Vật liệu sắt điện nền Pb(Zr,Ti)O3 đã và đang được ứng dụng rộng rãi trong các linh kiện
điện tử mặc dù vật liệu này đã bị cấm sử dụng do tính độc hại của nguyên tố chì (chiếm khoảng
~ 60 % khối lượng) đến sức khỏe và môi trường. Trong số các họ vật liệu sắt điện không chì
được nghiên cứu phát triển thì vật liệu sắt điện không chì Bi0.5Na0.5TiO3 được quan tâm do
chúng có các đặc trưng sắt điện và áp điện so sánh được với vật liệu nền Pb(Zr,Ti)O3. Trong báo
cáo này, vật liệu Bi0.5Na0.5TiO3 được chế tạo bằng phương pháp sol-gel. Các điều kiện ảnh
hưởng từ điều kiện công nghệ chế tạo như quá trình gel hóa, quá trình trung thiêu kết đến pha
kết tinh của vật liệu được khảo sát. Kết quả nghiên cứu cho thấy vật liệu sắt điện không chì
Bi0.5Na0.5TiO3 đơn pha cấu trúc khi hàm lượng Na bù trong quá trình gel hóa tối ưu khoảng 40
mol. và nhiệt độ nung tạo pha là trên 800 C trong khoảng thời gian 2 giờ ngoài không khí.
Kết quả phân tích phổ hấp thụ cho thấy độ rộng vùng cấm của vật liệu Bi0.5Na0.5TiO3 có giá trị
trong khoảng từ 3,01 - 3,18 eV.
8 trang |
Chia sẻ: honghp95 | Lượt xem: 457 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Influence of sintering temperature on phase formation and optical properties of lead-Free ferroelectric bi0.5na0.5tio3 materials - Le Thi Hai Thanh, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Journal of Science and Technology 54 (1A) (2016) 104-111
INFLUENCE OF SINTERING TEMPERATURE ON PHASE
FORMATION AND OPTICAL PROPERTIES OF LEAD-FREE
FERROELECTRIC BI0.5NA0.5TIO3 MATERIALS
Le Thi Hai Thanh
1, 3
, Dang Ba Tung
1
, Nguyen Hoang Viet
2
, Luong Huu Bac
1
,
Phung Quoc Bao
3
, Nguyen Hoang Tuan
1
, and Dang Duc Dung
1, *
1
School of Engineering Physics, Ha Noi University of Science and Technology,
1 Dai Co Viet road, Ha Noi, Viet Nam
2
School of Materials Science and Engineering, Hanoi University of Science and Technology,
1 Dai Co Viet road, Ha Noi, Viet Nam
3
Department of Quantum Optics, Faculty of Physics, VNU University of Science,
334 Nguyen Trai road, Ha Noi, Viet Nam
*
Email: dung.dangduc@hust.edu.vn
Received: 24 October 2015; Accepted for publication: 30 November 2015
ABSTRACT
Pb(Zr,Ti)O3 based ferroelectric materials have been widely used in electronic devices even
though they were banned due to the toxicity of lead on health and environment. Among the lead-
free ferromagnetic materials, Bi0.5Na0.5TiO3 has received much attention because their
ferroelectric and piezoelectric characteristics are comparable to Pb(Zr,Ti)O3. In this report,
Bi0.5Na0.5TiO3 was fabricated by sol-gel method. The influence of fabricating conditions such as
gelization, sintering temperature on crystallinity was studied. The result showed that
Bi0.5Na0.5TiO3 was in single phase when compenstation amount of Na in gelization is 40 mol%;
sintering temperature higher than 800
o
C and sintering time is 2 h. The bandgap of Bi0.5Na0.5TiO3
which estimated from absorption spectroscopy is in the range of 3.01 - 3.18 eV.
Keywords: Bi0.5Na0.5TiO3, sol-gel, optical properties, lead-free, ferroelectric.
1. INTRODUCTION
Pb(Zr,Ti)O3 based ferroelectric materials (PZT) have been widely used in daily life, science
and technology [1]. Although PZT has good ferroelectric and piezoelectric characteristics, PZT-
based materials have a serious problem due to the high amount of Pb (60 %) which can affect
ecosystem and human health. According to the World Health Organization (W.H.O) report, lead
has a harmful effect on children, especially on the mental development. This report also shows
that about 600000 new cases of child patients having fluence on the mental development,
143000 deaths are related to lead poisoning every year [2]. In Vietnam, according to the news of
the Ministry of Natural Resources and Environment, the environmental pollution related to
Influence of sintering temperature on phase formantion and
105
heavy-metals containing Pb in the traditional villages such as a lead recycling village of Dong
Mai, Chi Dao, Hung Yen (Vietnam) is quite alarming. The blood tests of 335 children in this
village show that 207 children have been lead poisoning [3]. Therefore, removing poisonous
elements in electronics devices is really necessary.
To encourage the development of the new ferroelectric material which is friendly
environmental and do not affect human health, many laws of ban and resctriction of using
electronics devices containing poisonous element such as Pb were enacted by EU, Japan, Korea
and China etc [4]. However, PZT-based ferroelectric materials have excellent ferroelectric and
piezoelectric properties which make it not be ready to replace by other lead-free materials. Jo’s
survey about the market of ferroelectric and piezoelectric ceramics is presented in Fig. 1 in
which the market share for PZT-based ceramics is very high, around 94.5%.The survey also
shows that the lead-free piezoelectric ceramics only makes up a very small market share for
applications [1].
From the upward tendency of lead-free piezoelectric ceramics, Bi0.5Na0.5TiO3 based
ceramics has been focused attention due to their properties which are comparable with
traditional materials based on PZT-based [4]. Lead-free ferroelectric Bi0.5Na0.5TiO3 ceramic was
fabricated for the first time by two Soviet scientists (Smolenskii and Agranovskaya) in 1959 [5].
The ferroelectric property of Bi0.5Na0.5TiO3 was announced by Smolenskii’s group [6].
Bi0.5Na0.5TiO3 has perovskite structure with a remanent polarization of 34 C/cm
2
at room
temperature and the Curie temperature of 320
o
C [6]. The theoritical calculation for
Bi0.5Na0.5TiO3 suggests this material has a wide direct bandgap of 1.97 eV [7]. The experimental
results from Parija et al. show that the bandgap is around 2.94 eV [8]. Another suggestion from
Wang et al. is that the bandgap varies in a range of 2.82 eV and 2.92 eV, depending on the
concentration of NaOH in hydrothermalization [9]. Kushawaha et al. found that Bi0.5Na0.5TiO3
has the good photocatalytic and antibacterial abilities [10]. Additionally, Ai et al. confirmed that
Bi0.5Na0.5TiO3 has a better detoxification of NOx compared to a commercial material of TiO2 P25
(Degussa) [11]. The ability to H2 evolution from water with an evolution rate of 325.4 molh
-
2
gcat
-1
by using a 500W Xe lamp was studied by Wang et al. [9]. Lin et al. found that the
photocatalytic property of Bi0.5Na0.5TiO3 can be improved by treatment of metyl orange [12].
.
Figure1. The survey of the market share for electronics devices using lead-free piezoelectric ceramics (a)
and using ferroelectric and piezoelectric materials in common [1] (License Number #3762260532932).
Recently, besides the study of ferroelectric, piezoelectric and insulating properties,
Bi0.5Na0.5TiO3 has been futher studied in the other directions as photocatalysis, water splitting
and antibacterial ability. This is due to the existence of spontaneous ferroelectric domains which
L. T. H. Thanh, Đ. B. Tùng, N. H. Việt, P. Q. Bảo, N. H. Tuấn, Đ. Đ. Dũng
106
can reduce the posibility of electron-hole pair recombination, making the photocatalytic
efficiency very high [13]. Kang et al. found that the phase formation, ferroelectronic and
insulating properties of Bi0.5Na0.5TiO3 film synthesized by sol-gel method strongly depended on
the primary ratio of Bi/Na because these elements are easy to evaporate during gelization and
annealing processes [14]. However, these reports about the evaporating amount of Na during
gelization,the influence of sintering temperture on the phase information and optical properties
of this material have not been performed in a systematic manner.
In this report, lead-free ferroelectric material Bi0.5Na0.5TiO3 was synthesized by sol-gel
method. The result shows that the single-phase Bi0.5Na0.5TiO3 material is obtained when the
compensating amount of Na is above 40% and the annealing temperature is higher than 800 C.
The bandgap of Bi0.5Na0.5TiO3 varies with the change of the Na amount and the annealing
temperature.
2. EXPERIMENT
Bi0.5Na0.5TiO3 was synthesized by sol-gel method in which the precursors are bismuth
nitrate (Bi(NO3)2.5H2O), sodium nitrate (NaNO3), tetraisopropoxytitanium (IV) C12H28O4Ti and
the solvents are acetic acid (CH3COOH) and acetylacetone (CH3COCH2COCH3). The
Bi(NO3)2.5H2O and NaNO3 materials were first dissolved in deionised water and acetic acid. The
solution was stirred with a magnetic stirrer at room temperature in 1 hour to completely
dissolved the salts of Bi(NO3)2.5H2O and NaNO3. When the solution became transparent, the
solvent of acetylacetone was added to prevent Bi
3+
ions from reverse precipitation and form
C12H28O4Ti-dissolved environment. The C12H28O4Ti amount was suitably calculated before
adding into the solution which was then stirred in 1 day until it became transparent. After that,
the solution was dried at a temperature of 110
o
C to form gel. Dried gel was annealed in air at
different temperatures from 500
o
C to 1000
o
C for 2 hour then furnace cooled. The Na residual
amount was varied from 0 to 50 mol% to investigate the influence on the phase information.
Structural phase of sample was studied by X-ray diffraction using the wavelength of CuKα
(1.5406 Å), the 2θ angles from 20 to 70o and the step of 0.02o. The morphology was monitored
by scanning electron microscope (SEM) and the optical properties were studied by UV-visible
absorption spectroscopy.
3. RESULT AND DISCUSSION
Figure 2 shows XRD pattern of Bi0.5Na0.5TiO3 sample annealed at 800 C in air for 2 h with
different compensated amount of Na. Bi0.5Na0.5TiO3 has a single phase with rhombohedral
structure when the Na amount is above 40 %. In case of amount of Na less than 40 %, the gel-
forming vaporization results in the lack of a necessary amount of Na, hence the new phase of
Bi2Ti2O7 is formed to. This observation is in a good agreement with the report of Kang et al.
[14]. In addition, when the Na amount in range of 10 - 30 mol%, other imputity phases are
observed and difficult to identify the origin of these phases.
The influence of sintering temperature on the phase formation was illustrated on XRD
patterns (Fig. 3) of Bi0.5Na0.5TiO3 with the Na amount of 40 mol% at different sintering
temperatures from 500 to 1000 C for 2 h in air. Fig. 3 shows that, after sintering at 500
o
C,
some diffraction peaks related to a parasite phase of Bi2Ti2O7 are observed in addition to the
peak of Bi0.5Na0.5TiO3 phase. The intensity of Bi0.5Na0.5TiO3-phase peak increases with an
increase of sintering temperature; meanwhile, the intensity of Bi2Ti2O7-phase peak decreases. At
Influence of sintering temperature on phase formantion and
107
temperature above 800
o
C, most of peaks related to Bi2Ti2O7 phase are removed and only some
peaks from Bi0.5Na0.5TiO3 are left. At 1000
o
C, no observation of parasite phase suggests that
Bi0.5Na0.5TiO3 is stable. As a result, the phase-formation temperature of Bi0.5Na0.5TiO3 should be
in range of 800 - 1000
o
C.
\
Figure2. XRD patterns of Bi0.5Na0.5TiO3sample annealed at 800 C for 2 hours in air with different
Na compensated amounts.
Figure 3. XRD patterns of Bi0.5Na0.5TiO3 sample with the Na amountof 40 mol at different
sintering temperatures from 500
o
C to 800
o
C for 2 hours in air.
The effect of sintering temperature on the morphology of Bi0.5Na0.5TiO3 having 40 mol%
Na amount was studied at different temperatures: 500 C, 600 C, 900 C and 1000 C, seen Fig
4(a)-(d). The result shows that the particle grain size is small and uniform. When increasing
sintering temperature to 600
o
C, particles have a tendency of forming cubic shape with larger
size as compared to the 500
o
C sintered sample. At 900
o
C, particles were sintered and cubic
structure was destroyed. This trend was observed more clearly at the sintering temperature above
1000
o
C. In conclusion, the sintering temrature plays a very important role in controlling the
structure of Bi0.5Na0.5TiO3 which influences on the Bi0.5Na0.5TiO3 development in applications
related to H2 splitting and also for photocatalysis [7].
L. T. H. Thanh, Đ. B. Tùng, N. H. Việt, P. Q. Bảo, N. H. Tuấn, Đ. Đ. Dũng
108
Figure 4. The morphology of Bi0.5Na0.5TiO3samples with the same Na amount of 40 mol% annealed at
(a) 500 C, (b) 600 C, (c) 900 C and (d) 1000 C for 2 h in air.
Figure 5. (a) absorption spectra of Bi0.5Na0.5TiO3 sample and (b) the dependence of ( h )
2
on the photon
energy (h ) corresponding to different Na amounts from 0 to 50 mol.%
Figure 5 shows absorption spectra of Bi0.5Na0.5TiO3 sample corresponding to different Na
amounts. From Fig. 5, the sample has an absorption edge of 420 nm when Na amount varies
from 10 to 40 mol%. In case of no Na compensation, beside absorption edge of 420 nm, there is
another absorption edge of 520 nm. In Bi0.5Na0.5TiO3 sample with 50 mol% Na compensated
amount, a new small absorption edge of 450 nm was detected. This appearance is expected to be
related to the absorption edge of Bi2Ti2O7 or contaminants in case of no or too high Na-
compensated amount. Fig. 6(b) shows the relation between ( hv)
2
and the photon energy (h ) in
Bi0.5Na0.5TiO3 samples corresponding to different Na-compensated amount varying in range of
0 - 50 mol%. The bandgap (Eg) is determined by interpolating the linear part of the plot of ( hv)
2
versus hv. The bandgap value is estimated around 3.05 - 3.18 eV.
Influence of sintering temperature on phase formantion and
109
Figure 6.(a) absorption spectra of Bi0.5Na0.5TiO3 sample and (b) the dependence of ( h )
2
on the photon
energy (h )corresponding to Na-compensated amount of 40 mol% at different temperature from 500
o
C to
1000
o
C for 2 hours in air.
Figure 6(a) presents absorption spectra of Bi0.5Na0.5TiO3 sample with Na-amount of 40
mol% corresponding to different sintering temperature from 500 C to 1000
o
C for 2 h in air.
One absorption edge of 350 nm was detected in sample sintered at 500 C. From XRD pattern
and absorption spectroscopy of Bi0.5Na0.5TiO3 with different Na compensated amount, this edge
may be the attribution of Bi2Ti2O7, or defects. When increasing sintering temperature, the
absorption edge shifts to the short wavelength, and the secondary absorption edge disappears.
This result is consistent with the microstructural analysis of the sintering temperature. Fig. 7(b)
depicts the photon-energy dependence of ( hv)
2
. The interpolated bandgap of samples sintered
at 500 C and 1000 C is 3.01 eV and 3.14 eV, respectively. These values are in a good
agreement with previous reports in which the bandgap of Bi0.5Na0.5TiO3 varies in range of 2.82-
2.94 eV [8-12].
4. CONCLUSION
Bi0.5Na0.5TiO3 was fabricated by sol-gel method. The influence of technological condition
such as the Na-compensated amount in gelization and the sintering temperature on the phase
formation and the optical properties was studied. The results suggest that the optimized
conditions are: Na-compensated amount in gelization of 40 mol% and the sintering temperature
range of 800 – 1000 oC for 2 h in air. The bandgap value varies from 3.01 to 3.18 eV.
Acknowledgement. This research is funded by Vietnam National Foundation for Science and Technology
Development (NAFOSTED) under grant number 103.02-2012.62.
REFERENCES
1. Jo W., Dittmer R., Acosta M., Zang J., Groh C., Sapper E., Wang K., and Rodel J. - Giant
electric-field-induced strains in lead-free ceramics for actuator applications-status and
prespective, J. Electroceram. 29 (2012) 71-93.
2. Report of World Health Organization, Lead poisoning and health, August 2015.
3. Vũ Vân - Giúp dân giải độc chì ở làng nghề Đông Mai, Môi trường và phát triển, Tài
nguyên và môi trường online, Ấn phẩm của Báo tài nguyên và Môi trường, tháng 5 năm
2015, Cơ quan ngôn luận của Bộ Tài nguyên và Môi trường.
L. T. H. Thanh, Đ. B. Tùng, N. H. Việt, P. Q. Bảo, N. H. Tuấn, Đ. Đ. Dũng
110
4. Quan N. D., Bac L. H., Thiet D. V., Hung V. N., and Dung D. D. - Current development
in lead-free Bi0.5(Na,K)0.5TiO3-based piezoelectric materials, Adv. Mater. Sci. Eng. 2014
(2014) Article ID 365391, and reference therein.
5. Smolenskii G. A., and Agraovskaya A. I. - Dielectric polarization of a series of
compounds of complex composition, Fizika TverdogoTela. 1 (1959) 1562-1572.
6. Smolenskii G. A., Isupv V. A., Afranovskaya A. I., and Krainik N. N. - New ferroelectrics
with complex compounds. IV, Fizika Tverdogo Tela. 2(1960) 2982-2985.
7. Mircholy B. F., and Moghadam H. G. - Study of electronic and optical properties of
Bi0.5Na0.5TiO3, BaTiO3, NaTiO3 crystals using full potential linear argumented plane wave
method, Optik 126 (2015)1505-1509.
8. Parija B., Badapanda T., Senthil V., Rout S. K., and Panigrahi S. - Diffuse phase
transition, piezoelectric and optical study of Bi0.5Na0.5TiO3 ceramic, Bull. Mater. Sci. 35
(2012) 197-202.
9. Wang L., and Wang W. - Photocatalytic hydrogen production from aqueous solutions over
novel Bi0.5Na0.5TiO3 microspheres, Inter. J. Hydrogen Eng. 37 (2012) 3041-3047.
10. Kushwaha H. S., Halder A., Jain D., and Vaish R. - Visible light-induced photocatalytic
and antibacterial activity of Li-doped Bi0.5Na0.45K0.5TiO3-BaTiO3 ferroelectric ceramics, J.
Electron. Mater. 44 (2015) 4334-4342.
11. Ai Z., Lu G., and Lee S. - Efficient photocatalytic removal of nitric oxide with
hydrothermal synthesized Na0.5Bi0.5TiO3 nanotubes, J. Alloys Compd. 613 (2014) 260-
266.
12. Li J., Wang G., Wang H., Tang C., Wang Y., Liang C., Cai W., and Zhang L. - In situ
self-asembly synthesis and photocatalytic performance of hierarchical Bi0.5Na0.5TiO3
micro/nanostructures, J. Mater. Chem. 19 (2009)2253-2258.
13. Lin L., Nan C. W., Wang J., He H., Zhai J., and Jiang L. - Photoluminescence of
nanosized Na0.5Bi0.5TiO3 synthesized by a sol-gel process, Mater. Lett. 58 (2004) 829-832.
14. Kang D. H., and Kang Y. H. - Dielectric and pyroelectric properties of lead-free sodium
bismuthtitanate thin films due to excess sodium and bismuth addition, J. Microelectron.
Packaging Soc. 20 (2013) 25-30.
TÓM TẮT
ẢNH HƯỞNG CỦA NHIỆT ĐỘ NUNG THIÊU KẾT ĐẾN VIỆC TẠO PHA VÀ TÍNH CHẤT
QUANG CỦA VẬT LIỆU SẮT ĐIỆN KHÔNG CHÌ Bi0.5Na0.5TiO3
Lê Thị Hải Thanh1, Đặng Bá Tùng1, Nguyễn Hoàng Việt2, Phùng Quốc Bảo3,
Nguyễn Hoàng Tuấn1, Đặng Đức Dũng1, *
1
Bộ môn Vật lý Đại cương, Viện Vật lý Kỹ thuật, Trường Đại học Bách khoa Hà Nội,
số 1 đường Đại Cồ Việt, Hà Nội
2
Viện Khoa học và Kỹ thuật Vật liệ , Trường Đại học Bách khoa Hà Nội,
số 1 đường Đại Cồ Việt, Hà Nội
3
Bộ môn Q ang lượng tử, Khoa Vật lý, Trường Đại học Khoa học tự nhiên,
Đại học Quốc gia Hà Nội, số 334 đường Nguyễn Trãi, Hà nội
*
Email: dung.dangduc@hust.edu.vn
Influence of sintering temperature on phase formantion and
111
Vật liệu sắt điện nền Pb(Zr,Ti)O3 đã và đang được ứng dụng rộng rãi trong các linh kiện
điện tử mặc dù vật liệu này đã bị cấm sử dụng do tính độc hại của nguyên tố chì (chiếm khoảng
~ 60 % khối lượng) đến sức khỏe và môi trường. Trong số các họ vật liệu sắt điện không chì
được nghiên cứu phát triển thì vật liệu sắt điện không chì Bi0.5Na0.5TiO3 được quan tâm do
chúng có các đặc trưng sắt điện và áp điện so sánh được với vật liệu nền Pb(Zr,Ti)O3. Trong báo
cáo này, vật liệu Bi0.5Na0.5TiO3 được chế tạo bằng phương pháp sol-gel. Các điều kiện ảnh
hưởng từ điều kiện công nghệ chế tạo như quá trình gel hóa, quá trình trung thiêu kết đến pha
kết tinh của vật liệu được khảo sát. Kết quả nghiên cứu cho thấy vật liệu sắt điện không chì
Bi0.5Na0.5TiO3 đơn pha cấu trúc khi hàm lượng Na bù trong quá trình gel hóa tối ưu khoảng 40
mol. và nhiệt độ nung tạo pha là trên 800 C trong khoảng thời gian 2 giờ ngoài không khí.
Kết quả phân tích phổ hấp thụ cho thấy độ rộng vùng cấm của vật liệu Bi0.5Na0.5TiO3 có giá trị
trong khoảng từ 3,01 - 3,18 eV.
Từ khóa: Bi0.5Na0.5TiO3, sol-gel, tính chất quang, sắt điện không chì.
Các file đính kèm theo tài liệu này:
- 11814_103810382055_1_sm_9598_2061461.pdf