BÀI TOÁN HAI ĐIỂM BIÊN KỲ DỊ
ĐỖ HOÀI VŨ
Trang nhan đề
Lời cảm ơn
Lời mở đầu
Mục lục
Chương1: Phương pháp điểm bất động trong bài toán biên kỳ dị.
Chương2: Lý thuyết phổ của toán tử đối xứng, hoàn toàn liên tục trong bài toán biên kỳ dị.
Chương3: Vài điều kiện cho sự tồn tại nghiệm của bài toán hai điểm biên kỳ dị.
Tài liệu tham khảo
21 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1910 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận án Bài toán hai điểm biên kỳ dị, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
CHU0NGI
" ,::> "" A
PHU0NG PHAP DIEM BAT DQNG
TRONG BAI TOA.NBIEN KY Df
" ,?
I. CAC D~NHLY ca BAN
Dinhly 1.1(Brouwer).
En la khonggian tuye"ntinhdinhchu§'nhUllh~nchi~u . c la t~p dang,bi
ch~ntrongEn thi ta"tcacacanhx~ f: C ~ C lien tlfcd~uca di~mc6dinh
Dinh nghia 1.2 .
1) Anh x~ F: C ~ C du'<;1cgQila compacne"uF(X) chuatrongmQtt~p
compaccua Y .
2) Anhx~ F: C ~ C dlf<;1cgQila compaclien Wene"uanhcuam6i t~pbi
ch~nchifa trongmQtt~pcompaccuaY .
3) Anh x~ F: C ~ C du'<;1cgQila compachUllh~nchi~une"uF(X) chua
trongkhonggiancontuye"ntinhhUllh~nchi~ucuaY .
GQiA ={aI, a2, ..., an }lamQtt~pconcuakhonggiantuye"ntinhdinhchu§'nE
vdi chu§'nII. II . Vdi S>0 c6dinh d~t :
n
Ac =UB(aj,s) , B(aj,s)={xEE:llx-aj II<E}
i=I
~j: Ac ~ R saocho ~j =max{O,E-11x-aj II}
GQiCoCA)la t~pl6i benha"tchuaA . Ta dinhnghlaphepchie"uSchauderla
anhx~:
n
I ~I(x)a;
Pc : Ac ~Co (A) sao c110Pc = i=ln
I ~I (x)
i =I
0 ; XE A c
Nh~nxet :
Cachdinhnghla PE la hoantoanca nghlavi ne"u:
X E Ac ' 3io : x E B(aio' E) ~ E - II x - a,o II > 0
n
~ ~lio= E - II x - a,o II -:f= 0 ~L: ~li(X)-:f=0,=!
2) Chu y PE(AE)c CoCA)dom6iPE(x) la t6helptuytn tinhcua aI, a2,..., an.
Dinh Iy 1.3 .
Cho A c C c E voi A ={aI, a2, ..., an}; C la t?P l6i trongkhonggiantuytn
tinhdinhchu§'nE .Ntu PE(x) la phepchitu Schauderthi :
1) PE la anhx~compaclien wc tUAE vao CoCA)c C .
2) II x- PE II < E 'v'x E AE .
Chungminhdinh Iy :
1) Slf lien t\lccuaPE duQctha"ytn;fctitp . Chungtachungto tinhcompaccuaPE
. GQi {PE(xm)boola mQtdaytrong PE(AE) voi
V?y thidotinhcompaccuan_l?p phltdngclIngvdi CoCA) la mQtt?P dongsuy
ratinhcompaccuaanhx~PE.
2) Chu Y
- 1 II
II x - Pc (x) 11-~(x) i =1
1 n 1 n
:::; L ~lJx) II x - a, II < L ~li (X)E= E
~(x) i=l ~l(X) i=l
bdi vi ~ i (x) = 0 tnr khi II x - a i II< E
(x) =
II li (x)aj
t;! i (x)=> p" (x m) = :t,=1 (x)
Chli Y voi m6i m (J(X)
2(x)
II(X)) E[O,l]n.,
(X II) (X n)
,...,
l(X II)
Dinh If 1.4 (xa'pXl Schauder) .
C Ia t~p16itrongkhonggiantuySntinhdinhchu§'nE . Anh x~ F: C -+ C la
compaclientvcthlvdim6i8>0 , A ={aI, a2, ..., an }c F(E) la mQtanhx~
lien Wchuuh~nchieu Ft;:E -+C saGcho:
1) II Ft; - F(x) II < 8 '\Ix E At; .
2) F(E) c CoCA) c C .
Chung minhdinh If :
Ta co F(A) chltatrongmQtt~pcompac K cuaC . Do K bi ch~nhoanroanlien
t6nt~imQtt~pA ={al , a2, ..., an} c F(E) vdi F(E) cAt; .
GQiPt;: At; -+CoCA)la phepchiSu Schauderva dinhnghTaanhx~ Fc: E -+C
b~ngFE(x)=Pt;(F(x», x E E rheadinh191.3taco kStqua.
. Cho B la mQtt~pcuakhonggiantuySntinhdinhchu§'nE F : B -+ E . Vdi
m6i 8 > 0 , b la mQt di~m trong B saG cho II b - F(b) II < 8 thl b duQc gQi la
di~m8_c6 dinhcuaF .
DinhIf 1.5 .
ChoB la t~pcondongcuakhonggiantuySntinhdinhchu§'nE . F :B -+E la
anhx~compaclien tvc thlF co di~mc6dinhnSuva chInSu F co 8_c6dinh
vdim6i8>0 .
Chungminhdinh If :
Gia sU'F co di~m 8_c6dinh vdi m6i 8>0 . 8~tbnla di~m lIn _c6 dinhcua
F. Ta co IIbn- F(bn)II< lIn (1.2) .
Do F la compacsuyra F(B) chl1'atrongmQtt~pcompac K trongE do do co
mQtdayconcacs6tv nhienS va x thuQcK saGcho : F(xn)-+x E K khi
n -+ IX)trongS . VI v~y(1.2 ) suy ra bn-+ x khi n -+ IX) trongS vadoB la
t~pdong=>x E B . DoF lientvc trenB suyra F(bn)-+F(x) .
V~y taco IIx - F(x) II=0 hayF codi~mc6dinh.
DinhIf 1.6(Schauder).
ChoC lamQt~pcon16icuakhonggiantuySntinhdinhchu§'nE thltatca cac
anhx~compaclientvc F :C -+C delicoitnhatmQtdi~mc6dinh.
....""""""...". ......
:::i.::AEla,{}£lit]ff4tQ&Jf
:hung minhdinh Iy :
Jung dinh111.5voi B =E =C chungtachungminhF co di€m E_c6dinh voi
m~). ~'>\) .'--~ ~\~\.\. ~'>\) \.\\ ~\~\.\."\':)\...~~)\).'3,"Q \.~'-\.~\w:.~\.~~ ~C:-\.\~'-\.~'- \\.\i~
h(;lnchieu FE: C ~ C vdi IIFE(x) - F(x) II< E vdi x thuQcE vi
FE(Co(A)) c CoCA) c C . Do CoCA)dongbi ch~nvi FE(Co(A)) c CoCA)
chungtaco th€ apdvngdinh1:91.1 suyra XE=FE (xE) , XEE CoCA) .
VI v~yII XE - F (XE) II =II FE (XE) - F (xE) II < E .
. Hai anhx(;llientvc f, g : X ~ E dlfQcgQiIi d6ngluaun€u co mQtanh
x(;llientl,lc H : X x [0,1] ~ E vdi H(x,O)=rex) vi H(x,1)=g(x)
. Anh X(;lH duQcgQi Ii d6ng luau lien tl,lc vi tavi€t H: f ==g . Voi m6i
t E [0,1] anh X? x ~ H(x,t) duQcvi€t Ii HI: x ~ E .
. Chungtad~ding ki€m tradlfQcquailh~d6ngluauIi mQtquailh~tlfdng
dudng
. Anh X(;ld6ngluaulien tl,lcH Ii compacn€u no Ii compac.
. Anh X(;ld6ngluaulien tl,lcH gQiIi co di€m co'ajnhkhongphl1thuQctren
A c X nC'uvdi m6i t E [0,1] anhx(;llien tvc HIAX{t}: A ~ E kh6ngco
di€m c6dinh.
. GQi KA(X, C) Ii t~phQpta'"tca cacanhx(;llientvccompac F: X ~ C
saochothuhyp FIA: A ~ C codi€m co'ajnh khongphl1thuQc.
. Hai anhx(;llientvc F, G E KA(X, C) duQcgQiIi d6ngluau( taviC't
F =:G) trong KA(X, C) n€u co mQtd6ngluaulien tl,lcH: X x [0,1] ~ E
vdi Ht(u) =Hlxx{t} : X ~ E , t E [0,1] co di€m co'ajnhkhongphl1thuQc
tren X vi Ho(x)=F(x) ; Hl(X) =G(x)
DinhIy1.7.
ChoF , G E KA(X , C), gia sll' vdi m6i (a,t) E X X [0,1]chungtaco:
tG(a) + (1-t) F (a) "* a thl F=:G trong KA(X, C)
ChungminhdinhIy :
B~tH(x,t)=t G(x) +(1- t)F(x) ; (x,t) E X X [0,1] . Trudch€t tachungminh
H Ii mQtanbX(;lcompac . La'"ymQtday ba'"tky (xn, tn) E X X [0,1] d€ kh6ng
m§tHnht6ngquattaco th€ gia sll' tn~ t E [0,1] khi n ~ O'J . Do F vi G
compaclienco mQtdayconS cacs6tv nhien vi F(x) , G(x) thuQcC
nJ
sao cho : F(xn) ~ F(x) , G(xn) ~ G(x) khi n ~ 00 trong S hdn nua do C
1dilien taco H(xn , tn) =tn G(xn) + (1- tn) ~ H(x, t) khi n ~ 00 trong S
V~y H(x,t) 1amQtphep ddng1uanlien tl,lCcompac .
Do t G(a) + (1-t) F (a) * a vdi m6i (a,t) E X x [0,1] lien Ht 1a di€m cO'
dtnhkh6ngphl1thuQc.
Cu6iclingdoHo= F , HI = G lien F ~G trong KA(X, C )
. Anh x~ F E KA(X , C ) duQcgQi1ac6tySu n6uta'tCelcacanhx~
G E KA(X, C) saochoFIA=GIAcodi€m cO'dinh .
. Anh x~ F E KA(X , C ) du'QcgQi1akh6ngc6tySu n6u tdnt~i anhx~
G E KA(X, C) sao cho FIA = GIA 1adi€m cd dtnh kh6ngphl:lthuQc.
Dinh Iy 1.8 .
rho U 1amQtt~pconma cuamQtt~p1di C c E thIba'tky liOE U anhx~
hAng F( U )= ul) 1a c6t ySu trong Kcu( U , C).
ChungminhdinhIy :
GQi G: U ~ C 1amQtanh x~ compaclien tl,lcvdi G Iou= F lau= UI)
chungtachungminh G codi€m c6 dinhtIeDU . Dinhnghla:
lex) =
{
G(X); nSu x E U
Uo ; n6u x E C \ U
D~dangchungminh duQc 1 1a mQt anh x~ compac lien tl,lC . Tli 1.6 suyre\..
1 codi€m cO'dinh U E C . K6t hQp vdi lex)= ul) E U vdi x EC \ U
chungtacou E U, VIv~yU=leu)=G(u) vado G lau= Uo douE U
suyraGcodi€m c6dinhu v~y F lac6tySu .
...,)"E:' ", <:.'..:..,.,Xi ~I: Wiliw.lt'WEW.~* q~~18"
. .
J
'.....
DinhIf 1.9 .
GiclSl( (X,A) la mQtc~ptrongC c E . C la mQtt~pl6i trongkhonggiantuyen
tinhdinhchugnE .Tacocactinhcha'tcuaF saDdayla tt(dngdl(dng:
1) F la khongc6tyell .
2) Co mQtanhX<;id €m co'dinhkhongph\!thuQcG E KA(X, C) saochoF ==G
trong KA(X, C )
Ghichu : C~ptrongC conghlala c~pg6mt~pcontuyyX trongC vat~pcon
A dongtrongX .
ChungminhdinhIf :
. Ta chungminhill'1) suyfa 2) .
G9iG E KA(X, C) saochoFIA=GIAladi€m c6dinhkhongph\!thuQc. Ta
co: t G(a) + (l-t) F (a) * a . D€ nh~ntha'ydi~unay tagiit Sl(
:J a EAt G(a) + (l-t) F (a) =a do FIA =GIA => G(a) =a mall thu~n .
Dodinh1:91.6tasuyra F ==G trong KA(X, C )
. Ta chungminhtu 2) suyfa 1) .
G9i H : X x [0,1] ~ C lamQtd6ngluaulient\lctuG vaoF saocho
Hlxx{t} la mQtddi€m co'dinhkhongrangbuQc vdi m6it thuQc[0,1] . D~t
B ={ x : x =H(x , t) , t E [0 ,I]} . Neu B = ~ thl vdi m6i t E [0,1] , Ht
khongco di€m c6 dinhvi theriengF khongco di€m c6 dinh suy ra F khong
c6tyell .
NeuB * ~ tacoB n A =~ , B la t~pdong. D€ tha'ydl(QCdi~unay tala'y
XnE B tlic la Xn=H(xn, tn) ~ E vaXn~ x t6n t<;iit E [0,1] va mQtday
concacs6tVnhienS saochotn~ t khi n ~ 00 trong S . Do S\(lien t\lccua
H tacox =H(x , t) suyra x E B v~yB la t~pdong. G9i 'A : X ~ [0,1]la
hamUrysohn lien l\!Cvdi 'A(A) =1, 'A(B)=0 .
Binhnghlaham1t(x)=H(x, 'A(x)t); (x,t) E X x [0,1] , tac6 1,la mQtanbX<;i
compaclien l\!c .Tadi chungminh1tladi€m c6dlnhkhongph\!thuQCva
1tlA=HtlA . Th~tv~ytachuy 1t(x)=x nghlala H(x , 'A(x)t)=x suyrax thuQc
B vi v~y'A(x)=0 vaH(x,O)=x suyra mall thu~nvi Ho=G la di€m 0]'djnh
khongph¥thuQc. Vi v~y1tladi€m co'djnhkhongph¥thuQc.Taco lieU
x E A thi 'A(x)=1 va1t(x)=H(x , 'A(x)t) =H(x , t) =Ht(x)vi v~y1tlA=HtlA.
I£)~t =1 suy ra Jt 1aanh Xc;tcompaclien tvc va la di~mco'ajnh khongphl;tlhuQC
Do F =HI Den F kh6ng co'tye'u .
DjnhIy 1.10 .
Gia su(X,A) Ia mQtc~ptrongC c E . C la mQtt~pl6i trongkh6nggiantuye'n
tinhdinhchu§'nE . Gia slf F va G la haianhXc;ttrong KA(X, C) saGcho
F ~G trong KA(X, C) thl F co'tye'u ne'uva chi ne'uG c6tye'u .
ChungminhdjnhIy :
D~dangsuyratUdinh191.9.
DinhIy1.11( Leray- Schauder).
Giaslf C lamQt~pl6itrongkh6nggiantuye'ntinhdinhchu§'nE . U lamQt
t?PconmacuaC , p* E U thl ta'tca cacanhXc;tcompaclien tvc
F :U -7 C d6uco it nha'"tmQttronghai tinh cha'"tsail :
1) F codi~mco'dinh .
2) 3xEau vdi x =AF(x) + (l -A) p' , A E (0,1)
ChungminhdjnhIy :
Chungtacoth~giasu Flau ladi~mc6dinhkhongphVthuQctrongtru'onghQp:
khongx§'yra . f)~t G: U -7 C la anhXc;th~ngu-7 p* . X6t ph6pd6ngluan
compaclientvc Ht: U -7C lienketgifi'aGvaF la H(x,t)=tF(x)+(1-t)P* .
X6t haitru'ongh9P:
1) H(x,t) ladi~mc6dinhkh6ngphv thuQctrenau .
2) H(x,t) kh6ngladi~mc6dinhkh6ngphVthuQctrenau .
Neu tru'onghQp1) xayrathltUdinh191.6va 1.8suyraF ph.hcodi~mco'dinh
Ngu'Qcl ;tineutru'onghQp2)xayfathl:
3XE au x= AF(x) + (l-A)P* vdiAE[O,l]
TacoA:;t:0 vI P*~au va A:;t:1VI F lauladi~mc6dinhkhongphv thuQc.
~"'i "',::'' ::::'",:m,;',;I:;;&:1}::::I $ ~1I'1{« iM, 18 4i:~:,' i"j",]t,:ij'::'..:':' m@1 m"
Dinh Iy 1.12 .
Giii sU'A la t~pcondongcuakhonggiancacham C ([a,b],R) . Ntu A bi ch~n
d~uva lien t\lcd6ngb~cthlA la compact..
DinhIy 1.13(Arzela-Ascoli) .
GiiisU'A la t~pcondongcuakhonggiancachamC([a,b], R) .
Ntu A bich?nd~uvalientl)cd6ngb~cthl A la compact.
:~,-~'!.1f~lgrft{~m§~ ...
2. UNGD{)NG
BaygiOtaapdvng1:9thuyttv~digmba'tdQngdS chungminhsll t6nt~inghi~m
cuaphu'dngtrlnhvi phanco d~ng:
1
- (py,)'=q(t)f (t, Y, py,)
pet)
Voicacdi~uki~nbien
I. XET sTJTONTAl NGHIEM CUA PHUONGTRINH:
(1.1)
1
- (py I)' = q(t)f (1,Y,pyI )
pet)
- exy(0) +~lim p(t)y,(t) = C1-70+
ay(1) +b lim p(t)Y1(t) =d1-71-
Voi f: [0,1]x R2~ R lien tvc
q E C(O,1) ; P E C[O,l]n C\O,l)
p , q >0 tren(0,1)
(1.2)
t E (0,1)
t E (0,1)
a>O,f3:20
a~O,b~O
a2+b2>0
Chungtac~nchungminht6nt~ihamYE C[O,l]n C2(0,1), py'E C[O,l]
thoamanh~(1.1)
Ta xeth~bai loanco d~ng:
1
- (py ')' = f~q(t)f (t, y, py ')
P (1)
- exy(0) + f3lim p(1)Y,(t) = C1-70+
ay(1) +b lim p(t)y ,(t) =d1-71-
t,A E (0,1)
(1.3)
Dinhly 1.14.
GiaSltp, q, f thoamandiSuki~n1.2va:
fl ds < 00P (s )0
I
f P (s)q (s)ds < 00
0
(1 .4)
Gia sU'themt6nt(;lih~ngs6M >0 dQcl~pvdi A saacha :
max{sup I yet) I,sup I p(t)y'(t) I} =max{1y 10,1py'lo}=Iyll~M
te[O,I] te(O,!)
vdi m6inghi~my cuaphu'dngtrinh(1.3)va m6i "A E (0,1) .
Thl phltdngtrinh(1.1)sec6nghi~mYE C[O,1]nC2(0,1), py'E C[O,1].
Chung minhdinh ly:
Giai bai tm'ln(1.3)tlfdngdu'dngtim 1hamYE C[O,1]vdi py'E C[O,1]thoaman:
t ds t 1 1
yet) =B +Af -- Af -f q(x)p(x)f(x, y(x), py')dxds
0 pes) 0 pes)s
(1 .5)
Trang d6 :
t d I I
(ae+da) +A(af~ fpqf(x, y,py')dxds+Bfpqf(x, y,py')dx
A= op(s)s 0
I d
a(a f~ +b)+a~
0 p(s)
B =~A - C - ~A f q(x) p(x) f (x, y ,py ')dx
a a 0
Chungtavie'tl';li1.5
t ds t 1 I
yet)=(1- A)CO+A(CO+BI + Alf - -f -fpqf(x,y,py')dxds (1.6)
0 pes) 0 p(s)s
t ds
co= B2 + A2I peS)
ac+dex
A2 = 1 ds
ex(af- +b)+exp
0 p(s)
J3A2-C 0.7)
B2= ex
Vdi :
BI = B Al - ~fq(x)p(x)f(x, y, py' )dx
ex exo
(1.8)
1 1 1 1
a(exf- fpqf(x,y,py')dxds +J3fpqf(x,y,py')dx
op(s)o 0
Al = 1 ds
ex(af -- +b) +aJ3
0 p(s)
(1,9)
D~tKI[O,1]={UEC[O,1]:pH'E C[O,1] vdi IU Id la 1khonggianBanachva
Kko[0,1]= tuE K 1[0,1]:-exu(O)+ ~~~~p(t)u' (t) = au(1)+ b ~~~p(t)u' (t) =0J
Dinh nghIa toaD t:ltM : KIBo[O,l] ~ K1Bo[0,1] sao cho :
t ds t 1 I
My (t) = B 1 +A 1 f- - f - fq (x )p (x ) f (x, y , py ') dxds
0 pes) 0 pes) s
Slf t6n t~inghi~m tu'dngdu'dngvdi va"nde di~mc6 dinh:
(1.10)
y=(l-A)W+A[My+w] ==(1-A)W+)~Ny.
r ''
1:JI-J"H -";r "'J. E
'
N,'1. y', ,'... ,',r,I . !
TUtf \'IEN !
[ :- n03~3J. Ta chungminhM lien tQc:
- Do f lien tlfctren[O,1]xR2~ R => f lien tlfcdeli tren[0,1]x[-M,Mf (vdiM
la h~ngs6saocho Iy 11::;M)
- \18>0,388>0:II (t,s,U)-(1',s',u') II If(t,s,u)- f(t' ,s',u') I <8.
V?y vdi m6i t E [0,1]
t ds t 1 1
IMy(t) - Mz(t)I::; /BI-B;I+IAI -A;lf -+ f -fpqlf(t,y,py') - f(t,z,pz')dzds
O?(s) °p(s)s
1'.:.::'::::::::::::':::',].::':':':::':::::::::::,,'::::"'::::":':;~:,ili:..:.::::'::'::::.:.:::::':"":":::::,,,::::,::::::,:,':':""":.::...;:::.::"':::":@,B,lllil.liI-%I§@
a I 1I
IAI -A;!::; d [as -fpqlf(t, y,py') - f(t,z,pz')ldxds +1 sop
a(af-+b)+a~ s
0 p(s)
1
+~fpqlf(t,y,py') - f(t,z,pz')ldxds] ::;E
0
(do 1.4)
IBI - B;I~ I~ !IAI -A;j+ I~ IIpq If(t,y,py ') - f(t,z,pz ')dx < 8
Suyra I My(t) - Mz(t) I <E (do 1.4). Vz,y E K1Bo[0,1] V~yM lien tl}c
Ti€p rheatadungdinhly Arzela- Ascoli dS chungminhM la lien tl}co6ngb~c.
E>Sthty du<jcdi€u nay,tad~tQ c K1Bo[0,1]Ia mQtt~pbi ch~nnghlala t6nt~i
ffiQts6 Mo > 0 saGcho Iyll ::;Mo .Vdi m6i y E Q do f(t,y,py')lien tl,lco~utren
[O,l]x[-M,M] nent6nt~iK> 0: If(t,y,py')I::;K . K€th<jpvdi (1.4)taco :
vy E Q 3A*, B* la cach~ngs6 saGcho IE*I::;B va IA*I ::;A (A*,B*co thS
phl) thuQcVaGM ) .V~ys1jbi ch~n cuaMQ Ol«jCsuyratli (1.10)
Ti€p rheavdi YE Q ; t, s E [0,1]:
1
P(t)(My)' (t) =Al - J P(x) q(x) f (x, y(x ), py,)dx
t
=>
s
Ip(t)(My)' (t) - p(s)(My)' (s)l::; I f p(x)q(x)f(x, y(x),py')dxlt
Va
t dx
I I
t 1 1
IMY(S)-My(t)lsIA"I
I
J- + J-jp(z)q(z)f(z,y,py')dzdxl
s p(x) s p(x),
V~yV t,s E [0,1]:It-sl<Edo rinhlien tl}ccuafva do (1.4)tasuyra:
I p(t)(My)' (t) - p(s)(My)' (s)1<E
IMy(s) - My(t) 1<E
V~yMQ la lien tl}co6ngb~c.
[I
Ke'tlu<%nM la mQtloantiTlien tvchoanloan(haycongQila compactlien tvc)
£)~t:
K~[O,l]={uEK][0,1]:-au(O)+~limp(t)u'(t)=c,au(1)+blimp(t)u'(t)=d }
t~O- t~l-
U=~uEK1B[0,1]: luI1<M+l}; C=K1B[0,1] ;E=K1[0,1]
Ap dvngdinh191.11vdi p*=conhu'ngvdi slj hfa chQnU nhlf trentinhchtt 2)
cua 1.11kh6ngtheKayra v<%yN co diemc6 dinhtlic la phlfdngtrInh(1.1)co
nghi~mYE C[O,I], py'E C[O,I] , y E c2 (0,1)la do 1.5vdi A =1.
II. XET SUTONTAl NGHIEMCUA PHU0NGTRINH:
(2.1)
1
- -Cry ')' = q(t)f(t, y,py ')
P(t)
lim p(t)Y ,(t) =C
I~ o'
ay(1) + b Jim- p(t)Y ,( t) = d
1 1
t E (0,1)
a > O,b;::: 0
Trangrtt nhi€u lingdvngthljctt di€u giasiT J ds < 00 -kh6ngthoaman
vi dV:pet)=to-1 (n ~2). 0 P (s )
V<%ytase thaygia thitt
1 ds
J < 00
0 p (s )
B~nggiathitt :
1 1 s
f fp(x)q(x)dxds<00
op(s)o
X6t ffiQthQbai loan:
(2.2)
1
-Cry ')'= Aq(t)f(t,y,py ')
P (t)
Jim p (t ) Y ,( t) = C
I o'
ay(l) +b Jim p(t)Y,(t) =d
t 1-
t E (0,1); A E (0,1)
a>O,b~O
Dinhly 1.15.
Gia Sltf, p, q thoamandi@uki~n(1.2)ya
1
f P(x )q(x )dxds < CfJ
0
lIs
, f -Jp(x)q(x)dxds < CfJ
op(s)o
(2.3)
HdnmlagiaSlt:J h~ngs6M dQcl~pvdiA saGcho I y11 s:;M ydi m6inghi~my
cua phu'dngtrlnh (2.2)va vdi m6i A E (0,1).Khi do phttdngtrlnh (2.1)se co
nghi~mYE C [0,1] n C2 (0,1) , py' E C [0,1] .
Chungminhdinhly
Giai phttdngtrlnh(2.2)tu'dngdu'dngydi s\(fimhamYE C [0,1]ydi PY'E C [0,1]
thoa man:
d tIs b 1
yet) =- +A[ f -f p(x)q(x)f(x, y,py')dxds- - fpqf (x, y, py ')dx
a op(s)o ao
1 I 1 I
- - f-f p(x)q(x)f(x, y,py')dxds]
aop(s)o
d d d
= (1- A)-+ A[-+ My(t)] ==(1- A)-+ ANy(t)
a a a
Trong do: M: K1Bo[0,1]-7 K1Bo[0,1]ydi:
tIs b 1
My (t) =f - f p(x)q(x) f (x, y,py,)dxds- - f pqf (x, y,py,)dx
op(s)o ao
1 I 1 1
- - f - f p(x) q(x) f (x, y, py,)dxds]
aop(s)o
Kko[0,1]={uEK1[0,1]: limp(t)y'(t)=ay(1)+blimp(t)y'(t)=O }
t->O' t->f
K1[0,1]={uE C[O,l] , pu'E C[O,l] }
Lam tu'dng1\tnhu'trongdjnh191 trongph~nI taco M 1amQttmlntti'Compact
lient\lc. f)~t: U =~uE K1B[O,1]:Iu 11<M+l ~
c =~K1B[0,1]~, E=K1[0,1]
Kko[0,1]={uE KJ [0,1]:limp(t)y'(t)=0, ay(l)+blimp(t)y'(t)=d}
(->0+ t->f
Ta co toclntU'N co di~mc6dinhtucla phu'dngtrlnh(2.1)co nghiQm
YE C [0,1] II C2 (0,1)vdi py' E C [0,1] .
III. XET SUTONTAl NGHIEM CUA PHUONGTRINH:
1
-(py')'= q(t)f(t,y(t),py')
pet)
limp(t)y'(t)=a
1 0+
limp(t)y'(t) =b(-->1-
t E (0,1)
(3.1)
X6t phltdngtrlnh:
~(PY')'= Aq(t)f(t,y(t),py')
pet)
Jimp(t)y'(t)=a(-->0+
limp(t)y'(t)=b1-->1-
A , t E (0,1)
(3.2)
DinhIy 1.16.
Gia sU'f(t,y,py'),pet), q(t)thoamandieukiQn(1A) va (1.5). N€u tdnt<;tih~ng
s6M dQcl~pvdi A saochom6i nghiQmcuaphltdngtrlnh (3.2) thoamandieu
kiQn:
Iyll =max{sUPtE[o,l]ly(t)1, SUPtE(o,l)lp(t)y'(t)l} =max{Iylo,Ipy'10}~M
thikhi a'yphudngtrinh3.1co nghiQm.
ChungminhdinhIy .
X6t phudngtrinh :
1
-(py')'= 0
pet)
limp(t)y'(t) =0(-->0+
limp(tt."(t) =0
(-->]-
t E (0,1)
(3.3)
phu'ongtrlnhnaychiconghi~mt§mthudng.V?y taco th€ bi€u di~nnghi~n:
cuaphltongtrlnh3.2dudid~ng:
yet)=A;31 (t) +B;.Y2(t) +SY\ (s)y 2(t) - YI (t)y 2(s) q(s)f(s, yes),py' )ds
0 w(s)
tfongdoYl(t) , Y2(t)la hainghi~mdQCl?p tllyentinhcuaphltongtrlnh
(
'"' 4'.). ,
_
(
1
) (py')'=0 ta co th€ gia SlYla : limp(t)y~(t) ;i: 0 di€u nay la hoanp t Ho'
toaDco th€ xiy fa VI ne'ukh6ng lin~p(t)y~(t)= . lirqp(t)y;(t) =0khi do1->0 1->0
ta chQn U(X)=YI(X)lil1}p(t)y~(t)-Yix)lin!p(t)y~(t), d~dangki€m traduQc
1->1- I->C
HeX)la mQtnghi~mcuaphuongtrlnh3.3 V?y u ==0 mall thu~nvdi s~tdQcl?p
tuyentint cuaYl , Y2.Taco :
A =aA2- bA] +A-As;.
A3A] - A2A4
B =b-A3A;.
;, A I
] y](s)limp(t)y~(t) - Y2(s)limp(t)y;(t)
As =AJ H]- () H]- q(s)f(s,y(s),py')ds0 w s
AI =limp(t)y~(t) , A3 =limp(t)y;(t)1->0+ 1->0+
A: =lil~p(t)y~(t) , A4 =lil~p(t)y;(t)1->1 1->1
Trongdo w(s) la hamWronskian cuaYl,Y2t~is taco pw'(s)=0 SHYfa pw =C
=h~ngs6 (taclingc§nchliy la AIA3 - A2A4;i: 0 bdi VIneukh6ngtachQn
HeX)=A1Yl(X) -A3Y2(X) la mQtnghi~mcua phuongtrlnh 3.3 suyfa u ==0 mall
thu~nvdi svdQcl?p tuyentint cuaYl , Y2).
Ta viet l~icongthuc (3.4):
yet) = 'A[CYI (t) +Dy2(t) +J Yl (s)y 2(t) - YI (t)y 2(s) q(s)f(s, yes),py')ds] +
0 w(s)
+ (1- 'A)[EYI(t) +Fy2(t)]
a - EA 3 aAz - bA 1 A 5 +aAz - bA I a- CA 3
F= , E= , C= , D= ,
A] A3Az - A]A4 A3Az - A]A4 Al
f)~t :
K~={YEC[O,l]}, PY'EAC[O,l] , l~p(t)y'(t)=a, lim,p(t)y'(t)=b}1--+] 1--+0
Va N K] ~ KJB B
Ta sechungminhN la toantUcompac,lien Wc
. Chung minhNy, p(Ny)' E Kin:
+Xet t~p[0,1]x[-M,M]2 (trongd6M la h~ngs6saDcho Iyll~ M)
Do f :[0,1]xR2~R la lien t\1clien lien t\1cd~utren[0,l]x[-M,M]2 suyra :
VE >0 ::188>0 : II (t,u,v) - (t' ,u' ,v')11 < 88 thl I f(t,u,v)-f(t' ,u' ,v') 1<E .
V~y vdi t, tl E [0,1] : I t-tl I < 88 suy ra II (t,y,py') - (t',y,py') II< 88 do d6
If(t,y,py')-f(tl,y,Py')kE/2 .
Do f lien t\1cd~u lien tacling c6 t6nt~i h~ngs6 K saDcho I f(t,y,py')I ~K
do d6 t6nt~iC*, D* la cach~ngs6saDcho : IC I ~ C* , IDI~D* (C , D co
the'ph\!thuQcvaoM ).
V~y:
I Ny(t)-Ny(z) I ~ C*ly](t)-yJz)I+D* I yz(t)-yz(z) I +
+ I Y2(t) II] yJs) q(s)f(s, y, py')ds I+I YI(t) I] Y2(S)q(s)f(s, y, py')ds I
t w(s) 1 w(s)
+ IY2(t)-Y2(Z)II] yJs) q(s)f(s,y,py)ds1+
t w(s)
+ IYI(t)-YJ(z)II]Y2(s)q(s)f(s,y,py)dsl
t w(s)
~ C'lyJt)-YI(z)I+D'IY2(t)-Y2(z)1
IYo(t)1 z
+ - supI yJs)11 Jp(s)q(s)f(s,y,py')dsl
c SE[O,I]
+
I Y (t) I z ,
+ 1 SUp I Y2(s)11 Jp(s)q(s)f(s,y,py )dsl
C SE[O,J]
+
+ I Y2 (t) - Y2 (z) I SUp I Yl (S) I KJ +I Y1 (t) - YJ (Z) I SUp I y2 (S) I KJ
sE[O,l] sE[O,I]
I
(vdi KJ ~KJ p(s)q(s)ds)°
Tu'dngt\( ta CO:
I p(t)(Ny)'(t)-p(z)(Ny)'(z) I ~
~ C'I p(t)y;(t)-p(z)y~(z) I +D'I p(t)y~(t)-p(z)y~(z) I +
+ I p(t)y~(t) II J yJs) q(s)f(s,y,py')dsI+Ip(t)y'Jt) I J Y2(S)q(s)f(s,Y,py')dsI-
t w(s) t w(s)
+ I p(t)y~(t) - p(z)y~(z)111Yl (s) q(s)f(s, y, py' )ds I +
t w(s)
+ I p(t)y;(t)-p(z)y;(z) II JY2(S) q(s)f(s,y,py')dsl
t w(s)
. Chung minh N lien ttJc :
Do f :[0,1]xR2~R la lien tlJ.Cnenlien tl}cc1~utren[O,l]x[-M,Mf SHYra :
\is >0 3be>0 : II (t,u,v)- (1',u',v')11<be thl I f(t,u,v)-f(1',u',v') 1<s .
V?y vdi t E [0,1]c6c1inhvalI(t,y,py')- (t,z,pz')11=lI(y,py')-(z,pz')1I< be
ta co :
INy(t)-Nz(t)1 ~ ly](t)IIC-C'I+IY2(t)IID-D'I+
+
S
tYI(S)Y2(t)-Yl(t)Y2(S)
( )If(
'
) - f(
'
)Id Iq s s,Y,PY S,Z,pz s
0 w(s)
I C - C'I = I As - aA2 - bA1 - A~- aA2 - bAI I ~ I As - A~ I
A3A2 - A4AJ A3A2 - A4Aj A2A3 - A4A]
IAs-A~1 ~
1YI(s)limp(t)y~(t)-Y2(s)limp(t)y~(t)
~ IAI If Hl- () Hl- q(s)lf(s,y,py')-f(s,z,pz')0 w s
I d I1 1 - I S -
~ KEfq(s)ds ~ KE(fp(S)q(s)ds)2(f_)l ~ EKKI ~ E.
0 0 opes)
A
=> IC-C'I <E , ID-D'I = 1-2IIC-C'1 <E .
Al
V~yN lien tvc .
f)~tU={uEKB1:IU/l<M+1};C=KBl ;E=K1={UE C[O,l] ;PU'E C(O,!)}
Ap dvngdinh191.11trongbai 1ta suyraN co diSmc6 dinhtltc1ab~tiloan3.
co nghi~m UE C[O,l] ; pu' E C(O,l) .
IV.XET Su'TONTAl NGHIEMCUA PHUONGTRINH;
1
-(py')'= q(t)f(t,y(t),py')
pet)
limp(t)y'(t) = limp(t)y'(t)t-->O+ t-->l-
y(O) = y(1)
t E (0,1)
(4.1)
Tltdngtv nhlttrongph~nIII tad~t phltdngtrlnh:
1-(py')'= Aq(t)f(t,y(t),py')
pet)
limp(t)y'(t) = limp(t)y'(t)t~O+ t~l-
y(O) = y(l)
A, t E (0,1)
(4.2)
Bjnh If 1.17.
Gia su' f(t,y,py'),pet), q(t)thoamanGi~uki~n(1.4) va (1.5).Ne'ut6nt~lih~ng
s6M
dQcl~pvoi A saGchom6inghi~mcuaphu'dngtrlnh (4.2) thoamandi~uki~n:
Iyll =max{sUPtE[o.l]ly(t)1, SUPtE(o,1)lp(t)y'(t)l} =max {Iylo,Ipy' 10}::;M
thlkhi§yphu'dngtrlnh4.1conghi~m.
ChungminhdjnhIy .
xetphu'dngtrlnh
1
-(py')' = 0
pet)
Jimp(t)y'(t) =t~O+
y(O) =
t E (0,1)
Jimp(t)y'(t)t~l-
y(l)
(4.3)
phltongtrlnhnaychiconghi~mt~mthu'ong.V~ytaco th€ bi€u diennghi~m
cuaphu'dngtrlnh4.2du'oid(;lng:
yet)=A"Yl(t)+B"Y2(t)+ JYl(S)Y2(t)~ ~1(t)Y2(S)q(s)f(s,y(s),py')ds0 w s
(4.4)
trongdoYl(t) , Y2(t)la hainghi~mGQcl~ptuye'ntinhcuaphu'dngtrlnh:
1
- (py')'=0 tacoth€ giasU'laY2(0)-Y2(1)7=0di~unaylahoantoancoth€
pet)
x§yfa VIne'ukhong :12(0)-Y2(1)=Yl(O) -Yl(1)=0 khi do tachQn:
HeX) =YI (x)[limP(t)Y'2(t)-lim p(t)y~(t)]- Y2(x)[limp(t)y;(t) -lim p(t)y~(t)]
1->0' 1->1+ 1->0+ 1->]'
dSdangnh~ntha'yHeX)la mQtnghi~mcuaphu'dngtrinh4.3 lien u ==0 di€u nay
matithu~nvdi stfdQcl~ptuySntinhcuaYI , Y2
Trangd6w(s)lahamWronskiancuaYI , Y2t~lis tac6 pw'(s)=0 SHYrapw =C
=h~ngs6 taclingd~nchuy la [Y2(O)- Y2(l) ]10-[YI(O)- YI(l) ]II * 0 bdi VI
n€u khongtachQn:
u(x) =[Yl(1)- yJO)
Y2(1)-Y2(O)]Y2(X)-Yl(X) .
D~tha"yHeX)Iii nghi~mcua phu'dngtrinh 4.3 suy ra u ==amall thuc1nv6i s1/Q9C
l~ptuySntinh cuaYI , Y2.
Tac6:
A = "A (12+IJ
). [Y2(0)-Y2(1)]Io-[yJO)-YI(1)]II II =t~~p(t)Y~(t)-~~}lp(t)y~(t)
B =AJYI (0)- YI (1)]+"A 12
). [Y2(0)- Y2(l)] 10=t~~p(t)Y~(t)=~~}lp(t)Y;(t)
13 = [y 2(0) - y , (1)]S Y 1(S) ~~}l p (t)Y ~ (t) - Y 2 (S) ~~~p ( t )Y; ( t )
- 0 w(s) q(s)f(s, yes),py')ds
I =SYI(S)Y2(t)-Y2(S)YI(t)
2 0 w(s) q(s)f(s, yes),py')ds
B~ngcach chungminhtu'dngttfnhu'trongph§n III ta SHYra S\tt6nt;~linghi~!J,
cuaphu'dngtrInh4.1.