more than one
hundred species, and belongs to the Ascomycota
division, Deuteromycotina subdivision,
Hyphomycetes class, Moniliales order, Moniliaceae
family. The species are widely found in nature and
diverse in marine ecosystems, are well known for
producing antimicrobial and anticancer compounds,
bio- surfactants, etc. (Li, 2010). Thus, the
Aspergillus fungi have been an important source of
natural products useful for exploration in medicine,
agriculture and industry (Petersen et al., 2015).
As part of a continuing study to evaluate the
drug potential of marine-derived fungi from
Vietnam, we isolated and screened 100 fungal strains
from various marine habitats at Nhatrang Bay for
antimicrobial activity. Among them, the strain
Aspergillus flocculosus (A. flocculosus) 01NT.1.1.5
was isolated from the sponge Stylissa sp. exhibited
high activity against tested pathogens (Trinh et al.,
2018). Therefore, the strain was analyzed further for
causative secondary metabolites. As a result, one
new phomaligol A2 (1), together with three known
compounds, wasabidienone E (2) (Soga et al., 1987),
aspertetranone (3) (Wang et al., 2015) and
mactanamide (4) (Lorenz et al., 1998) were isolated
and identified from this fungus. Furthermore, the
isolated compounds were examined for antimicrobial
activity. Details of the isolation, structure
elucidation, and antibiotic activity of compounds 1–
4 are presented here.
MATERIALS AND METHODS
General experimental procedures
1D and 2D spectroscopic data were recorded on
a Varian Unity 500 NMR spectrometer (MCKinley,
Sparta, NJ). ESI-MS data were obtained on a
Shimadzu hybrid ion-trap time-of-flight mass
spectrometer (Shimadzu, Kyoto, Japan). HPLC was
conducted on a column 250 mm x 10 mm i.d., S-5
µm, 12 nm, YMC-Pack-ODS-A, with a PrimeLine
Binary pump with RI-101 Shodex, RI detector
(Shoko Scientific Co., Yokohama, Japan).
Fungal material
The fungus A. flocculosus 01NT.1.1.5 was
originally isolated from the sponge Stylissa sp. at
Nhatrang Bay, Vietnam, in February 2016. The
fungus was identified according to its gene sequence
of 28S rDNA (GenBank accession number
MG972941.1). A BLAST search results indicated
that the sequence was similar 100% to the sequence
of A. flocculosus NRRL 5224. The strain was named
as A. flocculosus 01NT.1.1.5 and currently preserved
in the Marine Microorganism Collection, Nhatrang
Institute of Technology Research and Application
(NITRA).
Figure 1. Sponge Stylissa sp. (A) and fungus A. flocculosus 01NT.1.1.5 (B).
A B
Journal of Biotechnology 16(4): 729-735, 2018
731
Fermentation, extraction and isolation
The fungal strain was grown stationary at 28oC
for 20 days in 45 Erlenmeyer flasks (500 mL), each
flask containing 20 g of rice, 20 mg of yeast extract,
10 mg of KH2PO4, and 40 mL of natural seawater
(Sobolevskaya et al., 2016).
At the end of the incubation period, mycelia and
media were homogenized and extracted with EtOAc.
The extract of the fungus was concentrated to dry
using rotary evaporators at 40oC. The residual
suspension (10 g) obtained from the culture of the
fungal strain was subjected to ODS open column
(200 mm x 50 mm i.d., C18) chromatography
followed by stepwise gradient elution with MeOH in
H2O (v/v) (20%, 40%, 60%, 80%, 100%, 2 L each)
as the eluent.
The fraction eluted with MeOH in H2O 40%-1
was utilized to purify compounds by analytical ODS
HPLC (column YMC-Pack-ODS-A, 250 mm x 10
mm i.d., 5 µm, flow rate 3 mL/min; RI detector)
using isocratic program with 15% ACN in H2O to
yield compounds 1 (9.7 mg) and 2 (45.9 mg).
The fraction eluted with MeOH in H2O 40%-3
was further purified by a preparative HPLC (column
YMC-Pack-ODS-A, 250 mm x 10 mm i.d., 5 µm,
flow rate 3 mL/min; RI detector) using isocratic
program with 22% ACN in H2O to yield compounds
3 (30.8 mg) and 4 (4.9 mg).
New phomaligol A2 (1): Yellow brown oil. ESI-MS
m/z 300.88 [M + H]+, calcd. for C14H20O7. The 1H
and 13C-NMR (CD3OD) was presented in Table 1.
Wasabidienone E (2): Yellow oil. ESI-MS m/z
312.02 [M + H]+, calcd. for C16H25O5N.
1H-NMR (500 MHz, CD3OD) δH, J (Hz): 5.29
(1H, s, H-4), 2.50 (1H, m, H-8), 1.45, 1.72 (2H, m,
H-9), 3.26 (2H, t, J = 8.5 Hz, H-10), 3.67 (2H, H-
11), 1.52 (3H, s, 2-Me), 3.94 (3H, s, 3-MeO), 1.69
(3H, s, 6-Me), 1.18 (3H, d, J = 10 Hz, 8-Me), 0.93
(3H, t, J = 15 Hz, 9-Me); 13C-NMR (125 MHz,
CD3OD) δC: 192.4 (C-1), 99.9 (C-2), 174.8 (C-3),
78.6 (C-4), 164.0 (C-5), 78.1 (C-6), 175.1 (C-7),
40.1 (C-8), 26.0 (C-9), 44.4 (C-10), 58.8 (C-11),
26.8 (2-Me), 55.2 (3-MeO), 5.9 (6-Me), 15.5 (8-Me),
10.5 (9-Me). These spectroscopic data were suitable
with the ones in the literature (Soga et al., 1987).
Aspertetranone D (3): Cream solid. ESI-MS m/z
435.11 [M - H]-, calcd. for C22H28O9.
1H-NMR (500 MHz, CD3OD) δH, J (Hz): 4.34
(1H, s, H-6), 2.72, 2.80 (2H, d, J = 17, 18 Hz, H-10),
2.04 (1H, m, H-11), 2.34 (1H, dd, J = 9, 9.5 Hz, H-
11a), 4.58 (1H, d, J = 9 Hz, H-12), 2.25 (3H, s, 3-
Me), 1.94 (3H, s, 4-Me), 1.40 (3H, s, 5a-Me), 1.33
(3H, s, 8-Meα), 1.37 (3H, s, 8-Meβ), 1.25 (3H, d, J =
7, 11-Me); 13C-NMR (125 MHz, CD3OD) δC: 164.5
(C-1), 157.7 (C-3), 107.7 (C-4), 163.6 (C-4a), 84.1
(C-5a), 73.3 (C-6), 75.5 (C-6a), 208.3 (C-7), 54.9
(C-8), 211.1 (C-9), 45.2 (C-10), 75.4 (C-10a), 39.2
(C-11), 39.8 (C-11a), 63.2 (C-12), 101.9 (C-12a),
15.8 (3-Me), 8.0 (4-Me), 16.8 (5a-Me), 24.4 (8-
Meα), 22.6 (8-Meβ), 9.9 (11-Me). These
spectroscopic data were suitable with the ones in the
literature (Wang et al., 2015).
Mactanamide (4): White powder. ESI-MS m/z
339.05 [M - H]-, calcd. for C19H20O4N2.
1H-NMR (500 MHz, CD3OD) δH, J (Hz): 2.84
(1H, dd, J = 11.5, 3.5 Hz, H-3), 4.21 (1H, m, H-6),
2.77, 3.11 (2H, dd, J = 7,5; 13,5/3,5; 13,5 Hz, H-7),
6.30 (1H, d, J = 7,5 Hz, H-10), 6.88 (1H, t, H-11),
6.30 (1H, d, H-12), 3.15, 3.18 (2H, dd, H-14), 7.26
(1H, br m, H-16), 7.12 (1H, br m, H-17), 7.25 (1H,
br m, H-18), 7.12 (1H, br m, H-19), 7.26 (1H, br m,
H-20), 3.02 (3H, s, H-21); 13C-NMR (125 MHz,
CD3OD) δC: 168.6 (C-1), 53.7 (C-3), 168.6 (C-4),
63.9 (C-6), 24.4 (C-7), 109.5 (C-8), 156.3 (C-9),
106.7 (C-10), 127.9 (C-11), 106.7 (C-12), 156.3 (C-
13), 35.8 (C-14), 134.8 (C-15), 128.3 (C-16), 129.5
(C-17), 127.4 (C-18), 129.5 (C-19), 128.3 (C-20),
32.1 (C-21). These spectroscopic data were suitable
for the ones in the literature (Lorenz et al., 1998).
Antibacterial assay
The minimum inhibitory concentrations (MICs)
of active compounds against seven pathogens were
determined by a dilution method (CLSI, 2016). First,
100 µL of Mueller Hinton Broth medium (MHB)
was dispensed into all wells of a microtitre plate.
Two-fold dilutions of the compounds in the range of
256-0.125 µg/mL were prepared in the plates.
Amoxicillin and cefotaxime were used as positive
controls. The turbidity of the microbial suspensions
was measured at 600 nm wavelength, and adjusted to
match the 0.5 McFarland standard (108 colony
forming units/mL). Subsequently, 5 µL of bacterial
culture was dispensed into each well 96-well plates.
Finally, the plates were incubated at 37oC for 18-36
hours, and the MIC values were inspected as the
lowest concentrations in which no growth could be
observed. Antimicrobial assay was performed at
least triplicate.
Phan Thi Hoai Trinh et al.
732
RESULTS AND DISCUSSION
The fungus was cultured for 20 days on rice
medium. The EtOAc extract of the culture was
purified by a combination of C18 gel column
chromatography and reversed-phase HPLC to yield
four individual compounds including one new
phomaligol A2 (1), together with three known
compounds, wasabidienone E (2), aspertetranone D
(3) and mactanamide (4).
Compound 1 was obtained as a yellow brown
oil. The ESI-MS spectrum showed a quasimolecular
ion peak at m/z 300.88 [M+H]+, corresponding to the
molecular formula of C14H20O7.
The 1H NMR spectrum of 1 (Table 1) exhibited
signals for two methyl groups of cyclohexen ring (δH
1.55/H-13; 1.66/H-14), a methoxyl group (δH
3.89/H-12), and an aromatic proton (δH 5.62/H-4).
Two olefinic carbons (δC 173.7/C-3 and 99.2/C-4),
three ketone carbons (δC 202.2/C-1, 192.6/C-5 and
175.6/C-7), two oxygenated carbons (δC 72.7/C-2
and 82.2/C-6), and a methoxy carbon (δC 56.3/C-12)
were observed in the 13C NMR data of 1 (Table 1).
The 1H NMR spectrum of 1 also showed additional
signals of two methyl groups (δH 1.22/H-10 and
1.23/ H-11), two methine protons (δH 2.46/H-8 and
3.84/H-9). The remaining six carbon signals were
attributed to a sec-butyl (δC 20.2/C-10, 12.1/C-11,
68.4/C-9, and 46.5/C-8) and two methyl groups (δC
22.7/C-14, 20.7/C-13).
The COSY spectrum showed coupling between
terminal methyl protons (δH 1.22/ H-10) and methine
proton (δH 3.84/H-9) which were coupled with a
methine proton at δH 2.46 (H-8), which in turn
coupled with a secondary methyl group (δH 1.23/H-
11) (Figure 3).
1 Wasabidienone E (2)
Aspertetranone D (3) Mactanamide (4)
Figure 2. Structures of compounds 1 - 4.
Journal of Biotechnology 16(4): 729-735, 2018
733
In the HMBC spectrum, correlations were
observed from the methyl protons H-10 (δH 1.22)
and H-11 (δH 1.23) to carbons C-8 (δC 46.5) and at
C-9 (δC 68.4). Furthermore, HMBC correlations from
H3-13 (δH 1.55) to C-1 (δC 201.1) and C-2 (δC 72.7),
from H3-14 (δH 1.66) to C-1 (δC 201.1), C-5 (δC
192.6) and C-6 (δC 82.2), and from H3-12 (δH 3.89)
to C-3 (δC 173.7). Methine protons at δH 2.46 (H-8)
showed HMBC correlations to the carbonyl carbon
at δC 68.4 (C-9) and δC 12.1 (C-11). Methine protons
at δH 3.84 (H-9) had HMBC correlations with C-11
(δC 12.1). Besides, HMBC spectrum also indicated
the correlations from an aromatic proton H-4 (δH
5.62) to carbons C-2 (δC 72.7), C-3 (δC 173.7), C-5
(δC 192.6) and C-6 (δC 82.2) (Figure 3).
Table 1. NMR data of compound 1.
Pos.
1 Phomaligol A (Elbandy et al., 2009)
δH, J (Hz) δC δH, J (Hz) δC
1 201.1 202.5
2 72.7 73.5
3 173.7 173.0
4 5.62 (1H, s) 99.2 5.56 (1H, s) 99.9
5 192.6 191.7
6 82.2 81.1
7 175.6 175.8
8 2.46 (1H, m) 46.5 2.50 (1H, m) 39.8
9 3.84 (1H, m) 68.4 1.73 (1H, m) 26.6
10 1.22 (3H, d, 6 Hz) 20.2 0.96 (3H, t, 7.5 Hz) 11.3
11 1.23 (3H, d, 7 Hz) 12.1 1.17 (3H, d, 7 Hz) 16.1
12 3.89 (3H, s) 56.3 3.87 (3H, s) 56.8
13 1.55 (3H, s) 20.7 1.65 (3H, s) 24.1
14 1.66 (3H, s) 22.7 1.70 (3H, s) 23.4
2-OH 3.65 (1H, s) 2.80 (1H, br s)
9-OH 3.58 (1H, s)
The 1H and 13C NMR spectrum of 1 were nearly
similar to that of phomaligol A, isolated from the
sponge-derived fungus Paecilomyces lilacinus,
except for the additional hydroxyl group located at
C-9 (δH 3.58/OH-9, δC 68.4/C-9) (Elbandy et al.,
2009). Thus, the compound 1 was assigned as a new
compound and named phomaligol A2.
Compounds 1–4 showed antimicrobial activity
on E. coli, P. aeruginosa, S. aureus, B. cereus, S.
faecalis, L. monocytogenes, and C. albicans with
various values of minimum inhibitory concentration
(MIC) (Table 2). Among these compounds, 1-3
exhibited antibiotic activities towards C. albicans
with MIC of 16 µg/mL, whereas compound 4
showed antifungal activity against C. albicans with
the MIC of 32 µg/mL. Similar report on the
compound mactanamide isolated from marine-
derived fungus Aspergillus sp., also demonstrated
antibiotic activity towards C. albicans (Lorenz et
al., 1998).
Figure 3. Key COSY and HMBC correlations of 1.
Phan Thi Hoai Trinh et al.
734
Table 2. Minimum inhibitory concentration (MIC, μg/mL) of compounds 1–4 against seven pathogens.
Compounds E.
coli
P.
aeruginosa
S.
aureus
L.
monocytogenes
B.
cereus
S.
faecalis
C.
albicans
1 64 16 128 32 128 32 16
2 64 16 64 64 128 32 16
3 64 16 64 32 64 32 16
4 128 16 64 > 256 64 32 32
Amoxcillin 8 128 0.25 0.25 > 256 > 256 256
Cefotaxime 0.25 4 0.5 64 64 4 > 256
Note: Amoxcillin and cefotaxime were positive drugs.
Compounds 1-4 also demonstrated prominent
antibacterial activity against P. aeruginosa (MIC 16
µg/mL), which were higher than that of the positive
control amoxicillin (with MIC value of 128 µg/mL).
Compound 4 did not illustrate antibacterial activity
against L. monocytogenes. In conclusion, sponge-
derived fungus A. flocculosus 01NT.1.1.5 might
produce antibacterial secondary metabolites towards
different microbes. It is believed that searching for
natural products synthesized by marine fungi could
be a promising way to combat the emerging of
pathogens.
CONCLUSION
From the ethyl acetate extract of culture medium
of a fungus A. flocculosus 01NT.1.1.5 isolated from
the sponge Stylissa sp. at Nhatrang Bay, we obtained
one new phomaligol A2 (1), together with three
known compounds, wasabidienone E (2),
aspertetranone D (3) and mactanamide (4). All of
these compounds showed antimicrobial activity
towards microorganisms with various values of
MICs. The results indicated that marine fungus A.
flocculosus 01NT.1.1.5 could produce natural
compounds against pathogens. The remaining
fractions and other bioactivities study of these
compounds are conducting in advance.
Acknowledgment: This study was supported by the
project grant from No.3 branch component of the
Project 47 (VAST.ĐA47.12/16-19).
REFERENCES
Blunt JW, Copp BR, Munro MH, Northcote PT, Prinsep
MR (2010) Marine natural products. Nat Prod Rep 27(2):
165-237.
Brown DG, Lister T, May-Dracka TL (2014) New natural
products as new leads for antibacterial drug discovery.
Bioorg Med Chem Lett 24(2): 413-418.
CLSI. Performance Standards for Antimicrobial
Susceptibility Testing, 2016, M100-S26.
Du FY, Zhang P, Li XM, Li CS, Cui CM, Wang BG
(2014) Cyclohexadepsipeptides of the isaridin class from
the marine-derived fungus Beauveria felina EN-135. J Nat
Prod 77(5): 1164–1169.
Elbandy M, Shinde PB, Hong J, Bae KS, Kim MA, Lee
SM, Jung JH (2009) α-Pyrones and yellow pigments from
the sponge-derived fungus Paecilomyces lilacinus. Bull
Korean Chem Soc 30(1): 188-192.
Habbu P, Warad V, Shastri R, Madagundi S, Kulkarni VH
(2016) Antimicrobial metabolites from marine
microorganisms. Chin J Nat Med 14(2): 101-116.
Handayani D, Ahdinur RF, Rustini R (2015) Antimicrobial
Activity of Endophytic Fungi from Marine Sponge
Haliclona fascigera. J Appl Pharm Sci 5(10): 154-156.
Li SM (2010) Prenylated indole derivatives from fungi:
structure diversity, biological activities, biosynthesis and
chemoenzymatic synthesis. Nat Prod Rep 27(1): 57–58.
Li X, Li XM, Xu GM, Li CS, Wang BG (2014)
Antioxidant metabolites from marine alga-derived fungus
Aspergillus wentii EN-48. Phytochem Lett 7: 120–123.
Lorenz P, Jensen PR, Fenical W (1998) Mactanamide, a
new fungistatic diketopiperazine produced by a marine
Aspergillus sp. Nat Prod Lett 12(1): 55-60.
Petersen LM, Kildgaard S, Jaspars M, Larsen TO (2015)
Aspiperidine oxide, a piperidine N-oxide from the
filamentous fungus Aspergillus indologenus. Tetrahedr
Lett 56(14): 1847–1850.
Sobolevskaya MP, Leshchenko EV, Hoai TP, Denisenko
VA, Dyshlovoy SA, Kirichuk NN, Khudyakova YV, Kim
NY, Berdyshev DV, Pislyagin EA, Kuzmich
AS, Gerasimenko AV, Popov RS, von Amsberg
G, Antonov AS, Afiyatullov SS (2016) Pallidopenillines:
Journal of Biotechnology 16(4): 729-735, 2018
735
Polyketides from the Alga-Derived Fungus Penicillium
thomii Maire KMM 4675. J Nat Prod 79(12): 3031-3038.
Soga O, Iwamoto H, Ota Y, Odoi M, Saito K, Takuwa A,
Nakayama M (1987) Wasabidienone-E, a new
cyclohexandienone derivative containing
hydroxyethylamino group, from potato culture solution of
Phoma wasabiae Yokogi. Chem Lett 16(5): 815-816.
Trinh PTH, Tien PQ, Ngoc NTD, Ly BM, Van TTT
(2018) Isolation and screening marine fungi with
antimicrobial activity from samples collected in Nha Trang
Bay, Vietnam. J Biotechnol 16(1): 181-187.
Wang Y, Qi S, Zhan Y, Zhang N, Wu AA, Gui F, Guo K,
Yang Y, Cao S, Hu Z, Zheng Z, Song S, Xu Q, Shen Y,
and Deng X (2015) Aspertetranones A−D, putative
meroterpenoids from the marine algal-associated fungus
Aspergillus sp. ZL0-1b14. J Nat Prod 78(10): 2405−2410.
HOẠT TÍNH KHÁNG SINH CỦA HỢP CHẤT TỰ NHIÊN TỪ CHỦNG ASPERGILLUS
FLOCCULOSUS 01NT.1.1.5 PHÂN LẬP TỪ BỌT BIỂN
Phan Thị Hoài Trinh1,4, Trần Thị Thanh Vân1,4, Bùi Minh Lý1,4, Byeoung Kyu Choi2, Hee Jae Shin2,
Jong Seok Lee2, Hyi Seung Lee2, Phí Quyết Tiến3,4
1Viện Nghiên cứu và Ứng dụng Công nghệ Nha Trang, Viện Hàn lâm Khoa học và Công nghệ Việt Nam
2Viện Khoa học và Công nghệ Hải dương Hàn Quốc, Busan, Hàn Quốc
3Viện Công nghệ Sinh học, Viện Hàn lâm Khoa học và Công nghệ Việt Nam
4Học viện Khoa học và Công nghệ, Viện Hàn lâm Khoa học và Công nghệ Việt Nam
TÓM TẮT
Các loài vi nấm Aspergillus được xem là nguồn quan trọng cho các hợp chất tự nhiên ứng dụng trong y
dược, nông nghiệp và công nghiệp. Trong tiến trình nghiên cứu của chúng tôi về các hợp chất kháng sinh mới
từ vi nấm biển, một hợp chất mới phomaligol A2 (1), cùng với ba hợp chất đã biết wasabidienone E (2),
aspertetranone D (3) và mactanamide (4) được thu nhận từ dịch chiết etyl acetate môi trường lên men chủng vi
nấm biển Aspergillus flocculosus (A. flocculosus) 01NT.1.1.5 phân lập từ loài bọt biển Stylissa sp. thu ở vịnh
Nha Trang, Việt Nam. Cấu trúc hoá học của các hợp chất này được xác định bởi phân tích dữ liệu phổ công
hưởng từ hạt nhân 1 chiều, 2 chiều và phổ khối, đồng thời so sánh với các dữ liệu tương ứng với các công trình
nghiên cứu trước đây. Bên cạnh đó, nghiên cứu cũng tiến hành đánh giá hoạt tính kháng sinh của các hợp chất
thu được đối với các chủng vi sinh gây bệnh bao gồm Escherichia coli (E. coli) ATCC 25922, Pseudomonas
aeruginosa (P. aeruginosa) ATCC 27853, Staphylococcus aureus (S. aureus) ATCC 25923, Bacillus cereus
(B. cereus) ATCC 11778, Streptococcus faecalis (S. faecalis) ATCC 19433, Listeria monocytogenes (L.
monocytogenes) ATCC 19111, and Candida albicans (C. albicans) ATCC 10231. Trong số các hợp chất này,
hợp chất 1-3 ức chế sự tăng trưởng của nấm men C. albicans với nồng độ ức chế tối thiểu (MIC) là 16 µg/mL.
Hoạt tính của các hợp chất này hiệu quả hơn khi so sánh với amoxicillin và cefotaxime (MIC > 256 µg/mL),
thuốc kháng sinh được sử dụng làm đối chứng dương. Bên cạnh đó, các hợp chất 1-4 cũng thể hiện hoạt tính
kháng các chủng vi khuẩn gây bệnh khác bao gồm P. aeruginosa và S. faecalis với MIC lần lượt 16 µg/mL và
32 µg/mL. Hợp chất 4 không có hoạt tính ức chế đối với chủng L. monocytogenes, trong khi các hợp chất 1-3
có khả năng kháng chủng này với MIC từ 32 đến 64 µg/mL. Bốn hợp chất thử nghiệm đều thể hiện hoạt tính
kháng khuẩn đối với chủng B. cereus và E. coli với các giá trị MIC 64-128 µg/mL. Đây là báo cáo đầu tiên về
các hợp chất có hoạt tính kháng sinh thu được từ chủng vi nấm biển A. flocculosus phân lập tại Việt Nam.
Keywords: Aspergillus flocculosus, aspertetranone D, hoạt tính kháng sinh, mactanamide, phomaligol A2,
wasabidienone E
Các file đính kèm theo tài liệu này:
hoat_tinh_khang_sinh_cua_hop_chat_tu_nhien_tu_chung_aspergil.pdf