Kỹ thuật viễn thông - Chapter 9: Algorithmic strength reduction in filters and transforms

Note: DCT is an orthogonal transform, i.e., the transformation matrix for IDCT is a scaled version of the transpose of that for the DCT and vice versa. Therefore, the DCT architecture can be obtained by “transposing” the IDCT, i.e., reversing the direction of the arrows in the flow graph of IDCT, and the IDCT can be obtained by “transposing” the DCT • Direct implementation of DCT or IDCT requires N(N-1) multiplication operations, i.e., O(N2), which is hardware expensive. • Strength reduction can reduce the multiplication complexity of a 8- point DCT from 56 to 13.

pdf50 trang | Chia sẻ: huyhoang44 | Lượt xem: 787 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Kỹ thuật viễn thông - Chapter 9: Algorithmic strength reduction in filters and transforms, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Chapter 9: Algorithmic Strength Reduction in Filters and Transforms Keshab K. Parhi Chapter 9 2 Outline • Introduction • Parallel FIR Filters – Formulation of Parallel FIR Filter Using Polyphase Decomposition – Fast FIR Filter Algorithms • Discrete Cosine Transform and Inverse DCT – Algorithm-Architecture Transformation – Decimation-in-Frequency Fast DCT for 2M-point DCT Chapter 9 3 Introduction • Strength reduction leads to a reduction in hardware complexity by exploiting substructure sharing and leads to less silicon area or power consumption in a VLSI ASIC implementation or less iteration period in a programmable DSP implementation • Strength reduction enables design of parallel FIR filters with a less- than-linear increase in hardware • DCT is widely used in video compression. Algorithm-architecture transformations and the decimation-in-frequency approach are used to design fast DCT architectures with significantly less number of multiplication operations Chapter 9 4 Parallel FIR Filters • An N-tap FIR filter can be expressed in time-domain as – where {x(n)} is an infinite length input sequence and the sequence contains the FIR filter coefficients of length N – In Z-domain, it can be written as ¥×××=-=*= å - = ,,2,1,0,)()()()()( 1 0 ninxihnxnhny N i { })(nh ÷ ø ö ç è æ ×÷ ø ö ç è æ =×= åå ¥ = - - = - 0 1 0 )()()()()( n n N n n znxznhzXzHzY Formulation of Parallel FIR Filters Using Polyphase Decomposition Chapter 9 5 • The Z-transform of the sequence x(n) can be expressed as: – where X0(z2) and X1(z2), the two polyphase components, are the z- transforms of the even time series {x(2k)} and the odd time-series {x(2k+1)}, for {0£k<¥}, respectively • Similarly, the length-N filter coefficients H(z) can be decomposed as: – where H0(z2) and H1(z2) are of length N/2 and are referred as even and odd sub-filters, respectively • The even-numbered output sequence {y(2k)} and the odd-numbered output sequence {y(2k+1)} for {0£k<¥} can be computed as [ ] [ ] )()( )5()3()1()4()2()0( )3()2()1()0()( 2 1 12 0 42142 321 zXzzX zxzxxzzxzxx zxzxzxxzX - ----- --- += ×××++++×××+++= ×××++++= )()()( 21 12 0 zHzzHzH -+= (continued on the next page) Chapter 9 6 • (cont’d) – i.e., – where Y0(z2) and Y1(z2) correspond to y(2k) and y(2k+1) in time domain, respectively. This 2-parallel filter processes 2 inputs x(2k) and x(2k+1) and generates 2 outputs y(2k) and y(2k+1) every iteration. It can be written in matrix-form as: ( ) ( ) [ ] [ ])()( )()()()()()( )()()()( )()()( 2 1 2 1 2 2 0 2 1 2 1 2 0 12 0 2 0 2 1 12 0 2 1 12 0 2 1 12 0 zHzXz zHzXzHzXzzHzX zHzzHzXzzX zYzzYzY - - -- - + ++= +×+= += )()()()()( )()()()()( 2 0 2 1 2 1 2 0 2 1 2 1 2 1 22 0 2 0 2 0 zHzXzHzXzY zHzXzzHzXzY += += - ú û ù ê ë é ×ú û ù ê ë é =ú û ù ê ë é - 1 0 01 1 2 0 1 0 X X HH HzH Y YXHY ×= or (9.1) Chapter 9 7 – The following figure shows the traditional 2-parallel FIR filter structure, which requires 2N multiplications and 2(N-1) additions • For 3-phase poly-phase decomposition, the input sequence X(z) and the filter coefficients H(z) can be decomposed as follows – where {X0(z3), X1(z3), X2(z3)} correspond to x(3k),x(3k+1) and x(3k+2) in time domain, respectively; and {H0(z3), H1(z3), H2(z3)} are the three sub-filters of H(z) with length N/3. H0 H1 H0 H1 2-Z y(2k+1) y(2k)x(2k) x(2k+1) )()()()( ),()()()( 3 2 23 1 13 0 3 2 23 1 13 0 zHzzHzzHzH zXzzXzzXzX -- -- ++= ++= Chapter 9 8 – The output can be computed as: – In every iteration, this 3-parallel FIR filter processes 3 input samples x(3k), x(3k+1) and x(3k+2), and generates 3 outputs y(3k), y(3k+1) and y(3k+2), and can be expressed in matrix form as: ( ) ( ) ( )[ ] [ ] [ ]0211202 22 3 0110 1 1221 3 00 2 2 1 1 02 2 1 1 0 3 2 23 1 13 0 )()()()( HXHXHXz HXzHXHXzHXHXzHX HzHzHXzXzX zYzzYzzYzY +++ +++++= ++×++= ++= - --- ---- -- ú ú ú û ù ê ê ê ë é × ú ú ú û ù ê ê ê ë é = ú ú ú û ù ê ê ê ë é - -- 2 1 0 012 2 3 01 1 3 2 3 0 2 1 0 X X X HHH HzHH HzHzH Y Y Y (9.2) Chapter 9 9 – The following figure shows the traditional 3-parallel FIR filter structure, which requires 3N multiplications and 3(N-1) additions H1x(3k) H0 H2 H1 x(3k+1) H0 H2 H1 x(3k+2) H0 H2 D D D y(3k+2) y(3k+1) y(3k) D 3: -z Chapter 9 10 • Generalization: – The outputs of an L-Parallel FIR filter can be computed as: – This can also be expressed in Matrix form as å åå - = --- = - - += -+ - = -££÷ ø ö ç è æ +÷ ø ö ç è æ = 1 0 11 0 1 1 20, L i iLiL k i iki L ki ikLi L k XHY LkxHXHzY ú ú ú ú û ù ê ê ê ê ë é ×××× ú ú ú ú ú û ù ê ê ê ê ê ë é ××× ×××××××××××× ××× ××× = ú ú ú ú û ù ê ê ê ê ë é ××× --- - - - - - 1 1 0 021 201 110 1 1 0 LLL L L L L L X X X HHH HzHH HzHzH Y Y Y XHY ×= (9. 3) (9. 4) Note: H is a pseudo-circulant matrix Chapter 9 11 Two-parallel and Three-parallel Low-Complexity FIR Filters • Two-parallel Fast FIR Filter – The 2-parallel FIR filter can be rewritten as – This 2-parallel fast FIR filter contains 3 sub-filters. The 2 sub- filters H0X0 and H1X1 are shared for the computation of Y0 and Y1 ( ) ( ) 110010101 11 2 000 XHXHXXHHY XHzXHY --+×+= += - (9. 5) H0 x(2k) H0+H1 H1 D x(2k+1) y(2k) y(2k+1) - - Chapter 9 12 – This 2-parallel filter requires 3 distinct sub-filters of length N/2 and 4 pre/post-processing additions. It requires 3N/2 = 1.5N multiplications and 3(N/2-1)+4=1.5N+1 additions. [The traditional 2-parallel filter requires 2N multiplications and 2(N-1) additions] – Example-1: when N=8 and , the 3 sub-filters are – The subfilter can be precomputed – The 2-parallel filter can also be written in matrix form as { }7610 ,,,, hhhhH ×××= { } { } { }7654321010 75311 64200 ,,, ,,, ,,, hhhhhhhhHH hhhhH hhhhH ++++=+ = = 10 HH + 22222 XPHQY ×××= (9.6) Q2 is a post-processing matrix which determines the manner in which the filter outputs are combined to correctly produce the parallel outputs and P2 is a pre-processing matrix which determines the manner in which the inputs should be combined Chapter 9 13 – (matrix form) – where diag(h*) represents an NXN diagonal matrix H2 with diagonal elements h*. – Note: the application of FFA diagonalizes the original pseudo- circulant matrix H. The entries on the diagonal of H2 are the sub- filters required in this parallel FIR filter – Many different equivalent parallel FIR filter structures can be obtained. For example, this 2-parallel filter can be implemented using sub-filters {H0, H0 -H1, H1} which may be more attractive in narrow-band low-pass filters since the sub-filter H0 -H1 requires fewer non-zero bits than H0 +H1. The parallel structure containing H0 +H1 is more attractive for narrow-band high-pass filters. ú û ù ê ë é × ú ú ú û ù ê ê ê ë é × ÷ ÷ ÷ ø ö ç ç ç è æ +×ú û ù ê ë é -- =ú û ù ê ë é - 1 0 1 10 02 1 0 10 11 01 111 01 X X H HH H diag z Y Y (9.7) Chapter 9 14 • 3-Parallel Fast FIR Filter – A fast 3-parallel FIR algorithm can be derived by recursively applying a 2-parallel fast FIR algorithm and is given by (9.8) ( )( )[ ] ( )( )[ ] [ ] ( )( )[ ] ( )( )[ ] ( )( )[ ]112121 111010 2102102 22 3 001110101 112121 3 22 3 000 XHXXHH XHXXHH XXXHHHY XHzXHXHXXHHY XHXXHHzXHzXHY -++- -++- ++++= ---++= -+++-= - -- – The 3-parallel FIR filter is constructed using 6 sub-filters of length N/3, including H0X0, H1X1, H2X2, , – With 3 pre-processing and 7 post-processing additions, this filter requires 2N multiplications and 2N+4 additions which is 33% less than a traditional 3-parallel filter ( )( )1010 XXHH ++ ( )( )and 2121 XXHH ++ ( )( )210210 XXXHHH ++++ Chapter 9 15 – The 3-parallel filter can be expressed in matrix form as 33333 XPHQY ×××= ú ú ú ú ú û ù ê ê ê ê ê ë é - - - × ú ú ú û ù ê ê ê ë é -- -= ú ú ú û ù ê ê ê ë é = - - 100000 010010 001010 00001 1110 0011 001 , 3 3 3 2 1 0 3 z z Q Y Y Y Y ú ú ú û ù ê ê ê ë é = ú ú ú ú ú ú ú ú û ù ê ê ê ê ê ê ê ê ë é = ú ú ú ú ú ú ú ú û ù ê ê ê ê ê ê ê ê ë é ++ + + = 2 1 0 33 210 21 10 2 1 0 3 , 111 110 011 100 010 001 , X X X XP HHH HH HH H H H diagH (9.9) Chapter 9 16 – Reduced-complexity 3-parallel FIR filter structure H0 x(3k+2) H1 H2 D x(3k+1) y(3k) y(3k+1)- - H0+H1 H1+H2 H0+H1+H2 D - - - - x(3k) y(3k+2) Chapter 9 17 Parallel FIR Filters (cont’d) Parallel Filters by Transposition • Any parallel FIR filter structure can be used to derive another parallel equivalent structure by transpose operation (or transposition). Generally, the transposed architecture has the same hardware complexity, but different finite word-length performance • Consider the L-parallel filter in matrix form Y=HX (9.4), where H is an LXL matrix. An equivalent realization of this parallel filter can be generated by taking the transpose of the H matrix and flipping the vectors X and Y: – where F T F XHY ×= [ ] [ ]ïî ï í ì ×××= ×××= -- -- T LLF T LLF YYYY XXXX 021 021 (9.10) Chapter 9 18 • Examples: – the 2-parallel FIR filter in (9.1) can be reformulated by using transposition as follows: – Transposition of the 2-parallel fast filter in (9.6) leads to another equivalent structure: – The reduced-complexity 2-parallel FIR filter structure by transposition is shown on next page ú û ù ê ë é ×ú û ù ê ë é =ú û ù ê ë é - 0 1 01 2 10 0 1 X X HHz HH Y Y 22222 XPHQY ×××= ( ) F FF XQHP XPHQY TTT T 2222 22222 ×××= ×××= ú û ù ê ë é × ú ú ú û ù ê ê ê ë é - - × ÷ ÷ ÷ ø ö ç ç ç è æ +×ú û ù ê ë é =ú û ù ê ë é - 0 1 2 1 10 0 0 1 1 10 11 110 011 X X zH HH H diag Y Y (9.11) Chapter 9 19 • Signal-flow graph of the 2-parallel FIR filter • Transposed signal-flow graph x0 x1 y0 y1 H0 H1 H0+H1 - - z-2 y0 y1 x0 x1 H0 H1 H0+H1 - - z -2 Fig. (a) Fig. (b) Chapter 9 20 (c) Block diagram of the transposed reduced-complexity 2-parallel FIR filter D H0 H0+H1 H1 x0 x1 y1 y0 - - Fig. (c) Chapter 9 21 Parallel FIR Filters (cont’d) Parallel Filter Algorithms from Linear Convolutions • Any LXL convolution algorithm can be used to derive an L-parallel fast filter structure • Example: the transpose of the matrix in a 2X2 linear convolution algorithm (9.12) can be used to obtain the 2-parallel filter (9.13): (9.13) ú û ù ê ë é × ú ú ú û ù ê ê ê ë é = ú ú ú û ù ê ê ê ë é 0 1 0 10 1 0 1 2 0 0 x x h hh h s s s ú ú ú û ù ê ê ê ë é ×ú û ù ê ë é =ú û ù ê ë é - 1 0 1 2 01 01 1 0 0 0 X X Xz HH HH Y Y (9. 12) Chapter 9 22 • Example: To generate a 2-parallel filter using 2X2 fast convolution, consider the following optimal 2X2 linear convolution: – Note: Flipping the samples in the sequences {s}, {h}, and {x} preserves the convolution formulation (i.e., the same C and A matrices can be used with the flipped sequences) – Taking the transpose of this algorithm, we can get the matrix form of the reduced-complexity 2-parallel filtering structure: ú û ù ê ë é × ú ú ú û ù ê ê ê ë é × ÷ ÷ ÷ ø ö ç ç ç è æ +× ú ú ú û ù ê ê ê ë é --= ú ú ú û ù ê ê ê ë é ×××= 0 1 0 10 1 0 1 2 10 11 01 100 111 001 x x h hh h diag s s s XAHCs ( ) XPHQXAHCY T ×××=×××= (9.14) Chapter 9 23 – The matrix form of the reduced-complexity 2-parallel filtering structure – The 2-parallel architecture resulting from the matrix form is shown as follows – Conclusion: this method leads to the same architecture that was obtained using the direct transposition of the 2-parallel FFA ú ú ú û ù ê ê ê ë é × ú ú ú û ù ê ê ê ë é - - × ÷ ÷ ÷ ø ö ç ç ç è æ +×ú û ù ê ë é =ú û ù ê ë é - 1 0 1 2 0 10 1 1 0 110 010 011 110 011 X X Xz H HH H diag Y Y (9.15) x(2k) x(2k+1) y(2k) y(2k+1) H0 D - H0+H1 H1 - Chapter 9 24 Parallel FIR Filters (cont’d) Fast Parallel FIR Algorithms for Large Block Sizes • Parallel FIR filters with long block sizes can be designed by cascading smaller length fast parallel filters • Example: an m-parallel FFA can be cascaded with an n-parallel FFA to produce an -parallel filtering structure. The set of FIR filters resulting from the application of the m-parallel FFA can be further decomposed, one at a time, by the application of the n-parallel FFA. The resulting set of filters will be of length . • When cascading the FFAs, it is important to keep track of both the number of multiplications and the number of additions required for the filtering structure ( )nm´ ( )nmN ´ Chapter 9 25 – The number of required multiplications for an L-parallel filter with is given by: • where r is the number of levels of FFAs used, is the block size of the FFA at level-i, is the number of filters that result from the applications of the i-th FFA and N is the length of the filter – The number of required additions can be calculated as follows: rLLLL ×××= 21 Õ Õ == = r i ir i i M L N M 1 1 iL iM (9.16) ÷ ÷ ø ö ç ç è æ -÷÷ ø ö çç è æ + ú ú û ù ê ê ë é ÷÷ ø ö çç è æ ÷÷ ø ö çç è æ += Õ Õ å ÕÕÕ = = = - =+== 1 1 1 2 1 112 r i i r i i r i i k k r ij ji r i ii L N M MLALAA (9.17) Chapter 9 26 • where is the number of pre/post-processing adders required by the i-th FFA – For example: consider the case of cascading two 2-parallel reduce- complexity FFAs, the resulting 4-parallel filtering structure would require a total of 9N/4 multiplications and 20+9(N/4-1) additions. Compared with the traditional 4-parallel filter which requires 4N multiplications. This results in a 44% hardware (area) savings • Example: (Example 9.2.1, p.268) Calculating the hardware complexity – Calculate the number of multiplications and additions required to implement a 24-tap filter with block size of L=6 for both the cases and : • For the case : iA { }3,2 21 == LL { }2,3 21 == LL { }3,2 21 == LL ( ) ( ) ( ) ( ) ( ) ( ) 96132 24 6331034,7263 32 24 =ú û ù ê ë é - ´ ´+´+´==´´ ´ = AM ,10,6,4,3 2211 ==== AMAM Chapter 9 27 • For the case : • How are the FFAs cascaded? – Consider the design of a parallel FIR filter with a block size of 4, using (9.3), we have – The reduced-complexity 4-parallel filtering structure is obtained by first applying the 2-parallel FFA to (9.18), then applying the FFA a second time to each of the filtering operations that result from the first application of the FFA – From (9.18), we have (see the next page): { }2,3 21 == LL ( ) ( ) ( ) ( ) ( ) ( ) 98123 24 3664210,7236 23 24 =ú û ù ê ë é - ´ ´+´+´==´´ ´ = AM ,4,3,10,6 2211 ==== AMAM ( ) ( )3322110 3 3 2 2 1 1 0 3 3 2 2 1 1 0 HzHzHzH XzXzXzX YzYzYzYY --- --- --- +++ ×+++= +++= (9.18) Chapter 9 28 – (cont’d) • where – Application-1 • The 2-parallel FFA is then applied a second time to each of the filtering operations of (9.19) – Application-2 • Filtering Operation ( ) ( )110110 '''' HzHXzXY -- +×+= ïþ ï ý ü ïî ï í ì +=+= +=+= -- -- 3 2 11,2 2 00 3 2 11,2 2 00 '' '' HzHHHzHH XzXXXzXX ( ) ( )[ ] '1'12'1'1'0'0'1'0'1'01'0'0 HXzHXHXHHXXzHXY -- +--+×++= (9.19) ( ) ( ){ }10101100 '''','','' HHXXHXHX +×+ { }00 '' HX ( )( ) ( ) ( )[ ] 22422002020200 2 2 02 2 0 ' 0 ' 0 HXzHXHXHHXXzHX HzHXzXHX -- -- +--+×++= ++= Chapter 9 29 • Filtering Operation • Filtering Operation – The second application of the 2-parallel FFA leads to the 4-parallel filtering structure (shown on the next page), which requires 9 filtering operations with length N/4 { }11 '' HX ( )( ) ( ) ( )[ ] 33433113131211 3 2 13 2 1 ' 1 ' 1 HXzHXHXHHXXzHX HzHXzXHX -- -- +--+×++= ++= ( )( ){ }1010 '''' HHXX ++ ( )( ) ( ) ( )[ ] ( ) ( )[ ] ( )( )[ ] ( )( )[ ] ( )( ) ( )( ) ( )( )úû ù ê ë é ++-++- ++++++ + +++++= +++×+++=++ - - -- 32321010 321032102 3232 4 1010 32 2 1032 2 101010 '''' HHXXHHXX HHHHXXXX z HHXXzHHXX HHzHHXXzXXHHXX Chapter 9 30 Reduced-complexity 4-parallel FIR filter (cascaded 2 by 2) Chapter 9 31 Discrete Cosine Transform and Inverse DCT • The discrete cosine transform (DCT) is a frequency transform used in still or moving video compression. We discuss the fast implementations of DCT based on algorithm-architecture transformations and the decimation-in-frequency approach • Denote the DCT of the data sequence x(n), n=0, 1,, N-1, by X(k), k=0, 1, , N-1. The DCT and inverse DCT (IDCT) are described by the following equations: – DCT: – IDCT: ( ) 1,,1,0, 2 12 cos)()()( 1 0 -×××=úû ù êë é += å - = Nk N kn nxkekX N n p ( ) 1,,1,0, 2 12 cos)()( 2 )( 1 0 -×××=úû ù êë é += å - = Nn N kn kXke N nx N k p (9.20) (9.21) Chapter 9 32 • where • Note: DCT is an orthogonal transform, i.e., the transformation matrix for IDCT is a scaled version of the transpose of that for the DCT and vice versa. Therefore, the DCT architecture can be obtained by “transposing” the IDCT, i.e., reversing the direction of the arrows in the flow graph of IDCT, and the IDCT can be obtained by “transposing” the DCT • Direct implementation of DCT or IDCT requires N(N-1) multiplication operations, i.e., O(N2), which is hardware expensive. • Strength reduction can reduce the multiplication complexity of a 8- point DCT from 56 to 13. î í ì = = otherwise k ke ,1 0,21 )( Chapter 9 33 • Example (Example 9.3.1, p.277) Consider the 8-point DCT – It can be written in matrix form as follows: (where ) ú ú ú ú ú ú ú ú ú ú ú û ù ê ê ê ê ê ê ê ê ê ê ê ë é × ú ú ú ú ú ú ú ú ú ú ú û ù ê ê ê ê ê ê ê ê ê ê ê ë é = ú ú ú ú ú ú ú ú ú ú ú û ù ê ê ê ê ê ê ê ê ê ê ê ë é )7( )6( )5( )4( )3( )2( )1( )0( )7( )6( )5( )4( )3( )2( )1( )0( 9271331173217 26142221030186 1112313325155 28201242820124 137127211593 30262218141062 15131197531 44444444 x x x x x x x x cccccccc cccccccc cccccccc cccccccc cccccccc cccccccc cccccccc cccccccc X X X X X X X X ( ) î í ì == ×××=úû ù êë é += å = otherwise kkewhere k kn nxkekX n ,1 0,21)( 7,,1,0, 16 12 cos)()()( 7 0 p 16cos pici = Chapter 9 34 – The algorithm-architecture mapping for the 8-point DCT can be carried out in three steps • First Step: Using trigonometric properties, the 8-point DCT can be rewritten as in next page ú ú ú ú ú ú ú ú ú ú ú û ù ê ê ê ê ê ê ê ê ê ê ê ë é × ú ú ú ú ú ú ú ú ú ú ú û ù ê ê ê ê ê ê ê ê ê ê ê ë é ---- ---- ---- ---- ---- ---- ---- = ú ú ú ú ú ú ú ú ú ú ú û ù ê ê ê ê ê ê ê ê ê ê ê ë é )7( )6( )5( )4( )3( )2( )1( )0( )7( )6( )5( )4( )3( )2( )1( )0( 75311357 62266226 51733715 44444444 37155173 26622662 13577531 44444444 x x x x x x x x cccccccc cccccccc cccccccc cccccccc cccccccc cccccccc cccccccc cccccccc X X X X X X X X (9.22) Chapter 9 35 – (continued) – where – The following figure (on the next page) shows the DCT architecture according to (9.23) and (9.24) with 22 multiplications. 410073123150 410013725130 21161033521170 61121053327110 )0(,)5( )4(,)3( )6(,)7( )2(,)1( cPXcMcMcMcMX cMXcMcMcMcMX cMcMXcMcMcMcMX cMcMXcMcMcMcMX ×=+-+= ×=---= -=++-= +=+++= ,,,, ,,,, ,,,, 3211101032111010 523612431700 523612431700 PPPPPPPPMPPM xxPxxPxxPxxP xxMxxMxxMxxM +=+=-=-= +=+=+=+= -=-=-=-= (9.23) 11101001110100 , PPPPPM +=-= (9.24) Chapter 9 36 Figure: The implementation of 8-point DCT structure in the first step (also see Fig. 9.10, p.279) Chapter 9 37 • Second step, the DCT structure (see Fig. 9.10, p.279) is grouped into different functional units represented by blocks and then the whole DCT structure is transformed into a block diagram – Two major blocks are defined as shown in the following figure – The transformed block diagram for an 8-point DCT is shown in the next page (also see Fig. 9.12 in p.280 of text book) x(0) x(1) x(0)+x(1) x(0)-x(1)- x(0) x(1) ax(0)+bx(1) bx(0)-ax(1)- a a b b X± XC± a b Chapter 9 38 Figure: The implementation of 8-point DCT structure in the second step (also see Fig. 9.12, p.280) Chapter 9 39 • Third step: Reduced-complexity implementations of various blocks are exploited (see Fig. 9.13, p.281) – The block can be realized using 3 multiplications and 3 additions instead of using 4 multiplications and 2 additions, as shown in follows – Define the block with and reversed outputs as a rotator block that performs the following computation: XC± x y ax+by bx-ay- x y ax+by bx-ay - a- b a+ b a a b b b XC± { }qq cos,sin == ba qrot ú û ù ê ë é ×ú û ù ê ë é - =ú û ù ê ë é y x y x qq qq cossin sincos ' ' Chapter 9 40 – Note: The angles of cascaded rotators can be simply added, as shown in the transformation block as follows: – Note: Based on the fact that a rotator with is just like the block , we modify it as the following structure: XC± a b x y bx-ay ax+by qrotxy x’ y’ î í ì = = q q cos sin b a for 1qrot 2qrot ( )21 qq +rot { }4pq = X± X± x y c4 c4 ( )4protxy x’y’ )4cos(4 p=c Chapter 9 41 – From the three steps, we obtain the final structure where only 13 multiplications are required (also see Fig. 9.14, p.282) X± x(0) x(7) ÷ ø ö ç è æ 16 3p rot X± x(3) x(4) X± x(1) x(6) X± x(2) x(5) ÷ ø ö ç è æ 16 p rot X± X± ÷ ø ö ç è æ 8 3p rot X± X± X± - - - c4 c4 c4 c4 X(1) X(5) X(3) X(7) X(6) X(2) X(0) X(4) Chapter 9 42 Decimation-in-Frequency Fast DCT for -Point DCT • The fast -point DCT/IDCT structures can be derived by the decimation-in-frequency approach, which is commonly used to derive the FFT structure to compute the discrete-Fourier transform (DFT). By power-of-2 decomposition, this algorithm reduces the number of multiplications to about • We only derive the fast IDCT computation (The fast DCT structure can be obtained from IDCT by “transposition” according to their computation symmetry). For simplicity, the 2/N scaling factor in (9.21) is ignored in the derivation. Discrete Cosine Transform and Inverse DCT m2 m2 ( ){ }NN 2log2 Chapter 9 43 – Define and decompose x(n) into even and odd indexes of k as follows – Notice ( ) ( ) ( )kXkekX ×=ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) úû ù êë é + úû ù êë é +++ · + +úû ù êë é += úû ù êë é ++++úû ù êë é += úû ù êë é += å å åå å - = - = - = - = - = N n N kn kX NnN kn kX N kn kX N kn kX N kn kXnx N k N k N k N k N k 2 12 cos 2 1212 cos12ˆ2 212cos2 1 2 212 cos2ˆ 2 1212 cos12ˆ 2 212 cos2ˆ 2 12 cos)(ˆ)( 12 0 12 0 12 0 12 0 1 0 pp p p pp p ( ) ( ) ( ) ( ) ( ) ( ) N kn N kn N n N kn p ppp 12 cos 112 cos 2 12 cos 2 1212 cos2 ++ ++ = + × ++ Chapter 9 44 – Therefore, (since ) – Substitute k’=k+1 into the first term, we obtain • where ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )åå åå å - = - = - = - = - = úû ù êë é +++úû ù êë é +++= úû ù êë é +++úû ù êë é +++= úû ù êë é + úû ù êë é +++ 12 0 22 0 12 0 12 0 12 0 12 cos12ˆ 112 cos12ˆ 12 cos12ˆ 112 cos12ˆ 2 12 cos 2 1212 cos12ˆ2 N k N k N k N k N k N kn kX N kn kX N kn kX N kn kX N n N kn kX pp pp pp ( ) ( )[ ] 011212cos =+-+ NNn p ( ) ( ) ( ) ( ) ( ) ( ) ( )åå å - = - = - = úû ù êë é +-=úû ù êë é +-= úû ù êë é +++ 12 0 12 1' 22 0 '12 cos1'2ˆ '12 cos1'2ˆ 112 cos12ˆ N k N k N k N kn kX N kn kX N kn kX pp p ( ) 01ˆ =-X Chapter 9 45 – Then, the IDCT can be rewritten as – Define – and – Clearly, G(k) & H(k) are the DCTs of g(n) & h(n), respectively. ( ) ( )( ) ( )[ ] ( ) ( )[ ] ( )( )å å - = - = ú û ù ê ë é + -++ × + +ú û ù ê ë é + = 12 0 12 0 22 12 cos12ˆ12ˆ 212cos2 1 22 12 cos2ˆ)( N k N k N kn kXkX NnN kn kXnx p p p 12,,1,0 ),12(ˆ)12(ˆ)( ),2(ˆ)( -×××= ïî ï í ì -++º º Nk kXkXkH kXkG (9.25) ( ) ( ) [ ] ( )( )ï ï î ï ï í ì ú û ù ê ë é + -++º -×××=ú û ù ê ë é + º å å - = - = 22 12 cos)12(ˆ)12(ˆ)( 12,,1,0, 22 12 cos)2(ˆ)( 12 0 12 0 N kn kXkXnh Nn N kn kXng N k N k p p (9.26) Chapter 9 46 – Since – Finally, we can get – Therefore, the N-point IDCT in (9.21) has been expressed in terms of two N/2-point IDCTs in (9.26). By repeating this process, the IDCT can be decomposed further until it can be expressed in terms of 2-point IDCTs. (The DCT algorithm can also be decomposed similarly. Alternatively, it can be obtained by transposing the IDCT) ( )( ) ( ) ( )( ) ( ) ï ï î ïï í ì + -= +-- + = +-- N n N nN N kn N knN pp pp 12 cos 112 cos 12 cos 112 cos ( ) ( )[ ] ( ) ( )[ ]ï ï î ïï í ì -×××= + -=-- + += 12,,1,0 ),( 212cos2 1 )()1( ),( 212cos2 1 )()( Nn nh Nn ngnNx nh Nn ngnx p p (9.27) Chapter 9 47 • Example (see Example 9.3.2, p.284) Construct the 2-point IDCT butterfly architecture. – The 2-point IDCT can be computed as – The 2-point IDCT can be computed using the following butterfly architecture ( ) ( )î í ì -= += ,4cos)1(ˆ)0(ˆ)1( ,4cos)1(ˆ)0(ˆ)0( p p XXx XXx -1 x(1) x(0) C4 )1(Xˆ )0(Xˆ Chapter 9 48 • Example (Example 9.3.3, p.284) Construct the 8-point fast DCT architecture using 2-point IDCT butterfly architecture. – With N=8, the 8-point fast DCT algorithm can be rewritten as: – and 3,2,1,0 ),12(ˆ)12(ˆ)( ),2(ˆ)( = ïî ï í ì -++º º k kXkXkH kXkG ( ) ( ) ï ï î ïï í ì úû ù êë é += -×××=úû ù êë é += å å - = = 8 12 cos)()( 12,,1,0, 8 12 cos)()( 13 0 3 0 kn kHnh Nn kn kGng k k p p ( )[ ] ( )[ ]ï ï î ïï í ì + -=-- + += ),( 1612cos2 1 )()1( ),( 1612cos2 1 )()( nh n ngnNx nh n ngnx p p Chapter 9 49 – The 8-point fast IDCT is shown below (also see Fig.9.16, p.285), where only 13 multiplications are needed. This structure can be transposed to get the fast 8-point DCT architecture as shown on the next page (also see Fig. 9.17, p.286) (Note: for N=8, in both figures) ( )[ ] ( )4cos164cos214 pp ==C )0(Xˆ )0(Xˆ )4(Xˆ )2(Xˆ )6(Xˆ )1(Xˆ )5(Xˆ )3(Xˆ )7(Xˆ )4(Xˆ )2(Xˆ )6(Xˆ )1(Xˆ )5(Xˆ )3(Xˆ )7(Xˆ )0(G )2(G )1(G )3(G )0(H )2(H )1(H )3(H 4C 4C 4C 4C 1- 1- 1- 1- 2C 6C 2C 6C 1- 1- 1- 1- 3C 1C 7C 5C 1- 1- 1- 1- )0(X )1(X )3(X )2(X )7(X )6(X )4(X )5(X Chapter 9 50 Fast 8-point DCT Architecture )0(Xˆ )4(Xˆ )2(Xˆ )6(Xˆ )1(Xˆ )5(Xˆ )3(Xˆ )7(Xˆ 1- 1- 1- 1- 3C 1C 7C 5C )0(X )2(X )4(X )6(X )1(X )3(X )5(X )7(X 1- 1- 1- 1- 6C 2C 2C 6C 1- 1- 1- 1- 4C 4C 4C 4C 4C

Các file đính kèm theo tài liệu này:

  • pdfchap_chap9_1876_4595.pdf
Tài liệu liên quan