CẤU TRÚC CỦA V - THỨ TỰ VÀ ĐỊNH LÝ KIỂU KRUSKAL- KATONA
Trần Ngọc Danh
Trang nhan đề
Mục lục
Bảng ký hiệu
Phần mở đầu
Chương_1: Tổng quan về K- POSET.
Chương_2: Định lý kiểu KK.
Chương_3: Các bài toán về biểu diễn và định lý kiểu LOVASZ.
Chương_4: Cấu trúc của thứ tự V và các bài tóa mở.
Kết luận
Danh mục các công trình đã công bố của tác giả
Tài liệu tham khảo
Mu.e Lu.e
Chl1dng 1. Tang quaD v~ K-poset
1.1D6inet1iehsitv~K-poset .
1.2Caekhaini~meCiban .
1.3DinhlyKK .
1.4 Dinhly Clements-Linstrom. . . . . . . . . . . . . . . . . . . . . . . .
1.5 Cae va:nd~ d~t ra trong lu~n an . . . . . . .
Chl1dng 2. Dinh If ki~u KK
2.1Kyhi~u . .
2.2 Thu tl,tBG la kh6ng thleh heJp . . . . . . . . . . . .
2.3K-posefeuaca.evectCiBool
Chl1dng 3. B~ti tmln bi~u di~n va dinh If ki~u Lovasz
3.1 Cae bai toan v~ bi~u di~n tren B . . . . . . . . . . . . .
3.2Dinhlyki~uLovasz
Chl1dng 4. CAll true eua thl1 tl! V va cae bai toaD md
4.1Ca:utrueeuathutl,tV .
4.2Caebaitoanv~bi~udi~n .
4.3CaebaitoanmCt
Ke't lu~n
Danh mve eong trlnh dii eong b6 eua tae giii
Tai li~u tham khiio
20 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1939 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Luận án Cấu trúc của V - Thứ tự và định lý kiểu kruskal- katona, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ChttO'ng2. Djnh if ki~u KK 16
Chudng 2.
, ;!,
DINH LY KIEV KK.
Trongchl1a'ngnaychungtoisechungminhr~ngt~ph,pB cacvecta'
Boolla m(>tK-poset,tuc 130chungminhdinhly ki~uKK trenB. Cac
k~tquacuachungtoi trongchl1a'ngnaydadl1'Ccongb6trong[5],[6]
va[7].
2.1 Ky hi~u.
GQi IN 130t~ph,pcacs6nguyenkhongam. V6i n E IN thl ky hi~u
V (n) d~chi t~ph,pcacvecta'a =ala2. . .am ai E IN:
V(n) ={ala2" .an: ai E IN} vdi V(O) ={0}.
Tl1a'ngtlJ, B(n) 130t~ph,pcacvecta'Bool n chi~u:
B(n) ={ala2...an: ai=0 hayai =1}v6iB(O)={0}.
TacoB(n)C V(n).
Cac vecta'sedl1'Cth~hi~nb~ngchi!co net d~mva chi!thl1<Jngse
dl1'Cdungd~chi cacthanhph~ncuano, ching h~nnhl1:
a - a* - a* * *- ala2' . .an, - la2'" an,
Choa =ala2. . .an E V(n), n >1.
. Va 130s6 nguyen xac dinh nhl1 sail
{
1 n~ual <... <an
Va = n n~u an-I> an
h n~uah-l >ahvaah< .. . <an
Chl1dng2. Djnh if ki~uKK 17
. 6iala vecta'trongV(n -1) codU'Q'ctu a b~ngcachb6thanhphan
thui cuaa,tucla
{
61a = a2'" an,
6na = a1'" an-I,
6ia = a1'" ai-1 ai+1. . . an, 1<i <n.
. a*, wa, j.La,va Aa dU'Q'Cdinh nghianhU'sail
a* - 6hav6ih =Va
a1+a2 +. . . +an
max{ai : 1 <i <n}
s6ca,ci th6aai =j.La
mill{ai : 1 <i <n}.
wa -
j.La =
va -
Aa -
Ta gQiwa la trQngIU'Q'ngcuaa.
. Vecta'zerocua V (n) la vecta'co trQngIU'Q'ngb~ng0 va dU'Q'Cky
hi~uZn (v6i Zo=0).
. Vecta'cotrQngIU'Q'ngn trongB(n) dU'Q'cvi~tla gn' V~ygn=1. . .1
(v6i go=0)vagn la vecta'cotrQngIU'Q'ng16nnha:tcua B (n).
. N~ua E B(n) vaa =I gnthl a* = 6ka= 6hav6ih = Va va
k = max{i:ai = O}lienta coth~giaS11Va =k khi tlnha*, a =I gn-
. ad, dav6id E IN IanIU'qtla cacvecta'saildaycuaV(n+1)
ad =a1. . .and, da = da1. . .an-
Ngoaifa, v6iA c V(n) thltavi~t
A*={a*:aEA}.
Ai:d= {a1a2. . .anE A : ai = d}.
Ad={ad:a E A}c V(n+1).
dA={da:a E A}c V(n+1).
V~yv6iA C B(n), n >2thlA coth~vi~t
A =MO+N1 v6i M, N c B(n - 1).
Chttdng2. Djnh 1f ki~uKK 18
. N~ua =al . . .apva b =b1... bqthl ab =al'" apb1. . .bq (v~y
ab =a n~uq=0vaab=b n~up =0).
. N~uA c V(p),B c V(q)thl
AB ={ab:a E A,bE B} c V(p+g).
. V6ia =al" .anvab =b1...bnla haivectO'khacnhaucuaV(n)
ta d~t
a(a,b) =min{i : ai =IbJ.
NhU'ta da bi~ttrong ChU'O'ng1,V =U v(n) la mQtposetco hc;wg
n2:0
v6imucthun la V(n), bongcuaa E V(n) la L1a={Jja: 1<j <n}
vabongcuaA C V(n) la L1A=U L1a.TU'O'ngtlJ choB =U B(n).
aEA n2:0
2.2 Thti t1!BG la khongthich hQ'p
NhU'danoidphantren,nam1992Bezrukov aGronauc6ngb6bai
baa"A Kruskal-Katonatypetheorem"[12],trongdohQchor~ngdtnh
11ki~uKK choposetcacvectO'nguyenkh6ngamdadU'Q'cchungminh
(vadodobaitoanchovectO'BoolclingdU'Q'cgiaiquy~t).Chungt6ida
chiracaisaicuabaibaatrentrong[6].
BezrukovaGronaudadU'ara thli'tlJ tuy~nHnhsaildaymachung
t6igQila thli'tlJ BG.
2.2.1Dinh nghia. (Thu tlJ BG). Ta sap th1it'/!V(n) bangquing,p
nhusau:
Vdin =1 thiV(l) =IN auQ'csapt'/!nhien
0 <1<2<3<4<5<6<7<8<9...
Xetn >1vagidsu trenV(n - 1)aacoth1it,/!.
Choa, b fa hai vectacuaV(n) vdi a =al a2 . . .an=Ib = b1b2. . .bn-
D I'Jt h =max{i : ai = Aa})k =max{i : bi= Ab}. Ta vitt a <b ntu
(i) J1a< J1b)hol'Jc
Cht1dng2. Dinh1fki~uKK 19
(ii) l1a=I1bva6ha<6kbtrongV(n - I), hOlfC
(iii) l1a=I1bva6ha=6kbva wa <wb, hOlfc
(vi) l1a =I1b va 6ha=6kb va wa =wb vaaj > bj trongdo
j =a(a,b).
DinhnghiatrenvaVIdl,lsaildayduQ'ctrlchtit [12].
Vi dv.2.1. TrongV(3), 27ph~ntit d~utientheothut\1'BG tangd~n
la:
000,100,010,001,110,101,011,111,200,
020,002,210,201,021,211,120,102,012,
121,112,220,202,022,221,212,122,222.
Nhcicl;;Lir~ngn~uA c V(n) thl Ai:dla t~phQ'pt:it cacacvecta'cua
A cothanhph~nthui b~ngd.
2.2.2 Dinhnghia. Gia su trenV dO:comtjtth'lit7!tuytn t{nh,t'lic
la trenV(n), n > 1 dO:comtjtth'lit7!toanphlin. Vdi A c V(n), 99i
Ci(Ai:d)la IAi:dlvectadliu tiencuaV(n) cothankphlin th'lii bangd
vap=max{l1a:a E A}.
(i) Ph~nnenthui (i-compression)cuaA duqcdink nghfala
p
Ci(A) =U Ci(Ai:d)'
d=O
(ii) Ntu Ci(A) =A thi ta baoA co bi nend thanhph~nthti i
(i-compressed).
Vi dv. 2.2. Xet V(3) v6i thu t\1'BG. Cho A ={122,212,222}thl
A =A3:2 nenCi(A)g6m3vectO'd~utientrongthut\1'BG cothanhph~n
thu3 b~ng2. TheoVi dl,l2.1thl 3vectO'd~utien:iyla 002,102,012,
tuclaC3(A)={002,102,012}. .
Vi dv.2.3. Xet B(5) v6ithut\1'BG. Ta d9-t
~ = {00000,10000,01000,00100,00010,00001,11000}
G = {10001,01001,00101,00011}
1l = {10100,01100,01010,01001}.
Ch!1O'I1g2. Djnh If ki~uKK 20
V6i A =E uG thl CI(AI:O)g5rn8 veda'd~utiencuaB(5) cothanh
ph~nthunhatla 0vaCI(AI:I) g5rn3vecta'd~utiencothanhph~nthu
nhatla 1. V~yph~nlienthunhatcuaA la
CI(A) =CI(AI:O) U CI(AI:I) =E U H.
D~Y r~ng,trong VI d\l nay A bi lien (j thanh ph~nthu 5. Trong
[12],BezrukovaGronauchor~ngthutv BG lathlchhQ'ptrenV(n).
Chungtoidachirar~ngdi~unaykhongdungb~ngphanVId\lsail:
Phan vi d\l 1. XetV(3)v6ithutv BG vaA C V(3):
A = {000,100,010,001,110,101,011,111,200,210,201,211}.
C(A) la t~phQ'pIAI =12veda'd~utiencuaV(3)trongthutv BG
(xernVI d\l2.1)lien
C(A) ={OOO,100,010,001,110,101,011,111,200,020,002,210}.
Ta co
LlA ={DO,10,01,11,20,21}.
LlC(A) ={DO,10,01,11,20,02,21}.
V~yILlC(A)1= 7 > ILlA!=6 lienthutv BG la khongthIchhQ'p.
VI banthanthutv BG khongphaila thutv thIchhQ'plienbaibaa
[12]khongth~sUachila.Trongbaibaaay,BezrukovaGronauda
"chungrninh"vaSUd\lng"bE>d~"sail:
ILlCi(A)1<ILlAI, i =1 hayi =n ,VA C V(n).
Di~unaysai trenB(n) v6i i =1va saitrenV(n) v6i i =n,nhu
trongcaephanVId\l sail:
Phan vi d\l 2. ChoA ={122,212,222}c V(3)thl theoVi d\l2.2ta
coC3(A)={002,102,012}.Dodo
LlC3(A)= {DO,10,01,02,12}vaL1A= {12,21,22}.
Ch11O'Ilg2. Dinh if ki~uKK 21
V~y ILlC3(A)1=5>ILlAJ =3.
Phan vi dl,l 3. Xet B(5) vai thu tl! BG vaA =E uG C B(5) nhU'
trongV{dv 2.3.D~tM ={OOOO,1000,0100,0010,0001,1100}thl
LlA =M U {1001,0101,0011}
LlC1(A)= M U {1010,1001,0110,0101}
V~yILlC1(A)1=10> ILlAI =9.
SaiH1mcuaBezrukovaGronauchotha:yr~ngvi~cchungminhdinh
Iy ki~uKK kh6ngphaiIa di~udO'ngian.
2.3 K-poset cae vectd Bool
Trangph~nnay,ta sechungminhr~ngB Ia K-posetb~ngca,ch
chungminhr~ngthutl!V Iath{chqptrenB. Nh~cl<;1ir~ng(jdayta
giaSlrVa=max{i: ai =O}vaia E B(n), a =I- gn khi tlnh a*.
2.3.1Dinh nghia. (Thutl! V). Chaa vab la 2 vectakhdcnhaucua
B(n):a=ala2...an, b=b1b2...bn-Tavitta<bntu
(i) wa <wb) ha(jc
(ii) wa =wb vaai = 1>bi=0 vdi i = a(a,b).
V~yZn= 00.. .0 lavedO'nhonha:tvagn=11. . .11avedO'Iannha:t
cuaB(n). Ngoaifa, d~tB(n,k) ={aE B(n) :wa =k},0<k< n thl
taco
2.3.2B6 d~.Ntu a =minB(n,k) vab =maxB(n,k) thl
a =gkzn-k, b = zn-kgk (2.1)
ChUng minh. N~uk =0 hayk =n thl (2.1)la hi~nnhienlienta
chixet1 < k < n. Choc E B(n,k). N~uc =I- a thl coi nhonha:t,
1Ci =0 vai
i=a(a,c). Suyraa<c. V~ya=minB(n,k).
Ph~ncon l;;tichungminhtU'O'ngtl!.
ChttO'Ilg2. Djnh 1f ki~uKK 22
Vi d\l 2.4. Cacvecta'cilaB(4)dU'qcs~ptheothutlJ tangd~nnhU'sau
B(4): 0000,1000,0100,0010,0001,1100,1010,1001,
0110,0101,0011,1110,1101,1011,0111,1111.
Ta co1100=minB(4,2), 0011=maxB(4,2).
Tir dinh nghia,ta co ngayk~tquasail day:
2.3.3B6 d~. Vcfia E B(n) vax, Y E B(r) thi ax, ay, xa, ya ia
caevectaeuaB(n+r) vataco
x <y {:} ax <ay{:} xa <ya (2.2)
Nh~c19-ir~nga*= 8hav6ih = Va = max{i : ai = O}.
2.3.4B6 d~.VcfiaE B(n) taco
a*=max{Lla}=max{81a,...,8na} (2.3)
ChUng minh. N~uwa =n tUGla a =gn thl k~tquala hi~nnhien.
Coia =I- gnvachox =8ja Ella, a* =8hav6i h =Va =I- j. N~u
aj =1 thl VI wx < wa*lienx < a*. Ta chixet trU'Cfnghqpaj =0
vadodowx = wa*= wa. Dodinhnghiacilah , ta coj < h vata
coth~gia sir aj+l =1 (vI n~uaj =aj+l =0 thl 8ja =8j+la). Khi {£y
Xj =aj+l =1>aj =aj=0vaj =a(x,a*)lienx <a*.
V~ya =max{Lla}.O
2.3.5B6 d~. Vdia E B(n) taco
aO=min{bE B(n+1):b*=a}
Oa=max{bE B(n+ 1): b* =a}
(2.4)
(2.5)
Chll'ngminh. Coi b E B(n +1)saGchoa =8hb=b* v6i h =Vbva
tacoth~giasirh=max{i: bi=O}.
N~uh =n thl b =aOlientaxeth <n, dodobh=0vabh+l=1.
VI b* = a lienah = bh+l= 1 > bh= 0 vata cob > aO. V~y
aD=min{bE B(n+1):b*=a}.Ta dachungminh(2.4).
Cht1O'I1g2. Djnh If ki~uKK 23
Xet (2.5). D~tT =min{j : aj =1}vau =Ga. VI a =Jhb v6i
h =Vb nen T < h. N~uT =h thl bl =. . . =bh =0 nenb =u. N~u
T Ur =0vaT =a(u,b) nenb <u nghiala
u=Oa=max{bE B(n+1):b*=a}.O
2.3.6Bo de. Vdia, b E B(n) vaa =I- b taco
a <b =* a* <b*
a*<b* =* a <b (2.6)
ChUng minh. Ta bi~tr~nga* = Jha, b* = Jkb trongdo
h=max{i :ai=O},k =max{i:bi=O}.N~ub =gnthlb*=gn-lva
tacongayk~tquanentachixettrl1o-nghqpb =I- gn vadodowa*=wa
vawb*=wb.
N~uwa<wb thl a* <b* VI wa* <wb*. GiaSlrr~ngwa=wb thl
VIa bi=0v6ii =a(a,b). VI aj =bj v6i j <i va
wa=wbnencot >i saochoat=O.Vf).yh >i. Hi~n hienk >i. N~u
k =h hayk >i thl a(a*,b*) =i vaai=1>bi=0 nena*<b*. N~u
k=i thlbj=1,Vj >i vaaj=1,Vj >i, j =I-hnentacoa*=b*.
Bay gio-gia S11a* < b* thl wa =wa* <wb* =wb. N~uwa*<wb*
thl VI wa <wb nena <b. Ta xettrl1o-nghqpwa*=wb*. VI a*<b*
nenai =1> bi=0v6ii =a(a*,b*),vadodocot >i saochoat=O.
Mah =Va, k =VbvatheoB6d~2.3.4thla*=maxda, b* = maxdb
nenh > t > i vak > i. guyraai =ai, bi = binena(a,b) = i v6i
ai= 1>bi=0vadodoa <b.O
2.3.7Bo de. Vdia E B(n) vab =a-, c = a+}nghfala c -< a -< b.
Taco
b =
{
uO1grzp-1
gr+lzp-l
C =
{
zp+lgr-l
V 10zpgr
trongdo p,T co the la O.
ChUng minh. Chliyr~ngmQtvectC1a E B(n) comQttronghaid~ng
trong(2.7)ho~ctrong(2.8). VI (2.8)la h~quacua(2.7)nenta chi
..Ineu
n~u
a =u1zpgr
a =zpgr
a =grzp
a =vO1grzp
(2.7)
n~u
(2.8)..Ineu
Chl1O'ng2. Djnh 1f ki~uKK 24
c~nchungminh(2.7).N~ua =zpgrvaip >1vap+r =n thla la
vectO'Ian nh:itcotrQnghrQ'ngb~ngr lienb la vectO'd~utiencotrQng
hrQ'ngr + 1,dodob =gr+lzp-ItheoB6de2.3.2.NguQ'C19-i,a phaico
d9-nga =u1zpgrvai p > 1var >O.D;?tx =u01grzp-Itasechung
minha -<x tuc la x =b. Hi~nnhiena <x. Gia sucoy E B(n) saG
choa <y <x thlwx =wy =wa. Ta vi~ty duaid9-ngy =ef vai
dime =dimu. N~uco i saGcho ei >Ui ho;?cei <Ui thl Y <a ho;?c
y >x. Ca haitru0'nghQ'pdelivo H liene =u vatif (2.2)tasuyra
d =1zpgr <f <01grZp-I=h. N~uthanhphandaticuaf la 0thlta
co fl =6If < 19rzp-I =h' vaVIWfl= wh' lientheo(2.1)taphaico
f' =h' =>f =h =>y =x. N~uthanhph~nd~ucuaf la 1 thily lu~n
tuO'ngtv nhutrenta coy =a. V~ya y =x ho;?cy =a
liena -<x tuc la x =b.O
2.3.8Bo d~. ChoA c B(n). Ntu A to'm(JtIS thi LlA ciingto'm(Jt
IS va hO'nnila, ntu A =GO+HI thi
(i) G, H to'caeIS trongE(n-i).
(ii) LlA =G =A* ={a* : a E A} (2.9)
ChUngminh.(i) Chox <y vay E G, ta sechungminhx E G. D;?t
u =xO, v =yOthl VI y E G lienv E GOc A. Ta cou < v theo
(2.2).MaA lam9tIS vav E A lien u E A, tuc la xOE GOlienx E G.
ChungminhtuO'ngtv choH.
(ii) Hi~nnhienG c A* c LlA. Chox E LlA thl coa E A saGcho
x ELla. D;?tu =xOthl u* =x <a* lienu <a vaVIA la m9tIS lien
u E A. V~yx =u* E A*. HO'nnuaxOE GOlienx E G. Ta dachung
minhLlAc A*c GvadodoLlA=A* =G.O
2.3.9 Bo d~. ChoA to,m(JtIS cuaB(n), n >3 vdiA =GO +HI.
Ntu G =GoO+Gl1vaH =HoO+Hl1 thi
H c G va HIe Hoe GleG 0 (2.10)
ChUngminh. TheoB6de2.3.8thlG, H, Go,GI, Ho, HI delilaIS.
Vaix E H thlxl E HI c A vaVIxO<xl lienxOE A, tuclaxOE GO
lienx E G. Ta dachungminhHe G.
Chttcmg2. Dinh1fki~uKK 25
Bay gi0'ta chungminh Ho C GI. Cho x E Ho thl xO E H lien
x01 E HI C A. VI x10 < x01 lien
x01E A =;.x10E A =;.xl E G =;.x E GI.
Theoph~nd~uthlHI c HovaGI c Golien
HI C Ho C GI C Go.O
Vi d\l 2.5. ChoA =B(5)thlA =GO+HI vci'iGo, GI, Ho, HI nhU'
trongbimgsail
Bang2.1
Bangtrenchota th~ycaevectO'dU'Q'cs:iptheothli tlJ V cuaB(2)
trongGo,Gl1 Ho, HI, cuaB(3) trongG, H vacuaB(4)trongGO+H1.
Hemnua,Bang2.1clingchotath~y(2.10)dungvci'imQiIS trongB(4).
GI Go GO HI Ho HI
00 0000
10 1000
01 0100
00 0010
0001 00
11 1100
10 1010
1001 10
01 0110
0101 01
0011 00
11 1110
1101 11
1011 10
0111 01
1111 11
ChwJng2. Dinh1fki~uKK 26
2.3.10 Dinh Iy. Cho G, H to'IS cua B(n) ,n > 2 vdi H c G va
A = GO+HI. Ntu G = GoO +Gl1 vaH =HoO+Hl1 thi
LlA =
{
G n~uHo C Gl
GoO+ Ho1 lieU Gl c Ho
ChUng minh. VI G, H la nhilng IS cua B(n) lien thea B6 d~2.3.8
thl LlG = Go, LlH = Ho va VI H c G lien ta co
LlA = G U (LlG)OU H U (LlH)l
= G U GoOU Ho1
= GoOU Gl1 U Hol.
V~y n~uHo C Gl thl LlA = GoOU Gl1 = G va n~uGl
LlA = GoOU Hol.O
(2.11)
c Ho thl
2.3.11Dinh nghia. (i) Vietabitcuaa E B(n) duqc dink nghia to'- - - - /.
a= ala2...an val
- -
{
1 n~uai =0a. - ,
z 0 neu ai =1
(ii)PhlinbitcuaA C B(n) to'A ={a:a E A}.
Hi~nnhienIAI =IAI vataco
Ll(A)= LlA, ILl(A)1=ILlAJ (2.12)
2.3.12 Dinh If. Ntu h? thucLlC(X) c C(LlX) dungvdi m9itQ-Pcon
X cuaB(n - 1), n >2thitaco
I LlCn(A) I <ILlAI, VA c B(n) (2.13)
ChUngminh. V6iA = MO+N1 E B(n)thlCn(A)= GO +HI v6i
G = C(M), H =C(N). Thea(2.12)ta co ILl(A)1 = ILlAI = IL1AI.
B~ngeachthay A b6'iA n~uc~nta co th~gilt su INI < IMJ va da do
H = C(N) c G =C(M). Theagiathi~t,LlGc C(LlM), LlH c C(L1N)
lien ta sur fa
IL1GI <IL1MI, IL1HI<ILlNI.
Ngaai fa, (L1M)O+(L1N)lc L1Alien
IL1MI+IL1NI <IL1AI.
Cht1O'IIg2. Dinh if ki~uKK 27
Thea (2.11)thl
L1C(A) =
{
G n~uHoC G1
n GoO +Ho1 n~uG1C Ho
V~yn~uL1Cn(A)=G thl IL1Cn(A) I = IGI = 1M! <
L1Cn(A)=GoO+Ho1thl '
IL1Cn(A)1 = leal+IHol =IL1GI +IL1HI
< IL1MI +IL1NI
< IL1AI.O
IL1AI, con n~u
2.3.13Djnh nghia. Ta baoA c B(n) la binentungph~nhayPC
(partcompressed)ntu Cn(A)=A, nghialaA cod(}ngA =GO+HI
vdi G, H la nhiingIS cuaB(n - 1).
2.3.14Djnh nghia. G9i r la Uj,phqp caeveeta'cuaB(n) co d(}ng
uzp1vdi u =0hoq,cthanhphlin cu6/icuau la 1 va p > 1. Vdi
a =uzp1 E r ta a(j,tfa =u1zp'
(i) AnhX9d5n'ljJtit A c B(n) vaoB(n) auqc ainhnghianhusau
'ljJ(a)=
{
fa n~ua E r v~ fa rj.A
a lieu ngl1qcl;;tl
(ii) A c B(n) gQila 'ljJ-d6ng('ljJ-clased)n~u'ljJ(a)=a, Va E A
Nh~nxetding'ljJ(a)<a lien'ljJ"d~y"A v~ph{atrl1<1c(trangthuttJ
v), dadon~uA la ffi9tIS thlA la'ljJ-dong.
2.3.15Djnh If. Ntu A C B(n) la PC thi
L1'ljJ(A)c'ljJ(L1A) (2.14)
vadoao
1L1'ljJ(A) I < IL1AI (2.15)
ChUng minh. C~nchliyr~ng'ljJ(]v~tr<licua (2.14)la anhX;;tu A
vaaB(n)con'ljJ(]v~phailaanhX;;ttuL1AvaaB(n- 1).HO'nua,n~u
x E L1Avax ='ljJx thl x E 'ljJ(L1A).
Chttdng2. Djnh1fki~uKK 28
VI A la PC lienta coth~vi~tA =GO+H1vaiG, H lad,cIS
cuaB(n - 1).NhutrongchungminhcuaB6d~2.3.12,tacoth~giaS11
HcG.
Chox E Ll~(A)thlcob =~(a)E ~(A), a E A saGchox E Llb tuc
lax E Ll~(a).Ta sechungminhx E ~(LlA).N~ua E GOthl~(a)=a
lienx E Lla. D~tu =xOthlu <a. VI G la IS ta cou E GOlien
x E G va~(x)=x tuclax E ~(LlA).V~ytachic~nxeta E H1vai3
trudnghQ'p:a tj.r, a E r va"faE A, a E r va"fatj.r.
T rL1dnghqp 1. a tj.r.
Trudng hQ'pnay a co d 0, dimgr =r > 2va
b =~(a)=a lienx E LlA. N~ur > 3 hayx =6j(UZp)grthl 2 thanh
ph~ncu6icuax la 11lienx =~(x) E ~(LlA). Gia S11a =uzp11va
x =uzp1vaip >1.D~tc=u1zp1thl x E Llc. Hi~nnhienc <a E H1
vaVI A la PC lienc E H1. Suyra x =uZp1vau1zpd~u(j trongLlA va
VI v~yx =~(x)E ~(LlA). TrudnghQ'p1coth~duQ'ctomt&tnhusail
Bang2.2
TrL1dnghqp2. b =a =uzp1E r va"fa=u1zpE A.
Nh&cl<;1ir~ngthanhph~ncu6icuau la 1ho~cu =0vaVI~(a)=a lien
"fa = u1zpE A. Trudng hQ'pnay ta clingco ~(x) =x, Vx E LlA nhu
duQ'cth~hi~n(j Bang 2.3ma (j dongthu tu ta co "fX=v'llzp E LlA
VI b =v11zpE A. Controngdongcu6iclingta coa =wzr1zp1:::}
"fa= wzr11zpE A :::}w1zr1zpE A (vIA la PC vaw1zr1zp<"fa)lien
w1zrzpEllA.
a x Ly dox = (x) Ghi chi
uzpgr uzpgr-l IJinh nghiacua r >2
uzp11 u'll IJinh nghiacua r =2, u' E Ll(uzp)
uzp11 uzp1 c<aEA:::}cEA r - 2 c - u1z 1-, - p
:::}"fX= u1zpE LlA
ChltO'Ilg2. Djnhif ki~uKK 29
Bang 2.3
T rL/anghqp 3. a = uzplEr va b =ulzpfj. A.
Tn1C1nghqpnayta cox ='I/J(y)v6iy E L1Anhl1dl1qcth~hi~ntrong
bangsail
Bang 2.4
TrongBang2.4,(jdongdatitacox = 'I/J(X)neux E L1Avax = 'Ij;(y)
neux fj. L1A.
Phancu6iclingta phaichungminhla (2.15),nhl1ngh~thucnayla
hi~nnhienVI I'I/J(L1A) I =I L1AI.
2.3.16 B6 d~. Cho A =GO+HI c B(n) vdiA to'PC va H c G thi
L1A=A* = {a* : a E A} (2.16)
ChUng minh. Do A* c L1Anenta chungminh chi~ungl1qcl(;1i.VI A
la PC nenG, H lanhungIS cuaB(n - 1).V6ix E L1Athl coa E A
saGchox E L1a,tuclax =6jav6imotj vax <a*.
Gia S11a EGO. Dq.tc =xOthlc <a*O=a nenc E GOc A VIA la
PC. V~yx= c* E A*.
a x Ly dox = 'I/J(x) Chi ch'li
uzpl uzp Dinh nghiacua'I/J p>l
uOl ul Dinh nghiacua 'I/J p=l
uzpl uzp-Il Ix =UlZp-1E L1A P >2, ,a=ulzp E A
vlzpl v/lzpl IX =v/llzp E L1A u =vI, v' E L1v
wzrlzpl wzrzpl Ix =wlzrzp E L1A u =WZr1, r >0
a b x y Chi ch'li
uzpl ulzp UlZp-1 uzp-Il p>l
uOl ul0 ul x x E L1A, p =1
vlzpl vllzp v/llzp v/lzpl u =vI, v' E L1v
wOlzpl wOllzp wOlzp x x E L1A, u =wOl
Ch11C1ng2. Dinh 1f kiiiu KK 30
Xet trU'C1nghQ'pa E HI, tuc la a =u1 v<1iu E H. TrU'<1ctien,xet
x = 6na=u E H c G. Ta couOE GOlienx =(uO)*E A*. Gia 811
x =vI = 6jaV<1ij =In. D~tb =vOl thl b* =vI =x <a* lienb <a
8UYrab E A (doA la PC). V~yx =b* E A*.0
Ta dachungminhL\Ac A*vadodoL\A=A*.
2.3.17Bo d~. ChoA =GO+HI C B(n) vaiH c G vaA la PC
nhungkh6ngla IS. GQie =ele2...en la vectanhdnhatcuaB(n)
kh6nga trongA vaf = ili2 . . .in la vectalannhatcuaA. Taco
(i) L\e- {e*}C L\A vantuen=1 thie*E L\AJ tucla L\ec L\A.
(ii) (L\f - {f*})c L\(A - {f})vantu in =0 thif* ~L\ (A - {f}).
ChUng minh. (i) V<1ix E L\e,d~ta =xOthl ta coa* =x <e*.
N~ux =Ie*ho~cx = e*vaen= 1thl a <e lien a E A do dinhnghia
cuae vadodox E L\A. V~yta co(i).
(ii)Chox E L\f, x <f* thlx E L\A - {f*}.VI L\A =A* theo(2.16)
lienx E A*-{f*} :::} x = a*.VI a*=x <f* liena <f:::}a E (A-{f}).
V~yx =a* E L\(A - {f})vadodo(L\f- {f*})c L\(A - {f}).Ngoai
ra theoB6 d~2.3.5thl n~uin =0ta cof* ~L\(A - {f}).0
Nh~clq.idingn~uy la trQitnJc ti~pcuax thl ta vi~tx -< y.
2.3.18 Dinh nghia. (i) M(jt do~n-zero(O-slice)cua B(n) la m(jt day
vectacuaB( n) lien titp nhaual -<a2. . . -<as saochothanhphlin thu, l ' 0 ' ~/ ,n cua al, . . . ,as a va neu u =Ul . . .Un -< al va as -< v =VI . . .Vn
thiUn =Vn =1.
Dinh nghiatuangtv:chodo~n-m9t(1-slice).
(ii) Ntu I la aor;r,n-zerova J la aor;r,n-m(jtthi ta vitt I -<J hay
J -<I My theoI a ngaytruac J hayJ a ngaytrudc IJ tuc la
I -< J n~u maxI -< mill J,
J -< I n~u maxJ -< minI.
2.3.19 Bo d~. Cho I la m(jtaor;r,n-zeroJJ la m(jt aor;r,n-m(jtcua
B (n), n >2 vai a =maxI va b =mill J. Ta co
ChItO'ng2. Djnh1fki~uKK 31
(i) a =ugrO vdi T >1vau =0hayu codq,ngu =vO. Han nila
T =1 ~ IIi >2,
T >2 ~ III =1.
(ii) b =ezp1vdip > 1 vae =0haye codq,nge=f1. Han nila
p =1 ~ IJI >2,
p >2 ~ IJI =1.
Vi dl,l 2.6. B(4) dU'Q'cphanho9-chthanhcacdo9-n-zerovado9-n-mt)t
theothutv tangdaTInhU'sail
Hinh2.1
0 day ta co II -<J1 -<12-<J2 -<13-<J3 -<14-<J4. HO'nnua
IIsl =1{::} IJsl >1, s=1,. .. ,4.
Do9-n-zero Do9-n-mt)t
0000
II
1000
0100
0010
0001} J1
{ 11 0012 1010
13 {0110
IDOl} J2
0101 }0011 J3
14 {1110
1101
1011
J40111
1111
Ch1.1dng2. Djnhif ki~uKK 32
ChUng minh 2.3.19. TrltC1nghQ'pn =2la hi~nnhienlienta chixet
n> 2.
(i) N~ua =ala2'" an vai an-l =an =0 thl a co d<:tnga =w1zp
vai p >1. D~tc =W01Zp-l thl Cn =0 vaa -< c theo (2.7) lien eEl
theodinhnghiacuaI, di~unaymallthu~nvaiHnhIannha:tcuaa. V~y
an-l =1vatacoth~vi~ta=ugrOvai r >1vau =0hayu cothanh
ph~ncu6ila 0:u =va. D~td =a- tuc d -<a.
N~ur =1thl a =v010(vIn >3)thld =v100liendEl vadodo
III >2.
Giasitr >2. Theo(2.8)thl
d =
{
OOgr-l
v100gr-l
n~u u =0
n~u u =vO
TrltC1nghQ'pnaythl thanhph~ncu6icuad la 1lien
d~I=}I={a}
tuc la II I = 1.
Ph~n(ii),dltQ'cchungminhhoantoantltO'ngt1J.O
2.3.20B6 d~. ChoI, J ttintuqtto,aog,n-zerova aog,n-m{jtcua
B(n), n >3 saGchoI -<J. Taco
III =1~ III >2
III >2~ IJI =1
ChUng minh. D~ta =maxI vab =mill J thl a -<b.
(2.17)
(2.18)
Gia sit I ={a}.TheoB6d~2.3.19(i),a coth~vi~ta =ugrOvai
r > 2vahO'nua,a -<ugr-l01 -<ugr-2011lienugr-l01, ugr-2011E J,
nghiala III >2.
Dao l~i,cho IJI > 2. TheoB6d~2.3.19,ta coth~vi~tb =vlOl =}
a =vllO. D~tc =a-, nghiala c -<a. N~uv11 =gn-l thl theoB6
d~2.3.2,a la vectO'd~utiencuaB(n,n - 1)vac la vectO'cu6icling
cuaB(n,n - 2) lienc =00gn-2 =} C ~I. NgltQ'cl<:ti,ta co th~vi~t
Chttdng2. Dinhif kiJu KK 33
a =wzpgrOvai p > 1, r > 2vatheo(2.8)thl c =wzp-1100gr-1=:}
c ~I. V~yI ={a}tucla III =1.
(2.18)laphandaocua(2.17).0
2.3.21B6 d~.G9i:J la tg,phqptfttcdcacaoq,n-m{jt cuaB(n), n >3.
Taco
IJ*I =1,VJ E :J (2.19)
ChUng minh. Ta chicanxettru0'nghQ'pIJI >2. Chox, y E J vai
x <y thl x* <y*. Gia S11x* <y*. D9.tw = y*Othl w #-y VIYn= 1
vatheo(2.4),tacow X*. V~yx <w <y.
Dieunaykh6ngth~xayraVI J la do(;1n-m<)tma hanhphancu6icuaw
la 0.0
2.3.22Dinh Iy. Vdi m9iA c B(n) ta co
L1C(A)c C(L1A) (2.20)
hay turJng aurJng
IL1C(A)1<IL1AI (2.21)
ChUng minh. Chuyding(2.20)va(2.21)tuO'ngduO'ngVIL1C(A)la
m<)tIS theoB6de2.3.8va IL1AJ=IC(L1A)1
Ta chungminhdinhly b~ngquin(;1ptheon. Tru0'nghQ'pn = 2co
th~duQ'cki~mchungm3 vadinhly dung
vain - 1,ta sechungminhdinhly clingdungvai n.
N~uA la IS thl hi~nnhiendinhly dunglienta chixetA kh6ngla
IS. Ta setungbuacchuy~nA thanhC(A) ma(j m6ibuac,ta chuy~n
A thanhD vai JL1DI<IL1AI.
BVdC 1 Dat AD = A Al =C (A) A2 = "/'(AI ) A3 =C (A2)'. , n, 'f', n,
A4 = 1/;(A3). . ., tuc la
Ar+1=
{
Cn(Ar) n~ur ch~n
1/;(Ar) n~ur le
vaiCn(Ar)la phanlienthun cuaAr va1/;la anhX(;1demoVI A la hUll
h(;1nlient5nt(;1iqsaGchoAqla PC va1/;-dong.DocaeDinhly 2.3.12va
ChUdng2. DinhIf ki~uKK 34
2.3.15ta co IL1Aql< IL1Aq-11< ... < IL1AI.B~ngcachxetAqthaycho
A, ta coth~gia811A 1aPC va7f-dong,tuc1aA = GO+H1 vdiG, H 1a
cacIScuaB(n-1) ,HCGva7f(a)=a, Va EA. HO'nnua,L1A=A*
theoB6d~2.3.16.
BLldC 2. N~uH =0thlA =GO.D~tF =C(A) thl L1F=F* theoB6
d~2.3.8lien
IL1C(A)1= IF*I <IFI = IAI= IGI<IL1AI
vadododinh1yduqcchungminh.V~y,ta coth~gia811H #-0.
BLldC 3. GQie =e1e2. . .en1avectO'nho nha:tcua B( n) khong(j trong
A, f =i1i2'" in 1avectO'1dnnha:tcuaA ta coe < f VI A khong1a
IS. HO'nnua, en #-in VI n~unguqc1C;1ithl e E A do A 1aPC. D~t
D = (A - {f})U {e}thl hi~nnhienD 1aPC va 7f-dong.Ngoaifa,
L1D=D*.
N~uen=1, in =0thltheoB6d~2.3.17taco
L1ec L1A=A*vaf* (j.L1(A- {f}).
Dodo
L1D= D* =A* - {f*}= L1A- {f*}=}IL1DI= IL1AI- 1.
L~p1C;1iquatdnhnay(v6iA :=D) chod~nkhien= 0, in = 1.
BLldC 4. en =0, in =1. GQi J 1adoC;1n-m9tchuaf va I 1adoC;1n-zero
ngaytrudc J (tuc 1aI -< J) vaa =maxI, b =mill J. TheoB6d~
2.3.19thlb coth~vi~tb =uzp1 v6i U =0ho~cU co dC;1ngU =v1. Do
7f(A)=A ta col'b =u1zp E A. Ngoaira l'b =mill I do (2.8).N~u
e (j. I thle<l'b vaVIA 1aPC lieneE A vo1y.V~yeEl.
N~up =1 tuc 1ab co dC;1ngb =v101va do B6 d~2.3.19,ta co
IJI >2vatheo(2.17)thIIII =1,nghia1aI ={a}vdi a =u110.VI
7f(b)=b lienl'b =u110E A, tuc 1aa E A. Suyfa, A 1am9tIS, td.i
giathi~tvadodop >2.Theo(2.18)thIIJI =1 lienb =f vaJ ={f}.
VI D =(A - {f}) U {e}ta co D 1aIS nghia1aD =C(A)vatheoB6
ChtiO'11g2. Djnh If ki~uKK 35
d~2.3.17thl i1D =(i1A - {f*})U {e*}=>Ii1DI = Ii1AI. V~ydinhly
duQ'cchungminh.O
V{dl,lsail daysechota tha:ym(>tungdl,lngcuak~tquatren.
Vi d\l 2.7. Gia S11ta co r <2ncongvi~cduQ'cmahoab~ngr vectO'
datitiencuaB(n) trongthu tv v (m6icongvi~ctuO'ngungv6i m(>t
vectO')vanhllngcongvi~cnaycancacthi~thi, m6ithi~tbi duQ'cma
hoab~ngm(>tvecta'trongB (n - 1). Gongvi~ccomala a cancacthi~t
bi comala cacvecta'trongi1a. V6im tnhanviense
duQ'cxemla hoanthanhnhi~mVl,ln~uthvchi~nduQ'cm trongr cong
vi~cdacho,vaseduQ'cthu<1ngn~uthvc hi~nm congvi~cnayv6is6
thi~tbi {tnha:t.HoinhanviennayphaichQnm congvi~cnaod~hoan
thanhmaduQ'cnh~nthu<1ng?
Hlnh2.2du6idaymota tru0'nghQ'pn =4.
Thi~tbi :
Hlnh2.2
Theo Dinh ly2.3.22,nhanviennayseduQ'cnh~nthu<1ngn~uchQn
m congvi~ccomala mvectO'datitiencuaB (n) trongthutv V. 0
D6i chi~uv6iDinhnghia1.2.4v~K-poset,ta co
2.3.23Dinh If. T(j,phqpB eaevectaBoolla miltK-poset.
ChUng minh. Ta dabi~tB la m(>tposetco hc;1ngv6i mucthun la
B(n). V6in > 1thlhi~nnhieni1B(n)=B(n - 1). V6ithutv tuy~n
t{nhlathutv V thltheoB6d~2.3.8tacoi1A la IS n~uA la ISvahO'n
nlla,Ii1C(A)1tK-poset.O