Luận án Bài toán hai điểm biên kỳ dị

BÀI TOÁN HAI ĐIỂM BIÊN KỲ DỊ ĐỖ HOÀI VŨ Trang nhan đề Lời cảm ơn Lời mở đầu Mục lục Chương1: Phương pháp điểm bất động trong bài toán biên kỳ dị. Chương2: Lý thuyết phổ của toán tử đối xứng, hoàn toàn liên tục trong bài toán biên kỳ dị. Chương3: Vài điều kiện cho sự tồn tại nghiệm của bài toán hai điểm biên kỳ dị. Tài liệu tham khảo

pdf21 trang | Chia sẻ: maiphuongtl | Lượt xem: 1910 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận án Bài toán hai điểm biên kỳ dị, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
CHU0NGI " ,::> "" A PHU0NG PHAP DIEM BAT DQNG TRONG BAI TOA.NBIEN KY Df " ,? I. CAC D~NHLY ca BAN Dinhly 1.1(Brouwer). En la khonggian tuye"ntinhdinhchu§'nhUllh~nchi~u . c la t~p dang,bi ch~ntrongEn thi ta"tcacacanhx~ f: C ~ C lien tlfcd~uca di~mc6dinh Dinh nghia 1.2 . 1) Anh x~ F: C ~ C du'<;1cgQila compacne"uF(X) chuatrongmQtt~p compaccua Y . 2) Anhx~ F: C ~ C dlf<;1cgQila compaclien Wene"uanhcuam6i t~pbi ch~nchifa trongmQtt~pcompaccuaY . 3) Anh x~ F: C ~ C du'<;1cgQila compachUllh~nchi~une"uF(X) chua trongkhonggiancontuye"ntinhhUllh~nchi~ucuaY . GQiA ={aI, a2, ..., an }lamQtt~pconcuakhonggiantuye"ntinhdinhchu§'nE vdi chu§'nII. II . Vdi S>0 c6dinh d~t : n Ac =UB(aj,s) , B(aj,s)={xEE:llx-aj II<E} i=I ~j: Ac ~ R saocho ~j =max{O,E-11x-aj II} GQiCoCA)la t~pl6i benha"tchuaA . Ta dinhnghlaphepchie"uSchauderla anhx~: n I ~I(x)a; Pc : Ac ~Co (A) sao c110Pc = i=ln I ~I (x) i =I 0 ; XE A c Nh~nxet : Cachdinhnghla PE la hoantoanca nghlavi ne"u: X E Ac ' 3io : x E B(aio' E) ~ E - II x - a,o II > 0 n ~ ~lio= E - II x - a,o II -:f= 0 ~L: ~li(X)-:f=0,=! 2) Chu y PE(AE)c CoCA)dom6iPE(x) la t6helptuytn tinhcua aI, a2,..., an. Dinh Iy 1.3 . Cho A c C c E voi A ={aI, a2, ..., an}; C la t?P l6i trongkhonggiantuytn tinhdinhchu§'nE .Ntu PE(x) la phepchitu Schauderthi : 1) PE la anhx~compaclien wc tUAE vao CoCA)c C . 2) II x- PE II < E 'v'x E AE . Chungminhdinh Iy : 1) Slf lien t\lccuaPE duQctha"ytn;fctitp . Chungtachungto tinhcompaccuaPE . GQi {PE(xm)boola mQtdaytrong PE(AE) voi V?y thidotinhcompaccuan_l?p phltdngclIngvdi CoCA) la mQtt?P dongsuy ratinhcompaccuaanhx~PE. 2) Chu Y - 1 II II x - Pc (x) 11-~(x) i =1 1 n 1 n :::; L ~lJx) II x - a, II < L ~li (X)E= E ~(x) i=l ~l(X) i=l bdi vi ~ i (x) = 0 tnr khi II x - a i II< E (x) = II li (x)aj t;! i (x)=> p" (x m) = :t,=1 (x) Chli Y voi m6i m (J(X) 2(x) II(X)) E[O,l]n., (X II) (X n) ,..., l(X II) Dinh If 1.4 (xa'pXl Schauder) . C Ia t~p16itrongkhonggiantuySntinhdinhchu§'nE . Anh x~ F: C -+ C la compaclientvcthlvdim6i8>0 , A ={aI, a2, ..., an }c F(E) la mQtanhx~ lien Wchuuh~nchieu Ft;:E -+C saGcho: 1) II Ft; - F(x) II < 8 '\Ix E At; . 2) F(E) c CoCA) c C . Chung minhdinh If : Ta co F(A) chltatrongmQtt~pcompac K cuaC . Do K bi ch~nhoanroanlien t6nt~imQtt~pA ={al , a2, ..., an} c F(E) vdi F(E) cAt; . GQiPt;: At; -+CoCA)la phepchiSu Schauderva dinhnghTaanhx~ Fc: E -+C b~ngFE(x)=Pt;(F(x», x E E rheadinh191.3taco kStqua. . Cho B la mQtt~pcuakhonggiantuySntinhdinhchu§'nE F : B -+ E . Vdi m6i 8 > 0 , b la mQt di~m trong B saG cho II b - F(b) II < 8 thl b duQc gQi la di~m8_c6 dinhcuaF . DinhIf 1.5 . ChoB la t~pcondongcuakhonggiantuySntinhdinhchu§'nE . F :B -+E la anhx~compaclien tvc thlF co di~mc6dinhnSuva chInSu F co 8_c6dinh vdim6i8>0 . Chungminhdinh If : Gia sU'F co di~m 8_c6dinh vdi m6i 8>0 . 8~tbnla di~m lIn _c6 dinhcua F. Ta co IIbn- F(bn)II< lIn (1.2) . Do F la compacsuyra F(B) chl1'atrongmQtt~pcompac K trongE do do co mQtdayconcacs6tv nhienS va x thuQcK saGcho : F(xn)-+x E K khi n -+ IX)trongS . VI v~y(1.2 ) suy ra bn-+ x khi n -+ IX) trongS vadoB la t~pdong=>x E B . DoF lientvc trenB suyra F(bn)-+F(x) . V~y taco IIx - F(x) II=0 hayF codi~mc6dinh. DinhIf 1.6(Schauder). ChoC lamQt~pcon16icuakhonggiantuySntinhdinhchu§'nE thltatca cac anhx~compaclientvc F :C -+C delicoitnhatmQtdi~mc6dinh. ....""""""...". ...... :::i.::AEla,{}£lit]ff4tQ&Jf :hung minhdinh Iy : Jung dinh111.5voi B =E =C chungtachungminhF co di€m E_c6dinh voi m~). ~'>\) .'--~ ~\~\.\. ~'>\) \.\\ ~\~\.\."\':)\...~~)\).'3,"Q \.~'-\.~\w:.~\.~~ ~C:-\.\~'-\.~'- \\.\i~ h(;lnchieu FE: C ~ C vdi IIFE(x) - F(x) II< E vdi x thuQcE vi FE(Co(A)) c CoCA) c C . Do CoCA)dongbi ch~nvi FE(Co(A)) c CoCA) chungtaco th€ apdvngdinh1:91.1 suyra XE=FE (xE) , XEE CoCA) . VI v~yII XE - F (XE) II =II FE (XE) - F (xE) II < E . . Hai anhx(;llientvc f, g : X ~ E dlfQcgQiIi d6ngluaun€u co mQtanh x(;llientl,lc H : X x [0,1] ~ E vdi H(x,O)=rex) vi H(x,1)=g(x) . Anh X(;lH duQcgQi Ii d6ng luau lien tl,lc vi tavi€t H: f ==g . Voi m6i t E [0,1] anh X? x ~ H(x,t) duQcvi€t Ii HI: x ~ E . . Chungtad~ding ki€m tradlfQcquailh~d6ngluauIi mQtquailh~tlfdng dudng . Anh X(;ld6ngluaulien tl,lcH Ii compacn€u no Ii compac. . Anh X(;ld6ngluaulien tl,lcH gQiIi co di€m co'ajnhkhongphl1thuQctren A c X nC'uvdi m6i t E [0,1] anhx(;llien tvc HIAX{t}: A ~ E kh6ngco di€m c6dinh. . GQi KA(X, C) Ii t~phQpta'"tca cacanhx(;llientvccompac F: X ~ C saochothuhyp FIA: A ~ C codi€m co'ajnh khongphl1thuQc. . Hai anhx(;llientvc F, G E KA(X, C) duQcgQiIi d6ngluau( taviC't F =:G) trong KA(X, C) n€u co mQtd6ngluaulien tl,lcH: X x [0,1] ~ E vdi Ht(u) =Hlxx{t} : X ~ E , t E [0,1] co di€m co'ajnhkhongphl1thuQc tren X vi Ho(x)=F(x) ; Hl(X) =G(x) DinhIy1.7. ChoF , G E KA(X , C), gia sll' vdi m6i (a,t) E X X [0,1]chungtaco: tG(a) + (1-t) F (a) "* a thl F=:G trong KA(X, C) ChungminhdinhIy : B~tH(x,t)=t G(x) +(1- t)F(x) ; (x,t) E X X [0,1] . Trudch€t tachungminh H Ii mQtanbX(;lcompac . La'"ymQtday ba'"tky (xn, tn) E X X [0,1] d€ kh6ng m§tHnht6ngquattaco th€ gia sll' tn~ t E [0,1] khi n ~ O'J . Do F vi G compaclienco mQtdayconS cacs6tv nhien vi F(x) , G(x) thuQcC nJ sao cho : F(xn) ~ F(x) , G(xn) ~ G(x) khi n ~ 00 trong S hdn nua do C 1dilien taco H(xn , tn) =tn G(xn) + (1- tn) ~ H(x, t) khi n ~ 00 trong S V~y H(x,t) 1amQtphep ddng1uanlien tl,lCcompac . Do t G(a) + (1-t) F (a) * a vdi m6i (a,t) E X x [0,1] lien Ht 1a di€m cO' dtnhkh6ngphl1thuQc. Cu6iclingdoHo= F , HI = G lien F ~G trong KA(X, C ) . Anh x~ F E KA(X , C ) duQcgQi1ac6tySu n6uta'tCelcacanhx~ G E KA(X, C) saochoFIA=GIAcodi€m cO'dinh . . Anh x~ F E KA(X , C ) du'QcgQi1akh6ngc6tySu n6u tdnt~i anhx~ G E KA(X, C) sao cho FIA = GIA 1adi€m cd dtnh kh6ngphl:lthuQc. Dinh Iy 1.8 . rho U 1amQtt~pconma cuamQtt~p1di C c E thIba'tky liOE U anhx~ hAng F( U )= ul) 1a c6t ySu trong Kcu( U , C). ChungminhdinhIy : GQi G: U ~ C 1amQtanh x~ compaclien tl,lcvdi G Iou= F lau= UI) chungtachungminh G codi€m c6 dinhtIeDU . Dinhnghla: lex) = { G(X); nSu x E U Uo ; n6u x E C \ U D~dangchungminh duQc 1 1a mQt anh x~ compac lien tl,lC . Tli 1.6 suyre\.. 1 codi€m cO'dinh U E C . K6t hQp vdi lex)= ul) E U vdi x EC \ U chungtacou E U, VIv~yU=leu)=G(u) vado G lau= Uo douE U suyraGcodi€m c6dinhu v~y F lac6tySu . ...,)"E:' ", <:.'..:..,.,Xi ~I: Wiliw.lt'WEW.~* q~~18" . . J '..... DinhIf 1.9 . GiclSl( (X,A) la mQtc~ptrongC c E . C la mQtt~pl6i trongkhonggiantuyen tinhdinhchugnE .Tacocactinhcha'tcuaF saDdayla tt(dngdl(dng: 1) F la khongc6tyell . 2) Co mQtanhX<;id €m co'dinhkhongph\!thuQcG E KA(X, C) saochoF ==G trong KA(X, C ) Ghichu : C~ptrongC conghlala c~pg6mt~pcontuyyX trongC vat~pcon A dongtrongX . ChungminhdinhIf : . Ta chungminhill'1) suyfa 2) . G9iG E KA(X, C) saochoFIA=GIAladi€m c6dinhkhongph\!thuQc. Ta co: t G(a) + (l-t) F (a) * a . D€ nh~ntha'ydi~unay tagiit Sl( :J a EAt G(a) + (l-t) F (a) =a do FIA =GIA => G(a) =a mall thu~n . Dodinh1:91.6tasuyra F ==G trong KA(X, C ) . Ta chungminhtu 2) suyfa 1) . G9i H : X x [0,1] ~ C lamQtd6ngluaulient\lctuG vaoF saocho Hlxx{t} la mQtddi€m co'dinhkhongrangbuQc vdi m6it thuQc[0,1] . D~t B ={ x : x =H(x , t) , t E [0 ,I]} . Neu B = ~ thl vdi m6i t E [0,1] , Ht khongco di€m c6 dinhvi theriengF khongco di€m c6 dinh suy ra F khong c6tyell . NeuB * ~ tacoB n A =~ , B la t~pdong. D€ tha'ydl(QCdi~unay tala'y XnE B tlic la Xn=H(xn, tn) ~ E vaXn~ x t6n t<;iit E [0,1] va mQtday concacs6tVnhienS saochotn~ t khi n ~ 00 trong S . Do S\(lien t\lccua H tacox =H(x , t) suyra x E B v~yB la t~pdong. G9i 'A : X ~ [0,1]la hamUrysohn lien l\!Cvdi 'A(A) =1, 'A(B)=0 . Binhnghlaham1t(x)=H(x, 'A(x)t); (x,t) E X x [0,1] , tac6 1,la mQtanbX<;i compaclien l\!c .Tadi chungminh1tladi€m c6dlnhkhongph\!thuQCva 1tlA=HtlA . Th~tv~ytachuy 1t(x)=x nghlala H(x , 'A(x)t)=x suyrax thuQc B vi v~y'A(x)=0 vaH(x,O)=x suyra mall thu~nvi Ho=G la di€m 0]'djnh khongph¥thuQc. Vi v~y1tladi€m co'djnhkhongph¥thuQc.Taco lieU x E A thi 'A(x)=1 va1t(x)=H(x , 'A(x)t) =H(x , t) =Ht(x)vi v~y1tlA=HtlA. I£)~t =1 suy ra Jt 1aanh Xc;tcompaclien tvc va la di~mco'ajnh khongphl;tlhuQC Do F =HI Den F kh6ng co'tye'u . DjnhIy 1.10 . Gia su(X,A) Ia mQtc~ptrongC c E . C la mQtt~pl6i trongkh6nggiantuye'n tinhdinhchu§'nE . Gia slf F va G la haianhXc;ttrong KA(X, C) saGcho F ~G trong KA(X, C) thl F co'tye'u ne'uva chi ne'uG c6tye'u . ChungminhdjnhIy : D~dangsuyratUdinh191.9. DinhIy1.11( Leray- Schauder). Giaslf C lamQt~pl6itrongkh6nggiantuye'ntinhdinhchu§'nE . U lamQt t?PconmacuaC , p* E U thl ta'tca cacanhXc;tcompaclien tvc F :U -7 C d6uco it nha'"tmQttronghai tinh cha'"tsail : 1) F codi~mco'dinh . 2) 3xEau vdi x =AF(x) + (l -A) p' , A E (0,1) ChungminhdjnhIy : Chungtacoth~giasu Flau ladi~mc6dinhkhongphVthuQctrongtru'onghQp: khongx§'yra . f)~t G: U -7 C la anhXc;th~ngu-7 p* . X6t ph6pd6ngluan compaclientvc Ht: U -7C lienketgifi'aGvaF la H(x,t)=tF(x)+(1-t)P* . X6t haitru'ongh9P: 1) H(x,t) ladi~mc6dinhkh6ngphv thuQctrenau . 2) H(x,t) kh6ngladi~mc6dinhkh6ngphVthuQctrenau . Neu tru'onghQp1) xayrathltUdinh191.6va 1.8suyraF ph.hcodi~mco'dinh Ngu'Qcl ;tineutru'onghQp2)xayfathl: 3XE au x= AF(x) + (l-A)P* vdiAE[O,l] TacoA:;t:0 vI P*~au va A:;t:1VI F lauladi~mc6dinhkhongphv thuQc. ~"'i "',::'' ::::'",:m,;',;I:;;&:1}::::I $ ~1I'1{« iM, 18 4i:~:,' i"j",]t,:ij'::'..:':' m@1 m" Dinh Iy 1.12 . Giii sU'A la t~pcondongcuakhonggiancacham C ([a,b],R) . Ntu A bi ch~n d~uva lien t\lcd6ngb~cthlA la compact.. DinhIy 1.13(Arzela-Ascoli) . GiiisU'A la t~pcondongcuakhonggiancachamC([a,b], R) . Ntu A bich?nd~uvalientl)cd6ngb~cthl A la compact. :~,-~'!.1f~lgrft{~m§~ ... 2. UNGD{)NG BaygiOtaapdvng1:9thuyttv~digmba'tdQngdS chungminhsll t6nt~inghi~m cuaphu'dngtrlnhvi phanco d~ng: 1 - (py,)'=q(t)f (t, Y, py,) pet) Voicacdi~uki~nbien I. XET sTJTONTAl NGHIEM CUA PHUONGTRINH: (1.1) 1 - (py I)' = q(t)f (1,Y,pyI ) pet) - exy(0) +~lim p(t)y,(t) = C1-70+ ay(1) +b lim p(t)Y1(t) =d1-71- Voi f: [0,1]x R2~ R lien tvc q E C(O,1) ; P E C[O,l]n C\O,l) p , q >0 tren(0,1) (1.2) t E (0,1) t E (0,1) a>O,f3:20 a~O,b~O a2+b2>0 Chungtac~nchungminht6nt~ihamYE C[O,l]n C2(0,1), py'E C[O,l] thoamanh~(1.1) Ta xeth~bai loanco d~ng: 1 - (py ')' = f~q(t)f (t, y, py ') P (1) - exy(0) + f3lim p(1)Y,(t) = C1-70+ ay(1) +b lim p(t)y ,(t) =d1-71- t,A E (0,1) (1.3) Dinhly 1.14. GiaSltp, q, f thoamandiSuki~n1.2va: fl ds < 00P (s )0 I f P (s)q (s)ds < 00 0 (1 .4) Gia sU'themt6nt(;lih~ngs6M >0 dQcl~pvdi A saacha : max{sup I yet) I,sup I p(t)y'(t) I} =max{1y 10,1py'lo}=Iyll~M te[O,I] te(O,!) vdi m6inghi~my cuaphu'dngtrinh(1.3)va m6i "A E (0,1) . Thl phltdngtrinh(1.1)sec6nghi~mYE C[O,1]nC2(0,1), py'E C[O,1]. Chung minhdinh ly: Giai bai tm'ln(1.3)tlfdngdu'dngtim 1hamYE C[O,1]vdi py'E C[O,1]thoaman: t ds t 1 1 yet) =B +Af -- Af -f q(x)p(x)f(x, y(x), py')dxds 0 pes) 0 pes)s (1 .5) Trang d6 : t d I I (ae+da) +A(af~ fpqf(x, y,py')dxds+Bfpqf(x, y,py')dx A= op(s)s 0 I d a(a f~ +b)+a~ 0 p(s) B =~A - C - ~A f q(x) p(x) f (x, y ,py ')dx a a 0 Chungtavie'tl';li1.5 t ds t 1 I yet)=(1- A)CO+A(CO+BI + Alf - -f -fpqf(x,y,py')dxds (1.6) 0 pes) 0 p(s)s t ds co= B2 + A2I peS) ac+dex A2 = 1 ds ex(af- +b)+exp 0 p(s) J3A2-C 0.7) B2= ex Vdi : BI = B Al - ~fq(x)p(x)f(x, y, py' )dx ex exo (1.8) 1 1 1 1 a(exf- fpqf(x,y,py')dxds +J3fpqf(x,y,py')dx op(s)o 0 Al = 1 ds ex(af -- +b) +aJ3 0 p(s) (1,9) D~tKI[O,1]={UEC[O,1]:pH'E C[O,1] vdi IU Id la 1khonggianBanachva Kko[0,1]= tuE K 1[0,1]:-exu(O)+ ~~~~p(t)u' (t) = au(1)+ b ~~~p(t)u' (t) =0J Dinh nghIa toaD t:ltM : KIBo[O,l] ~ K1Bo[0,1] sao cho : t ds t 1 I My (t) = B 1 +A 1 f- - f - fq (x )p (x ) f (x, y , py ') dxds 0 pes) 0 pes) s Slf t6n t~inghi~m tu'dngdu'dngvdi va"nde di~mc6 dinh: (1.10) y=(l-A)W+A[My+w] ==(1-A)W+)~Ny. r '' 1:JI-J"H -";r "'J. E ' N,'1. y', ,'... ,',r,I . ! TUtf \'IEN ! [ :- n03~3J. Ta chungminhM lien tQc: - Do f lien tlfctren[O,1]xR2~ R => f lien tlfcdeli tren[0,1]x[-M,Mf (vdiM la h~ngs6saocho Iy 11::;M) - \18>0,388>0:II (t,s,U)-(1',s',u') II If(t,s,u)- f(t' ,s',u') I <8. V?y vdi m6i t E [0,1] t ds t 1 1 IMy(t) - Mz(t)I::; /BI-B;I+IAI -A;lf -+ f -fpqlf(t,y,py') - f(t,z,pz')dzds O?(s) °p(s)s 1'.:.::'::::::::::::':::',].::':':':::':::::::::::,,'::::"'::::":':;~:,ili:..:.::::'::'::::.:.:::::':"":":::::,,,::::,::::::,:,':':""":.::...;:::.::"':::":@,B,lllil.liI-%I§@ a I 1I IAI -A;!::; d [as -fpqlf(t, y,py') - f(t,z,pz')ldxds +1 sop a(af-+b)+a~ s 0 p(s) 1 +~fpqlf(t,y,py') - f(t,z,pz')ldxds] ::;E 0 (do 1.4) IBI - B;I~ I~ !IAI -A;j+ I~ IIpq If(t,y,py ') - f(t,z,pz ')dx < 8 Suyra I My(t) - Mz(t) I <E (do 1.4). Vz,y E K1Bo[0,1] V~yM lien tl}c Ti€p rheatadungdinhly Arzela- Ascoli dS chungminhM la lien tl}co6ngb~c. E>Sthty du<jcdi€u nay,tad~tQ c K1Bo[0,1]Ia mQtt~pbi ch~nnghlala t6nt~i ffiQts6 Mo > 0 saGcho Iyll ::;Mo .Vdi m6i y E Q do f(t,y,py')lien tl,lco~utren [O,l]x[-M,M] nent6nt~iK> 0: If(t,y,py')I::;K . K€th<jpvdi (1.4)taco : vy E Q 3A*, B* la cach~ngs6 saGcho IE*I::;B va IA*I ::;A (A*,B*co thS phl) thuQcVaGM ) .V~ys1jbi ch~n cuaMQ Ol«jCsuyratli (1.10) Ti€p rheavdi YE Q ; t, s E [0,1]: 1 P(t)(My)' (t) =Al - J P(x) q(x) f (x, y(x ), py,)dx t => s Ip(t)(My)' (t) - p(s)(My)' (s)l::; I f p(x)q(x)f(x, y(x),py')dxlt Va t dx I I t 1 1 IMY(S)-My(t)lsIA"I I J- + J-jp(z)q(z)f(z,y,py')dzdxl s p(x) s p(x), V~yV t,s E [0,1]:It-sl<Edo rinhlien tl}ccuafva do (1.4)tasuyra: I p(t)(My)' (t) - p(s)(My)' (s)1<E IMy(s) - My(t) 1<E V~yMQ la lien tl}co6ngb~c. [I Ke'tlu<%nM la mQtloantiTlien tvchoanloan(haycongQila compactlien tvc) £)~t: K~[O,l]={uEK][0,1]:-au(O)+~limp(t)u'(t)=c,au(1)+blimp(t)u'(t)=d } t~O- t~l- U=~uEK1B[0,1]: luI1<M+l}; C=K1B[0,1] ;E=K1[0,1] Ap dvngdinh191.11vdi p*=conhu'ngvdi slj hfa chQnU nhlf trentinhchtt 2) cua 1.11kh6ngtheKayra v<%yN co diemc6 dinhtlic la phlfdngtrInh(1.1)co nghi~mYE C[O,I], py'E C[O,I] , y E c2 (0,1)la do 1.5vdi A =1. II. XET SUTONTAl NGHIEMCUA PHU0NGTRINH: (2.1) 1 - -Cry ')' = q(t)f(t, y,py ') P(t) lim p(t)Y ,(t) =C I~ o' ay(1) + b Jim- p(t)Y ,( t) = d 1 1 t E (0,1) a > O,b;::: 0 Trangrtt nhi€u lingdvngthljctt di€u giasiT J ds < 00 -kh6ngthoaman vi dV:pet)=to-1 (n ~2). 0 P (s ) V<%ytase thaygia thitt 1 ds J < 00 0 p (s ) B~nggiathitt : 1 1 s f fp(x)q(x)dxds<00 op(s)o X6t ffiQthQbai loan: (2.2) 1 -Cry ')'= Aq(t)f(t,y,py ') P (t) Jim p (t ) Y ,( t) = C I o' ay(l) +b Jim p(t)Y,(t) =d t 1- t E (0,1); A E (0,1) a>O,b~O Dinhly 1.15. Gia Sltf, p, q thoamandi@uki~n(1.2)ya 1 f P(x )q(x )dxds < CfJ 0 lIs , f -Jp(x)q(x)dxds < CfJ op(s)o (2.3) HdnmlagiaSlt:J h~ngs6M dQcl~pvdiA saGcho I y11 s:;M ydi m6inghi~my cua phu'dngtrlnh (2.2)va vdi m6i A E (0,1).Khi do phttdngtrlnh (2.1)se co nghi~mYE C [0,1] n C2 (0,1) , py' E C [0,1] . Chungminhdinhly Giai phttdngtrlnh(2.2)tu'dngdu'dngydi s\(fimhamYE C [0,1]ydi PY'E C [0,1] thoa man: d tIs b 1 yet) =- +A[ f -f p(x)q(x)f(x, y,py')dxds- - fpqf (x, y, py ')dx a op(s)o ao 1 I 1 I - - f-f p(x)q(x)f(x, y,py')dxds] aop(s)o d d d = (1- A)-+ A[-+ My(t)] ==(1- A)-+ ANy(t) a a a Trong do: M: K1Bo[0,1]-7 K1Bo[0,1]ydi: tIs b 1 My (t) =f - f p(x)q(x) f (x, y,py,)dxds- - f pqf (x, y,py,)dx op(s)o ao 1 I 1 1 - - f - f p(x) q(x) f (x, y, py,)dxds] aop(s)o Kko[0,1]={uEK1[0,1]: limp(t)y'(t)=ay(1)+blimp(t)y'(t)=O } t->O' t->f K1[0,1]={uE C[O,l] , pu'E C[O,l] } Lam tu'dng1\tnhu'trongdjnh191 trongph~nI taco M 1amQttmlntti'Compact lient\lc. f)~t: U =~uE K1B[O,1]:Iu 11<M+l ~ c =~K1B[0,1]~, E=K1[0,1] Kko[0,1]={uE KJ [0,1]:limp(t)y'(t)=0, ay(l)+blimp(t)y'(t)=d} (->0+ t->f Ta co toclntU'N co di~mc6dinhtucla phu'dngtrlnh(2.1)co nghiQm YE C [0,1] II C2 (0,1)vdi py' E C [0,1] . III. XET SUTONTAl NGHIEM CUA PHUONGTRINH: 1 -(py')'= q(t)f(t,y(t),py') pet) limp(t)y'(t)=a 1 0+ limp(t)y'(t) =b(-->1- t E (0,1) (3.1) X6t phltdngtrlnh: ~(PY')'= Aq(t)f(t,y(t),py') pet) Jimp(t)y'(t)=a(-->0+ limp(t)y'(t)=b1-->1- A , t E (0,1) (3.2) DinhIy 1.16. Gia sU'f(t,y,py'),pet), q(t)thoamandieukiQn(1A) va (1.5). N€u tdnt<;tih~ng s6M dQcl~pvdi A saochom6i nghiQmcuaphltdngtrlnh (3.2) thoamandieu kiQn: Iyll =max{sUPtE[o,l]ly(t)1, SUPtE(o,l)lp(t)y'(t)l} =max{Iylo,Ipy'10}~M thikhi a'yphudngtrinh3.1co nghiQm. ChungminhdinhIy . X6t phudngtrinh : 1 -(py')'= 0 pet) limp(t)y'(t) =0(-->0+ limp(tt."(t) =0 (-->]- t E (0,1) (3.3) phu'ongtrlnhnaychiconghi~mt§mthudng.V?y taco th€ bi€u di~nnghi~n: cuaphltongtrlnh3.2dudid~ng: yet)=A;31 (t) +B;.Y2(t) +SY\ (s)y 2(t) - YI (t)y 2(s) q(s)f(s, yes),py' )ds 0 w(s) tfongdoYl(t) , Y2(t)la hainghi~mdQCl?p tllyentinhcuaphltongtrlnh ( '"' 4'.). , _ ( 1 ) (py')'=0 ta co th€ gia SlYla : limp(t)y~(t) ;i: 0 di€u nay la hoanp t Ho' toaDco th€ xiy fa VI ne'ukh6ng lin~p(t)y~(t)= . lirqp(t)y;(t) =0khi do1->0 1->0 ta chQn U(X)=YI(X)lil1}p(t)y~(t)-Yix)lin!p(t)y~(t), d~dangki€m traduQc 1->1- I->C HeX)la mQtnghi~mcuaphuongtrlnh3.3 V?y u ==0 mall thu~nvdi s~tdQcl?p tuyentint cuaYl , Y2.Taco : A =aA2- bA] +A-As;. A3A] - A2A4 B =b-A3A;. ;, A I ] y](s)limp(t)y~(t) - Y2(s)limp(t)y;(t) As =AJ H]- () H]- q(s)f(s,y(s),py')ds0 w s AI =limp(t)y~(t) , A3 =limp(t)y;(t)1->0+ 1->0+ A: =lil~p(t)y~(t) , A4 =lil~p(t)y;(t)1->1 1->1 Trongdo w(s) la hamWronskian cuaYl,Y2t~is taco pw'(s)=0 SHYfa pw =C =h~ngs6 (taclingc§nchliy la AIA3 - A2A4;i: 0 bdi VIneukh6ngtachQn HeX)=A1Yl(X) -A3Y2(X) la mQtnghi~mcua phuongtrlnh 3.3 suyfa u ==0 mall thu~nvdi svdQcl?p tuyentint cuaYl , Y2). Ta viet l~icongthuc (3.4): yet) = 'A[CYI (t) +Dy2(t) +J Yl (s)y 2(t) - YI (t)y 2(s) q(s)f(s, yes),py')ds] + 0 w(s) + (1- 'A)[EYI(t) +Fy2(t)] a - EA 3 aAz - bA 1 A 5 +aAz - bA I a- CA 3 F= , E= , C= , D= , A] A3Az - A]A4 A3Az - A]A4 Al f)~t : K~={YEC[O,l]}, PY'EAC[O,l] , l~p(t)y'(t)=a, lim,p(t)y'(t)=b}1--+] 1--+0 Va N K] ~ KJB B Ta sechungminhN la toantUcompac,lien Wc . Chung minhNy, p(Ny)' E Kin: +Xet t~p[0,1]x[-M,M]2 (trongd6M la h~ngs6saDcho Iyll~ M) Do f :[0,1]xR2~R la lien t\1clien lien t\1cd~utren[0,l]x[-M,M]2 suyra : VE >0 ::188>0 : II (t,u,v) - (t' ,u' ,v')11 < 88 thl I f(t,u,v)-f(t' ,u' ,v') 1<E . V~y vdi t, tl E [0,1] : I t-tl I < 88 suy ra II (t,y,py') - (t',y,py') II< 88 do d6 If(t,y,py')-f(tl,y,Py')kE/2 . Do f lien t\1cd~u lien tacling c6 t6nt~i h~ngs6 K saDcho I f(t,y,py')I ~K do d6 t6nt~iC*, D* la cach~ngs6saDcho : IC I ~ C* , IDI~D* (C , D co the'ph\!thuQcvaoM ). V~y: I Ny(t)-Ny(z) I ~ C*ly](t)-yJz)I+D* I yz(t)-yz(z) I + + I Y2(t) II] yJs) q(s)f(s, y, py')ds I+I YI(t) I] Y2(S)q(s)f(s, y, py')ds I t w(s) 1 w(s) + IY2(t)-Y2(Z)II] yJs) q(s)f(s,y,py)ds1+ t w(s) + IYI(t)-YJ(z)II]Y2(s)q(s)f(s,y,py)dsl t w(s) ~ C'lyJt)-YI(z)I+D'IY2(t)-Y2(z)1 IYo(t)1 z + - supI yJs)11 Jp(s)q(s)f(s,y,py')dsl c SE[O,I] + I Y (t) I z , + 1 SUp I Y2(s)11 Jp(s)q(s)f(s,y,py )dsl C SE[O,J] + + I Y2 (t) - Y2 (z) I SUp I Yl (S) I KJ +I Y1 (t) - YJ (Z) I SUp I y2 (S) I KJ sE[O,l] sE[O,I] I (vdi KJ ~KJ p(s)q(s)ds)° Tu'dngt\( ta CO: I p(t)(Ny)'(t)-p(z)(Ny)'(z) I ~ ~ C'I p(t)y;(t)-p(z)y~(z) I +D'I p(t)y~(t)-p(z)y~(z) I + + I p(t)y~(t) II J yJs) q(s)f(s,y,py')dsI+Ip(t)y'Jt) I J Y2(S)q(s)f(s,Y,py')dsI- t w(s) t w(s) + I p(t)y~(t) - p(z)y~(z)111Yl (s) q(s)f(s, y, py' )ds I + t w(s) + I p(t)y;(t)-p(z)y;(z) II JY2(S) q(s)f(s,y,py')dsl t w(s) . Chung minh N lien ttJc : Do f :[0,1]xR2~R la lien tlJ.Cnenlien tl}cc1~utren[O,l]x[-M,Mf SHYra : \is >0 3be>0 : II (t,u,v)- (1',u',v')11<be thl I f(t,u,v)-f(1',u',v') 1<s . V?y vdi t E [0,1]c6c1inhvalI(t,y,py')- (t,z,pz')11=lI(y,py')-(z,pz')1I< be ta co : INy(t)-Nz(t)1 ~ ly](t)IIC-C'I+IY2(t)IID-D'I+ + S tYI(S)Y2(t)-Yl(t)Y2(S) ( )If( ' ) - f( ' )Id Iq s s,Y,PY S,Z,pz s 0 w(s) I C - C'I = I As - aA2 - bA1 - A~- aA2 - bAI I ~ I As - A~ I A3A2 - A4AJ A3A2 - A4Aj A2A3 - A4A] IAs-A~1 ~ 1YI(s)limp(t)y~(t)-Y2(s)limp(t)y~(t) ~ IAI If Hl- () Hl- q(s)lf(s,y,py')-f(s,z,pz')0 w s I d I1 1 - I S - ~ KEfq(s)ds ~ KE(fp(S)q(s)ds)2(f_)l ~ EKKI ~ E. 0 0 opes) A => IC-C'I <E , ID-D'I = 1-2IIC-C'1 <E . Al V~yN lien tvc . f)~tU={uEKB1:IU/l<M+1};C=KBl ;E=K1={UE C[O,l] ;PU'E C(O,!)} Ap dvngdinh191.11trongbai 1ta suyraN co diSmc6 dinhtltc1ab~tiloan3. co nghi~m UE C[O,l] ; pu' E C(O,l) . IV.XET Su'TONTAl NGHIEMCUA PHUONGTRINH; 1 -(py')'= q(t)f(t,y(t),py') pet) limp(t)y'(t) = limp(t)y'(t)t-->O+ t-->l- y(O) = y(1) t E (0,1) (4.1) Tltdngtv nhlttrongph~nIII tad~t phltdngtrlnh: 1-(py')'= Aq(t)f(t,y(t),py') pet) limp(t)y'(t) = limp(t)y'(t)t~O+ t~l- y(O) = y(l) A, t E (0,1) (4.2) Bjnh If 1.17. Gia su' f(t,y,py'),pet), q(t)thoamanGi~uki~n(1.4) va (1.5).Ne'ut6nt~lih~ng s6M dQcl~pvoi A saGchom6inghi~mcuaphu'dngtrlnh (4.2) thoamandi~uki~n: Iyll =max{sUPtE[o.l]ly(t)1, SUPtE(o,1)lp(t)y'(t)l} =max {Iylo,Ipy' 10}::;M thlkhi§yphu'dngtrlnh4.1conghi~m. ChungminhdjnhIy . xetphu'dngtrlnh 1 -(py')' = 0 pet) Jimp(t)y'(t) =t~O+ y(O) = t E (0,1) Jimp(t)y'(t)t~l- y(l) (4.3) phltongtrlnhnaychiconghi~mt~mthu'ong.V~ytaco th€ bi€u diennghi~m cuaphu'dngtrlnh4.2du'oid(;lng: yet)=A"Yl(t)+B"Y2(t)+ JYl(S)Y2(t)~ ~1(t)Y2(S)q(s)f(s,y(s),py')ds0 w s (4.4) trongdoYl(t) , Y2(t)la hainghi~mGQcl~ptuye'ntinhcuaphu'dngtrlnh: 1 - (py')'=0 tacoth€ giasU'laY2(0)-Y2(1)7=0di~unaylahoantoancoth€ pet) x§yfa VIne'ukhong :12(0)-Y2(1)=Yl(O) -Yl(1)=0 khi do tachQn: HeX) =YI (x)[limP(t)Y'2(t)-lim p(t)y~(t)]- Y2(x)[limp(t)y;(t) -lim p(t)y~(t)] 1->0' 1->1+ 1->0+ 1->]' dSdangnh~ntha'yHeX)la mQtnghi~mcuaphu'dngtrinh4.3 lien u ==0 di€u nay matithu~nvdi stfdQcl~ptuySntinhcuaYI , Y2 Trangd6w(s)lahamWronskiancuaYI , Y2t~lis tac6 pw'(s)=0 SHYrapw =C =h~ngs6 taclingd~nchuy la [Y2(O)- Y2(l) ]10-[YI(O)- YI(l) ]II * 0 bdi VI n€u khongtachQn: u(x) =[Yl(1)- yJO) Y2(1)-Y2(O)]Y2(X)-Yl(X) . D~tha"yHeX)Iii nghi~mcua phu'dngtrinh 4.3 suy ra u ==amall thuc1nv6i s1/Q9C l~ptuySntinh cuaYI , Y2. Tac6: A = "A (12+IJ ). [Y2(0)-Y2(1)]Io-[yJO)-YI(1)]II II =t~~p(t)Y~(t)-~~}lp(t)y~(t) B =AJYI (0)- YI (1)]+"A 12 ). [Y2(0)- Y2(l)] 10=t~~p(t)Y~(t)=~~}lp(t)Y;(t) 13 = [y 2(0) - y , (1)]S Y 1(S) ~~}l p (t)Y ~ (t) - Y 2 (S) ~~~p ( t )Y; ( t ) - 0 w(s) q(s)f(s, yes),py')ds I =SYI(S)Y2(t)-Y2(S)YI(t) 2 0 w(s) q(s)f(s, yes),py')ds B~ngcach chungminhtu'dngttfnhu'trongph§n III ta SHYra S\tt6nt;~linghi~!J, cuaphu'dngtrInh4.1.

Các file đính kèm theo tài liệu này:

  • pdf5.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf2.pdf
  • pdf3.pdf
  • pdf7.pdf
  • pdf8.pdf
  • pdf9.pdf
Tài liệu liên quan