CÁC ĐỊNH LÝ THUẬN VÀ ĐẢO CỦA XẤP XỈ PADÉ
NGUYỄN VIỆT DŨNG
Trang nhan đề
Mục lục
Chương1: Xấp xỉ padé.
Chương2: Các bài toán thuận và đảo.
Chương3: Phần chứng minh.
Chương4: Phụ lục.
Tài liệu tham khảo
25 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1939 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận án Các định lý thuận và đảo của xấp xỉ Padé, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
CHUaNG IV:
PHU LUC. .
-> #THIS IS PROGRAMUSED TO CALCULATE A KIND OF RATIONAL
APPROXIMATION - CLASSICAL PADE APPROXIMATION OF A H(O) FUNCTION
(MORE DETAILS AND MORE EXPLAINS)
PadeApproximant := proc(f,m,n,value)
option operator;
local taylorArray,i,coefficients,seqCoeffsTaylor,seqMatrix1,
seqMatrix2,j,k,t,distanceMN, padeMatrix,
detPadeMatrix,rightOfSystem,Q,P, sQ, setRootQ1,setRootQ, sP,
setRootP, a, b, c ,r, temp,fQ,t1,t2 ;
print('THIS IS A PROGRAMUSED TO CALCULATE CLASSICAL PADE
APPROXIMANT OF AFUNCTION') ;
printf (' \n\n') ;
printf('\tThe function f(z) is:',f);
print(f) ;
#EXPAND TAYLOR OF F(Z)
taylorArray := taylor(f, z =0, n+m+1);
printf('\tThe Taylor expand of f(z) is: ');
print (taylorArray) ;
for i from 0 to n+m do
coefficients[i] := coeff(taylorArray,z,i) ;
od;
#SEQUENCEOF COEFFICIENTS
seqCoeffsTaylor:= seq(coefficients[i],i=O..m+n);
printf('\tSo that the cofficients(from 0 to %d) of Taylor expand
of f(z) is: ',m+n) ;
print (seqCoeffsTaylor) ;
temp := 0;
for i from 1 to n+m+1do
temp:=temp + seqCoeffsTaylor[i]*zA(i-1);
od;
distanceMN:= m-n;
if (distanceMN -1 > 0) then
for j from (1 - distanceMN)
coefficients[j] := 0;
by 1 to -1 do
cd;
fi;
#CALCULATE COEFFICIENTS TO ESTABLISH MATRIX
for t from 0 by 1 to m-1 do
seqMatrix1[t] := seq(coefficients[k],k =
I-distanceMN+t. .n+t);
Page 1
od;
seqMatrix2 := [seq(seqMatrix1[t],t = 0..m-1)];
printf('\tThis is sequence of numbers to form matrix for system
of equations: ');
print (seqMatrix2) ;
nops(seqMatrix2) ;
#MATRIX OF COFFICIENTS
padeMatrix := linalg[matrix] (m,m,seqMatrix2);
printf('\tSo that the matrix formed is: ');
print (padeMatrix) ;
with (linalg) ;
detPadeMatrix :=
det(padeMatrix) ;
#RIGHT SIDE OF SYSTEM OF EQUATIONS
rightOfSystem := vector([seq(-1*coefficients[1],1=n+1. .n+m)]);
print('The right of system of linear equation is: ');
print (rightOfSystem) ;
sQ := linsolve(padeMatrix, rightOfSystem);
setRootQ1[m+1] := 1;
for i from 1 to m do
setRootQ1[i] := sQ[i];
od;
for i from 1 to m+1 do
setRootQ[i] := setRootQ1[m+2-i];
od;
#COEFFICIENTS OF Q(Z) POLYNOMIAL
setRootQ :=[seq(setRootQ[i],i=1. .m+1)];
printf('\tSet of coeffs of Q: ');
print (setRootQ) ;
Q :=0;
#ESTABLISH Q(Z)
for i from 1 to m+1 do
Q := Q + setRootQ[i]*zA(i-1);
od;
printf('\tPolynomial
print(Q) ;
#CALCULATE f(Z) .Q(Z)
fQ:=expand(temp*Q) ;
Q(z):');
for i from 0 to n do
sP[i] := coeff(fQ, z,i);
od;
#ONLYGET N+1 FIRST COEFFICIENrS OF sP
setRootP := [seq(sP[i],i=O..n)];
printf('\tSet of coeffs of p:');
page 2
print (setRootP) ;
printf('\tPolynomial P(z) :');
P:=o;
#ESTABLISH P (Z)
for i from 1 to n+l do
P := P + setRootP[i] * zA(i-l);
od;
print(P) ;
printf('\tPade approximant of f with order (%d,%d) is: ',m,n);
print(P/Q) ;
tl:=evalf(normal(subs(z=value,f») ;
t2:=evalf(subs(z=value,P/Q» ;
printf('The value of f(z) at %.8f is: %.8f\n', value,tl);
printf('The value of (p/Q) (z) at %.8f is %.8f\n', value,t2);
printf('The error of approximants: %.8f', abs(tl-t2»;
end;
PadeApproximant:=proc(f,m,n, value)
localtaylorArray,i, coefficients,seqCoeffsTaylor,seqMatrix1,seqMatrix2,j,k, t,distanceMN,
padeMatrix,detPadeMatrix,rightOfSystem,Q, P, sQ, setRootQ1,setRootQ,sF, setRootP,a, b,
c,r, temp,fQ,t1,t2;
optionoperator;
print('THIS IS A PROGRAM USED TO CALCULATE CLASSICAL PADE APPROXIMA\
NT OF AFUNCTION');
printf('Inln');
printf('ItThefunctionf(z) is:" f);
print(f);
taylorArray:=taylor(f,z =0,n +m+ 1);
printf('ItTheTaylorexpandoff(z) is: ');
print(taylorArray);
for i from 0 to n +mdo coefficients[i] :=coeff(taylorArray,z, i) od;
seqCoeffsTaylor:=seq(coefficients[i], i =0 .. n +m);
printf('ItSothatthecofficients(from0to%d)ofTaylorexpandoff(z) is: " n +m);
print(seqCoeffsTaylor);
temp:=0;
for i ton +m+1dotemp:=temp+seqCoeffsTaylor[i]*zJ\(i- 1)od;
distanceMN:=m- n;
if 0<distanceMN- 1thenforj from1- distanceMNto-1docoefficients[j]:=0odfi;
fortfrom0tom- 1do
page 3
seqMatrixl[t] :=seq(coefficients[k],k=1- distanceMN+t .. n+t)
od;
seqMatrix2:=[seq(seqMatrixl[t],t=O.. m-l)];
printf('ItThisis sequenceof numberstoform matrixfor systemof equations:');
print(seqMatrix2);
nops(seqMatrix2);
padeMatrix:=linalg[matrix](m,m,seqMatrix2);
printf('ItSothatthematrixformedis: ');
print(padeMatrix);
withelinalg);
detPadeMatrix:=det(padeMatrix);
rightOjSystem:=vector([seq(-coefficients[I], 1=n+1.. n+m)]);
print('Therightof systemof linearequationis: ');
print(rightOjSystem);
sQ :=linsolve(padeMatrix,rightOjSystem);
setRootQl[m+1] :=1;
for ito m dosetRootQl[i] :=sQ[i] od;
for i tom+1dosetRootQ[i]:=setRootQl[m+2- i] od;
setRootQ:=[seq(setRootQ[i],i =1.. m +1)];
printf('ItSetofcoeffsofQ: ');
print(setRootQ);
Q '=0'. ,
fori tom+1doQ :=Q+setRootQ[i]*zl\(i- 1)od;
printf('ItPolynomialQ(z):');
print(Q) ;
fQ :=expand(temp*Q);
for i from0ton dosP[i] :=coeff(jQ,z, i) od;
setRootP:=[seq(sP[i],i =0.. n)];
printf('ItSetofcoeffsofP: ');
print(setRootP);
printf('ItPolynomialP(z):');
P :=0;
fori ton+1doP :=P +setRootP[i]*zl\(i- 1)od;
print(P) ;
printf('ItPadeapproximantoffwithorder(%d,%d)is: " m,n);
print(P/ Q);
t1:=evalf(normal(subs(z=value,!)));
t2:=evalf(subs(z=value,P / Q));
printf('Thevalueoff(z)at%.8fis:%.8f\n" value,t1);
Page 4
printf('Thevalueof (P/Q)(z)at %.8f is %.8f\n" value,t2);
print£\:'Theerrorofapproximants:%.8f, abs(t1- t2))
-end
j> #USEMY FUNCTION TO DO SOME TEST ON SOME BASIC
l EXPONENTIAL, SIN, POWER, RATIONAL FUNCTIONS.
>#THE FISRT FUNCTION IS EXPONENTIAL FUNCTION
FUNCTION SUCH AS:
PadeApproximant(exp(z) ,3,2,1);
print('---------------------------------------------------------
- ') ;
PadeApproximant(exp(z) ,3,3,1);
THISIS A PROGRAM USED TO CALCULATE CLASSICAL PADE APPROXIMANT OF AA
UNCTION
The function f(z) is:
z
e
The Taylor expand of f(z) is:
1 2 1 3 1 4 1 5 6
1 + z +- z +- z + - z + - z + O(z )2 6 24 120
So that the cofficients(from 0 to 5) of Taylor expand of f(z)
1 1 1 1
11----
, , 2' 6' 24' 120
This is sequence of numbers to form matrix for system of equations:
is:
[
1 11111
]
11-1-----
, , 2' '2'6'2' 6'24
So that the matrix formed is:
1 1
1
2
1
6
1
24
1
1
2
1
6
1
2
Warning, new definition for norm
Warning, new definition for trace
Therightof systemof linearequationis:
[
-1 -1 -1
:6' 24' 120
Set of coeffs of Q:
[
-3 3 -1
]1, 5' 20' 60 .
Polynomial Q (z) :
3 3 2 1 3l--z+-z --z
5 20 60
Page 5
I Set of coeffs of P:
[
2 1
]
1 --
, 5'20
Polynomial P (z) :
2 1 21+-z+-z
5 20
Pade approximant of f with order (3,2) is:
The value of
The value of
The error of
2 1 2
1 +-z+-z
5 20
3 3 2 1 3l--z+-z --z
5 20 60
f(z) at 1.00000000 is: 2.71828182
(P/Q) (z) at 1.00000000is 2.71875000
approximants: .00046817
----------------------------------------------------------
THISIS A PROGRAM USED TO CALCULATE CLASSICAL PADE APPROXIMANT OF AF\
UNCTION
The function f(z) is:
ze
The Taylor expand of f(z) is:
1 2 1 3 1 4 1 5 1 6 7
1 + z + - z + - z + - z + - z + - z + D( z )
2 6 24 120 720
So that the cofficients(from 0 to 6) of Taylor expand of f(z) is:
1 1 1 1 1
11-----
, '2'6'24' 120' 720
This is sequence of numbers to form matrix for system
[
11111111
]1, 2' 6' 2' 6' 24' 6' 24' 120
So that the matrix formed is:
of equations:
Therightof systemof linearequationis:
[
-1 -1 -1
]24' 120'720
Set of coeffs of Q:
[
-1 1 -1
]1, 2' 10' 120
Polynomial Q(z):
Page 6
1 1
1 - -
2 6
1 1 1- - -
2 6 24
1 1 1- - -
6 24 120
1 1 2 1 31--z+-z --z
2 10 120
Set of coeffs of P:
[
1 1 1
]1, 2' 10' 120
I Polynomial P (z) :
1 1 2 1 31+-z+-z +-z
2 10 120
Fade approximant of f with order (3,3) is:
1 1 2 1 31+-z+-z +-z
2 10 120
1 1 2 1 31--z+-z --z
2 10 120
The value of f(z) at 1.00000000 is: 2.71828182
The value of (P/Q) (z) at 1.00000000 is 2.71830985
The error of approximants: .00002803
> #THE SECOND FUNCTION IS SIN FUNCTION
PadeApproximant(sin(z) ,1,5,evalf(Pi/4»;
PadeApproximant(sin(z) ,3,3,evalf(Pi/4»;
THISIS A PROGRAM USED TO CALCULATE CLASSICAL PADE APPROXIMANT OF AF\
UNCTION
The function f(z) is:
sin(z)
The Taylor expand of f(z) is:
1 3 1 5 7
Z - - z +- z + O( z )
6 120
So that the cofficients(from 0 to 6) of Taylor expand of f(z) is:
-1 1
0,1,0,-,0, -,0
6 120
II This is sequence of numbers to form matrix for system of equations:
[1~0]
So that the matrix formed is:
[ 1~0 ]
The right of system of linear equation is:
[0]
Set of coeffs of Q:
[ 1, 0] .
Polynomial Q(z):
1
Set of coeffs of P:
page 7
[-1 1
]
0,1,0,-,0,-
6 120
Polynomial P(z):
1 3 1 5
Z--Z +-Z
6 120
Fade approximant of f with order (1,5) is:
The value of
The value of
The error of
1 3 1 5Z--Z +-z
6 120
f (z) at .78539816 is: .70710678
(p/Q) (z) at .78539816 is .70714304
approximants: .00003626
THISIS A PROGRAM USED TO CALCULATE CLASSICAL PADE APPROXIMANT OF AF\
UNCTION
The function f(z) is:
sineZ)
The Taylor expand of f(z) is:
1 3 1 5 7
Z - - Z +- Z + O( Z )6 120
So that the cofficients(from 0 to 6) of Taylor expand of f(z) lS:
-1 1
0,1,0,-,0, -,0
6 120
This is sequence of numbers to form matrix for system of equations:
[
-1 -1 -1 1
]
10-0-0-0-
"6"6"6"120
So that the matrix formed is:
Therightofsystemof linearequationis:
[
-1
]
0 -0
, 120'
Set of coeffs of Q:
[ 1,O'2~'O]
Polynomial Q (z) :
1 2
1 +-Z'
20
Set of coeffs of P:
[ 0, 1, 0, ~~]
page 8
-1
1 0 -
6
-1
0 - 0
6
-1 1- 0 -
6 120
Polynomial P(z):
7 3z--z
60
Fade approximant of f with order (3,3) is:
7 3z--z
60
1 21+-z
20
The value of f(z) at .78539816 is: .70710678
The value of (p/Q) (z) at .78539816 is .70706853
The error of approximants: .00003824
> #THE THIRD FUNCTION IS POWER FUNCTION
PadeApproximant(sqrt(l+z) ,1,1,1);
print(' jjjj-------------------------------
--') ;
PadeApproximant(sqrt(l+z) ,3,3,1);
THIS IS A PROGRAM USED TO CALCULATE CLASSICAL PADE APPROXIMANT OF AA
UNCTION
The function f(z) is:
,JI;;
The Taylor expand of f(z) is:
1 1 2 1 3 5 4 5
1 + - z - - z + - z - - z + D( z )2 8 16 128
So that the cofficients(from 0 to 2) of Taylor expand of f(z) is:
1 -1
1 --
, 2' 8
This is sequence of numbers to form matrix for system of equations:
[;]
So that the matrix formed is:
[
1
2 ]
Set of coeffs of Q:
The right of system of linear equation is:
[t
[ 1, ~]
Polynomial Q (z) :
I Set of coeffs of P:
'1
1 +-z
4
page 9
Polynomial P(z):
[ 1,~]
3
1+-z
4
Pade approximant of f with order (1,1) is:
3
1 +-z
4
1
1+-z
4
f(z) at 1.00000000 is: 1.41421356
(p/Q) (z) at 1.00000000 is 1.40000000
approximants: .01421356
The value of
The value of
The error of
////---------------------------------
THISISA PROGRAMUSEDTOCALCULATECLASSICALPADEAPPROXIMANTOFAF\
UNCTION
The function f(z) is:
[1;;
The Taylor expand of f(z) is:
1 1 2 1 3 5 4 7 5 21 6 33 7 429 8 9
1 +-z--z +-z --z +-z --z +-z --z +O(z)
2 8 16 128 256 1024 2048 32768
So that the cofficients(from 0 to 6) of Taylor expandof f(z) is:
1 -1 1 -5 7 -21
1------
, 2' 8' 16'128'256'1024
This is sequence of numbers to form matrix for system of equations:
[
1 -1 1 -1 1 -5 1 -5 7
]2' 8' 16' 8' 16'128'16'128'256
So that the matrix formed is:
1
2
-1
8
1
16
-1
8
1
16
-5
128
1
16
-5
128
7
256
Therightof systemof linearequationis:
[
5 -7 21
]128'256'1024
Set of coeffs of Q:
Polynomial Q(z):
[
5} 1
]1,4'8'64
page10
5 3 2 1 31+-z+-z +-z
4 8 64
Set of coeffs of P:
[
7 7 7
]1, 4' 8' 64
Polynomial P(z):
7 7 2 7 31+-z+-z +-z
4 8 64
Fade approximant of f with order (3,3) is:
7 7 2 7 31+-z+-z +-z
4 8 64
5 3 2 1 31+-z+-z +-z
4 8 64
The value of f(z) at 1.00000000 is: 1.41421356
The value of (p/Q) (z) at 1. 00000000 is 1. 41420118
The error of approximants: .00001237
> #THE FOURTH FUNCTION IS RATIONAL FUNCTION
PadeApproximant((z+1)/(zA2+1) ,1,1,0.5);
print(' ////-------------------------------
--') ;
PadeApproximant((z+1)/(zA2+1) ,2,1,0.5);
THISIS A PROGRAM USED TO CALCULA TE CLASSICAL PADE APPROXIMANT OF AF\
UNCTION
The function f(z) is:
l+z
i+ 1
The Taylor expand of f(z) is:
2 3
1 + z - z + O(Z )
So that the cofficients(from 0 to 2) of Taylor expand of f(z) is:
1, 1, -1
This is sequence of numbers to form matrix for system of equations:
[ 1]
So that the matrix formed is:
[ 1]
The right of system of linear equation is:
I
I Set of coeffs of Q:
II
[ 1]
[ 1, 1]
Polynomial Q (z) :
1+z
I Set of coeffs of P:
[ 1, 2]
Polynomial P (z) :
1+2z
Page 11
1+2z
1+z
z
z
////---------------------------------
THISIS A PROGRAM USED TO CALCULATE CLASSICAL PADE APPROXIMANT OF API
UNCTION
T z
l+z
l+ 1
2 3 4
1+z - z - z +O(z )
3
1,1,-1,-1
[1,1,1,-1]
[~ -~]
Theright(ifsystemof linearequationis:
[ 1,1]
[1, 0, 1]
()
l+ 1
[ 1, 1]
()
l+z
Pa ea 1'0imantoff ithorer IS:
l+z
l+ 1
( ) 0000000 120000000
( )() 0000000 120000000
0 00000000
#THIS IS PROGRAMUSE CLASSICAL PADE APPROXIMATION TO DO
APPROXIMATE CALCULATION FOR SOME SPECIAL QUANTITIES (e & Pi,
ONLY GET RESULT NOT EXPLAIN OBVIOU$LY!)
PadeApproximantTB := proc(f,m,n)
option operator;
local taylorArray,i,coefficients,seqCoeffsTaylor,seqMatrix1,
seqMatrix2,j,k,t,distanceMN, padeMatrix,
detPadeMatrix,rightOfSystem,Q,P, sQ, setRootQ1,setRootQ, sP,
Page12
setRootP, a, b, c ,r, temp,fQ, last;
taylorArray := taylor(f, z =0, n+m+1);
for i from 0 to n+m do
coefficients[i] := coeff(taylorArray,z,i);
od;
seqCoeffsTaylor:= seq(coefficients[i],i=O..m+n);
temp := 0;
for i from 1 to n+m+1do
temp:=temp + seqCoeffsTaylor[i]*zA(i-1);
od;
distanceMN:= m-n;
if (distanceMN -1 > 0) then
for j from (1 - distanceMN)
coefficients[j] := 0;
by 1 to -1 do
od;
fi;
for t from 0 by 1 to m-1 do
seqMatrix1[t] := seq(coefficients[k],k =
1-distanceMN+t. .n+t);
od;
seqMatrix2 := [seq(seqMatrix1[t],t = O..m-1)];
nops(seqMatrix2) ;
padeMatrix := linalg[matrix] (m,m,seqMatrix2);
with (linalg) ;
detPadeMatrix :=
det(padeMatrix) ;
rightOfSystem := vector([seq(-1*coefficients[1],1=n+1..n+m)]);
sQ := linsolve(padeMatrix, rightOfSystem);
setRootQ1[m+1] := 1;
for i from 1 to m do
setRootQ1[i] := sQ[i];
od;
for i from 1 to m+1 do
setRootQ[i] := setRootQ1[m+2-i];
od;
setRootQ :=[seq(setRootQ[i],i=1..m+1)];
Q :=0;
for i from 1 to m+1do
Q := Q + setRootQ[i]*zA(i-1);
od;
fQ:=expand(temp*Q) ;
for i from 0 to n do
sp [i ] : = coeff (fQ, z, i) ;
od;
setRootP := [seq(sP[i],i=O..n)];
P:=O;
Page 13
for i from 1 to n+1 do
p := P + setRootP[i] * zA(i-1};
od;
p/Q;
end;
PadeApproximantTB:=proc(f,m,n)
localtaylorArray,i coefficients,eqCoeffsTaylor,seqMatrixl,seqMatrix2,j,k,t,distanceMN,
padeMatrix,detPadeMatrix,rightOfSystem,Q,P, sQ,setRootQl,setRootQ,sF,setRootP,a,b,
c,r, temp,jQ,last;
optionoperator;
taylorArray:=taylor(f,z=0,n+m+1);
for i from0ton +mdocoefficients[i]:=coeff(taylorArrcry,z, i) od;
seqCoeffsTaylor:=seq(coefficients[i],i =0" n+m);
temp:=0;
for i ton +m+1dotemp:=temp+seqCoeffsTcrylor[i ]*zt\(i-I) od;
distanceMN:=m- n;
if 0 <distanceMN- 1thenforj from1- distanceMNto-1docoefficientsU]:=0odfi;
fortfrom0tom- 1do
seqMatrixl[t]:=seq(coefficients[k],= I-distanceMN+t.. n+t)
od;
seqMatrix2:=[seq(seqMatrixl[t],t=0..m- 1)];
nops(seqMatrix2);
padeMatrix:=linalg[matrix](m,m,seqMatrix2);
withelinalg);
detPadeMatrix:=det(padeMatrix);
rightOfSystem:=vector([seq(-coefficients[I],1=n+1..n+m)]);
sQ :=linsolve(padeMatrix,ightOfSystem);
setRootQl[m+1] :=1;
for i tomdosetRootQl[i]:=sQ[i] od;
fori tom+1dosetRootQ[i]:=setRootQl[m+2- i] od;
setRootQ:=[seq(setRootQ[i],i =1.. m+1)];
Q :=0;
fori tom+1doQ :=Q+setRootQ[i]*zt\(i- 1)od;
fQ :=expand(temp*Q);
for i from0ton dosP[i] :=coeff(fQ,z,i) od;
setRootP:=[seq(sP[i], i =0.. n)];
P :=0;
for i ton +1doP :=P +setRootP[i]*zt\(i- 1)od;
P/Q
page14
c end
> printf('TEST FOR USING PADE APPROXIMANT TO CALCULATE NUMBER E
(%.10f)\n' ,evalf(exp(l»);
printf('Order\t\t\t\tApproximant\t\t\t\t\t\t\t
for i from 1 to 6 do
printf(' (%d,%d)\t\t\t\t%.10f\t\t\t\t\t%.10f',i,i,evalf(subs(z=1,
PadeApproximantTB(exp(z) ,i,i,l») ,evalf(subs(z=l,PadeApproximant
TB (exp ( z) , i , i , 1) ) - exp ( 1) ) ) ;
printf ( '\n' ) ;
print(PadeApproximantTB(exp(z),i,i,l» ;
oct;
TEST FOR USING PADE APPROXIMANTTO CALCULATENUMBERE (2.7182818280)
Order Approximant Error
(1,1) 3.0000000000 .2817181720
1 1 2 1 31+-z+-z +-z
2 10 120
1 1 2 1 3l--z+-z --z
2 10 120
-.0000001100
1321314
1+-z+-z +-z +-z
2 28 84 1680
1321314
l--z+-z --z +-z
2 28 84 1680
.0000000010
1 1 2 1 3 1 4 1 51+-z+-z +-z +-z +-z
2 9 72 1008 30240
1 1 2 1 3 1 4 1 5l--z+-z --z +-z --z
2 9 72 1008 30240
2.7182818280 0.0000000000
152131415 16
1+-z+-z +-z +-z + :--z + z
2 44 66 792 15840 665280
152131415 16
l--z+-z --z +-z --z + z
2 44 66 792 15840 665280
I> printf('TEST FOR USING PADE APPROXIMANT TO CALCULATE
Page 15
(2,2) 2.7142857140
(3,3) 2.7183098590
(4,4) 2.7182817180
(5,5) 2.7182818290
(6,6)
Error\n') ;
1
1+-z
2
1
l--z
2
-.0039961140
1 1 21+-z+-z
2 12
1 1 2l--z+-z
2 12
.0000280310
NUMBER Pi
(%.10f)\n',evalf(arctan(1)*4» ;
printf('Order\t\t\t\tApproximant\t\t\t\t\t\t\t
for i from 1 to 5 do
printf(' (%d,%d)\t\t\t\t%.10f\t\t\t\t\t%.10f',i,i,evalf(subs(z=1,
PadeApproximantTB(arctan(z) ,i,i»)*4,evalf(subs(z=1,PadeApproxim
antTB(arctan(z) ,i,i» -arctan(1» *4);
printf ( '\n' ) ;
print(PadeApproximantTB(arctan(z) ,i,i»;
oct;
TEST FOR USING PADE APPROXIMANTTO CALCULATENUMBERPi (3.1415926540)
Order Approximant Error
(1,1) 4.0000000000 .8584073460
Error\n') ;
(2,2) 3.0000000000
z
-.1415926540
z
1 21+-z
3
(3,3) 3.1666666670 .0250740128
(4,4) 3.1372549020
4 3z+-z
15
3 21+-z
5
-.0043377520
11 3z+-z
21
(5,5) 3.1423423420
6 2 3 41+-z +-z
7 35
.0007496884
7 3 64 5z+-z +-z
9 945
10 2 5 41+-z +-z
9 21
'> #Integral FUNCTION
Integral:=proc(f,omega)
option operator;
local setRootOmega, i, total Integral, temp;
readlib(residue) ;
setRootOmega1 := {solve(omega)};
for i from 1 to nops(setRootOmega1) do
setRootOmega[i] :=evalf(setRootOmega1[i]);
oct;
totalIntegral:= 0;
temp := f/omega;
for i from 1 to nops(setRootOmega1) do
totalIntegral:=totalIntegral + 2*Pi*I*residue(temp,
page 16
z=setRootOmega[i]) ;
od;
normal (evalf(totalIntegral» ;
#totalIntegral;
end;
Warning, 'setRootOmegal' is implicitly declared local
Integral:=proc(f,co)
localsetRootOmega,i, totalIntegral,temp,setRootOmegal;
optionoperator;
readlib(residue);
setRootOmegal:={solve(co)};
for i tonops(setRootOmegal)dosetRootOmega[i] :=evalf(setRootOmegal[i] ) od;
totalIntegral:=0;
temp:=i/ co;
for i tonops(setRootOmegal)do
totalIntegral:=totalIntegral+2*I*rc*residue(t mp,z=setRootOmega[i])
od;
normal(evalf(totalIntegral))
Lend
r> #PadeApproximant FUNCTION
PadeApproximantK := proc(f,m,n,omega,value)
option operator;
local seqIntegral,i,t, seqMatrix1, seqMatrix2, padeMatrix, Q,k,
setRootQ1, setRootQ, sQ, rightOfSystem, setRootP, setRootP1, P,
t1, t2 ;
print('THIS IS A PROGRAMUSED TO CALCULATE CLASSICAL PADE
APPROXIMANT OF AFUNCTION');
printf('\n\n') ;
printf('\tThe function f(z) is:',f);
print(f) ;
seqIntegral := [seq(evalf(Integral(f*zAi, omega»,
i=O..2*m-1)];
print (seqIntegral) ;
for t from 1 to m do
seqMatrix1[t] := seq(seqIntegral[k+t] ,k = 1. .m);
od;
seqMatrix2 := [seq(seqMatrix1[t],t = 1..m)];
printf('\tThis is sequence of numbers to form
of equations: ');
print (seqMatrix2) ;
matrix for system
Page17
nops(seqMatrix2) ;
padeMatrix := linalg[matrix] (m,m,seqMatrix2);
printf('\tSo that the matrix formed is: ');
print (padeMatrix) ;
with (linalg) ;
rightOfSystem := vector([seq(-1*seqlntegral[1],1=1..m)]);
printf('The right of system of linear equation is: ');
print (rightOfSystem) ;
sQ := linsolve(padeMatrix, rightOfSystem);
for i from 1 to nops(sQ) do
print(whattype(sQ[i]» ;
cd;
print (sQ) ;
setRootQ1[0] :=1;
for i from 1 to m do
setRootQ1[i] := sQ[i];
cd;
setRootQ :=[seq(setRootQ1[i],i=0..m)];
printf('\tSet of coeffs of Q: ');
print (setRootQ) ;
Q :=0;
for i from 1 to m+1 do
Q := Q + setRootQ[i]*zA(i-1);
cd;
printf('\tPolynomial Q(z) :');
print(Q) ;
setRootP1 := [seq(Integral(Q*f*zAi,omega) ,i=m..m+n)];
print(setRootP1);
setRootP:=[seq(setRootP1[n+2-i]/(2*Pi*I) ,i=1. .n+1)];
printf('\tSet of coeffs of P: ');
print (setRootP) ;
P :=0;
for i from 1 to n+1 do
P := P + setRootP[i]*zA(i-1);
cd;
printf('\tPolynomial P(z) :');
print(P) ;
printf('\tPade approximant of
print(normal(evalf(P/Q») ;
f with order (%d,%d) is: ',m,n);
t1:=evalf(subs(z=value,f» ;
t2:=evalf(subs(z=value,P/Q» ;
printf('The value of f(z) at %f is: %f \n',value,t1);
printf('The value of P(z)/Q(z) at %f is: %a \n',value,t2);
printf('The error of approximants: %.8f', abs(t1-t2»;
end;
Page 18
PadeApproximantK:=proc(f,m,n,0),value)
localseqIntegral,i, t,seqMatrix1,seqMatrix2,padeMatrix,Q,k,setRootQ1,setRootQ,sQ,
rightOfSystem,setRootP,setRootP1,P, t1,t2;
optionoperator;
print('THISIS A PROGRAMUSEDTOCALCULATECLASSICBLPADEAPPROXIMA\
NT OFAFUNCTION');
printf('Inln');
printf('liThefunctionf(z) is:',f);
print(f);
seqIntegral:=[seq(evalf(Integral(f*zl\i,0)), i =0" 2*m- 1)];
print(seqIntegral);
for t to m doseqMatrix1[t] :=seq(seqIntegral[k +t], k = 1 .. m) od;
seqMatrix2:=[seq(seqMatrix1[t],= 1.. m)];
printtr:'ItThisissequenceofnumberstoformmatrixfor systemofequations:');
print(seqMatrix2);
nops(seqMatrix2);
padeMatrix:=linalg[matrix](m,m,seqMatrix2);
printf('ItSothatthematrixformedis: ');
print(padeMatrix);
withelinalg);
rightOfSystem:=vector([seq(-seqIntegral[I], 1=1" m)]);
printf('Therightofsystemoflinearequationis: ');
print(rightOfSystem);
sQ :=linsolve(padeMatrix,rightOfSystem);
for i tonops(sQ) doprint(whattype(sQ[i] )) od;
print(sQ);
setRootQ1[0]:=1;
for i tomdosetRootQ1[i]:=sQ[i] od;
setRootQ:=[seq(setRootQ1[i],=0.. m)];
printf('ItSetofcoeffsofQ: ');
print(setRootQ);
Q '=0', ,
for i tom+1doQ :=Q +setRootQ[i]*zl\(i- 1)od;
printtr:'ItPolynomialQ(z):');
print(Q);
setRootP1:=[seq(Integral(Q*f*zl\i,0),i =m'" n+m)];
print(setRootP1);
setRootP:=[seq(- 1/ 2*I*setRootPl[n +2- i] / n, i =1..n+1)];
printf('ItSetofcoeffsofP: ');
page19
print(setRootP);
P :=0;
fori ton+1doP :=P +setRootP[i]*zJ\(i- 1)od;
printf('ItPolynomialP(z):');
print(P);
print£{'ItPadeapproximantoffwithorder(%d,%d)is: " m,n);
print(normal(evalf(P / Q) ));
t1:=evalf(subs(z=value,f));
t2:=evalf(subs(z=value,P / Q));
printf('Thevalueoff(z)at%fis: %fIn" value,t1);
printf('ThevalueofP(z)/Q(z)at %fis: %a In" value,t2);
i printf('Theerrorofapproximants:%.8j', abs(tl - t2))
lend
r> PadeApproximantK(exp(z+l) ,2,1,zA4-l,O);
#IN CASE THE OMEGA FUNCTION: zAn. WE HAVE THE CLASSICAL PADE
APPROXIMANT ION
PadeApproximantK(exp(z) ,1,2,zA4,1);
THISISA PROGRAMUSEDTOCALCULATECLASSICALPADEAPPROXIMANTOFAF\
UNCTION
The function f(z) is:
e(z+l)
[2.8499672801,8.563460414I, 17.22184443I, 17.79153661I]
II This is sequence of numbers to form matrix for system of equations:
[8.563460414I, 17.22184443I, 17.22184443I, 17.79153661I]
SO that the matrix formed is:
[
8.563460414I 17.22184443I
]17.22184443I 17.79153661I
II The right of system of linear equation is:
[-2.849967280I, -8.563460414I]
float
[-.6709426697,.1681366781]
Set of coeffs of Q:
[1, -.6709426697,.1681366781]
Polynomial Q(z):
1- .6709426697z+.1681366781 i
[5.7639273881,17.319203731]
Set of coeffs of P:
[ 8.659~OI865.2.881:63694]
Polynomial P(z):
Page 20
8.659601865 z
+ 2.881963694-
n n
Fade approximant of f with order (2,1) is:
The value of
The value of
The error of
2.756436883+.9173575352z
1. - .6709426697Z +.1681366781i
f(z) at 0 is: 2.718281
P(z)/Q(z) at 0 is: 2.756436883
approximants: .03815505
THISISA PROGRAMUSEDTOCALCULATECLASSICALPADEAPPROXIMANTOFAA
UNCTION
The function f(z) is:
ze
[1.0471975511,3.1415926541]
This is sequence of numbers to form matrix for system of equations:
[3.1415926541]
So that the matrix formed is:
[3.1415926541]
The right of system of linear equation is:
[ -1.0471975511]
float
[ -.3333333332]
Set of coeffs of Q:
[1, -.3333333332]
Polynomial Q(z):
1- .3333333332 Z
Set of coeffs of
[1.0471975521,4.1887902071,6.2831853081]
P:
[
3.141592654,2.094395104,.5235987760
]n n n
I PolynomialP(z):
. 3.141592654 z i
I +2.094395104- +.5235987760-n n n
Fade approximant of f with order (1,2) is:
.9999999999+ .6666666670Z + .1666666668i
-1. +.3333333332Z
The value of f(z) at 1 is: 2.718281
The value of P(z)/Q(z) at 1 is: 2.750000000
The error of approximants: .03171817
]
> PadeApproximantK(sqrt(z+2) ,1,2,ZA4-1,-1);
PadeApproximantK(sqrt(z+2) ,2,1,ZA4-1,-1);
PadeApproximantK(sqrt(z+2) ,1,2,ZA4-1,O);
I PadeApproximantK(sqrt(z+2) ,2,1,ZA4-1,O);
I
I THISISA PROGRAMUSEDTOCALCULATECLASSICALPADEAPPROXIMANTOFAA
page 21
UNCTION
The function f(z) is:
0
[.0705747922 I, -.280611096 I]
This is sequence of numbers to form matrix for system of equations:
[ -.280611096 I]
So that the matrix formed is:
[-.2806110961]
The right of system of linear equation is:
[ -.0705747922 I]
float
[ .2515039256]
Set of coeffs of Q:
[1, .2515039256]
Polynomial Q (z) :
1 + .2515039256 z
[.280049163 I, 4.458461306 I, 8.881351683 I]
Set of coeffs of P:
[
4.440675842, 2.229230653, .1400245815
]n n n
Polynomial P(z):
4.440675842 z i
+ 2.229230653 - + .1400245815 -
n n n
Pade approximant of f with order (1,2) is:
1.413511021 + .7095861552 z +.04457120859 i
1. + .2515039256 z
The value of f(z) at -1 is: 1
The value of P(z)/Q(z) at -1 is: 1.000000001
The error of approximants: .00000000
THISISA PROGRAMUSEDTOCALCULATECLASSICALPADEAPPROXIMANTOFAA
UNCTION
The function f(z) is:
0
[.0705747922I, -.2806110961,2.229230648I, 8.863601844I]
This is sequence of numbers to form matrix for system of equations:
[-.2806110961,2.2292306481,2.2292306481,8.863601844I]
SO that the matrix formed is:
[
-.280611096I 2.229230648I
]2.229230648I 8.863601844I
The right of system of linear equation is:
[ -.0705747922I, .280611096I]
float
Page 22
j;~m2
[.07057479221,-.2806110961,2.2292306481,8.863601844I]
This is sequence of numbers to form matrix for system of equations:
[-.280611096I, 2.229230648I, 2.229230648I, 8.863601844I]
So tho. the matr orIn.ed is:
[
-.280611096I 2.229230648I
J2.229230648I 8.863601844I
i The r'i of system of linear equation is:
[-.0705747922I, .280611096I]
float
[.1677812797,-.01053883924]
Set 0 coeffs of Q:
[1, .1677812797,-.01053883924]
Pol Q (z) :
1+.1677812797z - .01053883924i
[3.715633335I, 8.878400291I]
Set of coeffs of P:
[ 4.439~OO146, L857~16668]
Polynomial P(z):
4.439200146 z
+1.857816668-
TC TC
Pade approximant of f with order (2,1) is:
1.413041293+.5913614120z
-1. - .1677812797z+ .01053883924i
The value of f(z) at -1 is: 1
'I'he value of P(z)!Q(z) at -1 is: .9999999999
The error of approximants: .00000000
THIS IS A PROGRAl'vfUSED TO CALCULATE CLASSICAL PADE APPROXLvfANTOF AFU\
NCTION
The function f(z) is:
~z+2
[.0705747922I, -.280611096I]
This is sequence of numbers to form matrix for system of
[-.280611096I]
So that the matrix formed is:
The r:
[-.280611096I]
t of system of linear equation is:
[-.0705747922I]
float
[.2515039256]
Set of coeffs of Q:
[1,.2515039256]
Q (z) :
Page 23
1+.2515039256z
[.2800491631,4.4584613061,8.8813516831]
Set of coeffs of
[
4.440675842,.229230653,.1400245815]n n n
p (z) :
4.440675842 z i
+2.229230653-+ .1400245815-
n n n
Pade approximant of f with order (1,2) is:
1.413511021+.7095861552z +.04457120859
1.+.2515039256z
The value of f(z) at 0 is: 1.414213
The value of P(z) (z) at 0 is: 1.413511021
The error of' armrox!mants: . 0 70254
I TIlLS'IS A PROGRAA1USED TO CALCULATE CLASSICAL PADE APPROXlJ\;fANTOF AFU\
NCTION
The Yunction f(z) is:
~z+2
[.07057479221,-.280611096!,2.229230648!, 8.8636018441]
This is sequence of numbers to form matrix for system of eQuations:
[-.2806110961,2.2292306481,2.229230648J, 8.8636018441]
So that the matrix Yorrned is:
[
-.28061109612.229230648!
J2.22923064818.8636018441
The right of system of linear equaLian is:
[-.0705747922J, .280611096!]
float
[.1677812797,-'(H053883924]
Set of caeffs of Q:
[1, .1677812797,-.01053883924]
Pol"rnamial Q (z) :
1+.1677812797z - .01053883924i
[3.715633335J, 8.878400291!]
Set of coeffs of P:
[ 4.439~OOI46,1.857:16668]
Pol 2 (z) :
4.439200146+1.857816668~n
Pade approximant of f with order (2,1) is:
1.413041293+.5913614120z
-1. - .1677812797z + .01053883924i
The value of f(z) at 0 is: 1.414213
i The value of 2(z)/Q(z) at 0 is: 1.413041293
Page 24