Kinh tế môi trường - Chương 5: Kiểm định và lựa chọn mô hình
Kinh tế môi trường -
Chương 5: Kiểm định và lựa chọn mô hình
Khi sai số ngẫu nhiên không phân phối chuẩn sẽ dẫn đến một số hệ quả
thống kê t và thống kê F trong làm nền tảng cho bài toán ước lượng và kiểm định không còn phân phối Student và Fisher
56 trang |
Chia sẻ: huyhoang44 | Lượt xem: 614 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Kinh tế môi trường - Chương 5: Kiểm định và lựa chọn mô hình, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
CHƯƠNG 5
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH
Vũ Duy Thành
thanhvu.mfe.neu@gmail.com
Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
Hà Nội, 2015
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 1
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
Nội dung
1 KÌ VỌNG CỦA SAI SỐ NGẪU NHIÊN KHÁC KHÔNG
2 PHƯƠNG SAI SAI SỐ THAY ĐỔI
3 SAI SỐ NGẪU NHIÊN KHÔNG PHÂN PHỐI CHUẨN
4 VẤN ĐỀ ĐA CỘNG TUYẾN
5 MÔ HÌNH CHỨA BIẾN KHÔNG THÍCH HỢP
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 2
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
Nội dung
1 KÌ VỌNG CỦA SAI SỐ NGẪU NHIÊN KHÁC KHÔNG
2 PHƯƠNG SAI SAI SỐ THAY ĐỔI
3 SAI SỐ NGẪU NHIÊN KHÔNG PHÂN PHỐI CHUẨN
4 VẤN ĐỀ ĐA CỘNG TUYẾN
5 MÔ HÌNH CHỨA BIẾN KHÔNG THÍCH HỢP
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 3
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
KÌ VỌNG CỦA SSNN KHÁC KHÔNG
Xét mô hình hồi quy tuyến tính k biến:
Y = β1 + β2X2 + . . .+ βkXk + u
Khi đó, GT 2 yêu cầu: E (u|X2, . . . ,Xk) = 0.
GT2 dẫn ra hai điều kiện:
E (u) = 0
cov(Xj , u) = 0 với mọi j = 2, k
Nếu một trong hai điều kiện trên vi phạm thì GT 2 sẽ không thỏa
mãn.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 4
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
NGUYÊN NHÂN - KÌ VỌNG CỦA SSNN KHÁC KHÔNG
Có 4 nguyên nhân chính dẫn đến kì vọng của sai số ngẫu nhiên
khác không:
Nguyên nhân 1: Mô hình thiếu biến quan trọng.
Nguyên nhân 2: Dạng hàm sai.
Nguyên nhân 3: Tính tác động đồng thời của số liệu.
Nguyên nhân 4: Sai số đo lường của biến độc lập
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 5
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
NGUYÊN NHÂN - KÌ VỌNG CỦA SSNN KHÁC KHÔNG
Nguyên nhân 1: Mô hình thiếu biến quan trọng.
Khái niệm
Mô hình được gọi là thiếu biến Z quan trọng khi:
Biến Z không có mặt trong mô hình.
Biến Z tác động đến biến phụ thuộc Y.
Biến Z tương quan với ít nhất một trong các biến độc lập Xj .
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 6
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
NGUYÊN NHÂN - KÌ VỌNG CỦA SSNN KHÁC KHÔNG
Nguyên nhân 1: Mô hình thiếu biến quan trọng.
Ví dụ
Giả sử khi phân tích các nhân tố tác động lên chi tiêu, ta nhận
thấy thu nhập là nhân tố có tác động và đưa vào mô hình.
Biến tài sản cũng có tác động lên thu nhập, tài sản cũng có
tương quan với thu nhập (do thu nhập càng cao thì tài sản có
xu hướng càng cao).
Nếu thiếu biến tài sản trong mô hình thì có thể mô hình thiếu
biến quan trọng.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 7
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
NGUYÊN NHÂN - KÌ VỌNG CỦA SSNN KHÁC KHÔNG
Nguyên nhân 2: Dạng hàm sai.
Từ mô hình hồi quy tổng thể có:
E (Y |X2, . . . ,Xk) = β1 + β2X2 + . . .+ βkXk + E (u|X2, . . . ,Xk)
Khi GT2: E (u|X2, . . . ,Xk) = 0 thỏa mãn thì:
E (Y |X2, . . . ,Xk) = β1 + β2X2 + . . .+ βkXk
Từ đó, có thể thấy, E (Y |X2, . . . ,Xk) là hàm tuyến tính theo
X2, . . . ,Xk .
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 8
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
NGUYÊN NHÂN - KÌ VỌNG CỦA SSNN KHÁC KHÔNG
Nguyên nhân 2: Dạng hàm sai.
Nếu thực tế, E (Y |X2, . . . ,Xk) có dạng hàm khác:
Có dạng bậc cao của biến độc lập, chẳng hạn:
E (Y |X2, . . . ,Xk) = β1 + β2X2 + . . .+ βkXk + γX 22 + u
Hàm số có dạng biến độc lập kiểu khác, ví dụ như:
E (Y |X2, . . . ,Xk) = β1 + β2log(X2) + . . .+ βk log(Xk) + u
Khi đó, GT2 sẽ bị vi phạm.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 9
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
NGUYÊN NHÂN - KÌ VỌNG CỦA SSNN KHÁC KHÔNG
Nguyên nhân 3: Tính tác động đồng thời của số liệu.
Xét mô hình về cung và cầu của hàng hóa:
QD = β1 + β2P + u
QS = α1 + α2P + v
QD = QS
Giả sử, có nhân tố trong u làm tăng QD , do đó để đảm bảo
cân bằng, QS cũng tăng, nếu v ít thay đổi thì P sẽ tăng.
Do đó, u và P sẽ có mối tương quan trong mô hình về cầu.
Như vậy, GT 2 sẽ bị vi phạm.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 10
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
NGUYÊN NHÂN - KÌ VỌNG CỦA SSNN KHÁC KHÔNG
Nguyên nhân 4: Sai số đo lường của biến độc lập.
Giả sử biến độc lập X2 bị đo lường sai thành X
∗
2 với mức sai lệch v:
X ∗2 = X2 + v
Khi đó, mô hình trở thành:
Y = β1 + β2X
∗
2 + . . .+ βkXk + (u − β2v)
Nếu sai lệch v càng lớn thì X ∗2 càng lớn.
Do đó, phần dư (u−β2v) có tương quan với biến độc lập X ∗2 .
Khi đó, GT 2 bị vi phạm.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 11
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
HẬU QUẢ - KÌ VỌNG CỦA SSNN KHÁC KHÔNG
Khi kì vọng của sai số ngẫu nhiên khác không hay GT 2 bị vi phạm:
Ước lượng OLS sẽ là ước lượng chệch.
Các suy diễn thống kê không còn đáng tin cậy.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 12
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
HẬU QUẢ - KÌ VỌNG CỦA SSNN KHÁC KHÔNG
Chiều của ước lượng lệch khi thiếu biến:
Giả sử mô hình thiếu biến là: Y = α1 + α2X2 + u
Mô hình có đủ biến: Y = β1 + β2X2 + β3X3 + u.
Khi đó: ước lượng α2 sẽ bị chệch như sau so với β2:
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 13
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
PHÁT HIỆN - KÌ VỌNG CỦA SSNN KHÁC KHÔNG
Phát hiện vấn đề Kì vọng của SSNN khác không dựa trên phát
hiện về các hiện tượng sau:
Mô hình bỏ sót biến quan trọng.
Mô hình có dạng hàm sai.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 14
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
PHÁT HIỆN - KÌ VỌNG CỦA SSNN KHÁC KHÔNG
Mô hình bỏ sót biến quan trọng:
Giả sử mô hình ban đầu là:
Y = β1 + β2X2 + β3X3 + . . .+ βkXk + u
Nếu nghi ngờ các biến Z1,Z2, . . . ,Zm bị bỏ sót.
Thực hiện kiểm định mở rộng (thu hẹp) hàm hồi quy.
Trong EVIEWS, sử dụng kiểm định Omitted Variables.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 15
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
PHÁT HIỆN - KÌ VỌNG CỦA SSNN KHÁC KHÔNG
Mô hình bỏ sót biến quan trọng:
Ví dụ
Hồi quy mô hình mức lương (wage) phụ thuộc vào trình độ học
vấn (educ) và số năm kinh nghiệm (exper). Nếu nghi ngờ biến số
anh chị em ruột trong gia đình (ssibs) có tác động. Sử dụng kiểm
định trong EVIEWS thu được kết quả:
Mức xác suất trong kiểm định là 0.014 < 5%, do đó, với mức ý
nghĩa 5 % có thể kết luận mô hình thiếu biến ssibs.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 16
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
PHÁT HIỆN - KÌ VỌNG CỦA SSNN KHÁC KHÔNG
Dạng hàm sai - Kiểm định Ramsey:
Giả sử mô hình ban đầu là:
Y = β1 + β2X2 + β3X3 + . . .+ βkXk + u
Nếu nghi ngờ mô hình trên có dạng hàm sai.
Hồi quy mô hình trên, sau đó ước lượng Yˆ . Khi đó:
Yˆ = βˆ1 + βˆ2X2 + . . .+ βˆkXk là dạng hàm bậc nhất của các
biến độc lập.
Nếu nghi ngờ mô hình ban đầu thiếu dạng bậc 2 của BĐL,
hồi quy mô hình ban đầu thêm biến Yˆ 2.
Nếu nghi ngờ mô hình ban đầu thiếu đến dạng bậc k của
BĐL, hồi quy mô hình ban đầu thêm biến Yˆ 2, . . . , Yˆ k .
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 17
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
PHÁT HIỆN - KÌ VỌNG CỦA SSNN KHÁC KHÔNG
Dạng hàm sai - Kiểm định Ramsey:
Giả sử mô hình ban đầu là:
Y = β1 + β2X2 + β3X3 + . . .+ βkXk + u
Nếu nghi ngờ mô hình trên có dạng hàm sai.
Hồi quy mô hình trên, sau đó ước lượng Yˆ . Khi đó:
Yˆ = βˆ1 + βˆ2X2 + . . .+ βˆkXk là dạng hàm bậc nhất của các
biến độc lập.
Nếu nghi ngờ mô hình ban đầu thiếu dạng bậc 2 của BĐL,
hồi quy mô hình ban đầu thêm biến Yˆ 2.
Nếu nghi ngờ mô hình ban đầu thiếu đến dạng bậc k của
BĐL, hồi quy mô hình ban đầu thêm biến Yˆ 2, . . . , Yˆ k .
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 18
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
PHÁT HIỆN - KÌ VỌNG CỦA SSNN KHÁC KHÔNG
Dạng hàm sai - Kiểm định Ramsey:
Ví dụ
Hồi quy mô hình tiền lương phụ thuộc vào học vấn (educ) và số
năm kinh nghiệm (exper) thu được hàm hồi quy mẫu:
ŵage i = βˆ1 + βˆ2educi + βˆ3experi
Nếu nghi ngờ mô hình có dạng hàm sai, thiếu dạng bậc 2 của biến
độc lập, hồi quy mô hình mới:
wage = β1 + β2educ + β3exper + β4ŵage
2
+ u
Nếu biến thêm vào mô hình có ý nghĩa tức là dạng hàm của mô
hình bị sai.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 19
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
PHÁT HIỆN - KÌ VỌNG CỦA SSNN KHÁC KHÔNG
Dạng hàm sai - Kiểm định Ramsey trong EVIEWS:
Chạy mô hình ban đầu, [View] → [Stability test] → Ramsey
RESET test.
Điền giá trị fitted value tương ứng như sau: thiếu dạng bậc 2,
điền 1 (thêm 1 fitted value), thiếu đến dạng bậc k, điền k-1
(thêm k-1 fitted values).
Cặp giả thuyết của kiểm định Ramsey:{
H0 : Mô hình có dạng hàm đúng
H1 : Mô hình có dạng hàm sai.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 20
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
PHÁT HIỆN - KÌ VỌNG CỦA SSNN KHÁC KHÔNG
Ví dụ
Hồi quy MH tiền lương (wage) phụ thuộc vào học vấn (educ) và
số năm kinh nghiệm (exper). Nếu nghi ngờ mô hình có dạng hàm
sai. Sử dụng Kiểm định Ramsey (thiếu đến dạng bậc 3 của BĐL).
Mức xác suất của KĐ Ramsey là 0.53 (KĐ F) và 0.528 (KĐ Khi
bình phương) đều lớn hơn 5 %, do đó, với mức ý nghĩa 5% có thể
kết luận mô hình trên có dạng hàm đúng.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 21
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
KHẮC PHỤC - KÌ VỌNG CỦA SSNN KHÁC KHÔNG
Có một số cách khắc phục hiện tượng kì vọng của SSNN khác
không như sau:
Nếu nguyên nhân là thiếu biến Z → thêm biến Z vào mô
hình.
Nếu nguyên nhân là dạng hàm sai thì thay thế bằng mô hình
có biến ở dạng khác (mô hình dạng logarit) hoặc thêm dạng
bậc cao của BĐL vào mô hình.
Nếu nguyên nhân là thiếu biến Z không quan sát được thì có
thể đưa biến Z ∗ đại diện cho biến Z vào mô hình hoặc sử
dụng biến công cụ.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 22
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
KHẮC PHỤC - KÌ VỌNG CỦA SSNN KHÁC KHÔNG
Ví dụ
Trường hợp thiếu biến không quan sát được:
Khi hồi quy năng suất lao động phụ thuộc vào học vấn, kinh
nghiệm, ... Người ta nhận ra năng lực bẩm sinh cũng là một
nhân tố tác động.
Tuy nhiên, biến năng lực bẩm sinh lại không quan sát được.
Nhận thấy, biến IQ có thể làm đại diện cho biến năng lực bẩm
sinh do hai nhân tố này có tương quan rất cao.
Đưa biến IQ vào mô hình thay cho biến năng lực bẩm sinh
không quan sát được.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 23
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
Nội dung
1 KÌ VỌNG CỦA SAI SỐ NGẪU NHIÊN KHÁC KHÔNG
2 PHƯƠNG SAI SAI SỐ THAY ĐỔI
3 SAI SỐ NGẪU NHIÊN KHÔNG PHÂN PHỐI CHUẨN
4 VẤN ĐỀ ĐA CỘNG TUYẾN
5 MÔ HÌNH CHỨA BIẾN KHÔNG THÍCH HỢP
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 24
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
PHƯƠNG SAI SAI SỐ THAY ĐỔI
Xét mô hình hồi quy tuyến tính k biến:
Y = β1 + β2X2 + . . .+ βkXk + u
Khi đó, phương sai sai số thay đổi nghĩa là:
var(ui |X2i , . . . ,Xki ) = σ2i
Hay, tại các bộ giá trị (X2i , . . . ,Xki ) khác nhau thì phương sai của
sai số ngẫu nhiên nhận các giá trị σ2i khác nhau.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 25
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
NGUYÊN NHÂN - PHƯƠNG SAI SAI SỐ THAY ĐỔI
Hiện tượng Phương sai sai số thay đổi có thể xuất phát từ các
nguyên nhân:
Do bản chất số liệu.
Do mô hình thiếu biến quan trọng hoặc dạng hàm sai.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 26
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
NGUYÊN NHÂN - PHƯƠNG SAI SAI SỐ THAY ĐỔI
Do bản chất số liệu:
Ví dụ
Khi hồi quy chi tiêu của cá nhân (CT) theo mức thu nhập (TN) có
thể nhận thấy:
Phương sai của sai số cũng chính là phương sai của biến phụ
thuộc tại cùng giá trị của biến độc lập.
Tại mức TN trung bình (chẳng hạn TN = 3 triệu) mức biến
động của CT thường ổn định do chỉ đủ nhu cầu thiết yếu.
Tại mức TN cao (chẳng hạn TN = 30 triệu) mức biến động
CT có thể rất lớn tùy vào sở thích và nhu cầu cá nhân.
Như vậy, phương sai của sai số sẽ khác nhau ở hai mức thu
nhập trên.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 27
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
NGUYÊN NHÂN - PHƯƠNG SAI SAI SỐ THAY ĐỔI
Do mô hình thiếu biến quan trọng hoặc dạng hàm sai:
Ví dụ
Hồi quy MH năng suất (NS) phụ thuộc vào số giờ làm trong ngày
(H).
NS = β1 + β2H + u
Do năng suất cận biên giảm dần nên đáng nhẽ biến H2 phải có
mặt trong mô hình → Mô hình trên thiếu biến và có dạng hàm sai.
Khi đó, biến H2 sẽ nằm trong phần dư u. Như vậy, phần dư u bị
biến động theo H2, nói cách khác, phương sai của sai số u sẽ thay
đổi theo giá trị của H2.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 28
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
HẬU QUẢ - PHƯƠNG SAI SAI SỐ THAY ĐỔI
Hiện tượng Phương sai sai số thay đổi thường dẫn đến những hệ
quả sau:
Các ước lượng OLS (ước lượng hệ số) vẫn là ước lượng không
chệch.
Phương sai của hệ số ước lượng bị chệch.
Khoảng tin cậy và kiểm định giả thuyết về các hệ số không
còn giá trị sử dụng.
Các ước lượng hệ số không còn là ước lượng tốt nhất.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 29
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
PHÁT HIỆN - PHƯƠNG SAI SAI SỐ THAY ĐỔI
Phát hiện dựa vào đồ thị phần dư:
Ước lượng mô hình ban đầu trích ra phần dư ei . Sau đó, xem các
đồ thị của phân dư theo giá trị cả từng biến độc lập. Nếu đồ thị
cho thấy phần dư biến động theo giá trị của BĐL → phương sai
sai số thay đổi.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 30
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
PHÁT HIỆN - PHƯƠNG SAI SAI SỐ THAY ĐỔI
Kiểm định Breusch Pagan (BP):
Hồi quy mô hình:
Y = β1 + β2X2 + . . .+ βkXk + u
Xét mô hình hồi quy phụ:
ui = a1 + a2X2i + . . .+ akXki + vi
Kiểm định cặp giả thuyết:{
H0 : a2 = . . . = ak = 0 (PSSS không đổi)
H1 : a
2
2 + . . .+ a
2
k > 0 (PSSS thay đổi)
Nếu H1 đúng tức là phần dư của mô hình chịu ảnh hưởng của ít
nhất một biến độc lập. Do đó, phương sai sai số cũng thay đổi
theo giá trị của các biến độc lập đó.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 31
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
PHÁT HIỆN - PHƯƠNG SAI SAI SỐ THAY ĐỔI
Kiểm định Breusch Pagan (BP):
Do không có các giá trị của ui , do đó, sẽ sử dụng ước lượng của ui
là ei trong mẫu để ước lượng mô hình:
ei = b1 + b2X2i + . . .+ bkXki + vi
Kiểm định cặp giả thuyết:{
H0 : b2 = . . . = bk = 0 (PSSS không đổi)
H1 : b
2
2 + . . .+ b
2
k > 0 (PSSS thay đổi)
Đây chính là kiểm định sự phù hợp của mô hình hồi quy ei hay là
dạng đặc biệt của kiểm định mở rộng (thu hẹp) hàm hồi quy.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 32
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
PHÁT HIỆN - PHƯƠNG SAI SAI SỐ THAY ĐỔI
Kiểm định Breusch Pagan (BP):
Bước 1: Ước lượng mô hình hồi quy ban đầu thu được phần
dư ei .
Bước 2: Ước lượng mô hình ei phụ thuộc vào các biến độc
lập.
Bước 3: Tính giá trị quan sát của các thống kê kiểm định:
Fqs =
R2e /(k − 1)
(1− R2e )/(n − k)
hoặc LMqs = nR
2
e
Bước 4: So sánh với giá trị tới hạn. Bác bỏ H0 khi:
Fqs > fα(k − 1, n − k) hay LMqs > χ2α(k)
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 33
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
PHÁT HIỆN - PHƯƠNG SAI SAI SỐ THAY ĐỔI
Kiểm định White:
Giả sử xét mô hình hồi quy 3 biến:
Y = β1 + β2X2 + β3X3 + u
* Xét mô hình hồi quy phụ 1 (không có tích chéo):
e2i = α1 + α2X2i + α3X3i + α4X
2
2i + α5X
2
3i + vi
Cặp giả thuyết:
{
H0 : α2 = . . . = α5 = 0 (PSSS không đổi)
H1 : α
2
2 + . . .+ α
2
5 > 0 (PSSS thay đổi)
* Xét mô hình hồi quy phụ 2 (có tích chéo):
e2i = α1 + α2X2i + α3X3i + α4X
2
2i + α5X
2
3i + α6X2iX3i + vi
Cặp giả thuyết:
{
H0 : α2 = . . . = α6 = 0 (PSSS không đổi)
H1 : α
2
2 + . . .+ α
2
6 > 0 (PSSS thay đổi)
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 34
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
PHÁT HIỆN - PHƯƠNG SAI SAI SỐ THAY ĐỔI
Kiểm định White:
Nếu H1 đúng tức là phần dư của mô hình chịu ảnh hưởng của
ít nhất một biến độc lập. Do đó, phương sai sai số cũng thay
đổi theo giá trị của các biến độc lập đó.
Kiểm định với mô hình hồi quy phụ không có tích chéo gọi là
kiểm định White không có tích chéo (no cross terms);
kiểm định với mô hình có tích chéo gọi là kiểm định White
có tích chéo (cross terms).
Kiểm định White được thực hiện theo các bước giống kiểm
định Breusch Pagan ngoại trừ bước 2, tùy từng phương pháp
sẽ ước lượng mô hình hồi quy phụ khác nhau.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 35
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
PHÁT HIỆN - PHƯƠNG SAI SAI SỐ THAY ĐỔI
Kiểm định White trong EVIEWS:
Chạy mô hình hồi quy ban đầu → [View] → [Residual tests]
→ White heteroskedasticity (chọn cross terms hoặc no cross
terms).
Mức xác suất của KĐ White là 0.0065 (KĐ F) và 0.0067 (KĐ
Khi bình phương) nhỏ hơn 5%, do đó, với mức ý nghĩa 5%, có
thể kết luận mô hình có phương sai sai số thay đổi.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 36
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
KHẮC PHỤC - PHƯƠNG SAI SAI SỐ THAY ĐỔI
Hiện tượng Phương sai sai số thay đổi có thể khắc phục bằng cách:
Phương pháp bình phương bé nhất tổng quát (GLS).
Ước lượng lại sai số chuẩn của hệ số ước lượng.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 37
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
KHẮC PHỤC - PHƯƠNG SAI SAI SỐ THAY ĐỔI
Phương pháp bình phương bé nhất tổng quát (GLS)
Xét mô hình: Y = β1 + β2X2 + . . .+ βkXk + u
Giả sử sai số của phần dư bị phụ thuộc vào biến X2 theo công
thức: σ2i = σ
2X 22i .
Khi đó thực hiện hồi quy mô hình:
Yi
X2i
=
β1
X2i
+ β2 + . . .+ βk
Xki
X2i
+
ui
X2i
Lúc này phần dư
ui
X2i
sẽ có phương sai sai số cố định bằng σ2.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 38
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
KHẮC PHỤC - PHƯƠNG SAI SAI SỐ THAY ĐỔI
Ước lượng lại sai số chuẩn theo White trong EVIEWS
Trong trường hợp PSSS thay đổi, sai số chuẩn (se(βˆj) là
không đáng tin cậy, do đó, White đề xuất một cách ước lượng
lại các sai số chuẩn.
Trong EVIEWS, sau khi ước lượng, chọn [estimate] →
[Option], Tích chọn [Heteroskedasticity consistent coefficient
covariance] → Chọn [White] → OK
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 39
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
KHẮC PHỤC - PHƯƠNG SAI SAI SỐ THAY ĐỔI
Ước lượng lại sai số chuẩn theo White trong EVIEWS
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 40
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
Nội dung
1 KÌ VỌNG CỦA SAI SỐ NGẪU NHIÊN KHÁC KHÔNG
2 PHƯƠNG SAI SAI SỐ THAY ĐỔI
3 SAI SỐ NGẪU NHIÊN KHÔNG PHÂN PHỐI CHUẨN
4 VẤN ĐỀ ĐA CỘNG TUYẾN
5 MÔ HÌNH CHỨA BIẾN KHÔNG THÍCH HỢP
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 41
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
SAI SỐ NGẪU NHIÊN KHÔNG PHÂN PHỐI CHUẨN
Xét mô hình hồi quy tuyến tính k biến:
Yt = β1 + β2X2 + . . .+ βkXk + u
Theo GT 5, sai số ngẫu nhiên phải có phân phối chuẩn
Nếu sai số ngẫu nhiên không còn phân phối chuẩn thì hậu
quả sẽ thế nào?
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 42
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
HẬU QUẢ - SSNN KHÔNG PHÂN PHỐI CHUẨN
Khi sai số ngẫu nhiên không phân phối chuẩn sẽ dẫn đến một số
hệ quả:
Thống kê t và thống kê F trong làm nền tảng cho các bài
toán ước lượng và kiểm định không còn phân phối Student và
Fisher.
Khi kích cỡ mẫu nhỏ, các ước lượng và kiểm định là không
đáng tin cậy.
Khi kích cỡ mẫu lớn, sai số ngẫu nhiên sẽ xấp xỉ phân phối
chuẩn nên các suy diễn thống kê vẫn có giá trị.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 43
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
PHÁT HIỆN - SSNN KHÔNG PHÂN PHỐI CHUẨN
Xem xét đồ thị phần dư
Xem đồ thị tần suất của phần dư (histogram plot).
Nếu đồ thị bị lệch hẳn sang trái hoặc sang phải là dấu hiệu
không phân phối chuẩn.
Nếu đồ thị quá nhọn hoặc quá dẹt cũng là dấu hiệu không
phân phối chuẩn.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 44
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
PHÁT HIỆN - SSNN KHÔNG PHÂN PHỐI CHUẨN
Kiểm định Jarque - Bera
Cặp giả thuyết:
{
H0 : Phần dư u có phân phối chuẩn
H1 : Phần dư u không phân phối chuẩn
Ước lượng mô hình hồi quy gốc thu được phần dư ei .
Tính toán giá trị quan sát của thống ke Jarque-Bera:
JB = n
(
S2
6
+
(K − 3)2
24
)
Trong đó, S là hệ số bất đối xứng (skewness) và K là hệ số
bất đối xứng (Kurtosis) của phân dư.
So sánh với giá trị tới hạn. Bác bỏ H0 khi:
JB > χ2α(2)
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 45
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
PHÁT HIỆN - SSNN KHÔNG PHÂN PHỐI CHUẨN
Kiểm định Jarque - Bera trong EVIEWS
Chạy mô hình ban đầu, [View] → [Residual tests] →
[Histogram - Normality test].
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 46
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
Nội dung
1 KÌ VỌNG CỦA SAI SỐ NGẪU NHIÊN KHÁC KHÔNG
2 PHƯƠNG SAI SAI SỐ THAY ĐỔI
3 SAI SỐ NGẪU NHIÊN KHÔNG PHÂN PHỐI CHUẨN
4 VẤN ĐỀ ĐA CỘNG TUYẾN
5 MÔ HÌNH CHỨA BIẾN KHÔNG THÍCH HỢP
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 47
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
KHÁI NIỆM ĐA CỘNG TUYẾN
Xét mô hình hồi quy tuyến tính k biến:
Yt = β1 + β2X2 + . . .+ βkXk + u
Đa cộng tuyến hoàn hảo xảy ra khi giữa các biến độc lập
có mối quan hệ tuyến tính hay nói cách khác, có ít nhất một
biến độc lập được biểu diễn (tính) theo một số biến độc lập
còn lại thông qua một hàm tuyến tính.
Đa cộng tuyến cao xảy ra khi biến độc lập có liên hệ chặt
chẽ với một nhóm biến độc lập khác.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 48
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
ĐA CỘNG TUYẾN CAO
Xét các mô hình hồi quy phụ:
Xj = α1+α2X2+ . . .+αj−1Xj−1+αj+1Xj+1+ . . .+αkXk +u
Từ các mô hình hồi quy phụ trên thu được hệ số xác địnhR2j .
Nếu R2j càng gần 1 thì các biến độc lập còn lại càng giải thích
cao cho biến Xj hay nói cách khác biến Xj có mối liên hệ
(tương quan) cao với các biến độc lập còn lại.
Nếu có một R2j = 1 thì mô hình có đa cộng tuyến hoàn hảo,
khi có ít nhất một R2j gần tới 1 thì mô hình có hiện tượng đa
cộng tuyến cao. (j = 2, . . . , k)
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 49
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
NGUYÊN NHÂN CỦA ĐA CỘNG TUYẾN
Do bản chất số liệu, đối tương có quy mô lớn thường có cách
chỉ số lớn (chẳng hạn công ty lớn sẽ có vốn và lao động
nhiều) nên bản thân các chỉ tiêu này sẽ có mối tương quan
cao với nhau.
Mô hình dạng đa thức, các biến X ,X 2,X 3 thường có tương
quan khá chặt, đặc biệt khi giá trị của X nhỏ.
Mẫu không mang tính đại diện: Nếu số liệu được thu thập bị
lệch về một nhóm đối tượng thì các biến số thường có mối
tương quan cao với nhau do cùng đặc trưng.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 50
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
HẬU QUẢ CỦA ĐA CỘNG TUYẾN
Mô hình có đa cộng tuyến hoàn hảo sẽ không thể ước lượng
được.
Mô hình có đa cộng tuyến cao sẽ làm phóng đại se(βˆj) do:
var(βˆj) =
σ2
(1− R2j )(
n∑
i=1
x2ji )
Do đó, mô hình có đa cộng tuyến cao sẽ làm khoảng tin cậy
của βj rộng ra (kém chính xác hơn), hệ số ước lượng mất ý
nghĩa thống kê (do t nhỏ đi), dấu của hệ số ước lượng có thể
ngược với kì vọng (do sai số quá lớn) và biến động mạnh khi
có sự thay đổi trong mẫu.
Tuy nhiên, ước lượng OLS vẫn là BLUE (do không vi phạm
GT nào)
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 51
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
PHÁT HIỆN ĐA CỘNG TUYẾN
Để nhận biết mức độ đa cộng tuyến có thể làm các cách sau đây:
Kiểm tra hệ số tương quan giữa các cặp biến độc lâp, nếu có
cặp nào có hệ số tương quan lớn hơn 0.8 thì coi như mô hình
có đa cộng tuyến cao.
Thực hiện các hồi quy phụ, rút ra R2j , nếu R
2
j > 0.6 coi như
có đa cộng tuyến cao.
Tính hệ số phóng đại phương sai: VIFj =
1
1− R2j
.
Nếu VIFj > 2.5 tương đương R
2
j > 0.6 và Rj > 0.775 thì
được xem như có đa cộng tuyến cao.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 52
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
KHẮC PHỤC ĐA CỘNG TUYẾN CAO
Để khắc phục đa cộng tuyến cao có thể làm các cách sau đây:
Nếu se(βˆj) là bé so với βˆj thì không cần bận tâm đến việc mô
hình có đa cộng tuyến cao hay không.
Gia tăng kích cỡ mẫu để làm giảm mức độ đa cộng tuyến.
Có thể bỏ bớt biến gây ra đa cộng tuyến cao. Tuy nhiên, việc
bỏ biến có thể gây ra hậu quả nghiêm trọng hơn vấn đề đa
cộng tuyến.
Sử dụng các kĩ thuật thống kê đặc biệt khác để xử lý tương
quan giữa các biến độc lập.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 53
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
Nội dung
1 KÌ VỌNG CỦA SAI SỐ NGẪU NHIÊN KHÁC KHÔNG
2 PHƯƠNG SAI SAI SỐ THAY ĐỔI
3 SAI SỐ NGẪU NHIÊN KHÔNG PHÂN PHỐI CHUẨN
4 VẤN ĐỀ ĐA CỘNG TUYẾN
5 MÔ HÌNH CHỨA BIẾN KHÔNG THÍCH HỢP
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 54
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
HẬU QUẢ CỦA VIỆC SỬ DỤNG BIẾN KHÔNG THÍCH
HỢP
Các ước lượng OLS vẫn là ước lượng không chệch (đáng tin
cậy).
Tuy nhiên, làm phương sai của các hệ số ước lượng lớn dẫn
dến các suy diễn như ước lượng KTC và kiểm định trở nên
kém chính xác. Ngoài ra, sai số của hệ số ước lượng lớn có
thể làm các hệ số này mất ý nghĩa thống kê.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 55
KV SS KHAC 0 PSSS thay đổi SS không PP chuẩn Đa cộng tuyến Biến không thích hợp
PHÁT HIỆN BIẾN KHÔNG THÍCH HỢP
Để phát hiện các biến không thích hợp trong mô hình, có thể thực
hiện các cách sau:
Kiểm tra xem các biến có ý nghĩa thống kê hay không.
Nếu nghi ngờ từ 2 biến trở lên không thích hợp trong mô hình
thì sử dụng kiểm định mở rộng (thu hẹp) hàm hồi quy để
kiểm tra.
Khi kiểm tra ra biến hoặc nhóm biến không thích hợp thì nên
loại bỏ các biến đó khỏi mô hình.
Vũ Duy Thành Khoa Toán Kinh tế - Trường Đại học Kinh tế Quốc dân
KIỂM ĐỊNH VÀ LỰA CHỌN MÔ HÌNH 56
Các file đính kèm theo tài liệu này:
- chuong_5_kiem_dinh_va_lua_chon_mo_hinh_5575.pdf