For the piles driven at the LA‐1 Relocated site, the range of Case damping constants determined
varies between 0.30 and 0.43, with a mean of 0.37. Based on the table of recommended
values, this falls within the range of silt, though sand and clay were predominantly encountered
in the soil borings and CPT soundings. This raises the question of how to develop an accurate
estimate of the appropriate damping values for layered soils. Although the CAPWAP analysis
should help to locate the appropriate damping by minimizing the match quality, there are often
cases where the lowest computed match quality is not always the “best” solution. Therefore, it
is necessary to exercise good judgment when accepting CAPWAP results. Damping is a major
parameter in the CAPWAP model, having a significant effect on the computed static capacity.
Therefore, judgment regarding this parameter is especially necessary in those cases where the
lowest CAPWAP match quality is not necessarily the best solution. Additional research into
determining damping for layered soils would be beneficial in improving the engineer’s
confidence in situations where such judgment is necessary without having the luxury of static
load tests with which to calibrate.
141 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1679 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu In‐situ and nondestructive test methods applied to the design and construction of pile foundation projects in coastal louisiana, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ed on case study data taken from the
engineering design and construction phases of a bridge construction project. As a result,
sometimes the data are not ideal, compared to data from a controlled environment. For
example, it was not possible to perform CPT and soil borings at the exact same locations;
therefore, some of the comparisons between CPT and soil borings are not as exact as they
would be if the boring and CPT were performed alongside one another in a controlled test
environment.
It should also be noted that the evaluations made are only intended to encompass the data for
the specified case study at the specified subject site. Any extrapolation of the results to other
sites, especially those with different soil conditions, should be made with great care with regard
to the appropriateness of such an extrapolation.
6.2 CPT PREDICTION OF GRAIN SIZE DISTRIBUTION
Although it does not purport to predict grain size distribution, the statistical to fuzzy approach
to soil classification by Zhang and Tumay (1999) lends itself to an investigation as to its
applicability in that regard. In fact, the LTRC LPD‐CPT computer software presents the
statistical soil classification in such a way that it could be interpreted as grain size distribution.
The method uses CPT data to compute the probabilities of the soil type being sand, silt, or clay.
Clearly, knowledge of the percentages of these soils present in a sample, or the grain size
distribution, is more valuable than classifying the soil to a single category, such as clay or sand.
The root mean square error was used to compare grain size distributions as determined by
laboratory grain size analyses with the probabilities computed by the statistical approach.
Based on the results of the comparison of laboratory grain size analyses to CPT sounding data,
the statistical to fuzzy approach to soil classification does not appear to be suitable in predicting
grain size distribution. The research indicates that the statistical approach to classification
reasonably predicts grain size distribution when the soil is composed predominantly of sand.
However, the statistical approach does a poorer job of predicting grain size distribution as the
amount of clay increases. Interestingly, there does not appear to be a trend indicating that a
changing percentage of silt has any effect on the grain size prediction.
It should be noted that the cone penetrometer uses correlation to convert mechanical soil
properties (side friction and tip resistance) to soil classification. Therefore, it is possible that
these properties do not provide enough information to develop a full grain size distribution. It
is possible that utilizing the pore water pressure measurement would provide information that
is more valuable. However, Zhang and Tumay’s method does not use the pore water pressure
69
measurement; thus, a new method for predicting grain size distribution would need to be
developed. On the other hand, such a prediction may be impossible with the current
technology, given the fact that the CPT is primarily measuring mechanical soil properties, and
various grain size distributions may actually result in similar tip resistance and sleeve friction
measurements.
It should be noted that the data from the case study came from a real world engineering
project. As a result, it was not always practical to place CPT soundings directly adjacent to soil
borings. This resulted in the analyses being somewhat biased. Further research in a controlled
environment may be beneficial in eliminating this bias.
6.3 CPT PREDICTION OF PILE CAPACITY USING PORE WATER PRESSURE
The LPD‐CPT program also uses several methods to predict pile capacities using CPT data. None
of these methods considers the pore water pressure as part of any of the calculations. Fellenius
and Eslami (1997) presented a method to predict pile capacity, which incorporates the pore
water pressure measurement. Fellenius and Eslami (1997) present significant case study
history and demonstrate, for their case histories, that their method is more accurate than those
methods used by the LPD‐CPT software. However, none of their case studies was based on
data obtained in the coastal areas of Louisiana. Therefore, their CPTu pile capacity prediction
method was compared with the methods used in the LPD‐CPT program, and all methods were,
in turn, compared with full‐scale static load tests.
Based on the data obtained from the LA‐1 Relocated case study, the CPTu method generally
overpredicted pile capacity and had the largest standard deviation from the mean. However,
examining the predicted capacity versus depth plots, such as Figure 4.7, shows that the CPTu
method is generally consistent with the other methods until a sand layer is encountered. After
the sand layer, the predicted pile capacity for the CPTu method is significantly higher than the
other methods’ predictions. This would indicate that the method is predicting too much side
friction in the sand layer. In fact, Fellenius and Eslami (1997) do acknowledge that additional
calibration of the shaft correlation coefficient, which affects the predicted side friction, is
necessary. Therefore, it is possible that further calibration of this coefficient for the soils
present at the subject site would yield better results for the CPTu method. It should also be
noted that introduction of another measured parameter, the pore water pressure, introduces
another source of error into the computations.
6.4 DAMPING CONSTANT SELECTION
High‐strain dynamic testing is often used to verify static compressive pile capacities. For the LA‐
1 Relocated subject site, it was not possible to perform a multitude of static pile load tests.
Therefore, the high‐strain dynamic testing was performed on the piles selected for static load
testing in an attempt to calibrate the PDA. The argument is that the PDA can be used to verify
pile capacities once it has been calibrated to the static load test piles. This calibration is
beneficial because the PDA measures total resistance, which is comprised of dynamic resistance
and static resistance. In order to determine dynamic resistance, and thus remove it from the
70
equation, the damping in that soil must be known or approximated. By calibrating to a static
load test, one can determine the static resistance from the load test, the total resistance from
the PDA, and then back calculate the damping.
The literature recommends Case damping values of 0.1 to 0.3 in sand, 0.3 to 0.5 in silt, and 0.5
to 1.0 in clay. It thus follows that damping should be a material parameter. Therefore, for a
site with consistent soil conditions, it should be possible to determine reasonable damping
constants and then apply those for future dynamic testing on that site. Unfortunately the
recommended Case damping values are a general guideline at best, and do not consider
layered soils. Since sand and clay were present at the subject site, the PDA was calibrated to
several static load test piles to determine a range of applicable damping constants for the site.
For the piles driven at the LA‐1 Relocated site, the range of Case damping constants determined
varies between 0.30 and 0.43, with a mean of 0.37. Based on the table of recommended
values, this falls within the range of silt, though sand and clay were predominantly encountered
in the soil borings and CPT soundings. This raises the question of how to develop an accurate
estimate of the appropriate damping values for layered soils. Although the CAPWAP analysis
should help to locate the appropriate damping by minimizing the match quality, there are often
cases where the lowest computed match quality is not always the “best” solution. Therefore, it
is necessary to exercise good judgment when accepting CAPWAP results. Damping is a major
parameter in the CAPWAP model, having a significant effect on the computed static capacity.
Therefore, judgment regarding this parameter is especially necessary in those cases where the
lowest CAPWAP match quality is not necessarily the best solution. Additional research into
determining damping for layered soils would be beneficial in improving the engineer’s
confidence in situations where such judgment is necessary without having the luxury of static
load tests with which to calibrate.
71
REFERENCES
Abu‐Farsakh, M. Y., & Titi, H. H. (2004). Assessment of Direct CPT Methods for Predicting the
Ultimate Capacity of Friction Driven Piles. ASCE Journal of Geotechnical and Geoenvironmental
Engineering, Volume 130, No. 9 , 935‐944.
Bustamante, M., & Gianeselli, L. (1982). Pile Bearing Capacity Predictions by Means of Static
Penetrometer CPT. Proceedings of the 2nd European Symposium on Penetration Testing,
ESOPT‐II, Amsterdam, Vol. 2 , 493‐500.
Davisson, M. T. (1972). High Capacity Piles. Proceedings of Lecture Series on Innovations in
Foundation Construction, Illinois Section, Chicago, March 22 (pp. 81‐112). New York: American
Society of Civil Engineers.
de Ruiter, J., & Beringen, F. L. (1979). Pile Foundations for Large North Sea Structures. Marine
Geotechnology, Vol. 3, No. 3 , 267‐314.
Douglas, J. B., & Olsen, R. S. (1981). Soil Classification Using Electric Cone Penetrometer.
Symposium on Cone Penetration Testing and Experience (pp. 209‐227). St. Louis: Geotechnical
Engineering Division, ASCE.
Fellenius, B. H., & Eslami, A. (1997). Pile Capacity by Direct CPT and CPTu Methods Applied to
102 Case Histories. Canadian Geotechnical Journal, Vol. 34 , 886‐904.
Fellenius, B. H., & Eslami, A. (2000). Soil Profile Interpreted from CPTu Data. Year 2000
Geotechnics. Geotechnical Engineering Conference, Asian Institute of Technology. Asian
Institute of Technology.
Gagliano, S. (2004). Evaluation of Geological Fault Hazards Along Proposed Alignment of
Highway LA. 1, Golden Meadow to Fourchon, LA.
John, C. J. (2006). Generalized Geologic Map of Louisiana. Baton Rouge, LA: Louisiana
Geological Survey.
Kreyszig, E. (1999). Advanced Engineering Mathematics ‐ Eighth Edition. New York, NY: John
Wiley & Sons, Inc.
LA1 Coalition. (2008). LA1 Coalition. Retrieved April 9, 2008, from LA‐1 Coalition:
LADOTD. (2008). LA‐1 Improvements. Retrieved May 31, 2008, from
Lewis, C. L. (1999). Analysis of Axial STATNAMIC Testing by the Segmental Unloading Point
Method, Master of Science Thesis submitted to the University of South Florida. Tampa.
72
Loren C. Scott & Associates. (2008). The Economic Impacts of Port Fourchon on the National and
Houma MSA Economies. Economic Impact Study.
Lunne, T., Robertson, P., & Powell, J. (1997). Cone Penetration Testing in Geotechnical Practice.
London, UK: Blackie Academic & Professional.
Makredes, H. S., & Likins, G. E. (1982). Bearing Capacity of Piles from Dynamic Measurements.
Proceedings of the Seventh Southeast Asian Geotechnical Conference, 22‐26 November. Hong
Kong.
Pile Dynamics, Inc. (2003). PDA‐W Manual of Operation. Cleveland, OH: Pile Dynamics, Inc.
Rausche, F., Goble, G. G., & Likins, G. E. (1985, January). Dynamic Determination of Pile
Capacity. ASCE Journal of Geotechnical Engineering, Vol. 111, No. 3 , 367‐383.
Rausche, F., Moses, F., & Goble, G. (1972). Soil Resistance Predictions from Pile Dynamics.
Journal of the Soil Mechanics and Foundations Division, ASCE .
Robertson, P. K. (1990). Soil Classification Using the Cone Penetration Test. Canadian
Geotechnical Journal, Vol. 27, No. 1 , 151‐158.
Robertson, P. K., & Campanella, R. G. (1983). Interpretation of Cone Penetration Tests.
Canadian Geotechnical Journal, Vol. 20, No. 4 .
Robertson, P. K., Campanella, R. G., Davies, M. P., & Sy, A. (1988). Axial Capacity of Driven Piles
in Deltaic Soils Using CPT. Penetration Testing 1988, ISOPT‐1, DeRuiter (ed.) , 919‐928.
Robertson, P. K., Campanella, R. G., Gillespie, D., & Grieg, J. (1986). Use of Piezometer Cone
Data. Proceedings of American Society of Civil Engineers, In‐Situ 86 Specialty Conference, Edited
by S. Clemence, June 23 ‐ 25, Geotechnical Special Publication, (pp. 1263‐1280). Blacksburg.
Saxena, K. R., & Sharma, V. M. (2003). In‐situ Characterization of Soils. Taylor and Francis.
Schmertmann, J. H. (1978). Guidelines for Cone Penetration Test, Performance and Design. U.S.
Department of Transportation Report No. FHWA‐TS‐78‐209, Washington, D.C.
Syms, F. H., & Lewis, M. R. (2001). Calibration of the Piezocone Penetrometer Test for Predicting
Soil Character. WSRC‐MS‐2001‐00887, U.S. Department of Energy Contract No. DE‐AC09‐
96SR18500, Aiken, SC.
Terzaghi, K. (1956). Variety of Submarine Slope Failures. Proceedings of the Eighth Texas
Conference on Soil Mechanics and Foundation Engineering (p. 36). The University of Texas
Bureau of Engineering Research.
73
Titi, H. H., & Abu‐Farsakh, M. Y. (1999). Evaluation of Bearing Capacity of Piles from Cone
Penetration Test Data. Baton Rouge, LA: Louisiana Department of Transportation and
Development.
Tsai, C. N., & Boutwell, G. P. (2004). Geotechnical Interpretation Report: Phase 1A, LA‐1
Relocation. Baton Rouge: Soil Testing Engineers, Inc.
Tsai, C. N., & Boutwell, G. P. (2005). Geotechnical Interpretation Report: Phases 1B and 1C, LA‐1
Relocation. Baton Rouge: Soil Testing Engineers, Inc.
Tumay, M. T., Abu‐Farsakh, M. Y., & Zhang, Z. (2008). From Theory to Implementation of a CPT‐
Based Probabilistic and Fuzzy Soil Classification. Electronic Journal of Geotechnical Engineering,
Vol. 13 .
Vos, J. D. (1982). The Practical Use of CPT in Soil Profiling. Proceedings of the Second European
Symposium on Penetration Testing, ESOPT‐2, May 24‐27, Vol. 2, (pp. 933‐939). Amsterdam.
Wroth, C. P. (1988). Penetration Testing – A More Rigorous Approach to Interpretation.
Proceedings, 1st International Symposium on Penetration Testing, Penetration Testing 1988,
ISOPT‐1, Vol. 1, (pp. 303‐311). Orlando.
Zhang, Z. (1994). Use of Uncertainty Methodology in Identification and Classification of Soils
Based Upon CPT, a Ph.D dissertation. Baton Rouge, LA: Louisiana State University.
Zhang, Z., & Tumay, M. T. (1999). Statistical to Fuzzy Approach Toward CPT Soil Classification.
Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125 , 179‐186.
74
APPENDIX A. TABULATED RMSE TRIALS
This appendix presents the trial calculations to determine the least root mean square error for
comparison of grain size analyses to CPT classification:
TABLE A.1: RMSE TRIAL CALCULATIONS FOR B‐3, 11.59 TO 12.2 M
B‐3 and CPT 113+00, Sample Depth: 11.59 m to 12.2 m
Depths (m) Sand Silt Clay RMS
Lab GSA: 11.59 12.20 50.8 38.0 11.0
Best Match: 10.67 11.28 58.2 32.4 9.4 6.5
CPT Trials: 8.54 9.15 0.4 3.8 95.9 43.1
8.84 9.45 0.4 6.0 93.6 42.2
9.15 9.76 0.4 4.8 94.8 42.7
9.45 10.06 0.4 4.6 95.0 42.8
9.76 10.37 6.0 15.3 78.7 35.5
10.06 10.67 30.0 27.4 42.6 16.5
10.37 10.98 41.7 43.3 15.1 7.5
10.67 11.28 58.2 32.4 9.4 6.5
10.98 11.59 74.2 24.1 1.7 19.2
11.28 11.89 70.3 26.4 3.3 16.0
11.59 12.20 70.9 25.8 3.3 16.6
11.89 12.50 69.3 27.4 3.3 15.1
12.20 12.80 71.5 27.2 1.3 16.5
12.50 13.11 60.3 35.2 4.5 7.0
12.80 13.41 37.2 43.3 19.4 10.3
13.11 13.72 15.5 48.3 36.1 26.0
13.41 14.02 6.2 45.0 48.8 32.0
13.72 14.33 6.1 42.2 51.7 31.8
14.02 14.63 3.9 28.2 67.9 33.9
14.33 14.94 3.4 22.2 74.4 35.3
14.63 15.24 3.5 25.1 71.4 34.7
75
TABLE A.2: RMSE TRIAL CALCULATIONS FOR B‐4, 1.83 TO 2.44 M
B‐4 and CPT 113+00, Sample Depth: 1.83 m to 2.44 m
Depths (m) Sand Silt Clay RMS
Lab GSA: 1.83 2.44 90.5 7.4 2.2
Best Match: 3.35 3.96 31.0 37.6 31.4 47.1
CPT Trials: 0.30 0.91 1.8 21.9 76.3 63.6
0.61 1.22 0.9 9.9 89.2 63.3
0.91 1.52 0.4 1.8 97.8 63.8
1.22 1.83 7.1 21.9 71.0 59.9
1.52 2.13 24.9 39.2 35.9 51.6
1.83 2.44 36.1 54.3 9.6 50.8
2.13 2.74 32.2 47.5 20.3 50.0
2.44 3.05 16.1 34.7 49.2 56.0
2.74 3.35 3.0 13.0 84.0 61.9
3.05 3.66 20.2 19.1 60.8 50.4
3.35 3.96 31.0 37.6 31.4 47.1
3.66 4.27 34.3 52.9 12.8 51.1
3.96 4.57 17.6 46.2 36.2 58.4
4.27 4.88 7.1 25.1 67.8 60.2
4.57 5.18 3.6 17.0 79.5 61.8
4.88 5.49 5.9 29.8 64.3 61.8
5.18 5.79 8.7 47.4 43.9 64.4
5.49 6.10 4.2 31.4 64.4 63.3
5.79 6.40 3.0 18.7 78.3 62.4
6.10 6.71 1.0 9.0 90.0 63.3
6.40 7.01 15.4 28.4 56.2 55.1
76
TABLE A.3: RMSE TRIAL CALCULATIONS FOR B‐23, 3.96 TO 4.57 M
B‐23 and CPT 23, Sample Depth: 3.96 m to 4.57 m
Depths (m) Sand Silt Clay RMS
Lab GSA: 3.96 4.57 87.9 10.9 1.0
Best Match: 3.66 4.27 61.2 37.2 1.6 26.5
CPT Trials: 0.91 1.52 1.8 24.1 74.1 61.6
1.22 1.83 3.2 36.3 60.5 62.5
1.52 2.13 10.9 46.4 42.7 59.9
1.83 2.44 11.0 39.8 49.2 58.1
2.13 2.74 8.5 27.9 63.6 57.4
2.44 3.05 1.0 13.9 85.1 61.5
2.74 3.35 11.4 32.5 56.1 56.2
3.05 3.66 30.0 41.5 28.4 46.3
3.35 3.96 55.3 41.6 3.0 31.7
3.66 4.27 61.2 37.2 1.6 26.5
3.96 4.57 56.4 40.9 2.7 30.8
4.27 4.88 41.1 46.0 12.8 41.4
4.57 5.18 19.3 32.1 48.6 50.8
4.88 5.49 7.2 18.6 74.2 57.3
5.18 5.79 0.4 10.1 89.4 61.8
5.49 6.10 0.8 18.8 80.5 61.9
5.79 6.40 1.2 22.1 76.7 61.8
6.10 6.71 1.1 15.9 83.0 61.5
6.40 7.01 0.5 6.0 93.5 61.9
6.71 7.32 0.4 1.8 97.8 62.2
7.01 7.62 0.4 1.8 97.8 62.2
77
TABLE A.4: RMSE TRIAL CALCULATIONS FOR B‐23, 10.06 TO 10.67 M
B‐23 and CPT 23, Sample Depth: 10.06 m to 10.67 m
Depths (m) Sand Silt Clay RMS
Lab GSA: 10.06 10.67 84.2 16.0 0.0
Best Match: 11.59 12.20 80.6 18.8 0.6 3.2
CPT Trials: 7.01 7.62 0.4 1.8 97.8 60.1
7.32 7.93 0.4 4.6 95.0 59.8
7.62 8.23 0.5 8.2 91.3 59.4
7.93 8.54 0.5 8.2 91.3 59.4
8.23 8.84 0.5 7.7 91.9 59.5
8.54 9.15 17.6 23.6 58.9 47.4
8.84 9.45 52.0 27.7 20.3 24.2
9.15 9.76 73.8 23.5 2.7 9.0
9.45 10.06 74.5 15.3 10.2 6.8
9.76 10.37 66.1 21.7 12.2 13.4
10.06 10.67 66.4 21.4 12.1 13.1
10.37 10.98 92.4 7.5 0.0 8.4
10.67 11.28 89.7 10.0 0.2 5.8
10.98 11.59 76.6 22.4 1.0 7.0
11.28 11.89 73.1 25.9 1.0 10.5
11.59 12.20 80.6 18.8 0.6 3.2
11.89 12.50 56.2 15.3 28.5 19.8
12.20 12.80 24.6 26.5 48.9 42.8
12.50 13.11 5.1 31.9 63.1 57.1
12.80 13.41 3.8 30.3 65.8 57.7
13.11 13.72 4.3 36.8 58.9 58.3
78
TABLE A.5: RMSE TRIAL CALCULATIONS FOR B‐23, 13.11 TO 13.72 M
B‐23 and CPT 23, Sample Depth: 13.11 m to 13.72 m
Depths (m) Sand Silt Clay RMS
Lab GSA: 13.11 13.72 86.5 13.3 0.1
Best Match: 10.67 11.28 89.7 10.0 0.2 3.2
CPT Trials: 10.06 10.67 66.4 21.4 12.1 15.3
10.37 10.98 92.4 7.5 0.0 5.8
10.67 11.28 89.7 10.0 0.2 3.2
10.98 11.59 76.6 22.4 1.0 9.5
11.28 11.89 73.1 25.9 1.0 13.0
11.59 12.20 80.6 18.8 0.6 5.7
11.89 12.50 56.2 15.3 28.5 21.5
12.20 12.80 24.6 26.5 48.9 44.8
12.50 13.11 5.1 31.9 63.1 59.1
12.80 13.41 3.8 30.3 65.8 59.7
13.11 13.72 4.3 36.8 58.9 60.5
13.41 14.02 4.5 38.3 57.2 60.6
13.72 14.33 3.9 38.8 57.3 61.2
14.02 14.63 2.9 34.9 62.2 61.1
14.33 14.94 2.0 28.8 69.3 60.8
14.63 15.24 1.3 24.1 74.5 60.8
14.94 15.55 2.1 27.5 70.5 60.6
15.24 15.85 5.3 37.5 57.2 59.9
15.55 16.16 5.5 38.4 56.0 60.0
15.85 16.46 5.5 38.0 56.5 59.9
16.16 16.77 3.4 37.1 59.6 61.2
79
TABLE A.6: RMSE TRIAL CALCULATIONS FOR B‐23, 16.16 TO 16.77 M
B‐23 and CPT 23, Sample Depth: 16.16 m to 16.77 m
Depths (m) Sand Silt Clay RMS
Lab GSA: 16.16 16.77 72.9 19.4 7.6
Best Match: 17.38 17.99 10.3 31.5 58.2 45.1
CPT Trials: 13.11 13.72 4.3 36.8 58.9 50.0
13.41 14.02 4.5 38.3 57.2 50.2
13.72 14.33 3.9 38.8 57.3 50.7
14.02 14.63 2.9 34.9 62.2 50.7
14.33 14.94 2.0 28.8 69.3 50.6
14.63 15.24 1.3 24.1 74.5 50.8
14.94 15.55 2.1 27.5 70.5 50.4
15.24 15.85 5.3 37.5 57.2 49.5
15.55 16.16 5.5 38.4 56.0 49.5
15.85 16.46 5.5 38.0 56.5 49.5
16.16 16.77 3.4 37.1 59.6 50.7
16.46 17.07 3.4 37.2 59.4 50.7
16.77 17.38 7.4 34.7 57.9 47.6
17.07 17.68 9.2 27.6 63.2 45.4
17.38 17.99 10.3 31.5 58.2 45.1
17.68 18.29 9.0 44.4 46.6 48.5
17.99 18.60 7.7 49.8 42.5 50.9
18.29 18.90 6.3 45.7 48.1 50.7
18.60 19.21 4.3 40.4 55.4 50.8
18.90 19.51 4.1 40.1 55.8 50.8
19.21 19.82 3.8 39.3 56.8 50.8
80
TABLE A.7: RMSE TRIAL CALCULATIONS FOR B‐23, 19.21 TO 19.82 M
B‐23 and CPT 23, Sample Depth: 19.21 m to 19.82 m
Depths (m) Sand Silt Clay RMS
Lab GSA: 19.21 19.82 81.6 17.4 1.0
Best Match: 17.38 17.99 10.3 31.5 58.2 51.4
CPT Trials: 16.16 16.77 3.4 37.1 59.6 57.0
16.46 17.07 3.4 37.2 59.4 57.0
16.77 17.38 7.4 34.7 57.9 53.9
17.07 17.68 9.2 27.6 63.2 51.7
17.38 17.99 10.3 31.5 58.2 51.4
17.68 18.29 9.0 44.4 46.6 54.7
17.99 18.60 7.7 49.8 42.5 57.1
18.29 18.90 6.3 45.7 48.1 56.9
18.60 19.21 4.3 40.4 55.4 57.0
18.90 19.51 4.1 40.1 55.8 57.1
19.21 19.82 3.8 39.3 56.8 57.1
19.51 20.12 3.5 37.9 58.5 57.1
19.82 20.43 2.6 33.8 63.6 57.0
20.12 20.73 2.1 30.7 67.2 57.0
20.43 21.04 2.0 30.4 67.6 57.0
20.73 21.34 2.4 32.5 65.1 57.0
21.04 21.65 3.3 36.9 59.8 57.1
21.34 21.95 3.8 39.6 56.5 57.2
21.65 22.26 3.7 39.2 57.1 57.2
21.95 22.56 3.6 38.4 57.9 57.1
22.26 22.87 5.4 42.2 52.4 56.6
81
TABLE A.8 RMSE TRIAL CALCULATIONS FOR B‐23, 22.26 TO 22.87 M
B‐23 and CPT 23, Sample Depth: 22.26 m to 22.87 m
Depths (m) Sand Silt Clay RMS
Lab GSA: 22.26 22.87 2.4 89.3 8.2
Best Match: 22.56 23.17 15.3 46.6 38.1 31.5
CPT Trials: 19.21 19.82 3.8 39.3 56.8 35.4
19.51 20.12 3.5 37.9 58.5 36.3
19.82 20.43 2.6 33.8 63.6 39.3
20.12 20.73 2.1 30.7 67.2 41.5
20.43 21.04 2.0 30.4 67.6 41.7
20.73 21.34 2.4 32.5 65.1 40.2
21.04 21.65 3.3 36.9 59.8 37.1
21.34 21.95 3.8 39.6 56.5 35.2
21.65 22.26 3.7 39.2 57.1 35.5
21.95 22.56 3.6 38.4 57.9 36.0
22.26 22.87 5.4 42.2 52.4 33.4
22.56 23.17 15.3 46.6 38.1 31.5
22.87 23.48 15.4 41.2 43.4 35.2
23.17 23.78 22.7 38.6 38.7 38.6
23.48 24.09 19.2 34.2 46.6 40.7
23.78 24.39 44.9 34.5 20.6 49.0
24.09 24.70 37.2 27.6 35.2 50.1
24.39 25.00 33.1 40.0 26.8 41.1
24.70 25.30 32.3 50.0 17.6 34.9
25.00 25.61 26.6 48.5 24.9 33.6
25.30 25.91 31.7 45.9 22.4 37.0
82
TABLE A.9: RMSE TRIAL CALCULATIONS FOR B‐23, 28.35 TO 28.96 M
B‐23 and CPT 23, Sample Depth: 28.35 m to 28.96 m
Depths (m) Sand Silt Clay RMS
Lab GSA: 28.35 28.96 1.8 90.0 8.2
Best Match: 27.74 28.35 8.4 51.5 40.1 27.6
CPT Trials: 25.30 25.91 31.7 45.9 22.4 37.6
25.61 26.22 40.9 40.1 18.9 44.8
25.91 26.52 51.6 38.8 9.6 50.5
26.22 26.83 47.9 37.1 15.0 49.6
26.52 27.13 33.3 34.6 32.1 45.0
26.83 27.44 9.9 39.6 50.4 36.1
27.13 27.74 6.2 44.2 49.6 32.5
27.44 28.05 7.8 50.1 42.1 28.5
27.74 28.35 8.4 51.5 40.1 27.6
28.05 28.66 7.1 48.5 44.4 29.5
28.35 28.96 6.3 47.0 46.7 30.6
28.66 29.27 6.5 47.7 45.8 30.1
28.96 29.57 5.9 45.6 48.6 31.5
29.27 29.88 5.1 43.6 51.2 32.8
29.57 30.18 5.1 43.8 51.1 32.7
29.88 30.49 4.8 43.1 52.1 33.2
30.18 30.79 4.8 43.2 51.9 33.1
30.49 31.10 4.3 41.4 54.2 34.4
30.79 31.40 4.1 40.5 55.4 35.0
31.10 31.71 4.2 40.8 55.0 34.8
31.40 32.01 4.9 43.3 51.8 33.0
83
TABLE A.10: RMSE TRIAL CALCULATIONS FOR B‐33, 11.89 TO 12.50 M
B‐33 and CPT 261+00, Sample Depth: 11.89 m to 12.5 m
Depths (m) Sand Silt Clay RMS
Lab GSA: 11.89 12.50 76.5 15.8 5.9
Best Match: 11.89 12.50 78.1 20.8 1.2 3.7
CPT Trials: 8.84 9.45 35.6 27.0 37.4 30.0
9.15 9.76 63.8 19.7 16.5 9.4
9.45 10.06 83.3 16.4 0.2 4.9
9.76 10.37 86.8 13.0 0.2 7.6
10.06 10.67 86.5 13.1 0.4 7.3
10.37 10.98 55.5 21.4 23.1 15.3
10.67 11.28 42.3 33.1 24.5 27.1
10.98 11.59 58.9 24.5 16.6 13.8
11.28 11.89 86.0 13.5 0.5 6.9
11.59 12.20 90.4 9.6 0.0 10.8
11.89 12.50 78.1 20.8 1.2 3.7
12.20 12.80 56.9 33.4 9.7 18.6
12.50 13.11 37.3 42.9 19.8 33.7
12.80 13.41 21.3 30.0 48.7 40.3
13.11 13.72 11.8 24.2 64.1 46.2
13.41 14.02 2.1 26.8 71.1 53.2
13.72 14.33 1.9 23.3 74.9 53.0
14.02 14.63 2.1 25.5 72.4 53.1
14.33 14.94 4.7 27.7 67.5 51.4
14.63 15.24 6.1 34.7 59.1 51.5
14.94 15.55 4.0 36.4 59.6 53.3
84
TABLE A.11: RMSE TRIAL CALCULATIONS FOR B‐33, 14.94 TO 15.55 M
B‐33 and CPT 261+00, Sample Depth: 14.94 m to 15.55 m
Depths (m) Sand Silt Clay RMS
Lab GSA: 14.94 15.55 27.5 49.7 22.8
Best Match: 12.50 13.11 37.3 42.9 19.8 8.5
CPT Trials: 11.89 12.50 78.1 20.8 1.2 41.2
12.20 12.80 56.9 33.4 9.7 23.8
12.50 13.11 37.3 42.9 19.8 8.5
12.80 13.41 21.3 30.0 48.7 14.6
13.11 13.72 11.8 24.2 64.1 21.2
13.41 14.02 2.1 26.8 71.1 24.2
13.72 14.33 1.9 23.3 74.9 26.0
14.02 14.63 2.1 25.5 72.4 24.8
14.33 14.94 4.7 27.7 67.5 22.4
14.63 15.24 6.1 34.7 59.1 18.4
14.94 15.55 4.0 36.4 59.6 19.1
15.24 15.85 4.0 39.6 56.4 18.1
15.55 16.16 6.7 43.5 49.8 15.3
15.85 16.46 7.3 40.7 52.0 15.6
16.16 16.77 13.5 46.4 40.1 10.1
16.46 17.07 11.3 47.6 41.2 11.6
16.77 17.38 9.5 42.4 48.1 13.7
17.07 17.68 3.7 36.7 59.6 19.2
17.38 17.99 3.3 35.2 61.5 19.9
17.68 18.29 4.9 39.7 55.5 17.5
17.99 18.60 6.7 45.9 47.5 15.0
85
TABLE A.12: RMSE TRIAL CALCULATIONS FOR B‐33, 17.99 TO 18.60 M
B‐33 and CPT 261+00, Sample Depth: 17.99 m to 18.6 m
Depths (m) Sand Silt Clay RMS
Lab GSA: 17.99 18.60 66.1 23.9 10.0
Best Match: 16.16 16.77 13.5 46.4 40.1 40.4
CPT Trials: 14.94 15.55 4.0 36.4 59.6 44.8
15.24 15.85 4.0 39.6 56.4 45.3
15.55 16.16 6.7 43.5 49.8 44.2
15.85 16.46 7.3 40.7 52.0 43.2
16.16 16.77 13.5 46.4 40.1 40.4
16.46 17.07 11.3 47.6 41.2 42.2
16.77 17.38 9.5 42.4 48.1 42.1
17.07 17.68 3.7 36.7 59.6 45.0
17.38 17.99 3.3 35.2 61.5 45.1
17.68 18.29 4.9 39.7 55.5 44.7
17.99 18.60 6.7 45.9 47.5 44.8
18.29 18.90 8.2 48.0 43.8 44.3
18.60 19.21 7.9 46.5 45.7 44.1
18.90 19.51 6.1 45.4 48.6 45.1
19.21 19.82 5.8 44.7 49.5 45.1
19.51 20.12 3.6 37.6 58.8 45.2
19.82 20.43 2.6 33.1 64.3 45.3
20.12 20.73 1.7 28.6 69.7 45.6
20.43 21.04 1.7 28.6 69.7 45.6
20.73 21.34 1.5 27.0 71.5 45.7
21.04 21.65 1.2 25.2 73.6 45.9
86
TABLE A.13: RMSE TRIAL CALCULATIONS FOR B‐36, 3.35 TO 3.96 M
B‐36 and CPT 275+00, Sample Depth: 3.35 m to 3.96 m
Depths (m) Sand Silt Clay RMS
Lab GSA: 3.35 3.96 33.2 27.8 21.9
Best Match: 4.57 5.18 8.3 34.6 57.1 18.3
CPT Trials: 0.30 0.91 1.7 21.6 76.7 22.7
0.61 1.22 0.9 9.5 89.6 26.3
0.91 1.52 0.4 1.8 97.8 29.6
1.22 1.83 0.4 1.8 97.8 29.6
1.52 2.13 1.3 8.6 90.1 26.3
1.83 2.44 1.3 8.6 90.1 26.3
2.13 2.74 1.3 10.0 88.7 25.8
2.44 3.05 0.4 3.2 96.4 29.0
2.74 3.35 0.4 3.1 96.6 29.1
3.05 3.66 0.4 1.8 97.8 29.6
3.35 3.96 0.4 1.8 97.8 29.6
3.66 4.27 0.4 1.8 97.8 29.6
3.96 4.57 0.4 1.8 97.8 29.6
4.27 4.88 2.4 13.3 84.4 24.1
4.57 5.18 8.3 34.6 57.1 18.3
4.88 5.49 11.3 52.7 36.0 23.5
5.18 5.79 8.8 50.4 40.8 23.5
5.49 6.10 5.5 44.2 50.4 22.8
5.79 6.40 5.4 44.4 50.2 22.9
6.10 6.71 4.9 40.7 54.4 22.1
6.40 7.01 3.1 27.3 69.6 21.3
87
TABLE A.14: RMSE TRIAL CALCULATIONS FOR B‐36, 11.59 TO 12.20 M
B‐36 and CPT 275+00, Sample Depth: 11.59 m to 12.2 m
Depths (m) Sand Silt Clay RMS
Lab GSA: 11.59 12.20 46.2 45.8 8.0
Best Match: 9.15 9.76 39.4 43.2 17.5 5.2
CPT Trials: 8.54 9.15 1.9 21.0 77.1 35.9
8.84 9.45 17.2 40.3 42.5 20.9
9.15 9.76 39.4 43.2 17.5 5.2
9.45 10.06 67.3 30.6 2.0 18.4
9.76 10.37 71.5 27.6 0.9 22.1
10.06 10.67 72.5 26.5 1.1 23.0
10.37 10.98 77.5 21.4 1.1 28.1
10.67 11.28 89.0 10.8 0.2 39.1
10.98 11.59 93.4 6.6 0.0 43.4
11.28 11.89 90.1 9.8 0.0 40.1
11.59 12.20 82.9 16.3 0.9 33.3
11.89 12.50 65.8 30.7 3.6 17.5
12.20 12.80 67.0 29.4 3.6 18.7
12.50 13.11 75.6 21.8 2.7 26.8
12.80 13.41 55.1 24.0 20.9 16.7
13.11 13.72 22.2 34.8 43.0 18.7
13.41 14.02 2.9 28.1 69.0 33.1
13.72 14.33 2.9 29.7 67.4 32.7
14.02 14.63 1.9 20.4 77.6 36.1
14.33 14.94 1.8 17.4 80.8 37.3
14.63 15.24 0.4 3.3 96.3 44.2
88
TABLE A.15: RMSE TRIAL CALCULATIONS FOR B‐38, 5.79 6.40 M
B‐38 and CPT 282+00, Sample Depth: 5.79 m to 6.4 m
Depths (m) Sand Silt Clay RMS
Lab GSA: 5.79 6.40 53.0 43.0 4.0
Best Match: 5.79 6.40 16.3 44.5 39.3 26.0
CPT Trials: 2.74 3.35 1.1 7.6 91.4 44.5
3.05 3.66 1.1 7.6 91.4 44.5
3.35 3.96 0.4 1.8 97.8 47.3
3.66 4.27 0.4 1.8 97.8 47.3
3.96 4.57 0.4 1.8 97.8 47.3
4.27 4.88 0.4 1.8 97.8 47.3
4.57 5.18 0.4 1.8 97.8 47.3
4.88 5.49 0.4 1.8 97.8 47.3
5.18 5.79 6.7 16.2 77.1 37.9
5.49 6.10 15.1 38.0 46.9 27.1
5.79 6.40 16.3 44.5 39.3 26.0
6.10 6.71 8.1 31.3 60.6 32.8
6.40 7.01 1.7 10.3 88.1 43.1
6.71 7.32 1.7 8.5 89.8 43.7
7.01 7.62 0.5 5.4 94.1 45.7
7.32 7.93 1.1 10.7 88.2 43.2
7.62 8.23 1.1 11.8 87.0 42.8
7.93 8.54 0.4 3.4 96.3 46.6
8.23 8.84 0.4 2.6 97.0 46.9
8.54 9.15 0.4 5.5 94.1 45.7
8.84 9.45 21.5 23.7 54.8 26.1
89
TABLE A.16: RMSE TRIAL CALCULATIONS FOR B‐38, 8.84 TO 9.45 M
B‐38 and CPT 282+00, Sample Depth: 8.84 m to 9.45 m
Depths (m) Sand Silt Clay RMS
Lab GSA: 8.84 9.45 70.1 25.8 4.0
Best Match: 10.37 10.98 76.1 23.1 0.7 4.7
CPT Trials: 5.79 6.40 16.3 44.5 39.3 40.3
6.10 6.71 8.1 31.3 60.6 44.0
6.40 7.01 1.7 10.3 88.1 49.6
6.71 7.32 1.7 8.5 89.8 49.9
7.01 7.62 0.5 5.4 94.1 51.3
7.32 7.93 1.1 10.7 88.2 49.9
7.62 8.23 1.1 11.8 87.0 49.8
7.93 8.54 0.4 3.4 96.3 51.8
8.23 8.84 0.4 2.6 97.0 52.0
8.54 9.15 0.4 5.5 94.1 51.4
8.84 9.45 21.5 23.7 54.8 34.4
9.15 9.76 45.1 32.3 22.6 18.3
9.45 10.06 60.4 37.5 2.1 10.7
9.76 10.37 59.8 37.8 2.3 11.2
10.06 10.67 60.6 37.0 2.4 10.4
10.37 10.98 76.1 23.1 0.7 4.7
10.67 11.28 58.4 29.4 12.2 8.7
10.98 11.59 43.3 40.8 16.0 21.7
11.28 11.89 51.9 37.5 10.6 15.3
11.59 12.20 49.3 26.4 24.3 14.7
11.89 12.50 28.6 31.2 40.2 29.6
90
TABLE A.17: RMSE TRIAL CALCULATIONS FOR B‐38, 27.13 TO 27.44 M
B‐38 and CPT 282+00, Sample Depth: 27.13 m to 27.44 m
Depths (m) Sand Silt Clay RMS
Lab GSA: 27.13 27.44 32.3 59.7 8.0
Best Match: 27.13 27.44 18.2 58.3 23.5 10.0
CPT Trials: 25.61 25.91 6.7 45.8 47.5 20.6
25.76 26.07 7.5 49.3 43.2 19.0
25.91 26.22 7.1 48.5 44.4 19.5
26.07 26.37 7.8 49.0 43.2 18.9
26.22 26.52 7.2 46.4 46.4 20.1
26.37 26.68 11.0 49.4 39.5 16.7
26.52 26.83 11.0 49.5 39.5 16.7
26.68 26.98 13.0 54.7 32.4 14.1
26.83 27.13 15.3 56.1 28.7 12.3
26.98 27.29 15.8 57.9 26.4 11.8
27.13 27.44 18.2 58.3 23.5 10.0
27.29 27.59 16.5 57.6 25.9 11.3
27.44 27.74 16.8 58.0 25.2 11.0
27.59 27.90 10.8 54.8 34.4 15.6
27.74 28.05 10.6 54.7 34.7 15.7
27.90 28.20 10.4 54.0 35.6 16.0
28.05 28.35 10.5 53.1 36.5 16.1
28.20 28.51 10.0 51.7 38.3 16.8
28.35 28.66 10.4 44.1 45.5 19.0
28.51 28.81 8.7 42.1 49.2 20.8
28.66 28.96 10.4 45.9 43.7 18.3
91
TABLE A.18: RMSE TRIAL CALCULATIONS FOR B‐43, 17.68 TO 18.29 M
B‐43 and CPT 43, Sample Depth: 17.68 m to 18.29 m
Depths (m) Sand Silt Clay RMS
Lab GSA: 17.68 18.29 43.3 50.3 6.5
Best Match: 16.77 17.38 24.7 46.2 29.2 13.5
CPT Trials: 14.63 15.24 8.4 41.8 49.8 25.4
14.94 15.55 9.8 43.2 46.9 24.2
15.24 15.85 8.9 48.3 42.8 24.3
15.55 16.16 11.9 53.7 34.3 22.3
15.85 16.46 13.7 50.1 36.1 20.9
16.16 16.77 13.3 48.0 38.8 21.3
16.46 17.07 17.7 47.2 35.0 18.2
16.77 17.38 24.7 46.2 29.2 13.5
17.07 17.68 20.6 47.9 31.5 16.1
17.38 17.99 11.1 49.1 39.8 22.8
17.68 18.29 11.0 53.5 35.6 23.0
17.99 18.60 10.9 54.6 34.5 23.1
18.29 18.90 11.4 55.3 33.2 22.8
18.60 19.21 9.8 53.3 36.9 23.8
18.90 19.51 8.3 51.5 40.2 24.7
19.21 19.82 7.9 50.9 41.2 25.0
19.51 20.12 7.5 49.8 42.7 25.3
19.82 20.43 6.9 48.7 44.3 25.7
20.12 20.73 6.1 46.8 47.1 26.4
20.43 21.04 6.2 47.0 46.8 26.4
20.73 21.34 6.5 47.8 45.6 26.1
92
TABLE A.19: RMSE TRIAL CALCULATIONS FOR B‐43, 19.21 TO 19.82 M
B‐43 and CPT 43, Sample Depth: 19.21 m to 19.82 m
Depths (m) Sand Silt Clay RMS
Lab GSA: 19.21 19.82 46.8 46.7 6.5
Best Match: 16.77 17.38 24.7 46.2 29.2 15.7
CPT Trials: 16.16 16.77 13.3 48.0 38.8 23.7
16.46 17.07 17.7 47.2 35.0 20.6
16.77 17.38 24.7 46.2 29.2 15.7
17.07 17.68 20.6 47.9 31.5 18.6
17.38 17.99 11.1 49.1 39.8 25.3
17.68 18.29 11.0 53.5 35.6 25.8
17.99 18.60 10.9 54.6 34.5 26.1
18.29 18.90 11.4 55.3 33.2 25.8
18.60 19.21 9.8 53.3 36.9 26.6
18.90 19.51 8.3 51.5 40.2 27.4
19.21 19.82 7.9 50.9 41.2 27.7
19.51 20.12 7.5 49.8 42.7 27.9
19.82 20.43 6.9 48.7 44.3 28.2
20.12 20.73 6.1 46.8 47.1 28.8
20.43 21.04 6.2 47.0 46.8 28.8
20.73 21.34 6.5 47.8 45.6 28.5
21.04 21.65 7.1 49.1 43.7 28.1
21.34 21.95 7.5 50.0 42.5 27.9
21.65 22.26 8.0 50.9 41.1 27.6
21.95 22.56 8.2 50.9 40.9 27.5
22.26 22.87 7.6 49.7 42.6 27.8
93
TABLE A.20: RMSE TRIAL CALCULATIONS FOR B‐52, 2.74 TO 3.35 M
B‐52 and CPT 352+00, Sample Depth: 2.74 m to 3.35 m
Depths (m) Sand Silt Clay RMS
Lab GSA: 2.74 3.35 22.7 63.0 14.4
Best Match: 0.30 0.91 1.8 24.0 74.3 31.3
CPT Trials: 0.30 0.91 1.8 24.0 74.3 31.3
0.61 1.22 0.9 11.9 87.2 39.2
0.91 1.52 0.4 1.8 97.8 46.0
1.22 1.83 0.4 1.8 97.8 46.0
1.52 2.13 0.4 1.8 97.8 46.0
1.83 2.44 0.4 1.8 97.8 46.0
2.13 2.74 0.4 1.8 97.8 46.0
2.44 3.05 0.4 1.8 97.8 46.0
2.74 3.35 0.4 1.8 97.8 46.0
3.05 3.66 0.4 1.8 97.8 46.0
3.35 3.96 0.4 1.8 97.8 46.0
3.66 4.27 0.4 1.8 97.8 46.0
3.96 4.57 0.4 1.8 97.8 46.0
4.27 4.88 0.4 1.8 97.8 46.0
4.57 5.18 0.4 1.8 97.8 46.0
4.88 5.49 0.4 1.8 97.8 46.0
5.18 5.79 0.4 1.8 97.8 46.0
5.49 6.10 0.4 1.8 97.8 46.0
5.79 6.40 0.4 1.8 97.8 46.0
6.10 6.71 0.4 1.8 97.8 46.0
6.40 7.01 0.5 5.3 94.2 43.7
94
TABLE A.21 RMSE TRIAL CALCULATIONS FOR B‐52, 3.96 TO 4.57 M
B‐52 and CPT 352+00, Sample Depth: 3.96 m to 4.57 m
Depths (m) Sand Silt Clay RMS
Lab GSA: 3.96 4.57 64.0 30.3 5.6
Best Match: 6.40 7.01 0.5 5.3 94.2 48.3
CPT Trials: 0.91 1.52 0.4 1.8 97.8 49.3
1.22 1.83 0.4 1.8 97.8 49.3
1.52 2.13 0.4 1.8 97.8 49.3
1.83 2.44 0.4 1.8 97.8 49.3
2.13 2.74 0.4 1.8 97.8 49.3
2.44 3.05 0.4 1.8 97.8 49.3
2.74 3.35 0.4 1.8 97.8 49.3
3.05 3.66 0.4 1.8 97.8 49.3
3.35 3.96 0.4 1.8 97.8 49.3
3.66 4.27 0.4 1.8 97.8 49.3
3.96 4.57 0.4 1.8 97.8 49.3
4.27 4.88 0.4 1.8 97.8 49.3
4.57 5.18 0.4 1.8 97.8 49.3
4.88 5.49 0.4 1.8 97.8 49.3
5.18 5.79 0.4 1.8 97.8 49.3
5.49 6.10 0.4 1.8 97.8 49.3
5.79 6.40 0.4 1.8 97.8 49.3
6.10 6.71 0.4 1.8 97.8 49.3
6.40 7.01 0.5 5.3 94.2 48.3
6.71 7.32 0.5 5.3 94.2 48.3
7.01 7.62 0.5 5.3 94.2 48.3
95
TABLE A.22: RMSE TRIAL CALCULATIONS FOR B‐52, 10.06 TO 10.67 M
B‐52 and CPT 352+00, Sample Depth: 10.06 m to 10.67 m
Depths (m) Sand Silt Clay RMS
Lab GSA: 10.06 10.67 61.4 22.9 15.7
Best Match: 10.37 10.98 56.1 41.5 2.5 13.7
CPT Trials: 7.01 7.62 0.5 5.3 94.2 44.8
7.32 7.93 0.4 1.8 97.8 45.7
7.62 8.23 0.4 1.8 97.8 45.7
7.93 8.54 0.4 1.8 97.8 45.7
8.23 8.84 0.4 1.8 97.8 45.7
8.54 9.15 0.4 1.8 97.8 45.7
8.84 9.45 0.4 1.8 97.8 45.7
9.15 9.76 0.4 1.8 97.8 45.7
9.45 10.06 0.7 6.4 92.9 44.5
9.76 10.37 16.1 22.6 61.2 32.0
10.06 10.67 36.2 38.2 25.6 20.8
10.37 10.98 56.1 41.5 2.5 13.7
10.67 11.28 50.8 45.6 3.6 17.7
10.98 11.59 41.8 41.8 16.3 19.3
11.28 11.89 29.0 40.1 30.9 26.0
11.59 12.20 17.1 35.2 47.7 32.5
11.89 12.50 12.6 27.4 60.0 34.7
12.20 12.80 6.5 25.4 68.1 38.9
12.50 13.11 0.9 13.7 85.3 43.3
12.80 13.41 0.7 13.3 86.0 43.5
13.11 13.72 1.8 23.9 74.3 42.2
96
TABLE A.23 RMSE TRIAL CALCULATIONS FOR B‐52, 25.30 TO 25.91 M
B‐52 and CPT 352+00, Sample Depth: 25.3 m to 25.91 m
Depths (m) Sand Silt Clay RMS
Lab GSA: 25.30 25.91 26.7 60.4 13.0
Best Match: 23.78 24.39 24.8 52.5 22.6 5.7
CPT Trials: 22.26 22.87 11.2 55.4 33.3 11.4
22.56 23.17 11.1 55.3 33.6 11.6
22.87 23.48 15.1 54.4 30.4 9.2
23.17 23.78 15.4 53.9 30.7 9.2
23.48 24.09 22.4 50.2 27.4 7.8
23.78 24.39 24.8 52.5 22.6 5.7
24.09 24.70 15.6 55.2 29.2 8.7
24.39 25.00 16.8 56.8 26.5 7.4
24.70 25.30 28.3 51.3 20.3 6.5
25.00 25.61 42.8 48.1 9.1 14.3
25.30 25.91 51.0 33.6 15.4 25.6
25.61 26.22 49.4 35.5 15.1 23.8
25.91 26.52 44.6 35.4 20.0 21.7
26.22 26.83 28.6 42.0 29.4 13.1
26.52 27.13 11.6 46.2 42.2 14.6
26.83 27.44 13.5 52.4 34.1 10.9
27.13 27.74 10.2 47.9 41.9 14.6
27.44 28.05 5.9 44.1 50.0 18.7
27.74 28.35 6.9 45.0 48.0 17.7
28.05 28.66 11.3 48.8 39.9 13.6
28.35 28.96 12.3 46.6 41.1 14.1
97
TABLE A.24 RMSE TRIAL CALCULATIONS FOR B‐54, 10.06 TO 10.67 M
B‐54 and CPT 366+00, Sample Depth: 10.06 m to 10.67 m
Depths (m) Sand Silt Clay RMS
Lab GSA: 10.06 10.67 58.8 31.6 9.6
Best Match: 11.28 11.89 62.5 34.4 3.1 3.3
CPT Trials: 7.01 7.62 3.8 19.9 76.3 39.7
7.32 7.93 3.4 15.0 81.6 40.9
7.62 8.23 0.4 1.8 97.8 46.4
7.93 8.54 0.4 1.8 97.8 46.4
8.23 8.84 0.4 1.8 97.8 46.4
8.54 9.15 0.4 1.8 97.8 46.4
8.84 9.45 0.4 1.8 97.8 46.4
9.15 9.76 0.4 1.8 97.8 46.4
9.45 10.06 0.4 1.8 97.8 46.4
9.76 10.37 0.4 1.8 97.8 46.4
10.06 10.67 0.4 1.8 97.8 46.4
10.37 10.98 6.3 16.7 77.0 38.6
10.67 11.28 31.2 28.0 40.7 19.6
10.98 11.59 58.3 36.7 5.0 3.6
11.28 11.89 62.5 34.4 3.1 3.3
11.59 12.20 54.1 41.4 4.4 7.7
11.89 12.50 32.8 38.0 29.1 18.9
12.20 12.80 24.2 24.8 51.0 24.9
12.50 13.11 7.5 20.2 72.4 37.1
12.80 13.41 3.9 27.2 69.0 38.9
13.11 13.72 9.9 42.7 47.4 35.4
98
TABLE A.25: RMSE TRIAL CALCULATIONS FOR B‐54, 13.11 TO 13.72 M
B‐54 and CPT 366+00, Sample Depth: 13.11 m to 13.72 m
Depths (m) Sand Silt Clay RMS
Lab GSA: 13.11 13.72 78.0 16.3 5.6
Best Match: 11.28 11.89 62.5 34.4 3.1 16.9
CPT Trials: 10.06 10.67 0.4 1.8 97.8 55.9
10.37 10.98 6.3 16.7 77.0 50.8
10.67 11.28 31.2 28.0 40.7 34.1
10.98 11.59 58.3 36.7 5.0 20.1
11.28 11.89 62.5 34.4 3.1 16.9
11.59 12.20 54.1 41.4 4.4 24.5
11.89 12.50 32.8 38.0 29.1 35.4
12.20 12.80 24.2 24.8 51.0 38.5
12.50 13.11 7.5 20.2 72.4 50.0
12.80 13.41 3.9 27.2 69.0 53.0
13.11 13.72 9.9 42.7 47.4 51.7
13.41 14.02 8.5 39.6 51.9 51.9
13.72 14.33 5.9 26.3 67.9 51.5
14.02 14.63 4.6 25.0 70.4 52.3
14.33 14.94 4.6 28.7 66.7 52.6
14.63 15.24 1.7 26.8 71.6 54.5
14.94 15.55 3.3 32.2 64.6 54.1
15.24 15.85 3.8 35.8 60.5 54.3
15.55 16.16 4.0 36.5 59.5 54.3
15.85 16.46 3.2 35.5 61.3 54.6
16.16 16.77 3.0 35.6 61.4 54.8
99
TABLE A.26: RMSE TRIAL CALCULATIONS FOR B‐54, 23.78 TO 24.39 M
B‐54 and CPT 366+00, Sample Depth: 23.78 m to 24.39 m
Depths (m) Sand Silt Clay RMS
Lab GSA: 23.78 24.39 11.0 77.3 11.7
Best Match: 23.78 24.39 25.3 51.2 23.5 21.1
CPT Trials: 20.73 21.34 2.3 26.7 71.1 36.4
21.04 21.65 2.6 32.0 65.3 32.6
21.34 21.95 1.3 21.1 77.6 40.3
21.65 22.26 0.8 17.7 81.5 42.8
21.95 22.56 1.2 22.3 76.5 39.5
22.26 22.87 1.6 26.7 71.8 36.4
22.56 23.17 6.8 37.4 55.7 28.4
22.87 23.48 13.0 46.4 40.6 21.9
23.17 23.78 27.2 51.2 21.6 21.7
23.48 24.09 27.9 51.9 20.2 21.5
23.78 24.39 25.3 51.2 23.5 21.1
24.09 24.70 15.5 45.4 39.1 22.8
24.39 25.00 16.9 45.6 37.5 22.8
24.70 25.30 19.0 45.5 35.5 23.2
25.00 25.61 37.7 43.3 19.1 30.6
25.30 25.91 44.4 31.9 23.7 39.9
25.61 26.22 40.0 35.1 24.9 36.2
25.91 26.52 23.1 35.4 41.5 30.9
26.22 26.83 24.6 37.2 38.2 30.0
26.52 27.13 18.1 33.7 48.2 31.3
26.83 27.44 12.9 32.9 54.2 31.5
100
APPENDIX B. CPT SOUNDING RESULTS AT TEST PILE LOCATIONS
This appendix presents the cone penetrometer measurements at locations T‐2, T‐3, T‐4, and T‐
5. Some averaging of data points has been performed to enhance readability.
0 100 200 300 400 500 600 700 800 900 1000
0
10
20
30
40
50
60
0 1 2 3 4 5 6 7 8
fs (kPa)
D
ep
th
(m
)
qc and u2 (MPa)
u2 qc fs
FIGURE B.1: CPT PARAMETERS FOR TEST PILE LOCATION T‐2
101
0 100 200 300 400 500 600 700 800 900 1000
0
10
20
30
40
50
60
0 1 2 3 4 5 6 7 8 9 10
fs (kPa)
D
ep
th
(m
)
qc and u2 (MPa)
u2 qc fs
FIGURE B.2: CPT PARAMETERS FOR TEST PILE LOCATION T‐3
102
0 100 200 300 400 500 600 700 800 900 1000
0
10
20
30
40
50
60
0 1 2 3 4 5 6 7 8
fs (kPa)
D
ep
th
(m
)
qc and u2 (MPa)
u2 qc fs
FIGURE B.3: CPT PARAMETERS FOR TEST PILE LOCATION T‐4
103
0 100 200 300 400 500 600 700 800 900 1000
0
10
20
30
40
50
60
0 1 2 3 4 5 6 7 8
fs (kPa)
D
ep
th
(m
)
qc and u2 (MPa)
u2 qc fs
FIGURE B.4: CPT PARAMETERS FOR TEST PILE LOCATION T‐5
104
APPENDIX C. STATIC LOAD TEST PLOTS
This appendix presents selected plots relevant to the interpretation of the static pile load tests
associated with the case study.
‐50.0
‐45.0
‐40.0
‐35.0
‐30.0
‐25.0
‐20.0
‐15.0
‐10.0
‐5.0
0.0
0 500 1000 1500 2000 2500 3000 3500 4000 4500
El
ev
at
io
n
(m
)
Load Carried by Pile (kN)
FIGURE C.1: LOAD DISTRIBUTION PROFILE – T‐4, 610MM X 49M (24IN X 160FT)
105
0
10
20
30
40
50
60
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Pi
le
H
ea
d
D
ef
le
ct
io
n
(m
m
)
Applied Load (kN)
FIGURE C.2: STATIC LOAD VS. PILE HEAD DEFLECTION – T‐4, 610MM X 49M (24IN X 160FT)
106
‐45.0
‐40.0
‐35.0
‐30.0
‐25.0
‐20.0
‐15.0
‐10.0
‐5.0
0.0
0 500 1000 1500 2000 2500 3000 3500
El
ev
at
io
n
(m
)
Load Carried by Pile (kN)
FIGURE C.3: LOAD DISTRIBUTION PROFILE – T‐5, 610MM X 44M (24IN X 145FT)
107
0
10
20
30
40
50
60
0 500 1000 1500 2000 2500 3000 3500
Pi
le
H
ea
d
D
ef
le
ct
io
n
(m
m
)
Applied Load (kN)
FIGURE C.4: STATIC LOAD VS. PILE HEAD DEFLECTION – T‐5, 610MM X 44M (24IN X 145FT)
108
‐50
‐45
‐40
‐35
‐30
‐25
‐20
‐15
‐10
‐5
0
0 500 1000 1500 2000 2500 3000 3500
El
ev
at
io
n
(m
)
Load Carried by Pile (kN)
FIGURE C.5: LOAD DISTRIBUTION PROFILE – T‐5, 610MM X 52M (24IN X 170FT)
109
0
10
20
30
40
50
60
0 500 1000 1500 2000 2500 3000 3500
Pi
le
H
ea
d
D
ef
le
ct
io
n
(m
m
)
Applied Load (kN)
FIGURE C.6: STATIC LOAD VS. PILE HEAD DEFLECTION – T‐5, 610MM X 52M (24IN X 170FT)
110
APPENDIX D. PREDICTED VERSUS MEASURED PILE CAPACITY PLOTS
This appendix presents the individual predicted versus measured pile capacities from CPT as
well as the associated R2 values.
R² = 0.6395
0
1000
2000
3000
4000
5000
6000
7000
8000
0 2000 4000 6000 8000
Pr
ed
ic
te
d
Ca
pa
ci
ty
(k
N
)
Measured Capacity (kN)
FIGURE D.1: PREDICTED VS. MEASURED CAPACITY – LCPC METHOD (1982)
111
R² = 0.6883
0
1000
2000
3000
4000
5000
6000
7000
8000
0 2000 4000 6000 8000
Pr
ed
ic
te
d
Ca
pa
ci
ty
(k
N
)
Measured Capacity (kN)
FIGURE D.2: PREDICTED VS. MEASURED CAPACITY – SCHMERTMANN METHOD (1978)
112
R² = 0.7738
0
1000
2000
3000
4000
5000
6000
7000
8000
0 2000 4000 6000 8000
Pr
ed
ic
te
d
Ca
pa
ci
ty
(k
N
)
Measured Capacity (kN)
FIGURE D.3: PREDICTED VS. MEASURED CAPACITY – DERUITER & BERINGEN METHOD (1979)
113
R² = 0.4177
0
1000
2000
3000
4000
5000
6000
7000
8000
0 2000 4000 6000 8000
Pr
ed
ic
te
d
Ca
pa
ci
ty
(k
N
)
Measured Capacity (kN)
FIGURE D.4: PREDICTED VS. MEASURED CAPACITY – FELLENIUS & ESLAMI METHOD (1997)
114
APPENDIX E. CAPWAP OUTPUT FILES
This appendix presents the output pages from the CAPWAP software.
FIGURE E.1: CAPWAP PLOTS FOR T‐2
115
FIGURE E.2: CAPWAP TABULAR OUTPUT FOR T‐2 (1/3)
116
FIGURE E.3: CAPWAP TABULAR OUTPUT FOR T‐2 (2/3)
117
FIGURE E.4: CAPWAP TABULAR OUTPUT FOR T‐2 (3/3)
118
FIGURE E.5: CAPWAP PLOTS FOR T‐4
119
FIGURE E.6: CAPWAP TABULAR OUTPUT FOR T‐4 (1/3)
120
FIGURE E.7: CAPWAP TABULAR OUTPUT FOR T‐4 (2/3)
121
FIGURE E.8: CAPWAP TABULAR OUTPUT FOR T‐4 (3/3)
122
FIGURE E.9: CAPWAP PLOTS FOR T‐5 (44M [145FT] PILE)
123
FIGURE E.10: CAPWAP TABULAR OUTPUT FOR T‐5 (44M [145FT] PILE) (1/3)
124
FIGURE E.11: CAPWAP TABULAR OUTPUT FOR T‐5 (44M [145FT] PILE) (2/3)
125
FIGURE E.12: CAPWAP TABULAR OUTPUT FOR T‐5 (44M [145FT] PILE) (3/3)
126
FIGURE E.13: CAPWAP PLOTS FOR T‐5 (52M [170FT] PILE)
127
FIGURE E.14: CAPWAP TABULAR OUTPUT FOR T‐5 (52M [170FT] PILE) (1/3)
128
FIGURE E.15: CAPWAP TABULAR OUTPUT FOR T‐5 (52M [170FT] PILE) (2/3)
129
FIGURE E.16: CAPWAP TABULAR OUTPUT FOR T‐5 (52M [170FT] PILE) (3/3)
130
131
VITA
Jesse G. Rauser was born in Lake Charles, Louisiana. He graduated from Louisiana State
University and Agricultural and Mechanical College in 2003 with a Bachelor of Science degree in
civil and environmental engineering. He has worked for Ardaman and Associates, Inc. (formerly
Soil Testing Engineers, Inc.) in Baton Rouge, Louisiana for five years. He currently serves the
company as an Assistant Project Engineer, working on various projects including deep
foundation design, shallow foundation design, pavement design, site preparation and
improvement, in‐situ testing, and nondestructive testing.
Các file đính kèm theo tài liệu này:
- 80.pdf