NGHIỆM DƯƠNG CỦA MỘT SỐ LỚP PHƯƠNG TRÌNH TOÁN TỬ
ĐINH VĂN GẮNG
Trang nhan đề
Lời nói đầu
Mục lục
Chương 1: Các khái niệm cơ bản.
Chương 2: Điểm bất động của toán tử đơn điệu có liên quan tới tính compact.
Chương 3: Điểm bất động của toán tử T - đơn điệu.
Chương 4: Điểm bất động của toán tử hỗn hợp đơn điệu.
Tài liệu tham khảo
16 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1940 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Luận án Nghiệm dương của một số lớp phương trình toán tử, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Chrtdng4
,:J K" ? ,'? ,,'" "
DIEM BATDONGCUATOANTV RONH(1PDONDI~U
§ 1.Toant11h6nh(1p,ddndi~uvadiim ba'tdQng
Truochtt tadn mQtsQkhaini~mvaktt qualienquan.Xlakh6nggianBanach
thvcdu'<Jcsa:pbdinonK .
. Gia su'Dc K, roantU'.A: D x D -7.X duQcgQila h6nhQpdondi~untu A(x, y) la
khonggiamtheebitn x vakhongtangtheebitn y. NghIala \iUl~U2V2~ Ul,V2ED ta. . ,
coA( u J, V-I) ~A( u 2;V2)
. Bi~m(x",Y")E D2duQcgQila c~pdi~mtvabit dQngcila A ntu A( x",Y")= x" va""" . .
A(y ,x ) =Y
. Bi~mx" E D duQcgQila diembit dQngcilaA ntu A( x",x")=x"
. ToantU' A: B(A) eX -7X duQcgQila16intu \i x,y E D(A) max ~y, \it E [0,1]co
A(tx+(1-t)y)~tAx +(1-t)Ay (1)
A gQila lornntu -A la 16i
Dink if 4.1.1.
. .
Gia slYK la nonchua':n,A: KxK -7K la roantU'h6nhQpdondi~u,bonm1'a
(i) voiyc6djnhA(. ,y):K-7K lalorn.Voi xc6djnhA(x,.):K-7 KIa 16i
(ii) ::1v> 0,c >Yz saccho0 <A(v,O)<v (2)
vaA(o,v)~c.A(v,o) .
Khi doA coduynhitdiembit dQngX*Evatucacdayli[lp
xn=A(Xn-l,Yn-l); Yn=A( Yo-!.Xn-l)u~1 (3)
Voi cackhdid~u(Xo,Yo)E Xtuyy, taco
II Xa:'" x* II -70, IJ Yn-x* II . -70 (n.-7oo)vOit6t dQhQitl;l :
29
II x,_x'II ,; N'( 1~c)' II v II
}
.
}IYn-X*II~N~(l~C t II vii .
(4)
Chungminh:
a.,T6n tc;lidilm beitdQng.
B?t Uo=0,Vo =v tac6Uo<vo'Giasa
Un= A(un-I, Vn~I), Vn=A( Vn-I,Un-I), n.=1,2,.., (5)
VI A tangtheobie'nthlinha'tva.giamtheobie'nthli2 nen
0 =Vo <U I::;u2~'" ~Un~ Vn~... < V2~ U I ~ Vo=v (6)
(6')TITgia thi~t(2)ta c6 Un~UI ~cv I~cVn
B?t tn=Sup { t >0 : Un~ tvn} n=1,2,...
Khi d6 Un~tn,Vn(7),Theo (6') va tinhcha't
U~+J ~ Un~ tnVn.;:::tnVn+J ta c6
0 < <t <t < <t < <1
A t)l: t
'
1' t - t* ' 0<t* <1- c - I - 2- ,..- n - , nen on ql lID n - va - -
n
BaygiGtasechIfa t*=1
Th~tV~Y,tugiathie't(i) tac6caeh<$thlicsau
rjx ]:,;X2,Y J :0;Y 2, t E [ 0,1]:
A( tx I+(I-t) x 2,Y) ~t A (x bY) +(1-t)A( X2,y)
A (x, t YI +(1 - t) Y2)~ t A (x, Yl) +(1 - t) A (x, Y2)
(8)
(9)
A{x,y)=A(x,1-fly) ~t A( x, fly) +(1-t)A(x,o} (10)
rjtE [0,1]
Tu (10)talqi c6
A(x, fly) ~ fl[ A(x,y)-(1-t) A(x,o)] , rjt E[O,I] (11)
30
Tii'caehl$thuc(5)(6) (7)(11)(8) (9)(10),va giathie'tA la toantU'h6nhQpdon
dil$utaco
Un+1=A( Un,vn)~A(tnvn,vn)~tnA( Vn'Vn)+(1-tn)A(o, Vn)
-1 .
~ tnA(vn, tn Un)+(1-tn)A(o, V)
~ tn[tn-lA(vn,un) - tn-l(l"-tn)A(vn,o)]+ (1-tn) A(o,v)
. .
. =A(vmUn)+(1-tn)[A(o,v)- A(vn,o)]
1 .
~Vn+1+(1-tn)[UI-V 1] ~Vn+l+(1-tn)(l--)u]c
. 1 . 1
~Vn+l+(1-tn)(1--)Vn+ 1=[ 1+(1-tn)(1-- )] Un+1
C C
Tii'dosuyra
1 1
tn+l~1+(1-tn)(1- -) =>I-tn-l$ (1-- )
C C
(12)
Do giathie't(ii),tatha'yco th€ coiY2<C$ 1va0< l' -1 <1,
c
do v~ytii'(12).suyra dU<;1C: .
I-tn+I$ (1-tn)( ! -1)$ (! -I)\I-tI) $ (l-c )n+l
C C C
tii'd6suyratn-7I(n->oo) (13)
Tii"(6)va(13),taco
0$ Un+p- Un $ Vn- Un$ (1-tn)Vn$ (1-tn) v.
DoKIa nonchuffn,voiN lah~ngS9chuffn,taco:
II Un+p-unll$N(1-tn) v II $N(l-c rllvllC
.11vn:-unll $N( I-tn) II vii $N(l-c r Il,y II
. . . C ,
Tii'(14)vaX la kh6nggianBanachnent6nt<;tiJimUn=u*n
Tuongtl,l',tachi duQct6n.t<;tilim 'vn=V*.. n~~
(14)
(15)
31
Cungtii'(14)khi chop-700tadu<;5C
II un;:Jl * II ~N(.!.tc IIvii
II vn-v*11~N(l-c t " v II
c
Vi Un ~v* ~v* ~vn,ta co 05;v* -u* ~Vn.:.Un~(1-tn)V
Dov~y II v*-u*11 ~N(1-tn) Ilvll'-7o(n-7oo)vau*'=v*
La'yx* =u* (=v*)thix* E 0
Tuun~,x*~Vo>Un+l=A( Un,vn)~A( x*, x* ) ~A(vn,Un)=Vn+l
La'ygioih(,ln(khin -7 00 ) ta dU<;5c.
X*~A ( x*, x* ) ~x*, Nghlalax* la di€m ba'tdQngcuaA.
b.81/duynhfitcuadiim biltdQng.
_Giasli'Xla mQtdi€m ba'tdQngnaodotren[o,v]cuaA, khido
- --
Uo=0 ~ X ~ V =V0 A ( X' , X) =X Den, .
U 1=A(uo, Yo)~A ( x/x)=X ~A( Yo,no)=VredoA 1ah6nh<;5pdondi~u).B~ngquy
n(,lpta co Un~ X ~VnV n'~1
La'ygioi'h(,lnkhin-7oo,tadu<;5CX =x*, v~ydi€m ba'td~I).g1aduynha't.
c. ToedQhQitl!.
V Xo,YoE [o,v],tuongt1,1'( 6)ta.co
Un~ Xn~ vn; Un~ Yn~ vn-Theo (15) ta dU<;5C
II xn-x*II~NII Yo-Un II~N2(1-C)n II V II
c
II Yn- x*" ~ N "vn -Un II ~N2 (1- C)n II V II Binh 19dU<;5Cchung minh 0
C
Dinh IV4.1.2.Giii sli'K 1anonchu5n;A.~1aroantli'h6nh<;5p
dondi~u.,Giasli'A(o,v)>Y2Vva
32
(i) Voi y c6dinhE ,A( . , y) :~ 1a16i,voi x c6dinhE ,
A:(x,.) :~ 1a15m.
(ii) c6h~ngs6c: y~ c:::;1 saccho
A( v,o) :::;cACo,v)+(I-c)v (17)
Khi d6A c6duynha't1di€m ba'tdOngx* E .HonmIa,voi xo,YoEtuyy, day
l~pXn=v- A( v- Xn-I,V-Yo-I);Yn=v- A(v- Yo-},V-Xn-I)n=1,2...(18)
C6 S1;1'hOit1;1
v-xn~ x*;V - Yn ~ x* (n~CIJ) (19)
Chungminh:
Ta d~tB (x,y)=v-A(v-x,v-y)'\Ix,Y E f5 rangB 1aroantli'h6nhQpdon
di~u,NguQcl~ivoiA, voi y c6dinhY E ,B (. , y): ~ 1a15m;voi x c6
dinhx E,,B( x,.):-7 1a16i.
- .. .
Ne'uA( o,v)=v thlA( x,y)=v ('\Ix,Y E <o,v»vaA(v,v)=v(VIAla h6nhQpGon
di~unenA tangrheabie'nthunha'tvagiamrheabie'nthu2 vanha(17).
Ne'uA(o,v) <v thl0<B(v,o)=~- A (o;v):::;Y2V,
(dogiathie'tcuadinh1y:A(o,v» '12v vadinhnghlaB)
Tli (17)tacoA(v,o)<cv+( l-c)v =v
Vav- A(v,o)~v - [ c A(o,v)+(I-c) v ] =C [ v - A(o,v)]
NghlalaB(o,v) ~CB(v,o).Do dataco(2)trongdint 1y4.1.1.
Va nhaphepchungminhhoanroantuongt1;1'tasuyduQcB codungmOtdi€m ba'tdOng
y*>O.Tuc la.
* * * * *
y =B(y , Y ) =v - A (v - Y ), (v- y )
* " * ". *
hay A (v -;-Y , v - y ) =v- Y D~tx =v- y , taco
x*=A (x*, x*).Honnua,'\IXo.YoE nha(18), (20)vadinhly4.1.1.taduQC
" "
Xn-+Y , Yn-+Y
33
" " . "
V ,-xn~" x* ; v- Yn~ x* va""dinh19dU<;1Cchung:minh 0
Binh IV4.1.3
" Giii sacacdi~ukien(i) , (ii) ciladinh194.1.1du<;1cthoa.Khi d6t6nt(;lis6AO~1
saGcho.r\..A(v,o):::;v, va "i/A E [6, AO] phuongtrlnh
u=AA (u, u)coduynha'tnghi~mU(A)
Giii saUo(A)=0, Vo(A)=vva Un(A) =A A (Un-I(A), Vn-I(A))
Va vn(A)=A A (Un-I(A), Vn-I(A))
Khi do ta UOClu<;1ng
. II Un(A)~U(A)11 :::;N (l~c)n Ij~ II ~o(n~:oo) (21)
c
"II Vn(A)-U(A)11 :::;N(l-Ct II v II ~o(n~oo) (22)
C
Chungminh
Ne'uA=0 thlke't)u?nlahi~nnhien,va u())=(1f)~tAO=sup{t>0: tA(v,o):::;v}
. giii sar~ngA E(O,AO) . Tit giii thie't(ii) A(v,o):::;v =>AO~1
" I
Tli 0 <AA(v,o):::;AOA(v,o):::;v va
" AA (o,v)~ coAA(v,o) (do(2))ta tha'yr~ngAA thoacac di~uki~ncila dinh 19
4.1.1.V?yAA coduynha'tdi~mba'tdQngU(A)Evau (A)>0. .
Cac ke'tlu?nve uoclU<;1ngt6cdQhQit\1trong(21),(22)la r6 rangtheodinh19
4.1.1
f)~chungminhdinh19tie'ptheotac~nb6d~sau
Bddl 4.1.1
Giii saX lakhonggianBanachdu<;1cs:1pbdith~nonduongKj, Y lakhonggian
BanachdU<;1Cs:1pbdinonchu~nduongK2.Giii satoanta:A: DAcX ~ Y la loantalom
Q" "
ho~c16iXoED (A) khidoA lienWct(;lixone'uvachIneuA bi ch~ndiaphuongt(;liXo'
.Nghiala t6nt(;li8 >0 saGchoA bi ch~ntrongHinc?nNo
(xo)cilaXo
34
Chungminh
a)Di€u ki~ncdn:A lientl.1ctC;liXonenVE>0,38>0:
II x - XoII II A(x) - A(xo) II <E.
, ,.
V'~yne'ula'yNI) (Xo)={xED(A) : II X-XoII < 8} thlll A(x)11~II A(xo) II + E tren
NI)(xo)
b)Di€u ki~ndu:GiasaA bich~ntrenNs(Xo)=B(xo,8).B~ngcachgiam8,cothe
coiB(xo,8)c D(A). X6t dayXnE D(A),JimXn=Xo'Ta cothe.vie'tXn=X6+tnYnvoi tn>0,
n--+'"
, Xn - Xo 8
limtn. =0/,11Ynll ~8/2. Th~tv~y,chidnla'y Y~rrx
. [
"
2
' 'I{~n- Xo!
.t...=1::I1X~-Xo~
./ t'
Khi nauIOndein~1,tavie'tXn=(1- tn)xo+t~(Xo+Yn)vaapdl.1ngtinhl6i cua
A, taco
Axn~(1- tn)Axo+tnA(xo+Yn).
=>Axn- Axo~tn[A(Xo+Yn)- A(xo)]
VI taclingcoXo=Xn+tn(-Yn),d6i vaitracuaxo,XntacoAxo- Axn~tn[A(xn-
Yn)- A(xn)].V~y ta co .
-tn[A(xn-Yn)-A(xn)]~Axn- Axo~tn[A(xo+Yn)- A(xo)](*) khin duIOntacoXn
- Yn, xn,Xo+YnthuQcB(xo,8)nencacdaythll'nha'tvathll'3 trong(*) hQit1,1v€ O.Do K2
lanonchugnnendayAxn'- AxohQit1,1v€ 0.0
Dinh z.-v4.1.4
-'
GiasaK lathenonchugntrongX; A:KxK --+K la toantahanhQpdondietl,
A(v,0)~0vacacgiathie't(i)(ii)trongdinh194.1.1duQcthoa.
Khi dophuongtrlnh
AA (u,u)=u AE [0,do] (23)
codungmQtnghi~mileA)thoa
1)u(.) : [0,Ao]--+lien t1,1C
2) VO<AI <A2E 'Ao,ta co
35
1..2 '\
u (A 2)~ - C .U (I'.I)
A)
(24)
U (AI) ~ ~ c. u(A2)
1..2
(25)
, . .
Oday' Ao =sup[t>0: tA (v,o)::;v]
Chungminh..
. 1.Ta d~tuo(A)=O;VO(A)~V
un(A)=AA (Un-I+(A), v n-I (A); V'n~)=AA CYn-1 (A),' . . n-I (A); n cAI2/'"
(26)
Til dinh194.1.3,tacosvhQitvcuaUn(A)~ U(A)
v (A)~ U(A) (t'I-~CtJ)la d~utheoA E [0,Ao].Til dosuyra . «(A) lien t1,ICtren [0,
Ao]ne'uvoi m6i 'l\~ 1,uYi(A),VYI(A) lien t1,Ictren[0,AoO.]
. ,
Bay giGtaseChIra un (A),vn (A) lien t1,Ic\in, ~ 1.. Th~tv~y,voi XO,yo E KG
,,;x,y E taco
II A (x,y) - A (xn,Yn) II ::;II A {x,y) - A (xn,y) II + II A (xn,y) - A (xn,Yn)II. ,
f
Theob6d~4.1.1, neBY codinh, A( .y)la bi ch~ntrennenA ( .y)lient1,IC
tc,tixo,tu'dngtv A ( xo, . ) lient1,Ictc,tiyo.Nentheo(27)A(x,y) lienWctc,ti( xo,yo).vi (
xo,yo).latuy9nenA lient1,ICtren( KG(I ).R6rangtaco limileA)=limAA (U(A)
. i~O i~O
, ileA)) =0=u (0).
Til (2)va (26)voi chu9dng A ( v,o)>0,\i A E [ 0, AO]coUI (A) =AA (O,u»O;
VI (A) =AA (v,O»Ovaui (A), V.:t(A) la lientvc.
,
Til (6}( trongdiilh194.1.1)taco u~(A)~O;v~{A»;Qvab~ngquync,tptadu'QcUn
(A), Vn(A) lient1,Ictren[0, \-J . NghIala tacoke'tlu~n1)
2) Vi UCA) E , nho(2)tacoU(AI) =AI A (u(AI),(u (AI)
~\I A (O,v)~AI CA (v,o)
Al '\ . A)
~ - C 1'.2A(u (A2),U (A2)=-. Cu(A2)
1..2 1..2'
36
A . .
tu'ongttftaco U(1.,2)~-2- e . U (AI) 0
, Ai.
He !Iud4.1.1 Giasii'KlanonchugncuaX
A: K x K --+KIa toantli'h6nh<;lpdondi~u,thoadi~uki~n(i) voi ~codinh.
A (. , y ).:K --+K la lorn.Voi x codinh
A (x, .) :K--+K 1<\16i. Va ::Je, ::Ju, ve.K saDchoY2<e ::;1
A«u-,v>. <u,v» c <u,v» (28)
A (u,v) ~e A (v,u)+(1-c ) u.
Khi doA codungmQtdi~mba't.dQngXE .
Chungminh
E>~tB (x,y)=A (x+ u,y+u ) -u "ifx,Y E K (29)
Khi doB ( x ) c la toantli'h6nh<;Jpdondi~uthoa
(i).Honm1'a
B (v - u,0)=A (v;u)-u
}B(o,v..-u)=A (u,v)-u
(30)
Tli'cach~thlic(28)(29)(30), taco
B (v.-u,0)::;v -u;A (u,v)-u~e A (v,u)- eu,nenB (o,v-u)~e B (v- u,0)
Ta coth~giathie'tr~ngB (v - u,0)>0(vIne'uB (v - u,0)=0
Thl A (v,u)=D, do (30),tlido "ify,x E X ,A (x,y)=uvauseladi~m
ba'tdQngduynha'tcuapY.Nhu'v~ygia thie't(ii)trong dinhly 4.1.1dU<;lCthoa,nenB co
duynha'tmQtdi~mba'tdQngx* E ,nghlala . .
A (x* +u,x* +u)-u=x* hay A (x,x) =~, d dayi =x* +u0
lJe qua4.1.2
GiasaK lanonchugntrongX .
A :x --+la toantli'h6nh<;lpdondi~u,giasli'di~uki~n(I) trong
dinhly 4.2.1dU<;lCthoava::Je saDchoA (u,v) ~Y2(u+v)
37
Yz <C ::;1, A (v,u)::;C A (u ,v)-+(1- C) v
Khi doA codungmQtdi~mbeftdQngx E <(
Chl1J!gmillh
D~tB ( x,y)=A (x+u,Y.+u ) -.u '\Ix,y
TudngWnhuchungminhdh~qua4.1.1.T:
B: x ~ thoaml
B coduynheftdi~mbeftdQng.
x* E <0,v - u;,.nghIa1ax*=B (x*,x*)
=>A (x* +u , x* +u)=x* +ud~tx=x*
cuaA 0-
&
-u>
sa duQc
,ie'tcuadinh194.1.2.Nhuv?y
~ +u, x* +u)-u
5x ladi~mbeftdQngduynheft
§ 2. Di~m t1}.'aba'tdQngcua toaD ta hOnhQp
ddnmen.
2.1.Caekhainiem
x lakhonggianBanachdu<;Jcsa:pbdinonK
D =vaD1=D2 =... =Dk =D eX
Dinh nghfa4.2.1
. Tmintti'A: D1x Di x...Dk~ X du<;JcgQilabonhdpddndieune'uA tang
d6ivoimoimQtrQngmbie'ndgutienvagiamd6ivoimoimQtrongcacbie'nconI~i.
. GiasaA: D1x D2X ...Dk~ X la bonhi€m(x,y) E D x D
du<;JcgQila capdi€m tu'aba'tdongcuaA ne'ux =A (S1,S2,'..., Sk)va Y =A (S'1 , S'2,
,..s\ )
?
d daySj=xvas\=yne'uA tangdbienthlii
Sj=y vaS'j=x ne'uA giamd bie'nthlii
Nhfinxet
J) Ne'uA la roantti'hon.h<;Jpddndi~uvatang,d6ivoimbie'ndgu, giamd6ivoik
-m bie'nconI~ithl taco th€ xetroantti'A' xacdinhtrenD' =D x D tuX' =X x X VaG
X' nhusau:
A' (x,y) =A (x , x, , x , y , ...,y)
illbie'n m-kbie'n
Ta coA' tangrheabie'nthlinha'tvagiamrheabie'nthli2
(1)
2)TrangkhonggianBanachX',taxetnonK' =K x(-K)
. ,
Va ky.hi~u" ex"Ia quailh~thlitl;1'trongX' sinhbdinonK'. Ta tha'y
(x,y)a (x',y') <=1x.::;x'
, ly':6;yvoi"::;"Iaquailh~thlitvsinhbdinonK
39
D~dangki~mtraduQcdmgne'uK cotinhchit chu§'nhaychinhquyhay
minihedta1thlK' clingcocactinhchit ~uongtv.
, '
Xetanhx~B:D'-7X' xacdinhboiB(x,y)=(A'(x,y), A'(y,x)). (2)
Bd dl 4.2.1
Giii sil'A:Dk-7 X 1atoantil'h6nhQpdondi~uvaB :D' -7 X' duQcxacdinhboi
(2).Khido '
1.(x,y)1ac~Pdi~mtvabit dQngcuaA ne'uvachine'uno1adi~mbit dQngcuaB.
2.B 1a.anhx~dondi~u(tiing)d6ivoiquailh~,!CX"
3. Ne'uuo~A(uo,"'uo,vo,...vo);A( vo,'..vo,uo,..uo)~Vothlv'0exB( u'0);
B ( v'o)a v'0;trongd6 u'0=(uova);v'0=(vo,uo)'" ,
Chungmink:
Cackh~ngdinhtrend~dangduQcsuyfa, ch~ngh~ntaki~mtrakh~ngdinh2).
Voi z' I =(XI, y I) Z2=(X2,Y2)thuQcD' ,ta c6 :
Zl a Z2=> [I ~X2
{
A'(XJ,y I) ~A'(X2,Y 2)
- bl~Y2.. => 'A'(YI,xl)~A'(Y2IX2)=>B(zl)aB(Z2}
0
2.2.Trliilngh(lptOlllltitlientac:
DinhIV4.2.1Giiisil'Di'=DVi =1,k,A =DI X D2X...xDk-7 X 1atoantil'h6nhQp
dondi~u,cotinhchit:
Uo::;;A (x I".xm,Xm+J,...Xk)va
A (
' " ,
)Vo ~ X I;...,Xm,X m+I,"'Xk (3)
?
d dayxi=uo,x'i =VovaXj=vo,X'j=Uovoi 1~i~ m,m+1~j~k. Giii sil',them
nfi'a,mQttrongcacdi~ukl~nsailduQcthoa.
(HI) K 1anonchidnvaA hoantoanlientl.JC
40
(Hz)K 1:1lionchinhquyv:1A 1:1tl.!a.IientlJCye'u,tue1:1ne'uXn-7x; Yn -7Ythl
. .
.A(xn, ...xn,Yn...Yn)ye'~A (x,...x,y...y).
Khi d6,A coc~pdi€m tl.!aba'tdOng(u*,v*) nghiaIaA( u*,...u*,v*,...v*)=u*va
A(v*,...v*.u*,...u*)=v*.ddayu* xua'thit$nambie'ndftulien,v* xua'thit$nak-m
bie'n.conI<;ii,tronght$thuedftu.V:1aht$"thuc2,v* xu~thit$nambie'ndftu,u* xua'thit$na
k-IILbi!nconI<;ii.Hon nuau*~v* vavoi.e~pdi€m t1,1'ab 'tdOngba'tky( x,Y ) eilaA taco:
u* ~x ~v* ; u* ~Y~ v* .
Voi un=A( un- J,... Un-I,vn-l,...Vn-I)
Vn = A(Vn-I...Vn-1 ...Un-I Un-I).' , , Vn~ 1
Vauo~ u~...~un.~...~Vn~VI~Vo (~
Tacou*=Jimu v*=limv0' n'
. . n-+oo n-+co
Chungminh:X6t anhX?A':
A:D,xD-7DxaedinhbaiA'(:t,'i!) '=A(')(...'J(.)1"'~-)-
: ~'~~
D~tu=A'( uo;vo), VI =A' (vo,uo)'Til gia thie'tA h6nhQpdon dit$u,Uo~Vonen:
Uo~UI~VI~Vo
Ta xaedinh
~,
Un+1 =A'( Un,vn) .
Vn+1~.A'( vn,un)-
,
(5)
Til gia thie'tUn-I~Un~Vn~Vn-Iva A h6nhQpdondit$unenUn~Un+1~ Vndo do ta
co Cdt)
TasechungminhUn-7u* EX.
1.Khico(HI)VI K Ianonehugnen {Un}
lientlJCnen~p {u I ,...Un }Ia compiletu'ongd6i.
1:1t~pbi chiln.Do A ho~mloan
Dodo3{und kc {un}n:Unk-7U*EX.
41
Hi<innhienUn~u* ~Vn \in ~ 1
Khil>nkchungtacoo~u*-li2~u*-unk.Tudo II U*-UI II ~N 1IIIu*-Unk..J1
C5dayN la h~ngsf)chugncuanon K. V~yill-> u*(l-7oo).Tu'ongtl;l',co Vn-7V*(n-7oo).
2. Khi co (H2).Tu (4)vatinhchinhquycuanonK, suyfa f~ngUn-7 U*, Vn-7v* (n-700).
Vi A' la t1;lalient\lCnen
Un+l=A; (un,Yn)ye'u~A'(u*,v*)(n~>oo)
...J
Vn+1=A' (Vo.un)~0.A'(v*, u*) (n-7oo).
!.
Cho n-7 00,apd\lng(3) ta duQc.u*=A'(u*,v*)
. . ..
v* =A'(v*,u*).
Nhuv~y(u*,v*) la c~pdi<imt1;laba'tdQngcuaA'. Va f6 rangu* ~v*.
BaygiotagiastY(~,yo)la mQtc~pdi<imt1;laba'tdQngnaodocuaA'. Khi do x =
A' (x, y) ; y=A' (x,y).Vi uo~x~YO;uo ~y~vo .
NencoUI< x<v; ; UI~Y ~VI; t6ngquatco:
- . - .
un ~ x'~vn; un ~ y~vn . Cho n ~ cOco :
u*~x~v* vau* ~y ~v* 0
lJinh 1£4.2.2.
Gia stYcacdi~uki~ncuadinhly 4.2.1duQcthoa,bonnua:3oc:0 < oc<1saDcho
IIA(x,...x,y,...y)-A(y,...y,x,...x) II ~ocll x-yll (6)
\i x, Y ED.
Khi do,A codungmQtdi<imba'tdQngx trongD
Chungminh :
Ta stYd\lngdinhnghlaA' quaA vacacky hi~unhutrongdinhly 4.2.1,tu(6)ta
co:
1/ v,n.+1-1l!:.n+1 II ~ II A' (v~,'u~)- A' (u.wv~)II ~:ocII v~ -LJ J II (11=1,2... )
42
L~pl<:liI~plu~ntrentac6:
II v n+I - Un + I II ~ ex:\<, II VI - uI11~ 0 (n~ oo)(vl c{E (0,1))
Tli'ke'tlu~ncuadinhIy4.2.1.suyrac6X=v* :=u*, Xladi~mba'tdQngduynha't
cuaA. 0
R5rangkhik =1thl (6)18.di€u ki~nLipschitstruy€n thongdii bie'tcho anhX<:lco.
2.3.Trztifnghdptoantitkhonglientuc
FJinhif 4.2.3.
Gia sii'Uo, VoEX, K la n6n.Minihedralm<:lnh,
. .
A: ~~ X la tOaDtii'h6nhQpdondi~usaDcho(1)trongdinhIy 4.2.1
duQcthaa
Kpi d6,A c6c~pdi~mtl,l'aba'tdQ.ng(u* , v*) v:diu* ~V*.Honnuavdic~pdi~m
tt,I'aba'tdQngba'tky (~,y)cua A taluanc6u* ~~~vk , U* ~y~Vk
Chung minh :
Ta chidn apdl;}ngb6d€ 4.2.1vake'tquatuonglingtrongdinhIy.2.4.1chotOaD
tii'B xaydl,l'ngtrongb6d€ 4.2.1 0
Chli v :C~pdi~m.Waba'td6ng(u* , v*) trongdinhIy 4.2.3c6th~duQcxacdinh
rabon.Ch~nghk: A (XI"" X , y, ...y) ~X va A
(y, ...y ,X ; ... ,x) ~y ~ .
Tli giathie't(1)tasuyduQcD :f. ~
G,iasii'DI =~ X : (x,... X., Y , ...y) E D voiyna?d6~
D2 =~y: (x, ...,x , y, ...y)E D voix naGd6 ~
V~yv* =supDI, u*=infD2
FJinhif 4.2.4
Gia sii'Uo, VoEX, Uo<Vova
A :k~ X la tOaDtii'h6nhQpdondi~uthaa(1)trongdinhIy 4.2.1va A
« Uo, Vo>k)la t~pcomp~cttuongd6itrongX.
43
Khi doA coc~p di~mtl,tab1td6ng
Chungminh
'fa chI.dn sll'd1,1ngb6d€ 4.2.1hc$qua2.1.1cho.anhx~B xacdint trongb6d€
4.2.10
EJinhIf 4.2.5
Gia Sll'Uo, VoEX, Uo<'Va
A: k~ X 1aroantll'h6nh<;fpdon dic$uthoa(1) trongdint 194.2.1; va K
1anon chinhquy.
Khi do,A coc~pdiemt1;lab1tdQng(u* , v*) voiu* ~V*.Honnu~ne'u(~,y)1a
diemtl,tabit dQngnaGdocuaA thlu*~x ,y~v*
Chungminh
Ke'tquasuydU<;fCkhitasll'd1,1ngb6d€ 4.2.1,hc$qua2.2.1varoantll'B duQcxac
dint trongb6d€ 4.2.1.0
r5
44