Khảo sát mối tương quan giữa hai mặt phẳng đầu tự nhiên và Frankfort trong phân tích sơ đồ lưới

KẾT LUẬN Bằng phương pháp phân tích tương quan và phân tích hồi quy đa biến giữa các biến định lượng số đo góc tạo bởi các đường thẳng Na’Sn và Pog’’Pn với mặt phẳng đầu tự nhiên và mặt phẳng Frankfort trên phim sọ nghiêng của 68 đối tượng từ 18 đến 25 tuổi, chúng tôi đã thiết lập một phương trình xác định mối tương quan giữa hai mặt phẳng đầu tự nhiên và Frankfort: Na’Sn-mp đầu tự nhiên = 0,665 × Na’Sn-mp Frankfort – 0,347 × Pog’’Pn-mp Frankfort + 55,488. Nghiên cứu này đã đưa ra khái niệm và một cái nhìn tổng quát về mối tương quan giữa hai mặt phẳng đầu tự nhiên và Frankfort trong phân tích sơ đồ lưới. Đồng thời bước đầu đo đạc được những số liệu thể hiện đặc điểm khuôn mặt hài hòa của người Việt Nam, những số liệu này là nền tảng cho các nghiên cứu với quy mô rộng hơn.

pdf8 trang | Chia sẻ: hachi492 | Lượt xem: 47 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Khảo sát mối tương quan giữa hai mặt phẳng đầu tự nhiên và Frankfort trong phân tích sơ đồ lưới, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Nghiên cứu Y học Y Học TP. Hồ Chí Minh * Tập 19 * Phụ bản của Số 2 * 2015 Chuyên Đề Răng Hàm Mặt 316 KHẢO SÁT MỐI TƯƠNG QUAN GIỮA HAI MẶT PHẲNG ĐẦU TỰ NHIÊN VÀ FRANKFORT TRONG PHÂN TÍCH SƠ ĐỒ LƯỚI Lữ Minh Lộc*, Ngô Thị Quỳnh Lan** TÓM TẮT Mục tiêu: Nghiên cứu nhằm khảo sát mối tương quan của góc Na’Sn-mặt phẳng đầu tự nhiên và Na’Sn- mặt phẳng Frankfort trong phân tích sơ đồ lưới của người Việt Nam trưởng thành. Từ đó tìm phương pháp chuyển đổi giữa các góc này khi chụp phim sọ nghiêng sử dụng mặt phẳng Frankfort làm chuẩn để áp dụng phân tích sơ đồ lưới khi chụp phim ở tư thế đầu tự nhiên Đối tượng và phương pháp: Nghiên cứu cắt ngang mô tả trên phim sọ nghiêng của 68 sinh viên Đại học Y Dược TP.HCM (32 nam, 36 nữ), từ 18 đến 25 tuổi, sau khi đã được 10 bác sĩ Răng Hàm Mặt đánh giá là có khuôn mặt hài hòa (1999). Tất cả phim sọ nghiêng chụp ở tư thế đầu tự nhiên. Các phim sọ nghiêng được vẽ nét, sử dụng phần mềm AutoCAD 2010 để chấm các điểm chuẩn và đo các kích thước. Kết quả: Các biến số góc Na’Sn-mặt phẳng đầu tự nhiên, Na’Sn-mặt phẳng Frankfort và Pog’’Pn- mặt phẳng Frankfort được chọn để xác định mối tương quan giữa hai mặt phẳng đầu tự nhiên và Frankfort. Một phương trình hồi quy đa biến nhằm ước lượng mối tương quan giữa hai mặt phẳng: Na’Sn-mp đầu tự nhiên = 0,665×Na’Sn-mp Frankfort – 0,347×Pog’’Pn-mp Frankfort + 55,488. Kết luận: Có mối tương quan ở mức độ cao giữa các góc Na’Sn-mặt phẳng đầu tự nhiên và Na’Sn-mặt phẳng Frankfort. Từ đó xác định phương trình hồi quy để chuyển đổi là một phương pháp hiệu quả nhằm ứng dụng trong phân tích sơ đồ lưới ở người trưởng thành (sử dụng chuẩn mặt phẳng đầu tự nhiên) trên phim sọ nghiêng chụp với tư thế Frankfort. Từ khóa: Sơ đồ lưới, mặt phẳng đầu tự nhiên, mặt phẳng Frankfort. ABSTRACT THE RELATIONSHIP BETWEEN NATURAL HEAD AND FRANKFORT PLANES IN MESH DIAGRAMS ANALYSIS Lu Minh Loc, Ngo Thi Quynh Lan * Y Hoc TP. Ho Chi Minh * Vol. 19 - Supplement of No 2 - 2015: 316 - 323 Objectives: The aim of this study was to investigate the correlation between Na’Sn-natural head plane and Na’Sn-Frankfort plane in mesh diagrams analysis in Vietnamese adults in order to find an interswitching method between these two angles from Frankfort plane in lateral cephalograms to natural head plane. Materials and methods: This descriptive cross-sectional study was conducted on 68 lateral cephalometric radiographs (32 males and 36 females, aged between 18 to 25 years old, justified by 10 orthodontists independently in 1999 as having harmonious appearance). Lateral cephalometric radiographs were taken in natural head position, traced, scanned with a 1:1 ratio, and measured with AutoCAD 2010 software. Results: Three characteristic angles (Na’Sn- natural head plane, Na’Sn- Frankfort plane and Pog’’Pn- Frankfort plane) were selected to determine the relationship between natural head and Frankfort plane. A multi- variable regression equation estimating the correlation was established as follows: Na’Sn-natural head plane = * Bộ môn CHRM - Khoa Răng Hàm Mặt, ĐH Y Dược, TP.Hồ Chí Minh ** Bộ môn NKCS - Khoa Răng Hàm Mặt, ĐH Y Dược, TP.Hồ Chí Minh Tác giả liên lạc: ThS.Lữ Minh Lộc ĐT: 0913614126 Email: loclu75@yahoo.com Y Học TP. Hồ Chí Minh * Tập 19 * Phụ bản của Số 2 * 2015 Nghiên cứu Y học Chuyên Đề Răng Hàm Mặt 317 0.665×Na’Sn-Frankfort plane – 0.347×Pog’’Pn-Frankfort plane + 55.488. Conclusion: The significant quantitative relationship between natural head and Frankfort planes through a regression equation can be efficiently utilized in mesh diagrams analysis among Vietnamese adults. Key words: Mesh diagram, natural head plane, Frankfort plane. ĐẶT VẤN ĐỀ Các phân tích phim đo sọ thường đánh giá sự tương quan giữa các mô cứng và mô mềm của khối sọ-mặt qua các số đo kích thước hoặc góc độ. Tuy nhiên khi xét đến mức độ hài hòa của khuôn mặt, nếu dựa vào các số đo này sẽ gây khó khăn cho việc hình dung tổng thể khuôn mặt của một cá thể. Một phân tích tỉ lệ giữa các thành phần cấu trúc của sọ mặt sẽ giúp xác định, cũng như chẩn đoán các mối tương quan giữa các cấu trúc sọ-mặt dễ dàng hơn. Moorrees(6,7) đã giới thiệu một phương pháp phân tích phim đo sọ dưới dạng một sơ đồ lưới với mục đích đánh giá hình thái sọ-mặt theo các tỉ lệ, không tùy thuộc vào kích thước đo đạc. Theo Moorrees(6,7) để thiết lập sơ đồ lưới, trước tiên phải xác định hệ trục tọa độ chuẩn. Ông đã chọn mặt phẳng ngang hay trục hoành của đồ thị là mặt phẳng ngang vuông góc với đường thẳng dọc giữa thật sự trên phim sọ nghiêng khi đầu được chụp ở tư thế đầu tự nhiên, và đầu không được giữ bởi bất kì bộ phận nào của máy X-quang. Đây là mặt phẳng ngang thật sự của một cá thể, ít thay đổi và được sử dụng như mặt phẳng tham chiếu ngoài sọ trong các trường hợp cần đánh giá mức độ hài hòa, tính thẩm mĩ của khuôn mặt và được gọi là mặt phẳng đầu tự nhiên. Tuy nhiên, việc tái lập tư thế chụp này thường rất khó khăn và mất nhiều thời gian. Do đó hiện nay rất ít phim sọ nghiêng được chụp theo mặt phẳng chuẩn này. Theo Lundstrom(5) mặc dù đã được huấn luyện kĩ trong việc định hướng đầu ở tư thế tự nhiên, nhưng những ảnh chụp lần sau của các đối tương nghiên cứu đa phần có vị trí đầu không đúng. Trong các nghiên cứu của mình, ông đã phải sử dụng thêm các phim được định hướng lại cho đúng với vị trí đầu tự nhiên. Jiuhui Jiang (2007)(4) thực hiện nghiên cứu dọc trên 28 đối tượng về sự tăng trưởng của khối sọ mặt bằng phân tích sơ đồ lưới, phải nhờ đến những chuyên gia đánh giá giàu kinh nghiệm để định hướng lại vị trí đầu tự nhiên của một số phim đo sọ. Một mặt phẳng khác cũng được chấp nhận là mặt phẳng ngang chuẩn từ hội nghị nhân chủng học năm 1884 là mặt phẳng Frankfort(3). Với tư thế chụp: đầu được cố định bởi bộ phận giữ đầu và mặt phẳng Frankfort của đối tượng luôn song song với sàn nhà nên các phim sọ nghiêng có được sự chuẩn hóa khi chụp. Với ưu điểm này, mặt phẳng Frankfort đã được sử dụng như một mặt phẳng chuẩn trong việc định vị tư thế một đối tượng khi chụp phim sọ nghiêng cho đến ngày nay. Với mong muốn đơn giản hóa cho việc chụp phim theo vị trí đầu tự nhiên mà vẫn có thể thiết lập một sơ đồ lưới chuẩn cho người Việt Nam có nét mặt hài hòa, chúng tôi thực hiện nghiên cứu này với các mục tiêu sau: Đánh giá mối tương quan giữa các cấu trúc sọ mặt của hai sơ đồ lưới được thiết lập bởi mặt phẳng đầu tự nhiên và mặt phẳng Frankfort. Xây dựng phương trình hồi qui đa biến nhằm chuyển đổi từ mặt phẳng Frankfort sang mặt phẳng đầu tự nhiên. ĐỐI TƯỢNG - PHƯƠNG PHÁP NGHIÊN CỨU Mẫu nghiên cứu Là mẫu nghiên cứu cắt ngang gồm 68 đối tượng (32 nam và 36 nữ) từ 18-25 tuổi. Các đối tượng nghiên cứu được thu thập tại Khoa Răng Hàm Mặt Đại Học Y Dược TPHCM. Tiêu chuẩn chọn mẫu - Có ông bà, cha mẹ là người Việt Nam, dân tộc Kinh. - Tuổi từ 18 đến 25. - Không có điều trị chỉnh hình trước đó. Nghiên cứu Y học Y Học TP. Hồ Chí Minh * Tập 19 * Phụ bản của Số 2 * 2015 Chuyên Đề Răng Hàm Mặt 318 - Không có dị dạng hàm mặt. - Mức độ chen chúc, thiếu chổ: <4mm. - Nét thẩm mỹ mặt nhìn nghiêng chấp nhận được. - Bệnh nhân được chụp phim X-quang ở tư thế đầu tự nhiên. Để đánh giá nét mặt hài hòa: tất cả các đối tượng được đánh giá qua ảnh chụp nghiêng với đầu ở tư thế tự nhiên. Nhóm đánh giá gồm 10 nha sĩ tổng quát (6 nữ và 4 nam). Các đối tượng được đánh mã số và các nha sĩ đánh giá độc lập với nhau. Thang điểm đánh giá từ 1-5, trong đó: 1: khuôn mặt xấu. 2: khuôn mặt không hài hòa. 3: khuôn mặt tương đối hài hòa. 4: khuôn mặt khá hài hòa. 5: khuôn mặt rất hài hòa. Các đối tượng trong mẫu nghiên cứu phải đạt số điểm ≥ 3. Mẫu nghiên cứu được lấy từ nghiên cứu của Hồ Thị Thùy Trang (1999)(1). “Những đặc trưng của khuôn mặt hài hòa qua ảnh và qua phim sọ nghiêng”. Phương pháp nghiên cứu Thiết kế nghiên cứu Cắt ngang mô tả Phương pháp đo đạc trên phim Kỹ thuật chụp phim Các đối tượng nghiên cứu được huấn luyện, tập thư giãn để có thể dễ dàng tái lập lại vị trí đầu tự nhiên. Tất cả các phim và hình được chụp bởi một kỹ thuật viên nhiều kinh nghiệm tại bộ môn tia X, Khoa Răng Hàm Mặt, ĐHYD TP HCM. Các phim đạt yêu cầu nghiên cứu được vẽ nét và scan vào máy vi tính Chuẩn hóa hình ảnh đã được scan theo tỉ lệ 1/1 so với bản vẽ nét. Các điểm mốc trên mô xương Điểm S (Sella Turcica): tâm của hố yên xương bướm. Điểm N (Nasion): điểm trước nhất của đường khớp mũi- trán. Điểm Ba (Basion): điểm trước nhất của bờ trước lỗ chẩm. Điểm ANS (Anterior Nasal Spine): điểm gai mũi trước. Điểm PNS (Posterior Nasal Spine): điểm gai mũi sau. Điểm A: điểm lõm sau nhất của bờ xương ổ răng hàm trên. Điểm B: điểm lõm sau nhất của bờ xương ổ răng hàm dưới. Điểm Pog (Pogonion): điểm trước nhất của cằm trên mặt phẳng dọc giữa. Điểm Gn (Gnathion): được xác định bởi giao điểm của cằm với phân giác của góc hợp bởi mặt phẳng hàm dưới theo Downs và mặt phẳng mặt. Điểm Me (Menton): điểm thấp nhất của cằm trên mặt phẳng dọc giữa. Điểm Go (Gonion): được xác định bởi giao điểm của góc hàm và phân giác của góc hợp bởi mặt phẳng hàm dưới theo Downs với tiếp tuyến của bờ sau nhánh đứng xương hàm dưới( không tính cổ lồi cầu). Điểm Or (Orbital): điểm thấp nhất của bờ dưới hốc mắt. Điểm Po (Porion): điểm bờ trên lỗ ống tai ngoài. Đặt điểm Bs với Bs là điểm nằm ở mặt lưỡi, nơi xương ổ mặt trong vùng cằm hội tụ với các chân răng hàm dưới. Các điểm mốc trên mô mềm Điểm Na’ (Nasion trên mô mềm): điểm sau nhất của mô mềm vùng khớp trán-mũi theo mặt phẳng dọc giữa. Điểm Pr (Pronasale): điểm trước nhất trên đỉnh mũi. Điểm Sn (Subnasale): điểm giao nhau ngay dưới chân mũi và môi trên trên mặt phẳng dọc giữa. Y Học TP. Hồ Chí Minh * Tập 19 * Phụ bản của Số 2 * 2015 Nghiên cứu Y học Chuyên Đề Răng Hàm Mặt 319 Điểm Ls (Labrale superius): điểm nhô trước nhất của đường viền môi trên trên mặt phẳng dọc giữa. Điểm Sto (Stomion): rãnh giữa môi trên và môi dưới. Điểm Li (Labrale inferius): điểm nhô trước nhất của đường viền môi dưới trên mặt phẳng dọc giữa. Điểm Supm (supramentale): rãnh môi cằm. Điểm Pog’’ (Pogonion mô mềm): điểm trước nhất của mô mềm vùng cằm trên mặt phẳng dọc giữa. Thiết lập sơ đồ lưới Chiều cao tầng mặt trên (Na-ANS) và chiều dài nền sọ trước (Na-S) được dùng để xác định tứ giác “lõi” trong sơ đồ lưới. Na được xem là điểm chuẩn chính trong sơ đồ này: Tứ giác “lõi” gồm: - Đường thẳng đứng thứ nhất đi qua Na (đường thẳng này vuông góc với mặt phẳng Frankfort hoặc mặt phẳng ngang thật sự). - Đường ngang thứ nhất đi qua Na (đường này vuông góc với đường (1)). - Đường ngang thứ hai đi qua ANS và song song với đường (2). - Đường thẳng đứng thứ hai song song với đường (1) đi qua S’( S’ được xác định với khoảng cách NS’=NS). Tứ giác “lõi” có 4 cạnh: cạnh ngang và cạnh đứng được chia thành hai phần bằng nhau. Kích thước của ½ cạnh ngang là a và ½ cạnh đứng là b. Từ tứ giác “lõi”, vẽ một đường thẳng đứng phía trước và một đường thẳng đứng phía sau. tứ giác với khoảng cách là a; vẽ một đường ngang phía trên và ba đường ngang phía dưới tứ giác với khoảng cách là b. Như vậy sơ đồ lưới gồm có 5 đường thẳng đứng đánh số từ 1-5 và 7 đường ngang đánh theo thứ tự A, B, C, D, E, F, G, và khối sọ-mặt sẽ được nằm trong một sơ đồ lưới gồm 24 ô hình chữ nhật bằng nhau (hình 1) một hệ thống lưới được phát triển để bao quanh các thành phần của hệ thống sọ mặt và từ đó thiết lập một hệ trục tọa độ theo hai chiều trong không gian. Chọn góc tọa độ là góc dưới trái của từng ô chữ nhật nhỏ trong sơ đồ lưới (để thuận tiện cho việc đo đạc). Xác định tọa độ các điểm mốc trong hệ trục tọa độ nhỏ này (gồm hai giá trị hoành độ và tung độ) bằng cách chiếu vuông góc lên hai cạnh góc vuông của hình chữ nhật nhỏ. Giá trị điểm mốc được tính theo tỉ lệ các cạnh của hình chữ nhật nhỏ. Dùng phần mềm SPSS tìm mối tương quan giữa các điểm mốc của 2 trục tọa độ Xác định mối tương quan giữa hai sơ đồ lưới. Thiết lập phương trình hồi qui tuyến tính giữa mặt phẳng đầu tự nhiên và mặt phẳng Frankfort nếu có. Hình 1: Sơ đồ lưới gồm 24 ô chữ nhật bằng nhau. Điểm Pn có giá trị (X%, Y%) trong hệ trục tọa độ là hai cạnh góc vuông của hình chữ nhật có chứa điểm Pn(8). Nghiên cứu Y học Y Học TP. Hồ Chí Minh * Tập 19 * Phụ bản của Số 2 * 2015 Chuyên Đề Răng Hàm Mặt 320 Qui trình nghiên cứu KẾT QUẢ VÀ BÀN LUẬN Hệ số tương quan Các điểm trên mô xương Bảng 1: Giá trị trung bình các tỉ lệ và hệ số tương quan của các điểm chuẩn trên mô xương giữa hai mặt phẳng đầu tự nhiên và Frankfort. STT Điểm TRUNG BÌNH ± ĐLC Hệ số tương quan của hoành độ các điểm (X) Hệ số tương quan của tung độ các điểm (X) Trục tọa độ MP đầu tự nhiên Trục tọa độ MP Frankfort Trục X Trục Y Trục X Trục Y 1 Gla 0,15±0,05 0,63±0,19 0,12±0,04 0,64±0,18 0,726*** 0,949*** 2 S 0,01±0,01 0,82±0,17 0,19±0,02 0,69±0,13 0,167 0,189 3 Po 0,30±0,08 0,20±0,19 0,34±0,09 0,02±0,09 0,712*** 0,003 4 Ba 0,20±0,10 0,43±0,21 0,28±0,85 0,24±0,16 0,657*** 0,395** 5 Ramus(s) 0,54±0,10 1,05±0,20 0,65±0,10 0,88±0,17 0,396** 0,604*** 6 Go 0,57±0,12 0,98±0,20 0,73±0,13 0,80±0,18 0,274* 0,612*** 7 Ramus(t) 0,50±0,10 0,80±0,17 0,61±0,10 0,70±0,13 0,428*** 0,510*** 8 Me 0,52±0,16 0,63±0,18 0,72±0,16 0,60±0,18 -0,007 0,966*** 9 Pog 0,75±0,15 0,95±0,16 0,94±0,16 0,93±0,16 -0,008 0,968*** 10 Pog’ 0,35±0,15 1,02±0,18 0,53±0,15 0,98±0,18 -0,77 0,954*** 11 B 0,72±0,14 0,37±0,15 0,90±0,14 0,35±0,15 0,251* 0,949*** 12 B’ 0,53±0,13 0,52±0,15 0,70±0,13 0,48±0,15 0,229 0,930*** 13 Chóp R cửa dưới 0,61±0,14 0,42±0,15 0,78±0,13 0,40±0,15 0,261* 0,942*** 14 Cạnh cắn R cửa dưới -0,03±0,14 1,06±0,10 0,24±0,38 1,06±0,10 0,373* 0,980*** 15 Cạnh cắn R cửa trên 0,06±0,15 0,96±0,09 0,34±0,38 0,97±0,09 0,370* 0,970*** 16 Chóp R cửa trên 0,75±0,12 0,84±0,13 0,86±0,9 0,83±0,08 0,498*** 0.486*** 17 A -0,05±0,15 0,83±0,45 0,04±0,11 0,82±0,45 0,447*** 0,952*** 18 Or 0,63±0,12 0,06±0,12 0,69±0,07 0,02±0,08 0,506*** 0,429*** 19 ANS 0,02±0,11 0,00±0,00 0,11±0,10 0,01±0,00 0,643*** 0,073 20 PNS 0,53±0,10 0,15±0,11 0,62±0,08 0,05±0,09 0,490*** 0,5*** ** : Khác biệt có ý nghĩa ở mức p < 0,01. *** : Khác biệt có ý nghĩa ở mức p < 0,001. - : Khác biệt không có ý nghĩa thống kê. Khi so sánh các điểm chuẩn trên mô cứng của phim sọ nghiêng được thiết lập bởi hai hệ trục tọa độ theo mặt phẳng đầu tự nhiên và mặt phẳng Frankfort, các điểm mốc trên mô cứng có tương quan không đồng nhất. Các điểm S, Me, Pog, Pog’, B’ không có mối tương quan trên trục hoành. Các điểm S, Po, ANS không có mối tương quan trên trục tung. Điều này cho thấy không có sự tương quan giữa hai sơ đồ lưới được thiết lập theo hai mặt phẳng Phim sọ nghiêng đã được vẽ nét Thiết lập sơ đồ lưới với mặt phẳng ngang chuẩn là mặt phẳng đầu tự nhiên Thiết lập sơ đồ lưới với mặt phẳng ngang chuẩn là mặt phẳng Frankfort Xác định tọa độ các điểm mốc theo hệ trục tọa độ vừa thiết lập Xác định tọa độ các điểm mốc theo hệ trục tọa độ vừa thiết lập Y Học TP. Hồ Chí Minh * Tập 19 * Phụ bản của Số 2 * 2015 Nghiên cứu Y học Chuyên Đề Răng Hàm Mặt 321 chuẩn khác nhau. Hệ trục tọa độ thay đổi là nguyên nhân chính đưa đến sự khác biệt này vì nền sọ bên dưới không thay đổi. Như vậy, sự thay đổi độ nghiêng của mặt phẳng Frankfort so với mặt phẳng đầu tự nhiên sẽ ảnh hưởng đến khối sọ mặt bị xoay không đúng với vị trí khối sọ-mặt của cá thể trong cuộc sống tự nhiên hằng ngày. Theo Proffit(8): mỗi người có tư thế đầu riêng và tư thế này được thiết lập một cách sinh lí, không phụ thuộc vào các thành phần giải phẫu học của khuôn mặt. Mặt phẳng Frankfort lại được xác định bởi các điểm mốc giải phẫu. Điều này lý giải tại sao một số cá nhân có mặt phẳng ngang thật sự (mặt phẳng đầu tự nhiên) không trùng với mặt phẳng Frankfort. Do đó, nếu sử dụng mặt phẳng Frankfort làm mặt phẳng chuẩn để thiết lập một sơ đồ lưới thì cần bổ sung thêm các yếu tố để đánh giá sự hài hòa của khối sọ-mặt (đây là ưu điểm của mặt phẳng đầu tự nhiên). Công việc chụp phim sọ nghiêng ở vị trí đầu tự nhiên phải qua nhiều bước và thưc hiện bởi những kỹ thuật viên giàu kinh nghiệm. Các phim sọ nghiêng hiện tại dùng mặt phẳng chuẩn là mặt phẳng Frankfort để xác định tư thế đầu bệnh nhân khi chụp. Do đó để thuận tiện cho việc xây dựng một sơ đồ lưới nhằm đánh giá sự hài hòa của khuôn mặt theo mặt phẳng chuẩn là mặt phẳng đầu tự nhiên, chúng ta cần thiết lập một phương trình hồi qui tuyến tính mà biến độc lập sẽ là mặt phẳng Frankfort và biến phụ thuộc là mặt phẳng đầu tự nhiên. Từ đó ta có thể tìm được vị trí mặt phẳng đầu tự nhiên từ vị trí mặt phẳng Frankfort trên các phim sọ nghiêng hiện tại. Các điểm trên mô mềm Bảng 2: Giá trị trung bình các tỉ lệ và hệ số tương quan của các điểm chuẩn trên mô mềm giữa hai mặt phẳng đầu tự nhiên và Frankfort. STT Điểm TRUNG BÌNH ± ĐLC Hệ số tương quan của hoành độ các điểm (X) Hệ số tương quan của tung độ các điểm (X) Trục tọa độ MP đầu tự nhiên Trục tọa độ MP Frankfort X Y X Y 1 Gla 0,31±0,05 0,59±0,18 0,29±0,06 0,59±0,18 0,785*** 0.912*** 2 Na 0,16±0,04 0,78±0,08 0,17±0,04 0,79±0,08 0,921*** 0,961*** 3 Pn 0,75±0,12 0,27±0,08 0,84±0,12 0,33±0,08 0,766*** 0,726*** 4 Sn 0,34±0,13 0,86±0,06 0,45±0,12 0,89±0,07 0,683*** 0,801*** 5 Ls 0,44±0,15 0,37±0,09 0,57±0,14 0,40±0,09 0.657*** 0,883*** 6 Sto 0,23±0,14 0,01±0,10 0,37±0,14 0,03±0,10 0,551*** 0,970*** 7 Li 0,30±0,15 0,58±0,15 0,46±0,15 0,58±0,20 0,495*** 0,461*** 8 Supm 0,13±0,15 0,48±0,14 0,29±0,15 0,48±0,15 0,444*** 0,936*** 9 Pog’’ 0,10±0,15 0,99±0,19 0,29±0,16 1,01±0,17 0,311** 0,728*** ** : Khác biệt có ý nghĩa ở mức p<0,01 *** : Khác biệt có ý nghĩa ở mức p<0,001 - : Khác biệt không có ý nghĩa thống kê Tất cả các điểm mốc trên mô mềm có tương quan với nhau giữa hai hệ trục tọa độ từ trung bình đến rất cao và tương quan này rất có ý nghĩa thống kê. Điều này hoàn toàn hợp lí khi mặt phẳng đầu tự nhiên là mặt phẳng ngoài sọ và được xác định là vị trí chuẩn để xác định mức độ hài hòa của khuôn mặt, mà độ thẩm mĩ của khuôn mặt được quyết định chủ yếu bởi yếu tố mô mềm. Như vậy, ta có thể chọn các đường thẳng nối các điểm trên mô mềm này làm các trục chuẩn để kết hợp với mặt phẳng Frankfort và mặt phẳng đầu tự nhiên tạo thành các góc: góc hợp bởi mặt phẳng Frankfort và đường Pog’’-Pn, góc hợp bởi mặt phẳng đầu tự nhiên và đường Na’-Sn.Từ đó đi tìm mối tương quan giữa các góc này, nhằm tìm phương trình hồi qui để chuyển đổi số đo các góc có chứa mặt phẳng Frankfort sang số đo các góc có sự kết hợp với mặt phẳng đầu tự nhiên. Nếu có được phương trình tương quan hồi qui, ta có thể tìm lại vị trí đầu tự nhiên thông qua phương trình chuyển đổi này. Nghiên cứu Y học Y Học TP. Hồ Chí Minh * Tập 19 * Phụ bản của Số 2 * 2015 Chuyên Đề Răng Hàm Mặt 322 Một nghiên cứu được thực hiện tại khoa chỉnh nha thuộc đại học Oklahama(3) với nỗ lực tìm kiếm những tiêu chuẩn cho nét mặt lý tưởng khi nhìn nghiêng. Nghiên cứu cho thấy độ nhô của môi phụ thuộc vào vị trí cằm và mũi: khuôn mặt hài hòa, có tính thẩm mĩ cao là khi có môi nhô ra trước, đồng thời mũi nhô cao và cằm lớn. Hsu(2) một lần nữa đã xác nhận sự thăng bằng của nét mặt nhìn nghiêng luôn phụ thuộc vào mối tương quan của mũi, môi cằm. Ricketts(9) đã đề nghị đường thẩm mĩ E (đường thẳng nối điểm Pog’’ và Pn) để đánh giá tương quan này. Do đó trong nghiên cứu này, chúng tôi chọn : Đường thẳng E (Pog’’Pn) thể hiện mối tương quan mũi, môi, cằm. Đường thẳng Na’Pn, Gla’Pn: chiều cao của sống mũi. Đường thẳng Na’Sn: đánh giá độ nhô của mặt. Các đường thẳng kể trên sẽ kết hợp với hai mặt phẳng Frankfort và đầu tự nhiên tạo thành các góc: Pog’’Pn -mặt phẳng đầu tự nhiên, Pog’’Pn -mặt phẳng Frankfort, Na’Pn-mặt phẳng đầu tự nhiên, Na’Pn-mặt phẳng Frankfort, Na’Sn-mặt phẳng đầu tự nhiên, Na’Sn-mặt phẳng Frankfort, Pog’’Pn-mặt phẳng đầu tự nhiên, Pog’’Pn-mặt phẳng Frankfort. Các góc này chính là các biến số nhằm đi tìm phương trình hồi qui tuyến tính vì các biến về góc ít bị ảnh hưởng so với các biến kích thước do hình ảnh phóng đại khi chụp phim sọ nghiêng ở các máy chụp phim khác nhau cũng như giữa các mặt phẳng khác nhau. Phương trình hồi quy tuyến tính Bảng 3: Hệ số tương quan giữa các góc tạo bởi các đường Na’-Pn, Na’-Sn, Pog’’-Pn, Gla’-Sn hợp với mặt phẳng đầu tự nhiên và mặt phẳng Frankfort STT GÓC Mặt phẳng đầu tự nhiên Mặt phẳng Frankfort R P TB ĐLC TB ĐLC 1 Na’Pn 1,15 0 3,20 0 1.19 0 3,05 0 0,509 ** 2 Na’Sn 96,44 0 3,68 0 99,98 0 3,44 0 0,532 ** 3 Pog’’Pn (đường E) 70,71 0 4,38 0 73,70 0 3,45 0 0,424 ** 4 Gla’Sn 90,65 0 4,53 0 94,54 0 3,65 0 0,132 - ** : Khác biệt có ý nghĩa ở mức p<0,01 - : Khác biệt không có ý nghĩa thống kê Số đo của góc hợp bởi Gla’Sn và mặt phẳng đầu tự nhiên, Gla’Sn và mặt phẳng Frankfort không có tương quan nên không được chọn làm biến số trong phương trình hồi qui. Các góc còn lại có tương quan trung bình nhưng p<0,01; rất có ý nghĩa thống kê, cho nên được sử dụng làm biến số trong việc xây dựng phương trình hồi qui. Từ kết quả trên, chúng tôi xây dựng mô hình hồi quy tuyến tính đa biến mô tả mối quan hệ giữa góc Na’Sn-mặt phẳng đầu tự nhiên là biến số phụ thuộc theo các thông số góc tạo bởi các đường thẳng Pog’’Pn, Na’Pn, Na’Sn với mặt phẳng Frankfort (biến độc lập). Chúng tôi nhận thấy mô hình hồi quy ba biến không phù hợp do góc Na’Pn-mặt phẳng Frankfort (p>0,05) không theo sự phân tán của góc Na’Sn trong mặt phẳng đầu tự nhiên. Kết quả cho thấy nghiên cứu đã tìm ra mối tương quan chặt chẽ giữa các góc Na’Sn- mặt phẳng Frankfort và Pog’’Pn- mặt phẳng Frankfort với góc Na’Sn-mặt phẳng đầu tự nhiên (hệ số tương quan Pearson r=0,617, p<0,001) và được thể hiện qua phương trình sau: Na’Sn-mp đầu tự nhiên = 0,665 × Na’Sn-mp Frankfort – 0,347 × Pog’’Pn-mp Frankfort + 55,488. KẾT LUẬN Bằng phương pháp phân tích tương quan và phân tích hồi quy đa biến giữa các biến định lượng số đo góc tạo bởi các đường thẳng Na’Sn và Pog’’Pn với mặt phẳng đầu tự nhiên và mặt phẳng Frankfort trên phim sọ nghiêng của 68 đối tượng từ 18 đến 25 tuổi, chúng tôi đã thiết lập Y Học TP. Hồ Chí Minh * Tập 19 * Phụ bản của Số 2 * 2015 Nghiên cứu Y học Chuyên Đề Răng Hàm Mặt 323 một phương trình xác định mối tương quan giữa hai mặt phẳng đầu tự nhiên và Frankfort: Na’Sn-mp đầu tự nhiên = 0,665 × Na’Sn-mp Frankfort – 0,347 × Pog’’Pn-mp Frankfort + 55,488. Nghiên cứu này đã đưa ra khái niệm và một cái nhìn tổng quát về mối tương quan giữa hai mặt phẳng đầu tự nhiên và Frankfort trong phân tích sơ đồ lưới. Đồng thời bước đầu đo đạc được những số liệu thể hiện đặc điểm khuôn mặt hài hòa của người Việt Nam, những số liệu này là nền tảng cho các nghiên cứu với quy mô rộng hơn. TÀI LIỆU THAM KHẢO 1. Hồ Thị Thùy Trang. (1999). Những đặc trưng của khuôn mặt hài hòa qua ảnh và qua phim sọ nghiêng. Luận văn thạc sĩ y học, trường 2. Hsu B. S. (1993). Comparision of the five analytic reference lines of the horizontal lip position: their consistency and sensitivity. American Journal of Orthodontics and Dentofacial Orthopedics. 104, pp.355-360. 3. Jacobson A. (1995). Radiographic Cephalometry from basics to videoimaging. By Quintessence Publising Co, Inc. p.175-215. 4. Jiuhiu Jiang, Tianmin Xu, Jiuxiang Lin, Harris E. F. (2007). Proportional analysis of longitudinal craniofacial growth using modified mesh diagrams. The Angle Orthodontic. 77, pp.794-802. 5. Lundstrom A, Forsberg C. M, Peck S, Mcwilliam J. (1992). A proportional analysis of the soft tissue facial profile in young adults with normal occlusion. The Angle Orthodontics, 62, pp.127-133. 6. Moorrees C. F. A, Kean M. R. (1958). Natural head position: a basic considerationin the interpretation of cephalometric radiographs. Am j Phys Anthropol, 16, pp.213-234. 7. Moorees C. F. A, Lebret L. (1962). The mesh diagram and cephalometrics. The Angle Orthodontics, 32, pp.214-231. 8. Proffit R.W. (2007). Contemporary Orthodontics, fourth edition. By Mosby, Inc, an affiliate of Elsevier Inc, pp.27-161. 9. Ricketts R. M. (1957). Planning treatment on the basic of facial pattern and an estimate of its growth. Angle Orthod. 27, pp.14- 37. Ngày nhận bài báo: 27/02/2015 Ngày phản biện nhận xét bài báo: 02/03/2015 Người phản biện: TS Đống Khắc Thẩm Ngày bài báo được đăng: 10/04/2015

Các file đính kèm theo tài liệu này:

  • pdfkhao_sat_moi_tuong_quan_giua_hai_mat_phang_dau_tu_nhien_va_f.pdf
Tài liệu liên quan