Luận án Cơ sở dữ liệu với thông tin chưa đầy đủ

CƠ SỞ DỮ LIỆU VỚI THÔNG TIN CHƯA ĐẦY ĐỦ DƯƠNG TẤN THÀNH Trang nhan đề Mục lục Đặt vấn đề Chương_1: Cơ sở dữ liệu quan hệ. Chương_2: Cơ sở dữ liệu quan hệ chứa giá trị NULL. Chương_3: Phụ thuộc hàm trên các giá trị NULL ngữ cảnh. Chương 4: Cài đặt thử nghiệm thuật toán. Kết luận và hướng phát triển Tài liệu tham khảo

pdf50 trang | Chia sẻ: maiphuongtl | Lượt xem: 1873 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận án Cơ sở dữ liệu với thông tin chưa đầy đủ, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
t trongs b~ngcac gicitri duli~uxacdinh. Trong(14]Maier dfi dinhnghiacachamkha Dangdvatrencackhai nit$mmd rQngvamdrQngd~yduo Dinhnghia1.7 (POSSo)Cho mQtquailht$r, POSSo(r)={sIs Ia mQtmdrQngcuar} 18 Lu'u_Li sO' N gay_Dn Ngay_Di Phong S6_NgU'oi Tin- Tra 1 1/6 15/6 205 1 10000 - 2 1/8 @ 310 2 3000 3 1/6 ' @ 401 4 12000 4 1/6 @ 402 4 12000 Dinh Nghia 1.8(POSSe)Cho mQtquailh~r, POSSc(r)={sI s Ia mQtmarQngd~ydu cuar} Dinh Nghia1.9(POSSCE)ChomQtquailh~r, POSSCE(r)={sIsla mQtmarQng d6ng cLlar] 2.1.1.2.Cachtitpcq,ncuaImieliniskivaLipski Cachtie'pc~nnayd1;1'atrennhungquailh~mQtph~nc6chu'acacgiatri null du'<;1Cdanhda'u[20].M6i giatrinullxua'thi~ntrongquailh~nhu'mQtbie'n(variable) dod6c6tengQiv - table.BangIlIa ffiQtvi dl,lv6V-table Bang11.V - table Ky hi~ux vay chirahaigiatrinullkhacnhau.Vi~cs\i'dl,lngyhail~nngl,ly1a ngu'aikhachso3sethuehaiphong401va402trongclingthaigian. E>~caitie'nV-table,mQtcQtthuQctinhdiiu ki~ndu'<;1Cthemvao.CacbangV- tablekernthemcQtthuQctinhdi6uki~ndu'<;1cgQila cacbangC-table(bangdi6u ki~n) Bang12bi~uthis1;1'ki~nla ngu'aikhachso3 ses\i'dl,lngphong401ne'ungu'oi khachso2 roi khoiphongd6tntocngay1/8 vasestrdl:mgphong402ne'ungu'<;1cl<;li. 19 Lu'u_L<;li So Ngay_de'n Ngay_di Phong So_N gu'ai Ti6n 1 1/6 15/6 205 1 10000 2 1/8 x 401 2 3000 3 1/6 I Y 401 4 12000I i I I 3 L 1/6 Y 402 4 12000 Bang12.C-Table 2.1.2Ghi tri nullkhongt6nt~i Gia trinullkhongt6nt~iduQcnghienCUlltrong[18,21,22].Ngunghiacua nullkhongt6nt~iduQcbi~uthilakhongcogiatrithvcnaocoth~t6nt~idvi tITnull do.Vi d1;ld6ivoi nguoichuaco giadlnhthl tenvQ(ch6ng)khongt6nt~i.Trang bangnhan-VieDduoiday,MinhkhongcosO'di~ntho~inaoca. Bang13. Quanh~chuanullkhongt6nt~i Voi ngunghiaduQcneutrenthlgia11inullkhongt6n~i (ki hi~udne)giO'ng nhuffiQtgiatrixacdinhbonla ffiQtgiatri chuaxacdinh.Do donullkhongt6nt~i khongduQc oila d~bi~uthithongtinkhongd~ydu'. 2.1.3Ghitri nullkhongcothongtin Thu~tngugiatrinullkhongcothongtindoZaniolo[23]duafa . TheoZaniol0 caedi€ngiaichuabie'tvakhongt6nt~ichuaphaila nhungdi€n giaicosdnh!tcho 20 Lttu_li sO' N gay_De'n Ngay_di Phong sO' Tin DK Nglioi 1 1/6 15/6 205 1 10000 2 1/8 x 401 2 3000 3 1/6 Y 401 4 12000 x<I/8 3 1/6 Y 402 4 12000 xz1/8 Nhan-VieD Ten Phong Chuc-V1;l Din- Thoi MAL MT TK 9241320 ? 7652320HAL MT TP HVNG MT GVC 5568321 MINH MT GVC due giatqnull.C6mQtcachdi~ngi,iinguyenthuyhdnhaidi~ngi,Hn6itren,d6Ia di~n giii nullkhongc6thongtin.B~minhhQachoy tU'dngcuaminh,Zanioloda:dU'ara vi dl;lv~CSDL g6mmQtquanht$Nhan-Vien(S6_Hit$u,Ten,Gidi_Tinh,S6_nql) trongbing 14. Bang14.Quanh~nhanvien Zaniolo dil gii sa ngU'diquill tti CSDL mu6nthayd6i lU'Qcd6 CSDL b~ngcach dU'athemvaocQtthuQctinhBit$n-Tho'.lid~IU'ul'.lis6dit$ntho'.linhariengcuatung nhanvien.S11thayd6icuaIU'Qcd6khongc6nghiala m6inhanvienphii clingca'p s6dit$ntho'.licuahQngayl~ptacoThlfcte-thongtinnaysedU'QcdU'avaoCSDL khi naoda:sansang.NhU'v~yngU'diqUilltqCSDLphiig~phiiva'nd~thaotacdfi'lit$u , lamthe-naod~mdrQngIU'Qcd6makhonglamthayd6iv~nQidungthongtincua CSDL.Giii phaprarangnha'tIa:Beluvaot'.licQtthuQctinhBit$n-Tho'.liduQcdi~n bdiki hit$u"-" maZaniologQila giattinullkhongc6thongtin.<1daykyhit$u"-" khongbi~uthir~ngs6dit$ntho'.licuamQtnhanviennaod6la khongt6nt'.lihayc6 t6nt'.linhungmachU'abie-t. N6chIdongiin la bi~uthichU'ac6thongtinnaochoso' dit$ntho'.licuacacnhanvien.NhU'v~ygiatti null "-" c6th€ dU'QcxemnhU'Ia mQt ndichuachomQtgiatrikhongt6nt'.liho~cgiatqchU'ahie-toVa dod6n6la nguyen thuyhonhaidi~ngiii trU'dcday. 21 Nhan-Vien S6_Hit$u Ten GiOi-Tinh S6_nql 1120 SMITH M 2235 4335 BROWN F 2235 8799 GREEN M 1255 I Dttdidi€n giaikhongcothongtinthlbang14vabang15latUdngdttongv€ nQi dungthongtin. Bang15Quanh~nhanviensaukhithemcQtthuQctinhDi~n_Tho~i 2.2NUll NCO'CANHvA ca sa DO'lI~UNUll NCO'CANH Khi nghiencUuv€ ghltrinulltrongmohlnhqua~h<$,d6ivdim6iki€u nullh~u h€t cacnhanghiencUud€u dungduynha'tmQtkyhi<$ud€ bi€u di€n chomQithong tinbi thi€u.Chungtatha'ycachti€p c~nnaychttath~thoadang,bdigiatrinullt~i m6inoithi€u coth€ khacnhau. Vi<$cbi€t themcacthuQctinhcuamQtd6i ttt<;1ngsegiupchochungtaphong doanthemdtt<;1cnhungthuQctinhchttabi€t cuad6ittt<;1ngdo.Nghlala,nhungthuQc tinhchttabi€t cuad6i ttt<;1ngco th€ dtt<;1cxacdinhquanhungthuQctinhda:bi€t (t~p h<;1pnhungthuQctinhda:bi€t nay co th€ gQiIa ngucanhcuad6i tu'<;1ng)Vi dl,l:ne'u ChIbi€t tencuamN ngttaiIa A thlkhocoth€ noiba'tky di€u gl v€ Ittongcuangttai do.Nhttngn€u bie'themdingngttaiA IaKy stt,IamQtrttdngphong,thaigiantham niencongtacla 10nitro,chungtacoth€ doandtt<;1Cvaidi€u v€ Ittongcuangttainay. Nhttv~y,mQtgiatri chttabi€t trongmQtquailh<$co chili giatri nullcoth€ dtt<;1cxac dinhbdi nhunggia tri da:bi€t trongquanh<$do.N6i cachkhac,Nhunggia tri null chomQtthuQctinhla khacnhaun€u t~ph<;1pnhungthuQctinhda:bi€t co lien quaild€n giatridoIii khacnhau.hayngucanhcuachungIii khacnhau.Do m6igia 22 Nhan-Vien S6_Hi<$u ten GiOi-Tfnh S6_nqI Di<$n.;..Thoi 1120 SMITH M 2235 - - 4335 BROWN F 2235 - 8799 GREEN M 1255 - trinulldi~ug:invoingucanhcuano.VI v~ynguaitadii tangngunghiacuagiatri null b~ngcach bi~udi~nnhunggiatrinullco ngucanhkhacnhaubdinhungky hi~unullkhacnhauthayVId6ngnhfftchungbdiduynhfftmQtkyhi~u. XufftphattU y tudngtren, [24],[2]diiduaramQtdi~ngiaimoichonullvagQichunglanullngu canh. TruockhiduaraBinhnghiahlnhthucchonullngucanhchungtaxetmQtvi d\l sail: Vi du2.1: ChohailuQcd6quanh~R1(Ten,Tu6i,Man)vaRz(Ten,Tu6i,SV) voi haith~hi~ntuongungla rl, r2.Trongdo,Man la mand~ymamQtnguainaodoco m~trongquanh~rl d~y,SV la tensinhvienduQcnguaidohuangdftn,xetcosddu li~ug6mhaiquanh~rl var2: Giasat~ithaidi~mtl vat2(tl<t2),h~thongnh~nduQcmQteachdQcl~pnhung thongtinsail: tj: va t2: Trong truanghQpnayph~nduli~umah~thongco t~ithaidi~mt2sekhangduQC auathemvaovi nokhangcogi moi.VI v~yduli~utrongquanh~r[ var2seg6m cacbQtrongbang1vabang2: Bang1 Bang2 Saildo t~ithaidi~mt3h~thongnh~nduQcthongtin t3: 23 r[ ten Tu6i Man A 81 B A 81 C r2 Ten Tu6i SV A 81 82 DobQmoithemvaovahaibQbandffuIakhacnhautt;tinhunggiatridiibie'tv~ mandt;tynennhunggiatrinulltt;tibQmoithemclingnenkhacsovoihaibQtntoc. (Voi giathie'ta daytachuaquantamtoicacph\!thuQcdii'li<%unhuph\!thuQcham, ph\!thuQcdatri...) Bang3 Bang4 Tt;ti thai di€m tie'pthea, gia sa thong tin sail dU<;1cdua them vao h<%th6ng 4: Do thongtintt;tithaidi€m t4baag6mluoncathongtintt;tithaidi€m t3nenchi phffnthongtinmoilaM moicffndU<;1cduavaocosadii'li<%u. Nhuv~yfl vaf2 sela cacquanh<%tfongbang3vabang5. Bang5 V~m~ttn,tcgiac,chungtadii th1ydu<;1Csl,l'so sanhb~ngvasl,l'khacnhaugiii'a caegiatrinullthongquanhunggiatridiibie'trongcosadii'li<%u.Nhilnggidtrtdii 24 fl Ten Tu6i Mon A 01 B A 01 C A 03 D f2 Ten Tu6i SV A 01 02 A 01 N f2 Ten Tu6i SV A 01 02 A 03 N A 03 M bitt trongC(Jsadilli?u colienquandtnm6igill trjnulldLtqcg9ifangilcanhcuagill trjnulldo.Saildaychungtasedihlnhthucboakhainit$mcuanullngi1canh. Xet ffiQt~pph6quatcaethuQctinhU ={Aj: 1~i ~n }.Voi m6ithuQctinhAi tagalltl1ongungvoi ffiQt~pAiU LlitrongdoDj la mi~ngiatri cuaAj vaLlila ffiQt t~phcruh<;lnnhii'ngky tl,l'Hy L<;lp{Oij}d~bi~udi~ncac null ngi1canh cua Ai . G9iD =U {Di: 1~i ~n}vaLl =U{Lli1~i ~ n }tacoD n Ll =0. Voi X cU. MQtanhX(;I.t : X ~ D ULl saochot(AD E Dj U ~ivoi m9iAi E X dl1<;$cg9i la ffiQtbQtrenX vaki hi~ut[X]. Voi m9iX c U t~ptatcacacbQt[X] dl1<;$c ky hi~ula 3. Cho t la mQtbQtrenX; A E X n€u t(A);:null ky hi~ula t(A)!. N€u '7A EX, t(A)!tavi€t t!nghlala t chIchl1anhi1ngiatridii'li~uxacdinh.Voi y c X khidotakyhi~ut[Y]={t(A):A E Y} vag9ila phepchi€u cuat lenY .T(;I.p reX)nhii'ngbQcochl1anullngii'canhtrenX dl1<;$cg9ila quailh~voinullngii'canh trenX . N€u Y eX, thl{t[Y]:t E reX)}dl1<;$cg9ilaphepchi€u cuareX)trenY va dl1<;$cki hi~ur[Y]. Xuatphattuquaildi~m . Cosadii'li~ulatrongsu6td6ivoingl1oisli'dl,mg . Doconhi~ungl1oisli'dl,mgnenconhi~ukhungnhln(views). Lu~nvanse xemxetmQtco sa di1li~u(CSDL) nhl1ffiQtt~pcacquailh~ {rj(Xj):1~ i ~m}trongdoU {Xi1~i ~m}=U vam6iriCXi)dl1<;$cg9ila mQtquail h~trongCSDL . 25 DinhNghia2.4Chot vat' lahaibQbeltkytrong:J du'<JcxacdinhtrenmQtt~pchu'a X. (i) t vat' du'<JcgQila tu'ongdu'ongtrent~pX(vi6tla t ~ t' ho~ct[X] ~ t'[X])n6uva.t chi n6u\;jA E X, teA)!ho~ct'(A)! thiteA)=t'(A) . Ne'ur lamQtquanh~trenX, t vat' lanhii'ngbQtrongr chungtakihi~u~ bdi ~ .t r (ii) tdu'<JcgQilait thongtinhont' hayt' nhi~uthongtinhontvavi6tt~t' hay t' 2 t n6u\;jA E X, t(A)! keorheateA)=t'(A) Vi du 2.2 : Vdi bQtl = . (z=, t3= thi tl ~ tz; tb tz 9:;t3va t1,tz ~ t3 '1 '1 Dinh nghia2.5 (Dinhnghlav~caecaul~nhthaolac dii'li~u).ChoffiQtquanh~ CSDLcochtianullngii'canh, trongh~CSDLtaquy tide: (i) MQtCalil~nhinsertlacaul~nhcod~ng: insert( rib riZ,..., rip; Context(Ajl =Cjb Aj2 =Cj2,", Ajk =Cjk) ) (ii) MQtdiu l~nhupdatelacaul~nhcod~ng: update( rib riZ,...,rip; ; ContexteAjl =Cjb AjZ =CjZ"'" Ajk =Cjk) ) (iii) MQt Cali l~nhdelete la Cali l~nhco d~ng delete( ril, riZ,...,rip; ContexteAjl =Cjl, AjZ =CjZ"'" Ajk =Cjk) ) Trongdo : . rit. riZ,.. ., rip la caequanh~matrendo caephepinsert,update'vadeletedti<Jc thvchi~n. . Vdi ( e =j, va1~f ~k ) ho~c( e=hva1~f ~q) thi: 26 -Ad Ii ten cac thuQctinh tren cac quail ht$rib riZ, ri3'"" rip - Cd c Dom(Ad),Defc Dom(Aef)la t~pcacia tri thuQcmi~ntritu'angungcua thUQctinhAd . . F =Ii daycacgiatrimoichocacthuQctinhc~n update ContexteAjl =Cjl, Ajz =CjZ,...,Ajk=Cjk) ={ t[Ajl, Ajz,..., Ajk] : 'ifAji (1 :s;i :s;k) , t[Aji] E Cji } du'<;5CgQi Ii di~u kit$nd~ xac dinh cac bQ cho insert, update ho~c delete. Trang chuangnay, thu~tngu Cali lt$nhdu'<;5cdungd~chi ho~cmQtCali lt$nh insertho~cmQtCalilt$nhupdateho~cmQtCalilt$nhdelete. Cho Q Ii mQtCali It$nh,ne'uki hit$u::5(Q)la t~pcacbQdu Iit$utrang::5thoa mandi~ukit$nContext(Aji=Cji,...,Ajk=Cjk) cuaCalilt$nhQ, thl: ::5(Q)={t[Ajb AjZ,...,Ajk ]:'\7'Ajl (1 :s;I :s;k), t[Ajd E Cjl }. Vi du 2.3:Xet hai Iu'<;5Cd6 quailht$R1(Ten,Tu6i, Mon) vi Rz (Ten,Tu6i, SV) trong vi dl,l2.1; r" rz Ii hai th~hit$ntu'angungcua Rl vi Rz . Gia saht$th6ngnh~ndu'<;5c caliIt$nh: insert(rl,r2;ContexteTen =A, Mon=D, SV ={M,N} ). Khido:::5(Q)={,} Voi mQt Call It$nhQ tren quail ht$ril[Xil], riZ[XiZ],"',rip[Xip],ta ki hit$u p XQ= U Xi) . Do coth~b6sungvio m6ibQcuat~p::5(Q)cacnullngucanhd~noco j=l th~Ii bQtrenthuQctinhXQvi quyt~cb6sungcacnullngucanhchocacbQcua 3(Q)sedu'<;5cthl!Chit$n husau: GidsittrangCSDLdficomr;itcaenullngilcdnh5), 27 bz,..., 8k' k la chi sffngrlcdnhcudCSDL, khido caenull ngrlcdnhdU:(Jcb6sungvao trong cae bQcua .3(Q) se dU:(Jcdanhchi s6la'n lu:(1tit:k+1, k+2... Voi m6i t~p3(Q) chungta dinh nghla: . T~p3rij(~) =3(Q)[Xij] p . T~p3rj\, riZ,...,rip(Q)=U 3rij (Q) )=1 p Trong do U Ia ph6p h<;1pthongthu'ong,khong ph,Hla phep h<;1pquan h~ )=1 D€ thc1y,cac b<)trong t~p 3riQ) chinh la cac b<)se du'<;1Cchen vao ho~csti'ad6i trongho~cxoa kh6i quan h~ rij Vi du.2.4: Xet Cali l~nhQ cuavi d\l 2.3 inserter\,rz;ContexteTen =A, Mon =D, SV ={M,N} » Khi do,neuchI s6 ngil'canhcuaCSDL co chu'arl va rz la k thl t~p3(Q), 3r1(Q), ~rZ(Q)va 3rl,rz(Q)cuaCalil~nhinsertla: ~(Q)={,<Ten=A , Tu6i=Ok+\'Mon =D, SV =M > } ~r1(Q)={}va ~dQ)={,<Ten=A,Tu6i=~+l,Mon=D, SV = M> } ~rl.rZ(Q)= {,, } 28 Nhuv~yvoidiu It$nhinserttrenht$th6ngc~nphaiinsert<Ten=A, Tu6i =~+1 , Man=D >vaoquailht$rl va haibQ,<Ten=A, Tu6i=Ok+l , SV =M >vaoquailht$r2 Dinh nghla2.6: (i) ChomQtcos0du lit$uDB cochuanullngucanh,Oila mQtnullngucanhxua't hit$ntrencQthuQctinhA . M6ibQt trongmQtquailht$mathoamanerA]=OidU<;1c gQila mQtngucanhCl;1CbQcuaOJ. T~pta'tcacacngucanhCl;1CbQcuaOJ trenDB au<;1cgQila ngucanhcuaOJ (Ky hit$ula ContextDB(oi)). (ii) Cho Q la mQtdiu It$nhtrencacquailht$ril[Xid , r12[Xi2],...,rip[Xjp];8t la null ngu canhxua'thit$ntrangcQtthuQctinhA . M6i bQt trangt~p:3rit.ri2,...,rip(Q)mathoa manerA]=OJdU<;1CgQila Q ngucanhCl;1CbQcua Oi.T~pta'tcacacQ ngucanhCl;1C bQcua OJau<;1cgQi la Q - ngucanhcuaOJ( Ky hit$ulaContex~(oj)). (iii) Cho OJva OJla hai null ngucanhxua'thit$ntrenclingmQtcQtthuQctinh,OJaU<;1C gQila coM ngucanhh~pbonOJhayOJaU<;1CgQila co N ngucanhrQngbon OJ(voi M, N la DB ho~cQ) neuvachineu : 'Iftk[X]E ContextM(Oj)luon :J tk'[X] E ContextN(Oj)saochotk ~ tk"Khi d6 taky.r hi~ulaContextM(oi)~ ContextN(oj)hayContextN(Oj)~ ContextM(Oj). Ne'uContextM(Oj)C ContextN(Oj)vaContextM(Oj)S ContextN(Oj)chungtavietla ContextM(Oi)==ContextN(Oj). Ne'u ContextM(Oj)C ContextN(Oj)va ContextM(Oj);z: ContextN(Oj)ta ki hit$ula ContextM(Oj)C ContextN(Oj)hayContextN(Oj)S ContextM(oi). Ne'ucoContextM(oi)C ContextN(Oj)taseki hit$ut~pContextN(Oj)- ContextM(Oj)= {t[X]E ContextN(Oj): iJ t'[X] E ContextM(Oj)ma t ~ t'}.x 29 Vi dl,l2.5:X6tCSDL g6mhaiquanh!$fl vafztrongbang6 va7 : Bang6 Giasah!$th6ngnh~ndu<;cCalil!$nh: Bang7 insert(rl,rz;Context(Ten=A ,Mon={B,C},SV ={M,N})) Khi d6 : :5 (Q) ={St, Sz, S3, S4}voi Sl =, tg= . Nhttv~yContex~(03)={ ts,t6,t7,tg},ContextoB(ol)={t[,tz},ContextoB(oZ)={t3, td f)~tX ={Ten,Tu6i, Mon} vaY ={Ten, Tu6i, SV}, rheadinhnghIa2.6,vi tl ~ts ;tz,t3 ~ ~; t4 ~ t7nenContextoB(ol)C Contex~(03),ContextoB(8z)C Contex~(03)x y vaContex~(03)-ContextoB(ol)={t7,tg}. 30 Ten ,;>. manf[ tum t[ A 8[ B tz A o[ C t3 A Oz C Ten ,;>. SVfz tum 4. A Oz N Sz = , S3 = , S4 = 3r[,rz(Q)=.{ts, , t7,tg}voi ts = ,, = , , , t7 = va M~nhd~2.1. (i)Quanh<$~ IaphanX<;lvab~ccfiu. (ii) Quan h<$==Ia quail h<$tl1ongdl1ong chungminh : Suy tI1;1'ctie'ptu dinh nghla quail h<$==va quail h<$C . M~nh d~2.2.Ne'uQ Ia mQtdiu -I<$nhtren cac quail h<$ril[Xil], rdXiz],...,rip[Xip]; bjJ,...,bjkIa tfftcacacnullngii'canhxu1thi<$ntrongt~p:5ril,riZ...rip(Q),thl : k :3ril,fiZ,...ripCQ)= UContextQ(bjh)U T h=1 trangd6 T ={t E 3 ril,fiZ,...rip(Q):t! }. Chungminh:suytn,I'ctie'ptu(ii) cuadinhnghla2.6. Djnhnghia2.7.rho bivabjIahainullngii'canhxu1thi<$ntrenclingmQthuQctinh trongCSDL . Ta vie'tbi ~ bj ne'uva chine'uContextDBCbi)~ ContextoB(bj)ho~cDB CantextDB(bj)~ CantextDB(bi). Djnhnghia2.8.MQtCSDL dl1<jcgQiIaCSDL nullngii'canhne'unhl1cacgiatrinull trangCSDL Iacacnullngii'canhvabi ~ bj thlb i =bj .DB Be'ndaychungtac6vainh~nxetv6nullngii'canh.Donullngii'canhIaph1;lthuQc VaGnhii'ngiatIi dffbie'trangCSDL nengiatIi cuachungphaic6ynghlatrenroan bQCSDL , tucIa m~cdlingl1oisii'd\mglamvi<$ctrentungquailh<$mQtnhl1ngcac thut\ICchen,sii'ad6ivax6adii'Ii<$utrentungquailh<$d6phainh1tqUailtrongroan bQCSDL. VI v~y,caikh6hancuanullngii'canhsovdicacki€u nullkhac la vi<$c xacdinhchungphuct<;lPhannhl1ngbli I<;lithongtinmachungcungcffpchoh<$th6ng IC;linhi6uhanrfftnhi6u.Tie'prheachungtatImhi€u cacquit~cchothut\ICchen, x6avasii'ad6idii'Ii<$u. 31 2.3.CACPHEPC~PNH~TTRONGCSDl NULL NGU Cr\NH Trong phftntntoc dii gioi thi~ukhai ni~mv€ t~p3 ril,fiZ,...fip(Q).Nhung bQ trongt~p3 ribr12,...fip(Q)cuacaul~nhQ chinhla nhii'ngbQsedu<;1Cchenvao , sii'a d6i trongho<)cx6akh6i cacquailh~rib ri2,",rip.Trang3 rihfiZ,...rip(Q)c6 thet6nt~i nhungbQkhongchuagiatri null ~ B6i voi nhungbQd6cacthaotacchen,sii'ad6i ho<)cx6adu<;1Cth1,fchi~nhoanroanbinhthudng. B~ngcachlo~ib6nhungbQkhong chuanullkh6it~p~ril,riZ,...rip(Q), cacqui tAcdU<;1Cxetduoidaychidanhchonhii'ng truongh<;5pmacacbQthamgiachen,sii'ad6iho~cx6ala nhii'ngbQkhongdftydu thongtin. Nho m~nhd€ 2.1,neutalo~ib6nhii'ngbQkhongchuanullkh6i t~p~rihriZ,...rip(Q), hayn6icachkhacneucoi J fil,riZ,...rip(Q)chig6mnhii'ngbQc6chuagiatrinullthl k tac6 ~ ril,riZ,...rip(Q)= UContextQ(8jh)voi8jh,...,8jkla tit cacacnullngii'cantxuit h=l hi~ntrongt~pJ ril, riZ,...rip(Q). 2.3.1.Qui tAc2.3.1( Cho thaotacchendii'li~u) Q la mQtCalll~nhinserttrencacquailh~rileri2,...,rip.Khi th1,fChi~nthaotac chendu li~u, neutrongt~p3 rihriZ,...rip(Q)cuacaul~nhinsertc6 chuamQts6 null ngii'canhthld6ivoim6inullngii'canh8jxuit hi~ntrong3 ril,fiZ,...rip(Q),h~th6ng seIdemITa: (i) NeutrongCSDL t6nt~inullngii'canh8ixuit hi~ntrenclingcQtthuQctinhvoi 8jmaContex~(8j)C ContextoB(8i)thlh~th6ngsekhongth1,fchi~nthaotacinsert. (ii) Neukhongxayra(i) vatrongCSDLt6nt~i8il,8iz,...,8ik(k~1)la t~ptit cacac null ngu canhxuit hi~ntrenclingmQtthuQctinhvoi 8j ma ContextoB(8il)C Contex~(8j)voi(1::;1::;k).Khi d6h~th6ngse: 32 . Ki~mITa,n€u k >1thltlmnullngucanhcochis6benha"ttrongdayOil,~Z,...,Oik ( giasala Oil)thaymQixua"thi~ncuaOil(2:::;1:::;k) trongCSDLbdiOil. N€u vi~c thaycac null ngucanhOil( 2:::; 1:::;k) bdi Oillam xua"thi~nmQtsO'nhungbQgi6ng nhautrongCSDL thlht%th6ngchi gill l<;timQtbQ. . Ki~m ITa n€u C ={Contexto~(oil)u ContextoB(oiZ)u ,...U ContextoB(oik)}1: Contex~(oj)thl thaymQi xua"thi~ncua OJtrongContex~(oj)bdi Oilr6i ti€n hanh insertcacbQthuQct;%pContextQ(oil)- C . (iii) N€u cahai truonghQp(i) va ( ii) d~ukhongxayra,h~th6ngse ti€n hanh insertcaebQthuQct;%pContex~(o). Vi dl;l2.6.Xet CSDL g6mhai quailht%rl(T~n,Tu6i , Mon), r2(Ten,Tu6i, SV), gia sah~th6ngl~nlUQtnh;%nduQccacCalil~nh: L1:insert(rl,r2; ContexteTen=A ,Mon={B,C},SV=M ) ). L2:insert(rl,r2;ContexteTen=A ,Mon=C,SV=N ) ). L3: insert(r!,r2; ContexteTen =A , Mon={B,C},SV ={l'vl,N} ) ). Khi do:T;%p3 (Q)va3 rl,f2(Q)cuaCalil~nhL1la : 3(Q)={Sh S2}, vdi Sl =, S2=. 3rl, r2(Q) ={tbtz,t3}vdi tl =, tz=, t3=. Nhuv;%y:ContextQ(ol)={thtz,t3}.Theoquititc2.1cacbQtJ, tzvat3seduQcchen VflOtrongquail h~rl va r2 : 33 Bang8 Bang9 Voi calil~nhL2taco: :J (Q)={s} , s =. .:JfJ, fZ (Q) ={t4,ts}voi 4 =,vats=<Ten=A, tu6i =oz , Sv =N > . Khi doContex~(02)={t4,ts}. Do ContextoB(ol)={tJ, tz, t3} g; Contex~(82)va Contex~(02)g ContextoB(ol)nen caebQtrongContex~(02)sedu'<;1edu'aVaGtrongquanh~fl va f2, dli 1i~utrongquan h~fl va fZse1a: Bang10 Bang11 34 Ten Tu6i Mon 01 Btl A tz IA 01 C fZ Ten Tu6i Mon t3 A 01 M fl Ten Tu6i Mon tl A 01 B tz A 01 C 4 A 02 C fl Ten Tu6i SV A 01 M A 02 N Vai Calllt$nhL3: :5(Q) ={Sl>S2,S3,S4}vai SI=, S2=, S3=<Ten=A ,Tu6i =03, Mon =B , SV=N>, S4= . 3rl,r2(Q) ={4J,t7,tg,tg}vait6=,t7= <Ten=A, Tu6i=03,Mon =C >,tg= , t9= . Nhuv~yContextQ(03)={t6,t7, tg,tg}. Trang truonghQpnay ContextoB(ol)u ContextoB(02)C: ContextQ(03)vi tl ~ t6 ,x tz,t4 ~ t7, t3~ tg,ts ~ tgvaiX ={Ten,tu6i,Mon }vaY ={Ten,Tu6i,SV }.Theox y Y - quita:c2.1ffiQixu:1thit$ncua02trongCSDL phaiduQcthayb~ng°1.M~tkhac ContextQ(03)- ContextoB(°z) =0 nenkhongcodulit$umaiduQcthemVaGCSDL Bang12 2.3.2.Quitile2.2( Chothaotacsti'ad6idulit$u) Bang13 rho Q Ia mOtCallIt$nhupdatetrencaequailht$rib ri2,...rip' Khi thvchit$nthaotac sttad6i dli lit$u,ne'utrongt~p3ril,ri2,...rip(Q)cua diu lt$nhupdateco chuamOts6 nullngli canhthi d6ivdi t:1tca caenull ngucanhOjl ,...,Ojkxu:1thit$ntrongt~p 3ril,riZ,...rip(Q), ht$th6ngseki6mITa: -Trang 35- rl ten Tu6i Mon tl A 01 B tz A 01 C r2 Ten Tu6i SV t3 A 01 N t4 A 01 M (i) Ne'utrongCSDL t6nt'.licacnullngucanhOhl,...,Ohkma~vxu!thil$ntrencling CQtthuQctinhvoi Ojv(1 ~v ~k) va Contex~(ojv)C: ContextoB(~v)thl hl$th6ngse k tht,tchil$nthaotacupdatecac bQdti lil$utrong UContextQ(Ojv)r6i tie'nhfmhinsert v=\ cacdtilil$uke'tquavaotrongCSDL. (ii) Ne'utrongCSDL t6nt'.licacnullngucanhOhl,...,Ohkma~vxu!thil$ntrencling cQtthuQctinhvoi Ojv(1~v ~ k )vaContex~(ojv)==ContextoB(~,)thlhl$-th6ngse : k * Tht,tchil$nthaotacupdatecacbQtrongUContextDB(Ohv) rheaeach: v=! Ne'ugiatritntockhiupdatelanullngucanhthlthaymQixuathil$ncuanullngti canhd6trongCSDL thanhgiatIi moi. * Ki€m ITane'uthaytrongCSDL saukhi updatec6xu!t hil$nbatkY hainullngti canh0,~oJ voi i ::j; j maContextoB(Oj)C:ContextoB(Oj)thlhl$th6ngsex6anhung bQtrongContextoB(Oj)vagill l'.linhungbQtrongContextoB(Oj). (iii) Ne'udi~ukil$n(i) ho~c(ii) khongdU<;1cthoaman,hl$th6ngsekhongth\ichil$n thaotacupdate. Vi du2.7:Xethaith€ hil$nrl varztrongbang14vabang15 Bang14 Bang15 -Trang 36- rl Ten Tu6i Man tl A 01 B t2 A 01 C t3 A 02 C fZ Ten Tu6i SV tl' A 01 M tz' A Oz N Giasa, ngu'oisadl,mgmu6nupdatedl1li~utrongquanh~rl bdiCalil~nh: update(rl;Mon=D, ContexteTen =A, Mon=C)) Ta co : Contex~U)3)={sd, Sl =.Nhu'v?y Contex~(83)C: ContextoB(82)={t3, t2'}' Theo qui dc 2.2 h~th6ngse th1!chi~nupdatebQ Sl trongContex~(83)voi ( Mon=D ) r6i insertbQs[ vaotrongquanh~rl . Nhu'v?y tadu'<;5Cquanh~rl va r2 nhu'trongbang16va 17: Bang16 Bang17 Tie'pthea,giasli'ngu'oisli'dl,mgmu6nupdatedl1li~ubdi Calil~nh: update(rl;Mon =D ,Context(HQten=A, Mon={B,C}, SV =M)) Khido:Contex~(84)={Sl, sz, S3},SI =, 8Z =va S3=. Nhu'V?yContextQ(84)==ContextoB(81). Theoquitilc2.2tadu'<;5Cquanh~rl varz nhu'sau: Bang18 Bang19 37 rl Ten Tu6i Mon tl A 81 B tz A 81 C t3 A 82 C t4 A 83 D rz Ten Tu6i SV tl' A 81 M tz' A 82 N rl Ten Tu6i Mon tl A 81 D tz A 8z C t3 A 83 D rz Ten Tu6i SV tl' A 81 M tz' A 8z N Saudo,giasanguoisad\mgl~iffiuo'nupdatedll1it$ubdicaul~nh: update(f[,fZ;Tu6i ='50',ContexteTen=A,Mon=C,SV=N) ) Khi do : contex~(b4)={4, ts}, vdi 4 =, ts=.NhUV?YContextoB(bz)==Contex~(b4). Theoquitilc2.2ffiQixua'thi~ncua-b2trongCSDL d~udu<Jcthayd6ibdigiat:ri50vi V?yquailh~fl va f2sedu<Jcthayd6inhutrongbang20va21: Bang20 Bang21 2.3.3.Qui tiic2.3 (chothaotic xoadll1i~u) Cho Q Ia ffiQt cau l~nh delete tren cac quail ht$fib fI2,...rip . Ne'u trong t?P 3 IiI,f12,...fip(Q) cuacaul~nhdeletecochuaffiQtso'null ngll canhva bjl, ,bjkla ta't cacacnullngllcanhxua'thi~ntrong3 fil,r12,...rip(Q).Thi h~tho'ngchith1,1'chit$nthao tacxoane'unhutrongCSDL t6nt~icacnullngllcanhbhI. . .,~ ffia bhvxua'thi~n trenclingcQtthuQctinhvdi bjv(1 :::;v :::;k ) va Contex~(bjv)==ContextoB(bhv)'Khi k d6h~tho'ngsexoata'tcacacbQtrongUContextDB(bhv) v=\ Vi du2.8. Xethaith€ hi~nfl vaf2nhutrongbang22va23: -Trang 38- Ten Tu6i . Mon bl Dtl A tz A 50 C t3 A b2 D I fZ Ten Tu6i SV tl A bl M . tz. A 50 N Bang22 Gic:ls11, ngu'dis11d~ngmu6nx6adl1li~ub~ngCalll~nh: Bang23 Delete(r]; ContexteTen =A , Mon =C ) ). I Ta c6 ContextQ(03)={t}voit =. Nhu v~y I i ContextQ(o3)C:ContextoB(ol) ={tt.tz},theoqui ta:c2.3h~th6ngkhongth\lchi~n I thaotacx6a. Gias11l~nhx6ati€p rhealaDelete(rl;ContexteTen=A, Mon =C , SV =N)) Khid6caebQ,va sebi x6akh6iquanh~rl. Djnhnghia2.9rho DB1vaDBzlahaiCSDL.Ta vi€t DBl C DBzn€u 'if t E DBl ~ luon3 t'E DBz saocho t ~ t. Djnhnghia2.10 (i)MQtCSDL nullngl1canhdU<;1CgQilakhongbi t6nthaithongtinkhi apd~ngqui ta:c2.1n€u CSDLcli c CSDLmdi. ~ (ii)MQtCSDL nullngl1canhdu'<;1CgQila khongbi t6nth:1tthongtinkhiapd~ngqui ta:c2.2va quita:c2.3n€u khongxayra trudngh<;1pc6haibQt va t' cuaclingffiQt quanh~rimat =1=t' Va t ~ t' l~iclingdu<;1Cupdateho~cdelete. rl -Trang 39- rl Ten Tu6i Mon tl A 01 B tz A 01 C t3 A Oz C- rz Ten Tu6i SV tl' A 01 M tz' A Oz N Y nghlacua(ii) la : ne'utrongCSDL c6 t6nt(;lihai bQt, t' yoi t -:t:.t' va t ~ t' 'i thlhainullngucanhtrenclingmOthuQctinhcuacuat vat' phaiphananhhaid6i tuQngkhacnhau, tucla, thongtinv~haid6ituQngkhacnhaud6c6th~la dohai nguoisadl;1ngkhacnhaucungca'p,VIv~yne'utrongWonghQpupdatevadeleteca 2bQt va t' clingbi thayd6iho~cclingbi xoasegayra t6ntha'thongtinchoh~ th6ng. DinhIy 2.1 MQtCSDL thuduQctitCSDL nullnguca.nhsaukhiapdl;1ngcacquita:c 2.1,Quita:c2.2vaQuita:c2.3v~nlaCSDL nullngucanh. Chungminh:D~chungminhdinh19,taphaichiravi~capdl;1ngcacquita:c2.1,2.2 va2.3luondambaatrongCSDL khongt6nt(;liba'tkI haigiatribjvaOJvoi i -:t:.j ma 8. ~ o. (*). 1 DB J TruonghQpquidc 2.1duQcapdl;1ng: Theoquita:c2.1,khiinsertduli~u,ne'utrongCSDL t6nt(;limOtgiatrinullc6DB- ngucanhh~phanho~crQnghanQ-ngucanhcuamOtgia tri null trongcaul~nh inserthlh~th6ngchiluugiatrinullnaoc6ngucanhrQnghall.Do d6phepinsert duli~urheaquita:c2.1khonglamxua'thi~nba'tkyhaigiatrinullOJvaOJvoii -:t:.j ma 8.~ 0.. 1 DB J TruonghQpquyta:c2.2duQcapdl;1ng: Ne'uxayra truonghQp(i), thayVIupdate,h~th6ngseth'!chi~nthaotacinsert. Theotrenvuachungminhquita:c2.1khonglamxua'thi~n(*). TruonghQp(ii) lahi~nnhien. Nhu'v~yquita:c2.2luondambaatrongCSDL khongt6nt';liba'tky haigiatri nu1l8jva OJvoi i -:t:.j ma°i~ OJ'DB -Trang 40- Truongh<;1pqui t~c2.3du<;1Capd\lng: Do tru'ockhi th1,fchi~nthaotacxoa,CSDL Ia CSDL null ngii'canh,Wc la trong CSDL khongt5nt(;libeltki hai,giatri OJva OJvoi i 1=j maOJ ~OJ' Khi qui t~c2.3 du<;1C apd\lng,dil'li~utrongCSDL khongbi sti'ad6i,VIv~ynokhongth~lamxuelthi~nOJ vaOJvdi i 1=j ma OJ~ OJ'DB Djnhly 2.2.CSDL sekhongbi t6ntha'thongtinkhiapd\lngquit~c2.1,quit~c2.2 vaquit~c2.3. Chungminh: Truongh<;1pquit~c2.1dU<;1capd\lng: Theoquit~c2.1,voi truongh<;1p(i) va(iii) tad~ucoCSDLclic CSDLmoj.Nhuv~y s; chiphaixettruongh<;1p(ii) cuaquit~c2.1: Xett la mQtbQbeltki trenquailh~rj thuQcvaoCSDLcli,ra rang: . Neu tit:C={ContextDR(8;1)u ContextDR(8;z)u... U ContextDR(8" )}thl t E CSDLmdi v~y3t'=tE CSDLmdid~t'~t. . Neu tEe thl qua trinhthaymQixuelthi~ncua 8j (2'5:P '5:k) trongCSDL bdi p Oilv~ndam baa 3t'~tco m~t trong CSDLmdi.Do t'~tnen 1'~t. V~y v~n ri ? :3t'E CSDLmdi de t' ~ t . Nhuv~y'it E CSDLculuon 3t'E CSDLmdima l'~t. TheodinhnghIa2.10tasuy raCSDL lakhongt6ntheftthongtinkhiapd\lngquit~c2.1. (ii)Truongh<;1pqui t~c2.2vaqui t~c2.3dU<;1Capd\lng: Giasti'co xayra truongh<;1phaibQt va t' cuamQtquailh~rj clingdU<;1cupdateho~c deletekhimat 1=t' val' ~ t . Khi dotheoquit~c2.2vdimQtnullngii'canhOJnaodo ri -Trang 41- com~trongcaul~nhQ thlluon 3c\ trent va Oiztrent' la hainullngucanhtrong clingmQtcQtthuQctinhvoi null ngucanhOJsaGcho ContextDB(8il)==ContextQ(81')(*) va ContextDB(8iz) ==ContextQ(OJ) (**). Tu (*) va (**) ta suy ra ContextDB(0, ) ==ContextDB(0, ), Wc Ia OJ ~ Oidi6unaykhongth€ xay ra trongmotz z I DB z . CSDLngucanh. Nhu'v~yCSDL lakhongbi t6nthttthongtinkhiapdt,mgquiHic2.2va2.3. 2.3.4.Nh~nxet Trangph~nnaychungtadffdi sauvaocachti€p c?nv~nhunggiatrinullngucanh. MQtnull ngucanhxutt hi~ntrongCSDL co ynghiadQngva dlt<;fcxacdinhbdi nhung iatridffbiertrongngucanhhi~nt~icuachung. f)i~uquailtrQngla vi~cxacdinhnhunggiatri nulltheocachnaycoth€ du'<;fCt nh roanbdih~thongvaVIv~yh~thongcoth6ki6msoatdu'<;fCchungtrongCSDL. 42 A '" " .. - - - ... 2.4. PHAN CAP CAC CIA TRI NUll VA NCO'NCHIA DO'lIl.=U Phftnnaychungtaxemxetcaetlnhhu6ngd:1nde'ns1Icftnthie'tphaiphan cc1pcaegiatrinull.Tren cdsddochungtaseurnhi~uv€ ngl1nghladuli~ucua nullngucanh,ngunghladuli~udochophepmdrQngcaepheptoandq.is6se xemxettrongphftn2.5. 2.4.1PHAN CAP GIA TRf NULL 2.4.1.1Null ngilcanhchliabittvanullngilcanhmd Th1!chc1tcuanullngucanhIa d~bi~udi€n nhunggiatri chu'abie'tvapht;l thuQcVaGngucanh.D6i voim6inullngucanh,ngu'oitaxemxetcacd~ctru'ng ngucanhcuachung,kyhi~uchungbdicacki t1l81,82, 83,... D~nghiencUungunghladuli~ucuanullngucanh,tru'oche'thayxetunh hu6ngsail: Choquanh~Gido-Vien(ten,tu6i,man)1u'Uthongtinv€ hQten,tu6ivaman d?ycuacacgiaovienthuQcmQtkhoacuamQttru'ongdq.ihQc,giasah~th6ng nh?ndu'QCcacthongtin: (i) ComQtgiaovientenlaA, 45tu6i. (ii) ComQtgiaovientenIaB hi~nkhongdq.ymanhQcnaco (iii) ComQtgiaovientenlaC dangdq.ymQtmanhQc. Thongtin (i) mah~th6ngnh?ndu'Qcla thongtin"md"v€ mandq.y.Theo thongtinnay,giaovientenIa A coth~dq.ymQtmanhQc,coth~dq.ynhi€u man hQc,ho~cclingco th~khongdq.ymanhQcnacoD~bi~udi€n thongtin v€ man d?y,ne'uh~th6ngsadl,mgki hi~u8 thlcomQtvilnd€ d~trakhixetngunghla duli~ucuanullngucanhngu'oitad€u phaigallchonocactlnhhu6ngd~coth~ d?idi~nchomQtgiatri xacdinh,ho~cvaigiatri xacdinh,ho~cchomQtgiatri 43 khongt6nt~i.Do doquatrlnhxemxetngunghiadulit%ucuacacquanht%chua giattinullsephuct~plenra'tnhi~u. Thongtin (ii) maht%th6ngnh~ndttCJc,chobie"tgia tti t~ithuQctinhman<4y cuagiaovien B 1.1khongt6nt~i.TrongtrttdnghCJpnay,ngttdita co th€ sa d\;mg nullkhongt6nt~idnethaychomQtnullngilcanho.Vi giatti cIne1.1giatti xac dinhnennennomangnhi~uthongtinhongiattikhongxacdinho. Thongtin (iii) chobiergiaovienC dangd~ymQtmanhQcnengiatti null t~ivi trimanhQcsebi€u thi1.1cot6nt~imQtgiattinhttngchttabiet. Tu tlnhhu6ngtrenchotha'yvi~cphanlo~inullngilcanhchophilhCJpvoi tungtrttdnghCJpthieuthongtin1.1vi~clamc~nthiet. TrttdnghCJp(i)[3]diisad\lngytttongnull "mo"cuaGottlobvaZicari[12]: Chot 1.1mQtbQdil lit%u,A 1.1mQthuQctfnh,neut[A]dttCJcganla nullmo (viet t[A] =open)thl thuQctinhA sedttCJcxemxetdttoigia thietthegioi md (OWA) vaVIthet[A]coth€ bi€u thichomQtgiattikhongt6n't~i,coth€ bi€u thi chomQtgiatti xacdinhhoijccoth€ bi€u thivai giatti xacdinh(noicachkhac mQithuv~nconlamdd6ivoit[AD Y nghiacuanullmdg~ngi6ngnhttynghiacuanullkhongcothongtindttCJc nullmd A TA1tn , Khon.gco (unk l null) Nhi~u11i tl1 G"'" h,:! 1trila tqc~t e (unknull) Hinh1 1 Giatqc~th€ 1tri 1tri (unknull) (unknull) 1 1 Gia 11ic th Gia 11ic th 44 trinhbaytrongph~n2.1.Tuynhiendaivdinullma,ng1.toitamuonnh!nm~nh khiac<;lnh"ma" cuachung. Giangnhu'nullkhongcothongtin,nullmala nguyenthuyhonnullkhong t6nt<;livanullchu'abitt. IDnh1la cayphanc!pcacgiahi null,nochoth!ys1,1'thactri~ncuanullma thongquanullkhongt6nt<;livanullchu'abitt. Khaini~mnullngucanhmacoth~du'<JcmafQngnhu'sail:mOtnullngucanh maIamOtnullmavagiatrinulldoph1,1thuQcVaGngucanhcuanotrongCSDL. Nhu'v~yvdi tfu'ongh<Jp(i) co th~sad1,1ngmQtnullngucanhd~bi~udi€n thongtinbi thitu. Tru'ongh<;5p(iii) coth~sad1,1ngullngG'canhchu'abittd6bi~uthimOtgiatq t6nt<;linhu'ngchu'abie!vaph1,1thuQcVaGngucanh. Nhu'v~yntuchungtacoimOtCSDLnullngucanhg6mconullnguca.nhchu'a bitt,nullngG'canhmavanullkhongt6nt<;lithlkhongcotlnhhuangthituthong tinnaGla khongbi~udi€n du'<;5Cbai s1,1'ktt h<;5pgiuabaki~unull tren. Ntu ki hi~ucacnullngG'canhchu'abitt bai01.02,... thlcacnullngucanhma se du'<;5Cki hi~ubai cac ki t1,1'nhu'Pl, P2,... Vi du2.9: xetba th~hi~nfa,fb,fckhacnhaucuaR Bang! Bang2 Bang3 45 fa Ten Khoa f)i<$n_thoi NAM LY 8543647 HUNG LY 81 KIEN LY dne rb Ten Khoa f)i<$n_thoi KIEN LY 854647 KIEN LY Bl rc Ten Khoa f)i<$n_thoi KIEN LY 8543647 BI B2 B3 Trongth~hi~nfa,khongthUQCtinhnelocogiatrimd. ydi th~hi~nrb,coth~suyranhungs1!ki~nsau: . Kienleinhanvienduynhit . KhoaLy leikhoaduynhit . KiencomOts6di~nthoC;li:8543647 . Kiencoth~khangcoho~c oncothemmOtvelis6di~nthoC;linua Ngoelifa,khangmOts1!ki~nnelokhacIadung! Gia trimd~1trongrbkhangconghiathuOctfnh£)i~n_tho<:iicomi~ngiatri leicact~ph<jp.Ntu Kien co themvelis6di~nthoC;lithlnhungs6di~ntho<:iinelyse du<jcbi€u di~nbdi mOtt~pnhungbO, vdi cling gia tri ten velKhoa con s6 f)i~n_thoC;lithlkhacnhau. Th€ hi~nrcma tamOtCSDL dudigiathitttht gidimd.Dotit canhunggia t:IithuOctinhcuabOthlihaileimdnenchinoidu<jcKienIa vi~ctC;likhoaLy, co s6di~nthoC;lilei8453647.Ngoeliracoth~connhungnhanvienkhacchuadu<jc bitt. 2.4.2.T~pkhanangcuaquanh~nullngutanh: [3] ChoR(AI. ...,An)leimOtlu<jcddquanh~du<jcxacdiMtrenmOt~pthuOc tinhAI, ...,An. Y di m6i thuOctfnhAi, ta kf hi~umi~ngia tri tu'dngU'nglelDom(AJ. Mi~n cuaR leitfchf)~cacDom(AI) XDom(A2)X ...XDom(An)velkf hi~uleiDom(R). ChungtamdrOngm6i mi~nDom(Aj) thelnhDom*(Aj)b~ngcachthemvelo mOtt~phUllhC;lncackf hi~unull:Dom*(Ai)=Dom(Aj)u A il U Aj2U {dne}trong do: . Aillelt~pcacnullngucanhchuabittveldu<jckfhi~ubdi81.82,... AiZlelt~pcacnullngucanhmdveldu<jckfhi~ubdi~h~2,.... . doeleikf hi~uchonullkhangt6ntC;li . Dom(AJ,Ail,Ai2,{dne}leicact~pkhanggiaonhau 46 Tuongtv mQtsv mdrQngcuaDom(R)1aDom*(R)=Dom * (AI) X ... X Dom*(An). MQtquailh<$null ngii'canhcuamQt1u<;jcd6 Ria mQtt~pconcuaDom*(R). Nhii'ngquailh<$nhuv~ydu<;jcki hi<$ub~ngcacki tv thuongnhur, rr, ... va dtt<;jc gQila cac quailh<$mQtph£1n.T~ptit ca cac quailh<$mQtph£1ntren1tt<;jcd6 R du<;jcki hi<$u1are1t(R). Cac quailh<$khongchuanull du<;jcgQila quailh<$loanph£1n,t~ptit ca cac quailh<$loanph£1ntren1u<;jcd6R du<;jcki hi<$u1are1(R). Cho t 1abQcuamQtquailh<$null ngii'canhr, ne'ut[Ai] khacnull tavie't t[Ai]1. Ki hi<$uopend~chImQtnullngii'canhmdvaunkd~chIIDQtnullngii'canh chuabie't.T~ptiltcacaenullngii'canhchuabie'tho~cnullngii'canhmddtt<;jcgQi chung1acacgia tIi chuaxacdinhconnhii'nggia tri khacnull ho~cdnedtt<;jcgQi 1acacgia trtxacdinh. Cho tl va tz1ahaibQco th~chuanull tren1tt<;jed6R. Ala IDQtthuQctinh,ta ki hi<$utl[A]==tz[A]ne'u 1. tl[A]!,tz[A]!vatI[A]=tz[A],ho~e 2. tl[A] =8j , tz[A] =8j"vai =j, ho~c 3. tI[A] =~j, tz[A]=~jvai =j, ho~c 4. t[[A]=dnevatz[A]=dne. Ta vie't[[X]==tz[X]ne'uVA EX: tl[A]==tz[A]. Ynghlaeuaphepsosanh==la ki~mITaSvtrlingnhauv~ki hi<$ucuacae gia tri trongCSDL. Vi d\l 3 ==3; 8j ==8j;~j==~jvadne==dne. Ngu<!cl(;livoi phepsosanh==la phepsosanh=/=.Vi d\l3=/=4;8i=/=8j; 8i=/=~i; -Trang:47- Binh nghiafilachungtasephatbi~usaildayd~C?PWi t?pkhiinangcua mQtluQcd6quailht$.M6i khiinangcuarnQtquailht$r sechtYat?Pta'tcii cacbQ thuQcr saukhidiithaythe'cacgiatIi nullbdicacgiatIi xacdinh.Vi d\l,xetmQt quailht$r: {}vdirni~ntIi cuathuQctinhgifi'ala {I,2,3}.Khi domQt khanangcuar la'varnQtkhiinangkhacsela. Khi thaythe'nhfi'ngiatri null,dotinhcha'tcuacacnullkhongt6nt~inen chungta se duara rnQtki hit$u.1 d~bi~udi~nchodnetrongt~pkhii nang. Vi d\l:xetrnQtquailht$r : ,khidovdi rni~ntIi cuathuQctinhcu6ila {c,d}thlcohaikhanangchor lava.Nhuv~ytacoth~coi.1 latricuadne.Tie'ptheochungtadinhnghiav~t~pkhanang. Dinhnghia2.11ChoR(Al, ...,An)la rnQtluQcd6quailht$.MQtkhiinangcuaR la rnQt~pcon cuaDomJ.(R)=DornJ.(Al)x ...x DomJ.(An)tro-ngdoDom\Aj) = Dorn(Aj)u {1.}vaI ~i~ n. T~pta'tcacackhanangcuaR duQcki hit$ub~ngR. Dinhnghla2.12.Chor la rnQtquailht$,a Ia rnQtnullngfi'canh(a E L1ilU L1iZU {dne}) xua'thit$nt~icQtthuQctinhA, (i) MQtgiatriho~crnQt~pgiatriV duQcgQilamQtphepthe'coth~cuaane'u: . V =0 ho~c . V:t=0 va: Ne'ua E L1ilthlV E Dom(A) Ne'ua =dnethlV =.1 Ne'ua E L1iZthl:ho~claV =.1ho~claV =={bt.bz,...,bm},trongdo:m~1 vavdi 1~i ~rn: bi E Dorn(A). 48 (ii) Ne'uv lamQtphepthe'coth€ cuaa,taki hi~u r' =S;(r) lamQtquail h<$co du<;1ctti'r b~ngcach: . Ne'uV= 0 thlkh6ngth\fchi~nthaythe'a,Wcla r' =r. . Ne'uV :1=0 thlthaymQixuc1thi~ncui atrongr bdiV. (iii) Cho ai, az,... ,akla cacnull ngucanhxuc1thi~ntrongr; VI>Vz, ...,Vk tu'dng ling la Cae phep the' co th€ ?cua aJ, az, ..., ak. Khi do r' =Sv,V2"..YK(r) la quailh~codU<;1Ctti'rb~ngcach: Voi 1~i::; k:ala2..ak' . Ne'uVi * 0 thlthaymQixuc1thi~ncuaaitrongr bdiVi . Ne'uV =0 thlkh6ngth\fchi~nthaythe'ai. Vi du2.10:Xetr: {,}voimi€n thuQctinhd~ula {l, 2,3}, khi do r1 =S~I(r)la quail h~ : {,} fz =S{1,3}(f)la quailh~:{,,,}va ~l r3=s.l (f) la chinhquailh~r.Odne M~nhd~2.3 [3]Ne'uf[, rz,...,rmlamquailh~trenclingmQtlU<;1Cd6; ai, az,..., aklacacnullngucanh;Vi laphepthe'coth€ cuaai(1::;i::;k).Thl taco: . ) vv v ) -SVIV2 VK () S VlV2"",VK (1 S 12"'" K (flU fZ U...U fm - GIG2..Gk' fl U...U G,a,..ak" fm).GtG2..Gk' - ii) SV,V2"",VK (f\i1fZi1...i1fm)= S V1V2"'" VK(fdi1...i1SVIV2"",VK (rm). GIG2..Gk' ala2..ak' ala2..ak' 2.4.3.Ngfinghiadfi li~uvamohinhcuaquaDh~nullngllcanh[3] Cho r la mQtquailh~trenlu<;1cd6quailh~R(AJ, ...,An); r E R lamQtkha nangcuar. Djnhnghia2.13Chot lamQtbQcuaquailh~r ; tria mQtbQcuar .Tanoit suy fa tr (ki hi~ut t>tr ) ne'uvachine'uvoi 1::;i::; n it nhc1tmQttrongb6ndi€u ki~nsauphaidU<;1Cthai man. 1. t[AJ ==tP [Ai] ho~c 49 2. t[AiJ ==openho~c 3. (t[AiJ ==linkva tr [Ai]=/=.1)ho~c 4. (t[Aj]==dneva t~ [Ai] ==.1)r Vidu2.11 : t=(l, open,unk,dne,5) I>(l,2,4,.1,5);tl> (1,.1,1,.1,5). Dfnh nghia 2.14.MQt kha nang} cuar dU<;5CgQila mQtmohinhcuaquailh~f n€u va chIn€u no thoamanbadi€u ki~nsail: 1. Voi mQinull ngucanhat. az,...,amxuc1thi~ntrongf,:1 VI>V2, ...,Vmsaccho , v v 'r - S I ",.,. ~- m a I a 1" a fII 2. '\j L E r , khan!!t6n tai L 'E rr ~. r : ( t ~ +=t ~ ') \'a voi 1 s; i S;nr r (t ~ [AiJ +=.1 =>t, [AiJ=t ~'[Ai]r r r 3.E r => r =0. Truoc h€t, chungtaduafa nhunggi,aithichng~ngQn chotUngdi€u ki~ncua ainhnghla. Ddu hen 1 auafarangbuQcla m6inullngucanhchuabi€t chIdu<;5cthay th€ bdiduynhc1tmQtgiatrixacdinhchl.i'khangdu<1cthayth€ bdimQt~pgiatrio Hannua,noyetic11ubdimQtbQtr trongr phaidu<1csuyfa it nhc1tumQtbQ cuar. V€ m~tn!cgiac,di~unayconghla,f phaidu<1cdi~ngiaiduoigiathuy€t th€ gioidongtrukhinocoxuc1thi~nnhunggiatrinullnguciinhmdnaodo.E>i~u ki~nnayclingkh~ngdinh,m6ibQcuar (trufa haibQ, <dne,dne,...,dne» phaisuyra it nhc1tmQtbQtrongr . C1,1th{ - NhungbQmachIchl.i'aduli~uxacdinhcuar (khangconull)d€u phaixuc1t hi~ntrongmahlnhr . 50 -NhungbQc6 chuamQtho~cnhi€u nullngucanhchuabie'tphMguyra it nh<ltmQtbQtrong r trongd6 m6i null ngu canhchuabie'tdU<;1cthaythe'bdi nhunggiatriduli<$uxacdinh. - NhungbQc6chuamQtho~cnhi€u nullngucanhmd phaiguyramQtho~c nhi€ubQtrongr , trongd6 m6inull ngucanhmdho~cdU<;fCthaythe'bdi mQtgia tri 1.,ho~cdU<;fCthaythe'bdi mQtgia tri xac dinh , ho~cclingc6 th~thaythe'bdi mQt~pgiatrixacdinh. - Cu6iclingthlm6inullngucanhkhongt6nt~imaxu<lthi<$ntrongmQtbQ naGd6cuar sedU<;fCthaythe'bdigiatri1.trongmQtbQtudngungcua r Ddu kien2:bi~udi~nngunghIam~nhcuanullngii'canhkhongt6nt~i.N6 kh~ngdinhne'ut6nt~imQtbQt;: trongr mac6vaigiatri 1.thlkhongth~t6n t~ib<ltkymQtbQnaGtrongr makhacvditr chibdithaythe'mQtvaigiatri1. vdi nhunggia tri xacdinh.Vi d\!,xetquailh.Khi d6,di€u ki<$n1 cho dng ;: phai chuabQ , con di€u ki<$n2 l~i kh6ng cho phep bQ xu<lthi<$ntrong r , trongd6x 1amQtgiatridii'1i<$uxacdinh. Cu6icling,Di~ukien3 kh~ngdinh,ne'uc6bQtrongr thl r bit buQcphaila t~pr6ng.E>i€uki<$nnayxacdinhthemngii'nghIachodne. E>~cbi}vaquailh<$r6ng0 d€u c6chungduynh<ltmQtmohlnh,d61a0. Neu r chithoamanDi~ukifn1thi r du(fcgqilamohinhyeucuar. Dfnh nghia2.15Cho r 1affiQtquailh<$c6 th~chuanull.Ta n6i ngunghIacuar 1a t~pt<ltcacacmohlnhcuar (ki hi<$u: MODELS(r)). Dfnh nghia2.16.Cho r va r' 1ahai quailh<$trenclingmQt1U<;fCd6, r va r' du<;fc gQi1atuangduangngilnghiane'"uvachi ne'uMODELS(r) =MODELS(r'). 51 Vi du 2.12:Voi quailht$r va s nhutrongbang4 va bang5 thlMODELS(r)= MODELS( s ). ~ ~ ~ ~ Bang4 Bang5 Dinh nghla2.17.Choa,bE Dom* (A), vdi A 1amQtthuQctinh.Ta noi, b xdcdfnh hana (vie"tb ~a) hay a it xdcdfnhhanb (vie"ta ~b) ne"uva chi ne"umQttrong flamdi~ukit$nsailduQcthai!man: 1. a==b. 2. a==open. 3. a==link,vabL 4. a==link,vab==link. 5. a==dne,vab==1. Nhuv~ygidtrfopenLaitxdcdfnhhanmQtgiat:rilinkvagidtrj unk itxdc djnhhanmQtgid trfxdcdfnh. Tti dinhnghla2.17,taco th~md rQngkhai nit$mxac dinhhan ho?c it xac dinhhanchohaibQcuamQt1uQcd6quailht$. Dinh nghla 2.18.Cho r va r' la hai quail ht$trenclingmQt1uQcd6; t la mQtbQ cuaquailht$r; t' 1amQtbQcuaquailht$r'. Ta noi t' xdcdfnhhant ( ki hit$ut' ~t) ho~ct it xdc dfnh han t' (ki hit$ut ~ t') ne"uva chi ne"uvdi 1 ~ i ~ n thi t[Ai] ~ t'[Ai]. Vi du2.13:t=~ ; t~;t~ ;t~;t 1:,. M~nhd~2.4 (i) Ne"ut[ I>tzthi t[ ~tz. 52 Vi du 2.12:Vd'iquanh~r va s nhutrongbang4 vabang5 thlMODELS(r)= MODELS( s ). ~ ~ ~ ~ Bang4 Bang5 Binh nghia2.17.Choa,bE Dom*(A),vd'iA la mQthuQctinh.Tan6i,bxdcdtnh hona (vietb ~a)haya it xdcdtnhhonb (vieta ~b)neuvachineumQttrong namdi~uki<$nsaudu<;1Cthoaman: 1. a==b. 2. a==open. 3. a==link,vab!. 4. a==link,vab==link. 5. a==cine,vab ==1. Nhuv~ygidtrtopenfa itxdcdtnhhonmQtgiatri linkvagidtrtunk itxdc dfnhhonmQtgid trtxdcdtnh. Ta dinhnghla2.17,ta c6 th~ma rQngkhai ni~mxac dinhhonho?c it xac dinhhonchohaibQcuamQtlU<;1cd<3quanh<$. Binh nghia 2.18.Cho r va r' la hai quanh~trenclingmQtIU<;1cd<3;t la mQtbQ cuaquailh<$r; t' la mQtbQcuaquailh<$r'. Ta n6i t' xdcdtnhhont ( ki hi<$ut' ~t) ho?c t it xdc dtnh hon t' (ki hi<$ut ~ t') neu va chi neu vd'i 1 ~ i ~ n thi t[AiJ :5;t'[AiJ. Vi du2.13: t=~ ; t~;t ~;t:5;;t ~. M~nhd~2 .4 (i) Neu t1[>t2thi tl ~t2. 52 (ii) Neu tl :::;tzva tz!Thl tj I>tz. (iii) Neu tl :::;tzva tz:::;t3thl tl:::;t3. (iv) Neu tl :::;tzva tzl>t3thltll>t3. Dinh nghia 2.19.Cho r va s la hai quailh<$trenclingmQthl'<;1Cd6,r du<;1CgQila xacdinhbons ( ki hi<$ur ~s) hays du<;1cgQila it xac dinhbonr ( ki hi<$us :::;r) neuvoi mQibQtsE Sluant6nt<:libQtrE r saGchotr ~ ts. Neur ~ svas ~ r chungtavietr ==s. D~tha'yquailh<$:::;la phanX<:lvab~Cc~u.Quanh<$==la quailh<$tu'ongduong. Be)d~2.1 Cho r va s la hai quail h<$tren cling mQtlu<;1cd6, neu yIODELS(r):;:: 0 val'vl0DELS(r)c MODELS(s)thl: (i) r~s (ii) 'v"trE r, :3ts E S : ts:::;tr Vi du 2.14 : Voi quan h<$r trong Bang 6 va quail h<$strong Bang 7 thl MODELS(r)c MODELS(s) . Dinhly 2.3.Neur vas la tltongdltongngunghlathlr ==s. Chungminh.Suytrt,{ctieptuB6d~2.3. Dinh ly 2.4.Chor va s la haiquailh<$trenclingmQtlu<;1cd6.Neu t6nt<:licacnull ngucanhaI, a2, ...,ak trongs va t6nt<:licacpheptheco thSVi cuaai (1 :::;i:::;k) VIV2..Yk saGchor =S (s) MODELS(r) c MODELS(s). ala2..£lk .. 53 81 8z 1 1 83 1 81 82 2 1 83 2 I I2 2 34 5 6 4 5 6 Bang6 Bang7 2.3.1.4.Ml}tvai vi dT!- Xet lU<;1Cd6quanh~R =(X,Y, Z) vdiDorn(X)={a,b};Dorn(Y) ={I, 2} vaDorn(Z)={c,d}.Chungtaseduafa nhii'ngth~hi~nkhacnhaucuaR vaban lu~nv~figii'nghlacuachung. R6 fang,quanh~chichuanhii'ng ia hi dii'li~uxacdinhseco duynha't rnQtrnohlnh,mohlnhdochinhl~quanh~f. Vi dl,l,xetth€ hi~nfl cualU<;1Cd6R trongBang8 Bang8 Hi€n nhien,f I coduynha'trnQtmohlnh~trongBang9 Bang9 Bang10 Do tinhcha'tcuanullngii'canhIDanenf2se co 8 rnohlnhkhacMall. " ra " rb 54 " rc rl X Y Z A 1 C A 2 D " X Y Zrl A 1 C A ') D Xet ffiQtth hin f2khac (Bang 10)cua R: [2] X Y Z A 1 C A 1 D A 2 C A 2 D A 1 C A 1 D A 2 C A 2 D B 1 C A 1 C A 1 D A 2 C A 2 D B 2 C A 1 C A 1 D A 2 C A 2 D B 1 D " rd " re " rf " " rg rh D~tha'yconhungkhaniingcuaf2khanglamahlnh.Vi dlf: Titp thea,xetquailh<$f3cochuanullngucanhchU'abitt: Bang11 55 A 1 C A 1 D A 2 C A 2 D B 2 D A 1 C A 1 D A 2 C A 2 D B .1 C A 1 C A 1 D A 2 C A 2 D B 1 .1 A 1 C A 1 D A 2 C A 2 D B .1 D A 1 C A 1 D A 2 C A 2 D B 2 1. A 1 C A 1 D A 2 C A 2 D .1 .1 .1 A 1 C A 1 D A 2 C A 2 D A .1 C '3 X Y Z A or C A or D B 02 C r) cob6nmohlnhsau: 56 UjJ A 1 C AID A 1 D B 1 C B 2 C " " ra rb A 2 C - A 2 C A 2 D A 2 D B 1 C B 2 C " " rc rd V oi quan ht$ r) ne'u chi dung null chu'abie'td biu din thongtin khong dy duthls6mohlnhtanglenra'tnhiu r) X Y Z A link C A link D B link C Bang12 A 1 C A 1 C A 1 C A 1 D A 1 D A 2 D B 1 C B 2 C B 1 C A 1 A 2 C A 2 C A 2 D I A 1 D A 1 D B 2 C B 1 C B 2 C A 2 C A 2 C A 2 D A 2 D B 1 C B 2 C cotammohlnh Nhl1v~y,trongmQtquailh~nullng11canhne"unhus6giatrinullcocling ng11canhcangnhi~uthlm6irangbuQcgi11achungsecangcaovadodos6mo hlnhmachungxacdinhseit honnhi~uso voi nh11ngtrl1C1ngh<;1pthongthl1C1ng khac. Cu6icling,chungtahayxetquailh~r4 cochuabaki4unullkhacnhau Bang13 Do trongr4cobQnengia tri ~1cuabQkhongth4dl1<;1C thaythe"b~nggiatfi.l trongP(dodi~uki~n2).VI v~y,trongquailh~nay~1chI coth4dl1<;1cthaythe"boigiatri 1ho~cgiatri2. Nhl1v~yr4cob6nmohlnhsauday: A B -L 1 C D 57 r4 X Y Z A dne C B 81 D B 1 D " ra [I C B 2 D " rc A 1. C B 1 D B 2 D " rb A -L C B 2 D B 1 D " rd , "" ,,? " 2.5. CAC PHEP TOAN QUAN HI; MO RQNG Trangphgnnaychungtaseapd~ngcacke'tquav~ngunghladuli~ud~md rQngcacpheproanquailh~chonullngucanh. 2.5.1.Quanh~IDQtph~nd1iqcphanho~ch Khi nghienCUllv~thongtinkhongdgydu,ngu'aitathU'angd~tradiuhGi: The'naola giatri chanly cuabi6uthucx =y khimax ho~cy ho~cax vay la null? Theoquaildi~mcuaCodd[13],bi~uthucx=y dtrensechoke'tqualamQt giatri chanly chu:abitt.Do v~yCoddgioithi~umQtlogicbatri (0,0),1)thay chologichaitri(0,1)thongthU'ang.Voi logicbatrinay,mQigiatrichanly chU'a bie'td~udU'<;1Ckyhi~ubdi0)vadodocacgiatrichanly d~ucoth~du'<;1ehilltrong CSDL. Khi tht,tehi~nmQtvaipheproand~isotrencaequailh~mQtphgn,ngU'aita thU'ang~pphainhungbi~uthucsosanhd~ngx=ydtren.Bi~unayselamxua"t hi~nmQtsogiatri ehanly 0)trongnhungquailh~ke'tqua.Voi cacquailh~ke't qua,mQtbQduli~ukhongxua"thi~n(j)chinhla bQthGamanpheproand~iso, ngU'<;1Cl~inhungbQcoxua"thi~n(j)chi la nhlingbQcokhdndngthGamanphep roand~iso.BiskupgQinhungbQkhongchua0)la nhungbQchilechilnvanhung bQchua0)lanhungbQcothi.Dov~y,ongnhlnnh~nm6iquailh~mQtphgng6m haiphgn,thanhphgnthunha"tbaag6mnhungbQch~ch~nvathanhphgnthuhai baog6mnhungbQcoth~.Nhungquailh~du'<;1Cxemxettheoki~unaycondu'<;1C Maier [14]gQila nhungquailh~dU'<;1Cphanho~ch.MQtquailh~du'<;1cphanho~ch coth~dU'<;1CxemnhU'mQtc~pdU'<;1Cs~pcuahaiquailh~mQtphgn. SR Dfnh nghia 2.20.Cho rl va r2 lahaiquailh~trencling ffiQtIU<;1cd6 R. Chungta gQic~pdU<;1cs<1p(rl' r2)Ia ffiQtquailh~dU<;1cphanho~chr n€u rl!1 r2= 0 va SURE (r)=rl, MAYBE (r)=r2' SURE(r)du(/cgQifatq,pcacbQchilcchilncuar vaMAYBE(r) fatq,pcacbQ cothi cuaT. Dfnhnghia2.21.Chor laquailh~du<;1cphanho~chtrenlu<;1Cd6R, s laquailh~ ffiQtphfintrenR. Chungtan6is xffpxi r, kyhi~us [>r n€u vachin€u SURE (r ) u MAYBE (r) :) s :) SURE(r). Khi bi~udi~nffiQtquail h~du<;1Cphanho~ch,nhungbQch<1cch<1nse n~m dU<;1Cnganeachvoi nhungbQc6th~bdi ffiQtduangaUtnet. Vi d1,l2.15Choria quailh~trongBang 14,slva S2lacacquailh~t5~gBang15 vaBang16.Khi d6Sll>r vaS21>r. Bang14 Bang15 Bang16 sC) r A B C 1 81 4 PI 5 6 ...................................................................................... 2 dne 4 1 3 6 51 A B C 1 81 4 PI 5 6 1 3 6 52 A B C 1 81 4 PI 5 6 2.5.2.Ham kha DangPOSSNC[4] Trongph§nnaychungtaxemxetquanh<$chuanullngucanhdU'oidlJ.ng du<;cphanho~chthanhcacbQchilcchilnva cacbQco thl Ta diM nghiaham khanang:POSSNc(r)={s / s lamohlnhye'ucuasnaGdomas[>r}. M~nhd~ 2.5 Voi quan h<$du<;cphan ho~ch r va ham kha nang POSSNC (r) ={s / s lamohlnhye'ucuas naGdomast>r} thlPOSSNc(r) la xac dinhduynhfft. M~nhd~2.6Chor vaslacacphanho~chtrenlu<;cd6R vahamkhanang POSSNc,ne'ut6nt~inulngucanhal,az,...,aktrongsvat6nt~icacphepthe'co th~Vi cuaaj (1~i ~k ) saGcho i) s =S VI,V: , ...Vk (s) QI ,Q2, ..£lk ii) 'if t- E SURE(s) :J tr E SURE(r) : tr=t-s s iii) 'iftr E r :J t- E S : t r =t-s s thlr ~s. Vi du2.16Voi haiquanh<$r vasnhutrongBang17vaBang18thl r ~ s Trangvi dl,lnay, S = S78 (s) 81131 Bang17 Bang18 nO s A B C 81 1 82 81 2 3 .........................................-...........-...- 3 1 4 2 1 5 4 5 83 1 2 3 r A B C 7 1 82 7 2 3 3 8 4 ...................................................................... 2 8 5 4 5 83 M~nhd~2.7Chor vas la cacquanht$duQcphanho?-chtrenluQcd6R vaham khaDangPOSSNC,n€u POSSNC(r)c POSSNC(s)thl i) 'If tsE SURE (s)3 trE SURE (r) : ts::;tr ii) 'If tr E r 3 ts E S : ts::;tr Vi du217:Vdihaiquailht$r vasnhutrongBang19vaBang20thl POSSNC (r) <;fPOSSNC (s) . Bang19 Bang20 Trongvi d1,lnay,bQ 1;... 2.5.3.Md rQngcaepheptoaDquailh~[4] a) MlJ ri)ngpheploanch{Jn PheptoaDchQnduQcapd1,lngtrenmQtquailht$.K€t quacuapheptoaDchQn chomQtquailht$mata"tcacacbQcuaquailht$d6phaithoamanmQtdi~ukit$n . xacdinh.Trangph~n aychungtasexethaid?-ngcuaphepchQn: "A =a" ho~c "A =B ", trongd6A vaB latencacthuQctinhvaa lamQtgiat:rixacdinh.Chor lamQtquailht$duQcphanho?-chtrenluQcd6R ;A ER.ChungtadinhnghTa: crNC (r) =s(R)A=a Trangd6 SURE (s) ={tIt E SURE(r)vat [A]=a} 01 r A B C 7 1 81 7 2 3 3 8 4 """"""""""""""""""""""""""""""""""""""""". 2 8 5 s A B C 81 1 dne 81 2 3 """"""""""""""""""""""""-"-"-"'-"""'" 3 1 4 2 1 5 MAYBE(s)={tIt E MAYBE (r)vat[A]=a}u {t'l 3tErma t[A] E ~i1U ~hvat'[A]=a;t'[B]=t[B]VdimQiB*A} a NCA=B (r) =s(R) Trongdo SURE(s)={tIt E SURE(r)vat [A]=t[B]} MAYBE(s)={tIt E MAYBE (r)vat[A]=t[B]}u {t'l :3tErma t[A] E ~i1u ~i2vat'[B]!; t'[A]=t [B];t'[C]=t [C]vdi mQiC:;i:A}u {t'I 3tErma t [B] E ~ilu ~i2vat'[A]! ; t'[B]=t [A];t'[C]=t [C] vdi mQiC:;i:B}. Vi dl,l2.18Vdi quanh~r (A, B, C) cuavi dl,l2.15taco~~~ (r) la quanh<$ trongBang21vaa NC (r) 1aquanh<$trongBang22A=B Bang21 Bang21 M~nhd~2.8. a NC lamQtmdfQngthoadangcuaa tl1dngungvdihamA=a A=a khanangPOSSNC M~nhd~2.9.Ne"u11 t, t' E SURE(r) saDchot[A] E ~ilu ~i2vat[A] =t'[A] thl crNC lamQtmdfQngchinhxaccuacrA=atudngungvdihamkhanangPOSSNc. A=a M~nhd~2.10.crNC lamQtmdrQngthoadangcuacrA=Btl1dngungvdiham A=B khanangPOSSNc. n2 51 A B C 1 °1 4 """""..............................................,.......................... 1 5 6 1 3 6 52 A B C .........................................-..-.................... 1 1 4 5 5 6 M~nh d~2.11.Ne'u 3 t, t' E SURBer) saGcho t[A] E LlilU Lli2; t[A] =t'[A] va t[B] E Llil U Lli2t[B] =t'[B] thl crNC lamQtmdrQngchfnhxaccuacrA=BtltdngA=B . lingvdihamkhanangPOSSNc. b)MlJ rQngphepklt . Chor(R)vas(S)la cacquanh~du'<;1cphanho~ch,trongdoR n S =x. BQtr E r va tsE s du'<;5CgQila tu'ongh<;1ptrenX ne'uV A E X ho~ctrCA)!va trCA)=ts(A) ho~c trCA) E Llil U Lli2ho~c ts(A) E Llil U Lli2. Chungtadinhnghlar t><JNCS =q(RS) Trongdo SURE(q) ={t(RS)I 3 tr E SURBer), 3 tsE SURE(s) saGchot(R)=trvareS)=td va MA YBE(q) = {t(RS)I t6nt~icaebe>tu'ongh<;5ptr E r"vatsE SsaGcho: t(R-S)=tr(R-X),t(S-X)=ts(S-X)vaV AEX, ne'utr(A)!thlteA)=tr(A) ngu'<;1cl~i teA) =ts(A)}. Vi d1,l2.19:Giasar vas la haiquanh~trongBang23vaBang24thlr t><JNCSla quanh~trongBang25 Bang23 Bang24 01 r A B 81 1 3 82 ----------------------------- 4 2 s B C 1 2 82 4 83 6 Bang25 Dfnh nghla 2.22.Cho r va s la haiquailh~null ngucanhdU<;1Cphanho~ch, r la mahlnhye'ucuar' voir'r>r, slama hinhye'ucuas' vois'r>s.Khido r vas dU<;1cgQila tuongh<;1pne'unhutrongquatrinhthaythe'cacnullngucanhtU'r' thanhr vas' thanhs cacgiatrinullclingxua"thi~ntrongr' vas' d~udl1<;1Cthay the'nhanhau. Dfnh nghla2.23.Cho r va s la hai quailh~null ngucanhdU<;1Cphanho~ch. Chung ta dinh nghla : POSS(r)r><Jsir ePOSSNcCr),s ePOSS NcCS) va r, s la tl1ongh<;1p}. M~nhd~2.12.Phepke'tn6i r><Jtl1ongdng voihamkhaDangPOSSNc. 2.5.4.Nh~nxet Trongmahlnhdii'li~uquailh~Ii cosdtrungtamcuacaengan,ngutruy .. va"nVI v~yvi~cmdrQngd~isO'quailh~chocaegiatri null Ii vi~elamquail trQng,m~cdli da:khangdl1ara mQtd~isO'quailh~mdrQngdftydu,nhl1ngda: trlnhbay dU<;1cphuongphapgiai quye'tva"nd~khi cO'giingmdrQngmQtvai phep 114 rr><1NCs A B C 8, 1 2 3 82 4 _. 81 1 4 81 1 6 - 3 1 2 3 83 6 4 2 4 4 2 6 tmin ehQnlQe.CaeM<$nhd~tIt2.8- 2.12ehotha'ythongtinkhongbi ma'tmat khitht,tehi<$ncaepheptoand~i86trendl1'li<$ueuaCSDL nullngfi'eanh. (1:)

Các file đính kèm theo tài liệu này:

  • pdf4.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf2_2.pdf
  • pdf3.pdf
  • pdf5.pdf
  • pdf6.pdf
  • pdf7.pdf
  • pdf8.pdf
Tài liệu liên quan