LỜI NÓI ĐẦU
Mặc dù tán xạ không đàn hồi của phần tử ánh sáng, một hiện tượng được biết như tán xạ Raman, được tìm ra bởi C.V. Raman trong năm 1928, nhưng hiện tượng phi tuyến của tán xạ Raman kích thích không được chứng minh cho đến năm 1962. Không lâu sau đó, sợi quang silica suy hao thấp được sử dụng trong năm 1970, Roger Stolen và những người đồng nghiệp sử dụng tán xạ Raman kích thích trong nhiều sợi quang không chỉ cho khuếch đại của tín hiệu quang mà còn cho cấu tạo laser Raman sợi cơ sở. Khả năng của bộ khuếch đại Raman cho bù suy hao sợi quang trong hệ thống sóng ánh sáng được chứng minh trong những năm 1980 trong một vài thí nghiệm được làm bởi Linn Mollenauer và đồng nghiệp của ông. Tuy nhiên, những thí nghiệm này không phù hợp cho sự phát triển bộ khuếch đại Raman trong hệ thống thông tin quang thương mại. Tiếp theo bộ khuếch đại sợi quang pha tạp Erbium có bơm sử dụng laser bán dẫn có tính thực tiễn hơn nên khuếch đại Raman đã bị bỏ qua suốt nhưng năm 1990.
Tuy nhiên, việc nghiên cứu laser bơm thích ứng cho khuếch đại Raman vẫn được tiến hành. Một vài công nghệ tiên tiến được tìm ra trong những năm 1990 giúp cho việc sản xuất ra laser bán dẫn đơn mode ngang có khả năng phát mức công suất vượt quá 0,2 W. Người ta cũng nhận thấy rằng một vài laser bơm có thể sử dụng tương thích tại bước sóng khác nhau và cung cấp độ khuếch đại Raman qua một băng tần rộng bao gồm cả băng truyền dẫn C và L. Hơn nữa, người ta cũng chế tạo ra bộ khuếch đại Raman phân bố có độ khuếch đại trên 10 km có nhiễu nhỏ hơn so với bộ khuếch đại sợi pha tạp Erbium có độ khuếch đại trên 10 mét. Khi laser bán dẫn công suất lớn có giá trị về thương mại vào cuối thế kỷ 20, bộ khuếch đại Raman đã được sử dụng trong một số thí nghiệm và thấy rằng nó cải thiện hiệu năng của hệ thống WDM. Tới năm 2003, việc sử dụng bộ khuếch đại Raman đã khá phổ biến cho hệ thống tầm xa được thiết kế để hoạt động qua hàng ngàn kilomet. Các bộ khuếch đại quang Raman có rất nhiều ưu điểm so với những loại khuếch đại quang đã được sử dụng trước đó và rất phù hợp với các hệ thống WDM đang được triển khai hiện nay. Các bộ khuếch đại quang Raman được coi là lời giải cho bài toán khuếch đại quang trong các hệ thống truyền dẫn quang dung lượng lớn, cự ly dài và rất dài.
Nhận thức được tầm quan trọng của khuếch đại Raman trong hệ thống thông tin quang, nên em chọn đề tài “ Khuếch đại Raman trong hệ thống thông tin quang” để làm đề tài đồ án tốt nghiệp.
Nội dung đồ án gồm 3 chương:
Chương 1: Giới thiệu tổng quan về khuếch đại quang: nguyên lý khuếch đại quang và một số tham số khuếch đại quang.
Chương 2: Trình bày về khuếch đại Raman: tán xạ Raman, ưu nhược điểm của khuếch đại Raman, nguyên lý khuếch đại Raman, bơm và phương trình tín hiệu, nhiễu trong khuếch đại Raman, phân loại các bộ khuếch đại Raman.
Chương 3: Trình bày ứng dụng của bộ khuếch đại Raman.
Mặc dù đã hết sức cố gắng nhưng do khuếch đại Raman là một vấn đề khó nên nội dung đồ án khó tránh khỏi các thiếu sót. Rất mong nhận được sự chỉ bảo, góp ý của các thầy, cô giáo, các bạn sinh viên để đồ án này được hoàn thiện hơn.
Em xin chân thành cảm ơn cô giáo, ThS. Nguyễn Thị Thu Nga đã nhiệt tình hướng dẫn em hoàn thành đồ án này.
Em xin cảm ơn các thầy, cô giáo trong bộ môn thông tin quang, khoa viễn thông đã dạy dỗ, dìu dắt em trong suốt 5 năm học vừa qua.
Xin cảm ơn gia đình, người thân và bạn bè đã động viên, giúp đỡ trong suốt thời gian qua.
Hà Nội, ngày tháng năm 2008
Sinh viên
Vương Thành Nam
MỤC LỤC
LỜI NÓI ĐẦU i
MỤC LỤC iii
DANH MỤC HÌNH VẼ v
THUẬT NGỮ VIẾT TẮT vii
CHƯƠNG I: GIỚI THIỆU VỀ KHUẾCH ĐẠI QUANG 1
1.1.Giới thiệu chung 1
1.2. Nguyên lý bộ khuếch đại quang 1
1.3.Phân loại khuếch đại quang 3
1.4. Hệ số độ lợi 3
1.5. Băng thông độ lợi 5
1.6. Công suất ngõ ra bão hoà 5
1.6.1. Độ lợi bão hoà 5
1.6.2. Công suất ngõ ra bão hoà 6
1.7. Hệ số nhiễu 7
1.8. Ứng dụng bộ khuếch đại quang 7
Kết luận chương I 9
CHƯƠNG II:BỘ KHUẾCH ĐẠI RAMAN 10
2.1.Tán xạ Raman 10
2.1.1.Ánh sáng 10
2.1.2.Tương tác của ánh sáng và môi trường 10
2.1.3.Sợi quang 11
2.1.4.Quá trình truyền ánh sáng trong sợi quang 13
2.1.5.Tính chất phi tuyến của sợi quang 16
2.1.6.Tán xạ ánh sáng 18
2.1.7.Tán xạ Raman 19
2.2. Ưu điểm của khuếch đại Raman 21
2.2.1.Cải thiện hệ số nhiễu 21
2.2.2. Cải thiện hệ số phẳng 23
2.3.Nguyên lý hoạt động bộ khuếch đại Raman 26
2.4.Bơm và phương trình tín hiệu 27
2.4.1. Phổ độ khuếch đại Raman. 29
2.4.2.Bộ khuếch đại Raman đơn bơm. 34
2.4.3 Khuếch đại Raman đa bơm. 43
2.5.Nguồn nhiễu trong bộ khuếch đại Raman 47
2.6.Phân loại các bộ khuếch đại Raman 49
2.6.1.Khuếch đại Raman phân bố DRA (Distributed Raman Amplifier) 49
2.6.2.Khuếch đại Raman tập trung LRA (Lumped Raman Amplifier) 51
2.6.3.Bộ khuếch đại quang lai ghép Raman/EDFA 51
Kết luận chương II 52
CHƯƠNG 3 :ỨNG DỤNG CỦA BỘ KHUẾCH ĐẠI RAMAN 53
3.1.Ứng dụng trong hệ thống WDM 53
3.2. Ứng dụng vào thiết bị khuếch đại quang OPTera Long Haul 1600G – CQ40Gbit/s Nortel 54
3.2.1. Giới thiệu chung hệ thống OPTera Long Haul 1600 54
3.2.1.1 1600 Amplifier 56
3.2.1.2.MOR Plus Amplifier 57
3.2.1.3.Wavelength Combiner 57
3.2.1.4.Wavelength Translator 57
3.2.1.5.Dense Regenerator 58
3.2.1.6.Optical Dedicated Protection Ring 58
3.2.2. Sơ đồ nguyên lý của một trạm có khuếch đại Raman 58
3.2.3. Chức năng các thành phần. 60
3.2.3.1.Các bộ khuếch đại Raman Dra-A và Dra-B: 60
3.2.3.2.Card phân tích phổ quang OSA 62
3.2.3.3.Bộ bù tán sắc và suy hao MSA 63
3.2.3.4.Card kênh dịch vụ quang OSC đơn chiều UniOSC 63
3.2.3.5.Card khuếch đại kép ( Dual Amplifier Circuit Pack ) 64
3.2.3.6.Card khuếch đại Booster 65
Kết luận chương III 66
KẾT LUẬN 67
TÀI LIỆU THAM KHẢO 68
76 trang |
Chia sẻ: banmai | Lượt xem: 2231 | Lượt tải: 5
Bạn đang xem trước 20 trang tài liệu Khuếch đại Raman trong hệ thống thông tin quang, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
g lượng h tạo ra một phần tử có năng lượng photon tần số thấp hơn h. Phonon quang có năng lượng khác nhau được sinh ra trong suốt quá trình này, đó là do phần tử này chuyển tới trạng thái dao động kích thích. Thực vậy, ánh sáng tới tác động như một bơm cho phát sinh sự dịch bức xạ RED gọi là dòng Stokes. Bộ phận dịch BLUE được biết như là dòng phản Stokes, nó cũng được sinh ra nhưng cường độ của nó yếu hơn nhiều so với dòng Stokes bởi vì quá trình phản Stokes yêu cầu trạng thái dao động xác định ban đầu của một phonon phải đúng năng lượng và động lượng. Trong phần sau chúng ta bỏ qua quá trình phản Stokes coi như nó chạy ảo không có vai trò trong khuếch đại quang.
Hình 2.14:Sơ đồ minh họa của quá trình tán xạ Raman từ quan điểm cơ học lượng tử. Một photon Stokes năng lượng giảm hωs được tạo tức thời khi một photon bơm có năng lượng hωp được nâng lên tới mức ảo như đường nét đứt.
Mặc dù tán xạ Raman tự phát xảy ra trong bất kỳ phần tử môi trường nào, nhưng nó đủ yếu để có thể bỏ qua khi một chùm tín hiệu quang lan truyền qua một sợi quang. Nó đã được quan sát trong năm 1962 cho trường quang cường độ lớn, hiện tượng phi tuyến của SRS có thể xảy ra trong đó sóng Stokes tăng nhanh bên trong môi trường giống như hầu hết công suất chùm ánh sáng bơm truyền qua nó. Kể từ năm 1962, SRS đã được nghiên cứu rộng rãi trong nhiều môi trường phần tử và đã tìm ra một số ứng dụng. SRS đã được quan sát trong sợi quang silica năm 1972; sớm sau đó, suy hao lớn nhất của sợi quang đã được giảm tới mức có thể chấp nhận được. Kể từ đó, đặc điểm của quá trình tán xạ Raman đã được lượng tử hóa cho nhiều gương quang trong cả dạng sợi và dạng khối.
Thực tế, SRS không dễ dàng quan sát trong sợi quang sử dụng chùm ánh sáng bơm CW bởi vì giá trị ngưỡng của nó tương đối cao ( ~ 1W). Tuy nhiên, nếu một chùm ánh sáng Stokes với tần số đúng được bơm cùng với chùm ánh sáng bơm như trong hình 2.15 nó có thể được khuếch đại đáng kể khi sử dụng một chùm ánh sáng bơm CW với mức công suất ~ 100mW. Bơm và tín hiệu có thể được bơm trong hướng đối nhau bởi vì bản chất gần như đẳng hướng của SRS. Trong thực tế, cấu hình bơm nghịch lại được ưu tiên bởi vì nó làm hiệu năng bộ khuếch đại Raman tốt hơn. Mặc dầu, bộ khuếch đại Raman sợi quang cơ sở thu hút sự chú ý đáng kể suốt những năm 1980, nhưng nó chỉ có giá trị với laser bơm thích ứng trong cuối những năm 1990.
Hình 2.15:Bộ khuếch đại Raman sợi quang cơ sở trong cấu hình bơm thuận.
2.4.1. Phổ độ khuếch đại Raman.
Đặc tính quan trọng nhất của bộ khuếch đại Raman là hệ số khuếch đại Raman gR. Nó mô tả công suất Stokes tăng như công suất bơm được truyền qua nó thông qua SRS như thế nào. gR được liên hệ với phần ảo của độ nhạy phi tuyến cấp 3. Một cách gần đúng, thỏa mãn điều kiện CW hoặc chuẩn – CW, sự gia tăng ban đầu của tín hiệu quang yếu được điều chỉnh bằng:
(2.23)
trong đó được liên hệ với gR, biểu diễn dịch Raman, và và là tần số quang liên hệ với trường bơm và tín hiệu có cường độ tương ứng là Ip và Is.
Phổ độ khuếch đại Raman được đo cho thủy tinh silica cũng như sợi quang silica cơ bản. Hình 2.16 chỉ ra hệ số khuếch đại Raman cho khối silica như một hàm của dịch tần số Ω khi bơm và tín hiệu không phân cực (nét liền ) hoặc phân cực vuông góc (nét đứt). Độ khuếch đại đỉnh được chuẩn hóa tới 1 trong trường hợp không phân cực vì thế biểu đồ tương đương có thể được sử dụng cho bước sóng bơm bất kỳ . Giá trị đỉnh tỷ lệ nghịch với và bằng khoảng 6 10 – 14 m/W cho bơm gần 1,5.
Đặc điểm quan trọng nhất của phổ khuếch đại Raman cho sợi quang silica là độ khuếch đại tồn tại qua một băng tần rộng (lên tới 40THz) với vị trí bề rộng cao nhất gần 13,2THz. Có được trạng thái này là vì đặc tính không kết tinh của thủy tinh silica. Trong những vật liệu vô định hình như silica hỗn hợp, tần số dao động phần tử lan truyền trong băng tần lập và tạo ra dải liên tục. Kết quả là, tương phản với hầu hết môi trường phân tử, mà độ khuếch đại Raman xảy ra tại tần số dễ xác định đặc biệt, nó kéo dài liên tục qua băng rộng trong sợi quang silica. Sợi quang có thể hoạt động như bộ khuếch đại Raman băng rộng bởi những đặc điểm này. Đặc điểm quan trọng khác của hình 2.16 là sự phụ thuộc phân cực của độ khuếch đại Raman; độ khuếch đại gần như triệt tiêu khi bơm và tín hiệu phân cực vuông góc.
Hình 2.16: Phổ độ khuếch đại Raman cho khối silica được đo khi bơm và tín hiệu không phân cực (nét liền) hoặc phân cực vuông góc (nét đứt). Độ khuếch đại đỉnh được chuẩn hóa tới 1 trong trường hợp không phân cực.
Trong sợi quang đơn mode, mẫu không gian của cả bơm và chùm tín hiệu được cưỡng bức bằng thiết kế sợi quang và không biến đổi dọc theo chiều dài toàn bộ sợi quang. Cũng vì lẽ ấy, nó thường xử lý tổng công suất quang xác định như sau:
Pj (z) = , (2.24)
Trong đó j = p hoặc s. Phương trình (2.23) có thể được viết lại trong điều kiện của nguồn quang như sau:
, (2.25)
Trong đó diện tích lõi hiệu dụng được xác định như sau:
Aeff = (2.26)
Biểu thức phức tạp này rút gọn đáng kể nếu chúng ta giả sử rằng mẫu trường mode F(x,y) gần giống nhau cho cả hai bơm và Stokes. Trong điều kiện của mẫu mode này, Aeff có thể được viết như sau:
Aeff = (2.27)
Nếu chúng ta ước chừng mẫu mode bởi một hàm Gaussian của dạng F(x,y) = exp[ - (x2 + y2)/ω2], trong đó ω là bán kính trường mode, và sử dụng phép tính tích phân trong phương trình (2.27), chúng ta có được kết quả đơn Aeff . Từ đó bán kính trường mode ω được thiết lập cho bất kỳ sợi quang nào, Aeff là tham số đã biết mà giá trị có thể thay đổi trong khoảng 10 tới 100µm2 phụ thuộc và thiết kế của sợi quang; giá trị thấp của Aeff xảy ra cho sợi quang bù tán sắc (DCF) cho đường kính lõi tương đối nhỏ.
Hình 2.17 chỉ ra gR /Aeff ( đôi khi được gọi là hiệu suất độ khuếch đại Raman) cho một DCF, một sợi quang tán sắc khác không (NZDF), và một sợi quang miền siêu rộng (SLA)tương ứng với Aeff = 15, 55 và 105µm2. Trong tất các trường hợp, sợi quang được bơm tại bước sóng 1,45µm và được cung cấp độ khuếch đại tại bước sóng gần 1,55µm. Một điểm chú ý chính là DCF gần như gấp 10 lần hiệu dụng cho khuếch đại Raman. Tăng 7 lần khi diện tích lõi hiệu dụng giảm. Phần tăng còn lại vì mức pha tạp cao hơn của germania trong DCF( Những phân tử GeO2 biểu hiện độ khuếch đại Raman đỉnh rộng hơn gần 13,1THz). Phổ thay đổi như hình 2.17 cho 3 sợi quang do mức pha tạp GeO2.
Hình 2.17: Phổ độ khuếch đại Raman được chỉ định cho 3 loại sợi quang bơm tại 1,45µm. Diện tích lõi hiệu dụng và mức pha tạp GeO2 khác nhau cho 3 loại.
Rõ ràng từ hình 2.17 thấy rằng, khi một chùm ánh sáng bơm được bơm vào sợi quang khác nhau với một chùm tín hiệu yếu, nó sẽ được khuếch đại bởi vì độ khuếch đại Raman chỉ cần tần số khác nhau Ω = trong phạm vi băng tần của phổ độ khuếch đại Raman. Độ khuếch đại tín hiệu phụ thuộc đáng kể vào tần số khác nhau Ω và là lớn nhất khi chùm tín hiệu kém tần số bơm 13,2THz (khoảng 100nm trong dải 1,5µm). Độ khuếch đại Raman tồn tại trong tất cả dải phổ; tức là sợi quang có thể được sử dụng cho khuếch đại bất kỳ tín hiệu nào cung cấp một nguồn bơm thích ứng được sử dụng. Đặc điểm đáng chú ý của bộ khuếch đại Raman này khá khác so với bộ khuếch đại sợi quang pha Eribium, chỉ có thể khuếch đại tín hiệu có bước sóng không biến đổi xảy ra tại bước sóng gần 1,53µm.
Đặc tính không đều của phổ độ khuếch đại Raman trong hình 2.17 liên quan đến hệ thống sóng quang ghép kênh phân chia theo bước sóng (WDM) bởi vì các kênh khác nhau sẽ được khuếch đại bằng giá trị khác nhau. Vấn đề này được giải quyết trong thực tiễn bằng sử dụng đa bơm tại các bước sóng yếu khác nhau. Mỗi bơm cung cấp độ khuếch đại không đều nhưng phổ độ khuếch đại được kết hợp từ bơm khác nhau. Với một lựa chọn thích ứng của bước sóng và công suất cho mỗi laser bơm, nó có thể thực hiện mẫu độ khuếch đại gần phẳng qua một băng bước sóng rộng đáng kể. Ta sẽ xét hệ thống đơn bơm trước, để đưa ra khái niệm cơ bản trong phương pháp đơn bơm, và sau đó tập trung vào cấu hình đa bơm của khuếch đại Raman.
2.4.2.Bộ khuếch đại Raman đơn bơm.
Xét trường hợp chùm ánh sáng bơm CW đơn được bơm vào một sợi quang sử dụng cho khuếch đại một tín hiệu CW. Ngay cả trong trường hợp này, phương trình (2.25) nên thay đổi bao gồm suy hao sợi quang trước khi nó có thể được sử dụng. Hơn nữa, công suất bơm còn lại thay đổi dọc theo sợi quang. Khi có những tác động, quá trình khuếch đại Raman phụ thuộc vào hai phương trình sau:
, (2.28)
, (2.29)
trong đó và giải thích cho độ suy hao của sợi quang theo thứ tự bước sóng Stokes và bước sóng bơm. Tham số lấy giá trị phụ thuộc vào cấu hình bơm; dấu trừ khi bơm nghịch.
Phương trình (2.28) và (2.29) có thể được suy ra chính xác từ phương trình Maxwell. Chúng có thể được viết theo hiện tượng logic bằng chú ý quá trình xuyên qua mà photon xuất hiện hoặc không xuất hiện trong mỗi chùm sóng ánh sáng. Tỷ lệ tần số xuất hiện trong phương trình (2.29) bởi vì những photon tín hiệu và bơm có năng lượng khác nhau. Chúng có thể chứng minh trong trường hợp không có suy hao:
(2.30)
Chú ý rằng Pj/ωj liên hệ với dòng photon tại tần số ωj, đây là phương trình chỉ biểu diễn bảo toàn tổng số photon suốt quá trình SRS.
Phương trình (2.28) và (2.29) không dễ dàng giải theo phép giải tích bởi tính chất phi tuyến của chúng. Thực tế trong nhiều trường hợp, công suất bơm lớn hơn so với công suất tín hiệu do đó sự cạn bơm có thể được bỏ qua bằng cách đặt gR = 0 trong phương trình (2.29), sau đó được giải dễ dàng. Như ví dụ, PP(z) = P0exp(- αPz) trong trường hợp bơm thuận (), trong đó P0 là năng lượng đầu vào tại z = 0. Nếu chúng ta thay thế nghiệm này vào phương trình (2.28), chúng ta nhận được:
. (2.31)
Phương trình này có thể dễ dàng tích phân để được:
PS(L) = PS(0)exp(gRP0Leff - αSL) G(L)PS(0) (2.32)
trong đó G(L) là độ khuếch đại tín hiệu, L là độ dài bộ khuếch đại, và Leff là độ dài hiệu dụng được định nghĩa:
Leff = [1- exp(- αPL)]/αP. (2.33)
Nghiệm (2.32) chỉ ra rằng, do sự hấp thụ bơm, nên độ dài khuếch đại hiệu dụng được giảm từ L tới Leff.
Trường hợp bơm nghịch có thể được xét trong một hàm đồng dạng. Trong trường hợp này, phương trình (2.29) có thể được giải với gR = 0 và sử dụng điều kiện bờ PP(L) = P0; kết quả là PP(z) = P0exp[- αP(L – z)]. Tích phân của phương trình (2.28) sinh ra nghiệm giống như đưa ra trong phương trình (2.32), chứng tỏ rằng công suất tín hiệu khuếch đại tại mức bơm đã đưa ra là giống nhau trong cả cấu hình bơm thuận và bơm nghịch.
Trường hợp bơm hai hướng phức tạp hơn không đáng kể bởi vì hai laser bơm được đặt đối diện nhau cuối sợi quang. Công suất bơm trong phương trình (2.28) bây giờ biểu diễn tổng PP = Pf + Pb, trong đó Pf và Pb tìm được bằng cách giải phương trình( vẫn bỏ qua sự cạn kiệt của bơm):
dPf/dz = - αPPf , dPb/dz = αPPb . (2.34)
Giải những phương trình này chúng ta tìm được công suất bơm PP(z) tại khoảng cách z như sau:
PP(z) = P0{rf exp (- αPz) + (1- rf) exp[ - αP ( L – z)]} , (2.35)
trong đó P0 là tổng công suất bơm và rf = PL/PR là tỷ lệ của công suất bơm đã bơm trong hướng thuận. Tích phân phương trình (2.28) thu được độ khuếch đại tín hiệu:
G(z) = (2.36)
Hình 2.18 chỉ ra công suất tín hiệu thay đổi thế nào dọc theo chiều dài 100km của bộ khuếch đại Raman phân bố với rf khác nhau từ 0 tới 1. Trong tất cả các trường hợp, tổng công suất bơm được chọn giống như độ khuếch đại Raman đủ để bù cho suy hao sợi quang, đó là: G(L) = 1.
Hình 2.18:Sự biến thiên của công suất tín hiệu trong bơm hai chiều, bộ khuếch đại Raman có chiều dài 100km với bơm thuận thay đổi từ 0 đến 100%. Phần giới hạn bởi đường thẳng là trường hợp sợi quang thụ động không có độ khuếch đại Raman.
Có thể đặt câu hỏi cấu hình bơm nào là tốt nhất cho hệ thống. Câu trả lời không đơn giản khi nó phụ thuộc vào nhiều hệ số. Bơm thuận là tốt hơn khi xét tới nhiễu. Cho một hệ thống tầm xa giới hạn bởi sợi quang phi tuyến, bơm nghịch có thể đưa ra hiệu năng tốt hơn bởi vì trong trường hợp này công suất tín hiệu qua chiều dài đường dẫn là nhỏ nhất. Tổng tích lũy dịch pha phi tuyến được gây ra bởi sự tự điều pha (SPM) có thể tìm được:
(2.37)
trong đó là tham số phi tuyến gây ra SPM. Dịch pha phi tuyến tăng vì khuếch đại Raman có thể lượng tử hóa qua tỷ số:
RNL = . (2.38)
Hình 2.19: Sự cải thiện trong hiệu ứng phi tuyến phụ thuộc độ khuếch đại trong chiều dài 100km, bơm hai chiều, bộ khuếch đại Raman phân bố với bơm thuận thay đổi từ 0 đến 100%. Đường dọc chỉ ra trường hợp mà độ khuếch đại Raman bù tổng suy hao sợi quang.
Hình 2.19 chỉ ra tỷ số này thay đổi phụ thuộc độ khuếch đại G(L) cho bộ khếch đại Raman phân bố kéo dài 100km cho hệ thống khác nhau của bơm thuận và bơm nghịch. Rõ ràng, ảnh hưởng phi tuyến là bé nhất trong trường hợp bơm nghịch và tăng hơn 10dB khi bơm thuận được sử dụng.
Đại lượng G(L) biểu diễn độ khuếch đại tín hiệu mạng và có thể bằng <1(mạng suy hao) nếu độ khuếch đại Raman không đủ để bù suy hao sợi quang. Rất có lợi khi đưa vào khái niệm độ khuếch đại Raman bật - tắt sử dụng định nghĩa:
GA = (2.39)
Rõ ràng, GA biểu diễn tổng số độ khuếch đại phân bố qua một chiều dài Leff. Nếu chúng ta sử dụng giá trị đặc trưng của gR = 3W-1/km cho một DCF từ hình 2.17 cùng với Leff = 1km, tín hiệu có thể được khuếch đại bằng 20dB cho P0 1,5W. Hình 2.20 chỉ ra biến thiên của GA với P0 quan sát trong thí nghiệm năm 1981 mà sợi cáp chiều dài 1,3km được sử dụng để khuếch đại tín hiệu 1,064µm bằng cách sử dụng bơm 1,017µm. Hệ số khuếch đại GA tăng lũy thừa với P0 ban đầu, như dự báo bởi phương trình (2.39) nhưng lệch hơn P0 > 1W. Đó là vì độ khuếch đại bão hòa xảy ra vì cạn kiệt bơm. Kết quả là phù hợp hoàn toàn với dữ liệu và thỏa mãn phương trình (2.28) và (2.29) cho mô hình khuếch đại Raman.
Hình 2.20:Sự biến thiên của độ khuếch đại bộ khuếch đại GA với công suất bơm P0.
Biểu thức gần đúng cho độ khuếch đại bão hòa Gs trong bộ khuếch đại Raman có thể nhận được bằng cách giải phương trình (2.28) và (2.29) phân tích với giả định . Phép tính gần đúng này không luôn luôn đúng nhưng nó có thể đảm bảo cho sợi cáp quang trong vùng 1,55µm. Giả thiết bơm thuận () và làm phép biến đổi Pj = ωjFjexp( - αz) với j = s hoặc p, chúng ta nhận được hai phương trình đơn:
, . (2.40)
Chú ý rằng FP(z) + FS(z) = C, trong đó C là một hằng số, phương trình vi phân cho FS có thể được tích hợp qua chiều dài bộ khuếch đại nhận được kết quả sau:
GS = . (2.41)
Sử dụng C = FP(0) + FS(0) trong phương trình trước, độ khuếch đại bão hòa của bộ khuếch đại được cho bởi:
GS = , (2.42)
trong đó r0 liên hệ với tỷ số công suất bơm tín hiệu tại đầu vào sợi quang như sau:
r0 = (2.43)
và GA = exp(gRP0Leff) là độ khuếch đại chưa bão hòa được đưa vào trong phương trình (2.39). Thông thường , PS(0) << PP(0). Ví dụ, r0 < 10-3 khi PS(0) < 1mW trong khi PP(0) ~ 1W. Dưới nhiều điều kiện, độ khuếch đại bão hòa của bộ khuếch đại có thể xấp xỉ:
GS =. (2.44)
Độ khuếch đại bị giảm 2 hoặc 3 dB khi bộ khuếch đại Raman được bơm đủ mạnh khi r0GA = 1. Điều này có thể xảy ra cho r0 = 10-3 khi độ khuếch đại Raman bật – tắt đến gần 30 dB. Chính xác chúng ta có thể quan sát trong hình 2.20.
Hình 2.21 chỉ ra đặc điểm bão hòa bằng biểu diễn GS/GA phụ thuộc GAr0 với một vài giá trị của GA. Độ khuếch đại bão hòa bị giảm 2 lần khi GAr0 1. Điều kiện này được thỏa mãn khi công suất tín hiệu được khuếch đại bắt đầu đến gần công suất bơm đầu vào P0.
Hình 2.21: Đặc điểm độ khuếch đại bão hòa của bộ khuếch đại Raman với một vài giá trị của độ khuếch đại bộ khuếch đại chưa bão hòa GA.
Trong thực tế, P0 là đơn vị đo tốt của công suất bão hòa bộ khuếch đại Raman. Vì thông thường P0 > 1W, nên công suất bão hòa của bộ khuếch đại Raman lớn hơn nhiều so với bộ khuếch đại quang sợi Erbium.
Như trong hình 2.20, bộ khuếch đại Raman có thể khuếch đại một tín hiệu vào lên 1000 lần (độ khuếch đại 30 dB) khi công suất bơm vượt quá 1W. Hầu hết các thí nghiệm gần đây đều sử dụng cho bơm một laser Nd:YAG hoạt động tại 1,06µm bởi vì nó có thể cung cấp mức năng lượng như CW. Laser này cũng có thể hoạt động tại bước sóng 1,32µm. Trong thí nghiệm năm 1983, tín hiệu 1,4µm được khuếch đại sử dụng như một laser, và mức độ khuếch đại lên tới 21 dB thu được tại công suất bơm 1W. Độ khuếch đại của bộ khuếch đại này gần như giống nhau trong cả cấu hình bơm thuận và bơm nghịch. Một laser Nd:YAG có thể vẫn được sử dụng nếu dòng Stokes bậc cao hơn được sử dụng như một bơm. Ví dụ, dòng Stokes bậc nhất tại bước sóng 1,4µm từ một laser bước sóng 1,32µm có thể hoạt động như một bơm để khuếch đại tín hiệu quang gần 1,5µm. Như gần đây năm 1984, bộ khuếch đại với hệ số hơn 20 dB đã được thực hiện bằng sử dụng nhiều hệ thống. Những thí nghiệm đó cũng chỉ ra sự quan trọng của việc dung hợp hướng độ phân cực của bơm và sóng tín hiệu như SRS đã từng xảy ra trong trường hợp của phân cự vuông góc. Sử dụng sợi quang lưu trữ độ phân cực với lõi germania cao đưa đến độ khuếch đại 20 dB tại bước sóng 1,52µm khi sợi quang được bơm với công suất 3.7W.
Hạn chế chính của bộ khuếch đại Raman từ quan điểm của hệ thống ứng dụng sóng ánh sáng là chúng yêu cầu một laser CW công suất cao cho bơm. Hầu hết các thí nghiệm đã thực hiện trong nhưng năm 1980 trong vùng phổ 1,55µm đã sử dụng laser màu trung tâm điều hưởng được như một bơm; nhưng laser quá cồng kềnh cho ứng dụng viễn thông. Vì nguyên nhân này, mà bộ khuếch đại quang sợi Erbium được dùng tới năm 1989, còn bộ khuếch đại Raman ít khi được sử dụng trong vùng sóng 1,55µm.
Tình hình đã thay đổi với độ khả dụng của laser bán dẫn công suất lớn và laser sợi quang. Thực vậy, sự phát triển của bộ khuếch đại Raman đã trải qua thời kỳ phục hưng ảo suốt những năm 1990. Một cách gần đúng, ba đôi của cách tử sợi quang được chèn vào bên trong sợi quang sử dụng cho khuếch đại Raman. Bước sóng Bragg của những cách tử này được chọn giống như chúng tạo thành ba buồng cộng hưởng cho ba laser Raman hoạt động tại những bước sóng 1,117 , 1,175 , 1,24µm tương ứng dòng Stokes bậc nhất, bậc hai, bậc ba của bơm tại 1,06µm. Cả ba laser được bơm qua SRS nối tầng sử dụng laser đơn, laser bơm diode, laser sợi quang Nd. Sau đó Laser bước sóng 1,24µm bơm cho bộ khuếch đại Raman để cung cấp tín hiệu khuếch đại trong vùng 1,3 µm. Ý tưởng tương tự của SRS nối tầng được sử dụng để thu được độ khuếch đại 39 dB tại bước sóng 1,3 µm bằng cách sử dụng bộ ghép WDM thay cho cách tử sợi quang. Theo cách tiếp cận khác, lõi của sợi quang silica được pha tạp nhiều germania. Giống như sợi quang có thể bơm để cung cấp độ khuếch đại 30 dB tại công suất bơm chỉ 350mW, mức công suất đó có thể thu được khi sử dụng một hoặc nhiều laser bán dẫn. Cấu hình bậc hai cũng được sử dụng trong đó sợi quang pha tạp dài 2km được đặt cùng với sợi quang dịch tán sắc dài 6km trong dạng ring. Giống như khuếch đại Raman, khi bơm với laser bước sóng 1,24µm cung cấp độ khuếch đại 22 dB trong vùng bước sóng 1,3µm với nhiễu ký hiệu khoảng 4 dB.
2.4.3 Khuếch đại Raman đa bơm.
Bắt đầu từ năm 1998, sử dụng đa bơm cho khuếch đại Raman đã được nghiên cứu cho sự phát triển của bộ khuếch đại quang băng rộng yêu cầu cho hệ thống sóng ánh sáng WDM hoạt động tại vùng sóng 1,55µm. Hệ thống WDM lớn ( 80 kênh hoặc hơn) thông thường yêu cầu bộ khuếch đại quang có khả năng cung cấp độ khuếch đại không đổi trên băng bước sóng từ 70 đến 80nm. Một cách gần đúng, bộ khuếch đại lai ghép làm bởi sự kết hợp pha tạp erbium với độ khuếch đại Raman đã được sử dụng. Một sự bổ sung cho ý tưởng này, gần đây băng thông 80nm đã được thực hiện bằng cách liên kết một bộ khuếch đại sợi quang pha tạp Erbium với hai bộ khuếch đại Raman, bơm đồng thời tại ba bước sóng khác nhau (1471, 1495, và 1503nm) sử dụng 4 module bơm, mỗi module bơm công suất hơn 150mW vào sợi quang. Độ khuếch đại kết hợp là 30dB gần như đều trên băng bước sóng 1,53 – 1,61µm.
Khuếch đại băng rộng trên bước sóng 80nm hoặc hơn có thể cũng thực hiện bằng cách sử dụng một hệ thống khuếch đại Raman thuần túy. Trong trường hợp này, một dải sợi quang tương đối dài (thông thường > 5km) với lõi tương đối hẹp (như DCF) được bơm sử dụng nhiều laser bơm. Một phương án thay thế là chúng có thể sử dụng chính sợi quang truyền dẫn như môi trường khuếch đại Raman. Trong cấu trúc mới này, toàn bộ đường dẫn sợi quang tầm xa bị chia ra nhiều đoạn (chiều dài 60 đến 100km), mỗi đoạn được bơm nghịch sử dụng một module bơm thành phần của những laser bơm này. Độ khuếch đại Raman được dồn lại qua toàn bộ độ dài từng đoạn bù vào suy hao sợi quang của đoạn đó trong kiểu phân tán.
Bộ khuếch đại đa bơm sử dụng trong thực tế có độ khuếch đại Raman tồn tại tại bất cứ bước sóng nào miễn là bước sóng bơm phù hợp được chọn. Do đó, mặc dù là phổ độ khuếch đại của một đơn bơm không quá rộng và chỉ phẳng qua một vài nano mét ( xem hình 2.17) nhưng nó có thể được mở rộng và được làm phẳng đáng kể bằng cách sử dụng một vài bước sóng bơm khác nhau. Mỗi bơm tạo một mẫu độ khuếch đại tương tự phổ chỉ ra trong hình 2.17. Sự chồng chất một vài phổ có thể gây ra độ khuếch đại gần như không đổi qua vùng phổ rộng khi sóng bơm và mức công suất được chọn một cách chính xác. Hình 2.22 chỉ ra một số ví dụ khi 6 laser bơm hoạt động tại bước sóng trong vùng 1420 – 1500nm. Công suất bơm riêng (thanh dọc) được chọn để cung cấp phổ độ khuếch đại riêng ( đường cong nét đứt) như vậy tổng độ khuếch đại Raman là 18 dB gần như phẳng qua một băng rộng 80nm (đường nét liền). Khoảng công suất bơm từ 40 đến 200 mW và rộng hơn cho những bước sóng bơm ngắn hơn bởi vì tất cả bơm tác động qua SRS, và một vài công suất được chuyển tới những bước sóng bơm dài hơn trong bộ khuếch đại. Công nghệ này có thể cung cấp độ khuếch đại băng tần hơn 100nm với một thiết kế thích ứng. Trong 2000 chứng minh, 100 kênh WDM với khoảng cách kênh 25 GHz hoạt động tại tốc độ bit 10Gb/s, được truyền qua 320km. Tất cả các kênh được khuếch đại đồng thời bởi bơm tại dải sợi quang 80km trong hướng nghịch sử dụng bốn laser bán dẫn. Như vậy bộ khuếch đại Raman phân bố cung cấp độ khuếch đại 15 dB tại công suất bơm tổng là 450 mW.
Hình 2.22:Sơ đồ tổng độ khuếch đại Raman( đường nét liền) của bộ khuếch đại Raman được bơm với 6 laser với bước sóng và công suất đầu vào khác nhau( cột dọc). Đường nét đứt biểu thị độ khuếch đại Raman cung cấp bởi bơm riêng lẻ.
Từ hình 2.16, ta thấy độ khuếch đại Raman nhạy với độ phân cực. Điều này tạo ra một vấn đề trong thực tế khi mà độ phân cực tín hiệu không thể đoán trước trong hầu hết hệ thống sóng quang. Vấn đề phân cực có thể được giải quyết bằng kiểu bơm của bộ khuếch đại Raman như là hai laser phân cực vuông góc được sử dụng tại bước sóng bơm hoặc bằng đầu ra không phân cực của laser bơm. Trạng thái phân cực của bơm và trường tín hiệu thay đổi ngẫu nhiên trong bất kỳ sợi quang nào vì tính lưỡng chiết quang biến thiên dọc theo chiều dài sợi quang. Vấn đề khác là phải đánh địa chỉ được liên kết tới tán xạ ngược Rayleigh kép và nhiễu được gây bởi tán xạ Raman tự phát.
Bộ khuếch đại Raman băng rộng được thiết kế sử dụng kiểu tương tác bơm – bơm, tán xạ ngược Rayleigh, và tán xạ Raman tự phát. Giống như xét với mỗi tần số thành phần riêng và yêu cầu giải phương trình kép sau:
-
- (2.45)
trong đó và biểu diễn tần số quang và chỉ số dưới và biểu diễn sóng lan truyền theo thứ tự tiến và lùi. Tham số nsp được định nghĩa như:
nsp (Ω) = [1 – exp ( - hΩ/kBT)] - 1 , (2.46)
trong đó Ω = là chuyển vị Raman và T biểu diễn nhiệt độ tuyệt đối của bộ khuếch đại. Trong phương trình (2.45) điều kiện thứ nhất và thứ hai giải thích cho năng lượng Raman cảm ứng chuyển vào và ra mỗi băng tần. Hệ số 2 trong điều kiện đầu tiên giải thích cho hai mode phân cực của sợi quang. Hệ số 2 bổ sung trong điều kiện thứ hai bao gồm phát xạ tự phát trong cả hai hướng thuận và nghịch. Suy hao sợi quang và tán xạ ngược Rayleigh bao gồm cả hai điều kiện cuối và phụ thuộc bởi tham số theo thứ tự và ; biểu diễn một phần của năng lượng tán xạ ngược nó được bắt lại bởi mode sợi quang. Một phương trình tương tự giữ sóng lan truyền ngược lại.
Hình 2.23: Độ khuếch đại Raman được xác định phụ thuộc chiều dài bước sóng tín hiệu cho một bộ khuếch đại chiều dài 25 km được bơm với 12 laser. Tần số bơm và mức công suất bơm đã sử dụng cho trong bảng bên phải.
Để thiết kế bộ khuếch đại Raman băng rộng, toàn bộ phương trình được giải để tìm độ khuếch đại kênh, và công suất bơm được điều chỉnh tới khi độ khuếch đại gần như giống nhau cho tất cả các kênh ( hình 2.22). Hình 2.23 chỉ ra một phổ độ khuếch đại được đo qua thực nghiệm của bộ khuếch đại Raman được tạo bởi bơm sợi quang dịch tán sắc chiều dài 25km với 12 laser diode. Tần số và công suất của laser bơm được chỉ thị trong dạng bảng. Chú ý rằng tất cả công suất đều dưới 100 mW. Bộ khuếch đại cung cấp độ khuếch đại khoảng 10,5 dB trên băng tần 80 nm với độ gợn sóng nhỏ hơn 0,1 dB. Giống như bộ khuếch đại thích ứng cho hệ thống WDM kín bao cả băng C và L. Một vài thí nghiệm đã sử dụng bộ khuếch đại Raman băng rộng để chứng minh truyền dẫn qua khoảng cách dài tại tốc độ bit cao. Thí nghiệm trong năm 2001, 77 kênh mỗi kênh hoạt động tại 42,7 Gb/s được truyền dẫn qua 1200km sử dụng băng C và L một cách đồng thời. Kể từ đó, nhiều chứng minh dùng khuếch đại Raman cho nhiều hệ thống WDM.
2.5.Nguồn nhiễu trong bộ khuếch đại Raman
Có 4 nguồn nhiễu cơ bản trong kỹ thuật Raman, đó là:
Nhiễu tán xạ Rayleigh kép DRS
Nó tương đương với 2 hiện tượng tán xạ đơn (một tán xạ phản xạ và một tán xạ tới) do tính chất không đồng nhất của bộ vi hiển thị bằng thuỷ tinh tổng hợp. Khuếch đại bức xạ tự phát(ASE) truyền trong huớng nghịch sẽ được phản xạ lại trong hướng thuận nhờ DRS và những kết quả thu được là do kích thích Raman phân tán tạo nên. Điều này góp phần làm cho ASE phản xạ rất nhiều lần, nó sẽ làm giảm tỷ số S/N. Hơn thế nữa, DRS gây ra rất nhiều tuyến nhiễu giao thoa và điều đó cũng làm giảm SNR. DRS tương ứng với chiều dài của sợi và hệ số tăng ích bên trong sợi, vì thế nó là điều hết sức quan trọng trong kỹ thuật Raman bởi trên độ dài của sợi quang, nhất là ở những nơi có chiều dài vài km thì đó là yêu cầu điển hình. Đứng trên quan điểm thực tế, hệ số tăng ích của DRS giới hạn trên một tầng cỡ khoảng xấp xỉ 10 đến 15 dB. Để bộ khuếch đại đạt được hệ số tăng ích cao hơn thì sử dụng biện pháp cách ly giữa các tầng với nhau trong bộ khuếch đại. Ví dụ, một bộ khuếch đại Raman phân tán 30 dB được giới thiệu với 2 tầng khuếch đại cho độ nhiễu nhỏ hơn 5.5 dB.
Nhiễu do thời gian sống của electron tại trạng thái kích thích ngắn
Nguồn nhiễu thứ hai xuất hiện trong thời gian sống rất ngắn ( cỡ khoảng 3 đến 6 fs) của bức xạ Raman ở trạng thái cao hơn ( bức xạ từ trạng thái thấp lên trạng thái cao). Kết quả của hiện tượng gần như xảy ra tức thì này là sự ghép nối của dao động kích thích tới tín hiệu. Cách thông dụng để tránh ghép nối bất lợi này là tạo một bộ kích thích và một bộ đếm truyền tín hiệu, nó sẽ có tác dụng hữu hiệu khi mở đầu cho thời gian sống ở trạng thái cao mà tương đương với thời gian truyền trong toàn bộ sợi. Nếu sử dụng bộ đếm truyền tín hiệu và bộ kích thích thì Laser kích thích sẽ không bị kích thích. Điều đó khiến chúng có cường độ rất nhỏ, bởi vậy mới được gọi là Cường độ nhiễu tương đối (RIN). Ví dụ, bộ đếm truyền kích thích sử dụng Laser Diode Fabry-Perot thay vì sử dụng LD có bộ lọc quang ổn định.
Nhiễu phát xạ tự phát ASE
Nguồn nhiễu chủ yếu thứ ba trong kỹ thuật Raman thường là ASE. Điển hình là các mức công suất trung bình, với tín hiệu ASE luôn có nhiễu tổng hợp tồn tại trên nó - gọi là nhiễu tổng ASE. Rất may là bộ khuếch đại Raman vốn đã có độ nhiễu thấp đối với ảnh hưởng từ tín hiệu ASE tổng bởi vì hệ thống Raman luôn hoạt động như là một hệ thống đảo hoàn toàn. Ví dụ, công thức tính mật độ phổ công suất ASE :
SASE (ν) = (G – 1).hν.N2/(N2 – N1) (2.47)
Và công thức tính dạng nhiễu là :
NF = 1/G.[ 2.SASE (ν)/ hν + 1 ] (2.48)
Với N2 là mẫu ở trạng thái cao hơn, N1 ở trạng thái thấp. Với kỹ thuật Raman thì tỷ số N2/(N2 – N1) luôn giới hạn xung quanh mức ‘1’. Chẳng hạn kỹ thuật EDFAs thì tỷ số này thường lớn hơn ‘1’. Trong một sợi EDFAs thì giới hạn tỷ số này chỉ ngang bằng mức ‘1’ đối với bộ khuếch đại đảo hoàn toàn trên toàn bộ chiều dài sợi quang thu. Mặt khác, từ khi kỹ thuật Raman sử dụng sợi quang tuyến dài, phần mất mát thụ động rất nhỏ của sợi thu cũng cần được tính thêm vào khi xét tới dạng nhiễu. Nhưng dù sao, bộ khuếch đại Raman phân tán với độ nhiễu khoảng 4.2 dB cũng đã được xét đến.
Nhiễu do bước sóng ánh sáng bơm và ánh sáng tín hiệu gần nhau
Nó xuất hiện khi một thanh tử bị kích thích bởi nhiễu quang tạo ra khi bước sóng của tín hiệu có phổ của nó được khuếch đại gần bằng với bước sóng kích thích được sử dụng khi khuếch đại. Nói một cách khác thì ở nhiệt độ phòng hay nhiệt độ trong thang máy, có một mẫu nhiệt khiến cho các thanh tử trong sợi thủy tinh có thể tự động kích hoạt từ các bộ tạo sóng kích thích, theo đó mà nó tạo thêm nhiễu cho tín hiệu gần với bước sóng kích thích. Nó cho thấy rằng điều này có thể dẫn đến việc tăng độ nhiễu lên tới 3 dB đối với tín hiệu có bước sóng gần bằng bước sóng kích thích.
2.6.Phân loại các bộ khuếch đại Raman
2.6.1.Khuếch đại Raman phân bố DRA (Distributed Raman Amplifier)
Hình 2.24: Khuếch đại tập trung (a) và khuếch đại phân bố (b)
Với bộ khuếch đại Raman phân bố DRA, ánh sáng bơm được phân bố trải dài trong sợi quang. DRA tận dụng sợi quang sẵn có trong mạng như một phương tiện để khuếch đại tín hiệu và như vậy ánh sáng sẽ được khuếch đại đồng đều dọc theo sợi quang trên một khoảng cách lớn (Với các bộ khuếch đại DRA, thông thường ánh sáng bơm có công suất cao được bơm theo hướng ngược để kết hợp với các bộ khuếch đại tập trung khác như các bộ khuếch đại quang sợi pha đất hiếm EDFA. Ưu điểm chính của DRA là cải thiện tỷ số tín hiệu trên nhiễu SNR và giảm tính phi tuyến.
Hình 2.25: Công suất tín hiệu trong hệ thống sử dụng DRA
Hình 2.25 biểu diễn mức công suất ánh sáng tín hiệu theo khoảng cách của hệ thống khuếch đại theo chu kỳ. Đỉnh hình răng cưa tương ứng với các điểm khuếch đại tập trung. Đường nét đứt là biểu diễn công suất ánh sáng tín hiệu trong hệ thống chỉ sử dụng các bộ khuếch đại tập trung với tăng ích cao. Đường cong trên hình tương ứng với công suất ánh sáng tín hiệu trong trường hợp sử dụng bộ khuếch đại DRA kết hợp với bộ khuếch đại quang tập trung có tăng ích nhỏ. Khi sử dụng DRA mức công suất tín hiệu dọc theo sợi quang sẽ đồng đều hơn. Nếu kết hợp các bộ khuếch tập trung mức ánh sáng tín hiệu đỉnh không quá lớn. Như vậy sẽ tránh được các hiệu ứng phi tuyến. Đồng thời mức công suất ánh sáng tín hiệu cũng không xuống thấp quá do ảnh hưởng của suy hao do đó tỷ số SNR được cải thiện. Tỷ số SNR cao tương ứng với khả năng tăng khoảng cách giữa các bộ khuếch đại hoặc tăng dung lượng của kênh tín hiệu. Khoảng cách giữa các bộ khuếch đại quang tập trung thường khoảng 80 km, bằng cách sử dụng DRA hiệu năng của hệ thống tương đương với sử dụng khuếch đại quang tập trung với khoảng cách giữa chúng là 35 đến 38 km .
Ngoài khả năng tăng khoảng cách giữa các bộ khuếch đại hoặc tăng tốc độ bit DRA còn được sử dụng trong hệ thống WDM để giảm khoảng cách giữa các kênh hoặc hoạt động tại bước sóng tán sắc không.
Bên cạnh các ưu điểm vừa nêu, khuếch đại Raman tập trung cũng có một số nhược điểm:
Sợi quang có chiều dài hiệu dụng thấp Leff được xác định từ hệ số suy hao của sợi. Trong các bộ khuếch đại DRA chiều dài hiệu dụng của sợi quang thường nhỏ hơn 40 km. Chiều dài hiệu dụng thấp làm giảm khả năng tăng khoảng cách giữa các bộ khuếch đại.
DRA có công suất ánh sáng bơm rất cao, ví dụ để tối ưu hoá mức nhiễu công suất ánh sáng bơm với sợi dịch tán sắc khoảng 580 mW và 1.28 W với sợi đơn mode chuẩn. Với mức công suất ánh sáng bơm cao như vậy các thiết bị quang như connector rất dễ bị hư hại.
DRA rất nhạy cảm với các điều kiện môi trường như nhiệt độ, độ ẩm… và sự thay đổi cơ học.
Một vấn đề đáng được quan tâm khác đối với DRA là nhiễu tán xạ Rayleigh kép. Các bộ khuếch đại DRA thường có nhiễu DRS cao hơn so với các bộ khuếch đại Raman tập trung khi sử dụng cùng loại sợi và có chiều dài sợi như nhau.
Những vấn đề trên làm giảm tính ưu việt của DRA. Tuy nhiên do lợi ích từ tỷ số SNR và giảm hiệu ứng phi tuyến của DRA là rất lớn nên DRA đã được sử dụng khá rộng rãi trong các hệ thống cự ly dài.
2.6.2.Khuếch đại Raman tập trung LRA (Lumped Raman Amplifier)
Ánh sáng bơm
Laser bơm
Ánh sáng tín hiệu được
Sợi quang khuếch
đại Raman
khuếch đại
Bộ cách ly quang
Coupler
Hình 2.26: Khuếch đại Raman tập trung
Bộ khuếch đại Raman tập trung LRA là một khối đơn. Trong bộ khuếch đại Raman tập trung tất cả công suất ánh sáng bơm được tập trung trong một khối. Hình 2.26 là một thí dụ kết nối bộ khuếch đại Raman tập trung trong hệ thống thông tin quang. Trong sơ đồ trên ánh sáng bơm được giữ trong bộ khuếch đại bằng các bộ cách ly xung quanh bộ khuếch đại với chiều dài sợi tăng ích Raman khoảng vài km. Như vậy khác với bộ khuếch đại Raman phân bố ánh sáng bơm không đi vào sợi quang từ bên ngoài bộ khuếch đại.
Đặc điểm đáng lưu ý nhất của khuếch đại Raman tập trung đó là khả năng sử dụng dải bước sóng mới mà tại các dải băng này EDFA không thể hoạt động.
2.6.3.Bộ khuếch đại quang lai ghép Raman/EDFA
Hình 2.27: Khuếch đại quang lai ghép EDFA/Raman
Như trong phần (2.6.1) đã trình bày, khuếch đại quang Raman phân bố DRA có thể được sử dụng kết hợp với các bộ khuếch đại tập trung khác điển hình trong số đó là kết hợp với bộ khuếch đại EDFA hình thành bộ khuếch đại quang lai ghép Raman/EDFA. Loại khuếch đại quang này có thể thay thế bộ khuếch đại EDFA trong đó khuếch đại Raman phân bố đóng vai trò của một bộ khuếch đại tạp âm nhỏ (tiền khuếch đại).
Kết luận chương II
Chương II đã trình bày các khái niệm và đặc điểm về khuếch đại Raman như: tán xa Raman, nguyên lý khuếch đại Raman, ưu điểm của khuếch đại Raman, bơm và phương trình tín hiệu, nhiễu trong khuếch đại Raman, phân loại các lại khuếch đại Raman.
Chương tiếp theo em xin trình bày ứng dụng của bộ khuếch đại Raman.
CHƯƠNG 3 :ỨNG DỤNG CỦA BỘ KHUẾCH ĐẠI RAMAN
3.1.Ứng dụng trong hệ thống WDM
Khuếch đại Raman là nền tảng cho khuếch đại công suất tại cự ly truyền dẫn dài và cực dài, hoạt động tại băng tần rộng và tại các tàn số mà EDFA không thể hoạt động. Mặt khác, nhờ các kỹ thuật đan xen nên khuếch đại Raman có thể có độ rộng băng tần lớn hơn. Hiện nay, khuếch đại Raman băng rộng lên đến 136nm thay vì 100nm như trước.
Trong các hệ thống DWDM cự ly dài, khuếch đại Raman chiếm ưu thế do sự đơn giản và mềm dẻo, linh hoạt. Ví dụ khuếch đại Raman hỗ trợ hệ thống có độ rộng băng tần 136 nm, nó sẽ bao gồm các băng S, C và L. Nếu các hệ thống DWDM trong tương lai truyền dẫn trên cả ba băng S, C và L mà vẫn sử dụng các bộ khuếch đại quang tập trung như hiện nay thì hệ thống này phải cần thêm các bộ kết hợp băng tần, bộ chia băng tần và ba bộ khuếch đại tập trung như trên hình 3.1.
Hình 3.1: Khuếch đại quang trong hệ thống DWDM đa băng.
Các bộ lọc băng cũng không phải là lý tưởng nên cần có thêm các khoảng bước sóng bảo vệ xung quanh mỗi băng. Do nhiễu và suy hao từ các bộ ghép tách băng hệ thống cần tăng quỹ công suất đường truyền.
Đối với hệ thống này chỉ cần một bộ khuếch đại Raman tập trung băng rộng đi kèm với một bộ khuếch đại Raman phân bố băng rộng là có thể đáp ứng nhu cầu. Bộ khuếch đại Raman phân bố băng rộng có thể không khác với hệ thống trên. Tuy nhiên, bộ khuếch đại tập trung thì đơn giản hơn rất nhiều: số lượng nguồn bơm ít hơn, một hệ thống giám sát và đặc biệt là không có các bộ hợp và chia băng. Đồng thời có thể kết hợp sợi tăng ích và sợi bù tán sắc trong bộ khuếch đại tập trung để nâng cao hiệu năng của hệ thống.
Trở ngại lớn nhất cho việc sử dụng khuếch đại Raman trong mạng viễn thông đó là hiệu quả thấp so với EDFA. Tuy nhiên, khi tốc độ bit và tổng số kênh tăng lên, khuếch đại Raman càng trở nên hấp dẫn hơn. Tăng ích của khuếch đại Raman lớn hơn khi công suất bơm lớn, điều này được đáp ứng bởi các hệ thống trong tương lai.
Trong hệ thống thông tin quang thế hệ mới, khuếch đại Raman sẽ chiếm ưu thế về hiệu quả ánh sáng bơm hơn khi so sánh với EDFA có ánh sáng bơm 1480 nm. Điều này được chỉ ra trên hình 3.2 bằng cách so sánh hiệu suất chuyển đổi công suất của EDFA ánh sáng bơm 1480nm và khuếch đại Raman với công suất vào 200.
Hình 3.2: Hiệu suất chuyển đổi công suất của Raman và EDFA
3.2. Ứng dụng vào thiết bị khuếch đại quang OPTera Long Haul 1600G – CQ40Gbit/s Nortel
3.2.1. Giới thiệu chung hệ thống OPTera Long Haul 1600
Hệ thống OPTera Long Haul 1600 cung cấp các giải pháp đường trục đa dịch vụ với hệ thống ghép kênh quang phân chia bước sóng dung lượng cao lên tới 1.6Tbps trên một sợi quang và tương thích các bộ ghép kênh khác nhau của nhiều nhà cung cấp. Hình 3.3 cho thấy kiến trúc chung của hệ thống OPTera Long Haul 1600 Optical Line.
Hình 3.3:Kiến trúc chung Long Haul 1600
Về cơ bản có thể phân chia Long Haul 1600 thành 2 lớp cơ bản ( hình 3.4 và hình 3.5): lớp truyền dẫn (Line) và lớp dịch vụ (Service).
OPTera Long Haul 1600
Services
Line
Wavelength Translator
Wavelengh Combiner
Dense Regenerator
ODPR
MOR Plus
1600G Amplifier
Hình 3.4:Các lớp của Long Haul 1600.
Lớp truyền dẫn Line bao gồm: 1600 Amplifier và MOR Plus.
Lớp dịch vụ bao gồm : Wavelengh Combiner, Wavelength Translator, Dense Regenerator và Optical Dedicated Protection Ring.
Hình 3.5: Các ứng dụng của OPTera Long Haul 1600
1600 Amplifier
1600 Amplifier hỗ trợ hai cấu hình chính là Unidirectional và OADM ( Optical Add – Drop Multiplexing ) cung cấp khả năng linh động cho phép cấu hình sử dụng hoặc chỉ riêng băng tần C, hoặc kết hợp băng tần C với băng tần L hoặc chỉ sử dụng băng tần L. Ngoài ra với việc sử dụng bộ phân tích phổ quang OSA ( Optical Spectrum Analyzer ) dung lượng hệ thống còn được tăng đáng kể.
a. Cấu hình Unidirectional.
Trong cấu hình này sử dụng hai sợi quang, một sợi phát và một sợi thu với các cấu hình:
Chỉ sử dụng băng tần C.
Sử dụng kết hợp băng C và băng L.
Chỉ sử dụng băng L.
Với cấu hình sử dụng kết hợp băng C và băng L, dung lượng hệ thống cho phép lên đến 800 Gbps trên mỗi sợi quang tương đương 80 bước sóng 10 Gbps trên mỗi sợi ( 40 bước sóng trên băng C và 40 bước sóng trên băng L).
Với cấu hình chỉ sử dụng băng C hoặc băng L, dung lượng hệ thống là 400 Gbps trên mỗi sợi quang, tương đương 40 bước sóng. Nếu hệ thống đang sử dụng băng C thì có thể mở rộng để sử dụng băng L bằng cách thêm các phần cứng thích hợp.
Với cấu hình chỉ có băng L, thường được dùng với hệ thống có sử dụng sợi quang dịch chuyển tán sắc DSF ( Dispersion – Shifted Fiber) sẽ cho phép tiết kiệm chi phí khi nâng cấp dung lượng.
b.Cấu hình OADM
Cấu hình này cho phép hệ thống Add/Drop một hay nhiều bước sóng tại các trạm thuộc tuyến. Có thể Add/Drop một, hai hay năm bước sóng tùy thuộc nhu cầu và cấu trúc bộ OADM được sử dụng.
3.2.1.2.MOR Plus Amplifier
MOR Plus Amplifier là ứng dụng Bidirectional khuếch đại tối đa 32 bước sóng (tương đương 16 kênh) trong dải bước sóng từ 1528,77 nm đến 1560 nm. Với MOR Plus, bước sóng được chia thành 2 băng. Băng BLUE có các bước sóng từ 1528,77 nm đến 1531,30 nm, băng RED có các bước sóng từ 1547,72 đến 1560,60 nm. Do MOR Plus là bidirectional nên các bước sóng băng RED và BLUE truyền ngược chiều nhau trên cùng một sợi quang. Mỗi kênh dữ liệu Bidirectional gồm 1 bước sóng băng RED và 1 bước sóng băng BLUE.
3.2.1.3.Wavelength Combiner
Chức năng này kết hợp 4 kênh tốc độ 2,5 Kbps, 8 kênh Gigabit Ethernet GE hoặc kết hợp cả hai tạo thành tín hiệu tốc độ 10 Gbps chuẩn cho truyền dẫn.
3.2.1.4.Wavelength Translator
Chuyển đổi 1 bước sóng từ bên ngoài thành bước sóng DWDM chuẩn và thực hiện sửa dạng tín hiệu, định dạng đồng bộ và khuếch đại – gọi chung là 3R (Re – sharp, Re – time, Re – amplifier ) mà không cần tái tạo lại toàn bộ khung mào đầu. Với khả năng này, hệ thống cho phép thích ứng với môi trường đa người dùng.
3.2.1.5.Dense Regenerator
Cho phép mở rộng tầm hoạt động của hệ thống bằng cách tái tạo tín hiệu quang ở mỗi hướng tại điểm trung gian giữa hai trạm kết cuối. Các bộ tái tạo và khuếch đại quang mắc chuỗi cho phép mở rộng tầm hoạt động của hệ thống lên hàng trăm km.
3.2.1.6.Optical Dedicated Protection Ring
Cho phép thiết lập chuyển mạch bảo vệ tốc độ 10 Gbps ở lớp quang bằng cách sử dụng module chuyển mạch quang OSM (Optical Switch Module).
3.2.2. Sơ đồ nguyên lý của một trạm có khuếch đại Raman
Tuỳ thuộc vào yêu cầu và cấu hình từng trạm mà các thành phần có sự khác nhau. Dưới đây ta xét một trạm với đầy đủ các thành phần của một trạm khuếch đại, trạm có khuếch đại Raman
Hình 3.6: Trạm đầu cuối có khuếch đại băng C, băng L và khuếch đại Raman
Những nhóm card CPG dùng cho cấu hình mạng quang đơn chiều của thiết bị khuếch đại OPTera Long Haul 1600G – CQ40Gbit/s Nortel bao gồm:
+ Các bộ khuếch đại Raman Dra-A và Dra-B.
+ Card phân tích phổ quang OSA.
+ Bộ bù tán sắc và suy hao MSA.
+ Card kênh dịch vụ quang OSC .
+ Card khuếch đại kép băng C.
+ Card khuếch đại Bosster.
3.2.3. Chức năng các thành phần.
3.2.3.1.Các bộ khuếch đại Raman Dra-A và Dra-B:
Để tăng được cự ly truyền dẫn, ở phía thu người ta lắp thêm một bộ khuếch đại Raman.
Card khuếch đại Raman chỉ mới xuất hiện từ phiên bản 7 trở đi, chỉ được dùng khi sử dụng cấu hình đơn chiều với card UniOSC 1510/1615nm. Khuếch đại dựa trên nguyên lý sử dụng hiệu ứng phi tuyến Raman, với ưu điểm làm giảm tỷ số nhiễu/tín hiệu, tăng được cự ly truyền dẫn.
Hiệu ứng Raman xảy ra khi có sự tương tác giữa ánh sáng và các phân tử chuyển động trong sợi quang. Các phân tử của sợi quang hấp thụ năng lượng từ bước sóng bơm Raman và phát lại chúng ở tần số 13,2THz, với mức năng lượng tương đương với mức năng lượng của sóng bơm trừ đi mức năng lượng dao động của phân tử.
Nguyên lý khuếch đại Raman không hiệu quả bằng nguyên lý khuếch đại EDFA, vì nguyên lý khuếch đại Raman cần một công suất bơm lớn hơn để đạt cùng một giá trị độ lợi. Do hạn chế về công suất phát của Laser bơm trong bộ khuếch đại Raman nên thường sử dụng ghép giữa EDFA và Raman.
Dải bước sóng khuếch đại Raman phụ thuộc vào tần số dao động của các phân tử trong lõi sợi quang và bước sóng bơm. Đặc biệt phụ thuộc nhiều vào cường độ bước sóng bơm (do đây là hiệu ứng phi tuyến).
Bước sóng cần thiết của Laser bơm vào sợi quang ngắn hơn » 50nm đối với phổ bước sóng cần khuyết đại. Đối với băng-C (1530-1565nm), bước sóng bơm là » 1450nm. Để tăng độ lợi và làm cho độ lợi bằng phẳng hơn, bằng cách sử dụng nhiều bước sóng bơm khác nhau. Card DRA không thể thiếu trong các hệ thống đường dài do đặc tính làm tăng cự ly truyền dẫn của khuếch đại Raman. Do đó vai trò của nó ngày càng quan trọng với hệ thống thông tin quang trong tương lai.
Thiết bị khuếch đại 1600G Rel 7 có 2 card khuếch đại Raman DRA-A và DRA-B. Cả 2 card phải được lắp để có khuếch đại Raman phân bố. Khuếch đại Raman chỉ được dùng trong truyền dẫn đơn hướng. Khuếch đại Raman phân bố được thiết lập trên cơ sở của hiện tượng tán xạ Raman, một hiệu ứng phi tuyến trong truyền dẫn sợi quang giúp truyền tải năng lượng từ các bước sóng bơm, đi trên quãng đường ngắn hơn vào các bước sóng đi trên quãng đường dài hơn. Card DRA cung cấp công suất bơm bước sóng ngắn hơn cho khuếch đại Raman phân bố. Khuếch đại Raman phân bố cải thiện toàn bộ tỷ số tín hiệu quang trên nhiễu (OSNR).
Cấu trúc card khuếch đại Raman được minh họa trong hình 3.7
Hình 3.7:Sơ đồ khối card khuếch đại Raman
Chức năng các cổng.
Với DRA – A :
Out : Phát bước sóng DRA – A vào sợi quang truyền dẫn để khuếch đại tín hiệu quang mang lưu lượng thu được từ upstream.
Drop : Gửi tín hiệu quang đã được khuếch đại Raman đến cổng vào của Dual Amp cùng trạm.
UPG (DRA – B): Nhận bước sóng Raman từ DRA – B .
MON_C : Cung cấp công suất tín hiệu băng C tại cổng DROP để giám sát công suất.
MON_L: Cung cấp công suất tín hiệu băng L tại cổng DROP để giám sát công suất.
Với DRA – B:
Cổng Out: Gửi bước sóng DRA – B đến cổng UPG của UPG của DRA – A .
3.2.3.2.Card phân tích phổ quang OSA
Card phân tích phổ quang OSA được lắp trong giá chính của giá khuếch đại. OSA gia tăng cân bằng khuếch đại và chất lượng bằng cách kiểm tra công suất kênh quang, tỷ số tín hiệu quang trên nhiễu (OSNR) và công suất toàn băng của mỗi một cổng hoạt động. Card này dùng để giám sát công suất, tỷ số tín hiệu trên nhiễu và công suất toàn băng trên mỗi cổng. Với tín hiệu quang mẫu được cung cấp từ các card Dual và card Booster, card OSA tiến hành phân tích và phát tín hiệu thông báo cho nhà điều hành mạng biết để tiện cho việc thay thế hay chỉnh sửa.
Việc triển khai card OSA phụ thuộc vào:
Dung lượng bước sóng.
Dạng sợi quang.
Số luồng.
Sự có mặt của DRA.
Sự có mặt của OAMD.
Card OSA có 8 cổng, 4 cổng để giám sát băng-C và 4 cổng để giám sát băng-L. Mỗi cổng OSA nối đến 1 cổng kiểm tra bộ khuếch đại MON phù hợp theo một sơ đồ kết nối cố định.
Tín hiệu từ các ngõ MON của các card khuếch đại Dual và card Booster được đưa vào các ngõ IN của card OSA. Sau đó, tín hiệu này được đưa đến bộ phân tích phổ (Optical Analizer) qua một Coupler và một Switch. Tín hiệu này sẽ được phân tích và kết quả được dùng để điều khiển công suất khuếch đại.
Hình 3.8: Card OSA
3.2.3.3.Bộ bù tán sắc và suy hao MSA
MSA là điểm truy nhập để kết nối các bộ bù tán sắc vào OADM, ngoài ra MSA còn sử dụng các bộ suy hao để hạn chế công suất ngõ vào của card sao cho không vượt quá mức để Photodetector hoạt động tốt.
3.2.3.4.Card kênh dịch vụ quang OSC đơn chiều UniOSC
Card UniOSC cung cấp kênh dịch vụ quang ngoài băng bước sóng cho truyền thông giữa các trạm trên một tuyến quang, các bước sóng hoạt động như hình 3.9. Card này có các chức năng sau.
Khai thác, quản trị, bảo trì, giám sát ( OAM và B ).
Chuyển các cảnh báo đến bộ quản lý khai thác ( OPC ) và quản lý mạng.
Giám sát và bảo dưỡng từ xa.
Tải phần mềm từ xa.
Dùng làm kênh nghiệp vụ.
1510 nm
1530 nm
1563 nm
1570 nm
1603 nm
1615 nm
Conventional band
( C – band )
Long band
( L – band )
OPTera Long Haul 1600 gain window
OSC1
OSC2
Hình 3.9:Bước sóng hoạt động của UniOSC 1510/ 1615nm
Kênh OSC mang thông tin dùng để giám sát các trạm khuếch đại đường dây (không mang lưu lượng tải), được truy suất tại các bộ khuếch đại đường dây. Kênh này còn được dùng cho việc điều khiển các trạm khuếch đại đường dây, như: mở hay tắt trạm để sử dụng cho mục đích kiểm tra z
Theo công nghệ Nortel, người ta sử dụng hai kênh OSC có bước sóng là 1510nm và 1615 hoạt động ở ngoài băng bước sóng. Điều này tạo điều kiện cho việc xen/ rẽ kênh OSC. Bước sóng này hoàn toàn thoả mãn yêu cầu, nằm ngoài băng tần và không trùng lặp với các bước sóng bơm.
Hình 3.10: Các cổng của card OSC
3.2.3.5.Card khuếch đại kép ( Dual Amplifier Circuit Pack )
Chức năng và đặc tính card Dual Amplifier:
Mỗi card khuếch đại kép có chứa hai bộ khuếch đại EDFA để khuếch đại quang theo cả hai chiều. Card khuếch đại kép được dùng trong tất cả cấu hình khuếch đại 1600G. Card khuếch đại kép băng-C sẽ dùng để phát các bước sóng của băng-C và khuếch đại kép băng-L dùng để phát các bước sóng của băng -L.
Hình 3.11:Các cổng card Dual Amp
Chức năng các cổng
IN – 1 : Nhận tín hiệu quang băng C và OSC chuyển đến hướng 1 (Direction 1)
UPA – 1 :Trích tín hiệu OSC từ OSC từ lưu lượng hướng 1
MON – 1 : Giao tiếp đến OSA để cung cấp mẫu công suất ra theo hướng 1( ~ 2% công suất) để giám sát.
OUT – 1 : Phát tín hiệu được khuếch đại băng C theo hướng 1 tới Boosters.
3.2.3.6.Card khuếch đại Booster
Chức năng và đặc tính khuếch đại Booster
Trong cấu hình khuếch đại của mạng quang với thiết bị 1600G, các bộ khuếch đại Booster được dùng liên kết với card khuếch đại kép, mỗi card khuếch đại Booster có một bộ khuếch đại EDFA, card khuếch đại Booster 21 băng-C có công suất ngõ ra tối đa 21 dBm (Card khuếch đại Booster 18 có công suất tối đa là 18dBm).
Bộ khuếch đại 1600G yêu cầu ít nhất 1 cặp card Booster. Tùy cấu hình mà sử dụng 1 cặp booster 18 hoặc 1 cặp Booster 21 hoặc 1 cặp gồm cả Booster 18 và Booster 21. Hình 3.12 mô tả cấu trúc card Booster.
Hình 3.12:Sơ đồ khối card Booster
Chức năng các cổng:
Cổng IN: Nhận tín hiệu băng C, băng L
Cổng INTLV: chỉ dùng cho cấu hình 2 hướng.
Cổng MON: Cung cấp mẫu công suất ra(~ 2 % công suất) để giám sát tới OSA.
Cổng UPB: Cổng này dùng trong cấu hình 2 băng C & L.
Cổng OUT: Phụ thuộc vào vị trí trong cấu hình khuếch đại, đầu ra có thể băng C hoặc băng L, băng C + OSC, băng L + OSC, hoặc C/L + OSC.
Kết luận chương III
Chương 3 đã trình bày được ứng dụng của khuếch đại Raman trong hệ thống WDM và trong thiết bị khuếch đại quang 1600G - 40Gps. Việc sử dụng bộ khuếch đại Raman trong hệ thống thông tin quang hiện nay là xu thế tất yếu của sự phát triển thông tin quang bởi tín khả năng khuếch đại trong một dải băng tần rộng và độ khuếch đại lớn của bộ khuếch đại Raman.
KẾT LUẬN
Bộ khuếch đại Raman được phát triển dựa trên nguyên lý bức xạ kích thích, tán xạ Raman, có độ can nhiễu thấp, công suất khuếch đại lớn, và ưu điểm lớn nhất của bộ khuếch đại Raman đó là có thể khuếch đại trong một phổ băng tần rộng. Xu thế của thông tin quang hiện nay là yêu cầu số lượng kênh tăng và dung lượng kênh nhiều hơn, do đó sử dụng bộ khuếch đại Raman là xu hướng tất yếu của thông tin quang hiện đại.
Sau một thời gian tìm hiểu em đã hoàn thành đồ án với những nội dung:
Tìm hiểu tổng quan về khuếch đại quang nói chung như nguyên lý khuếch đại quang, các loại khuếch đại quang, một số tham số của khuếch đại quang.
Tìm hiểu về tán xạ Raman, nguyên lý hoạt động của khuếch đại Raman, ưu điểm của khuếch đại Raman, và các đặc điểm của khuếch đại Raman.
Tìm hiểu về ứng dụng của khuếch đại Raman trong mạng WDM, và trong một thiết bị khuếch đại quang 1600G – 40Gbps.
Một lần nữa, cho phép em được gửi lời cảm ơn sâu sắc nhất đến cô giáo, ThS. Nguyễn Thị Thu Nga, các thầy cô giáo trong khoa Viễn thông I, Học viện Công nghệ BCVT cùng toàn thể các thầy cô giáo, các phòng ban, các bạn sinh viên lớp D04VT1 đã giúp đỡ em rất nhiều trong quá trình thực hiện bản đồ án này cũng như trong suốt thời gian 5 năm học vừa qua.
TÀI LIỆU THAM KHẢO
Raman Amplification in Fiber Optical Communication Systems, Clifford Headley - Govind P. Agrawal, Elsevier, Inc, 2005.
Nonlinear fiber optics, Govind P.Agrawal, Academic Press, Inc, 1995
Fiber optic communications system, Govind P.Agrawal, John Wiley & Son, Inc, 2000.
Các file đính kèm theo tài liệu này:
- 052..doc