Luận án Nghiệm dương của một số lớp phương trình toán tử

NGHIỆM DƯƠNG CỦA MỘT SỐ LỚP PHƯƠNG TRÌNH TOÁN TỬ ĐINH VĂN GẮNG Trang nhan đề Lời nói đầu Mục lục Chương 1: Các khái niệm cơ bản. Chương 2: Điểm bất động của toán tử đơn điệu có liên quan tới tính compact. Chương 3: Điểm bất động của toán tử T - đơn điệu. Chương 4: Điểm bất động của toán tử hỗn hợp đơn điệu. Tài liệu tham khảo

pdf16 trang | Chia sẻ: maiphuongtl | Lượt xem: 1940 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Luận án Nghiệm dương của một số lớp phương trình toán tử, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Chrtdng4 ,:J K" ? ,'? ,,'" " DIEM BATDONGCUATOANTV RONH(1PDONDI~U § 1.Toant11h6nh(1p,ddndi~uvadiim ba'tdQng Truochtt tadn mQtsQkhaini~mvaktt qualienquan.Xlakh6nggianBanach thvcdu'<Jcsa:pbdinonK . . Gia su'Dc K, roantU'.A: D x D -7.X duQcgQila h6nhQpdondi~untu A(x, y) la khonggiamtheebitn x vakhongtangtheebitn y. NghIala \iUl~U2V2~ Ul,V2ED ta. . , coA( u J, V-I) ~A( u 2;V2) . Bi~m(x",Y")E D2duQcgQila c~pdi~mtvabit dQngcila A ntu A( x",Y")= x" va""" . . A(y ,x ) =Y . Bi~mx" E D duQcgQila diembit dQngcilaA ntu A( x",x")=x" . ToantU' A: B(A) eX -7X duQcgQila16intu \i x,y E D(A) max ~y, \it E [0,1]co A(tx+(1-t)y)~tAx +(1-t)Ay (1) A gQila lornntu -A la 16i Dink if 4.1.1. . . Gia slYK la nonchua':n,A: KxK -7K la roantU'h6nhQpdondi~u,bonm1'a (i) voiyc6djnhA(. ,y):K-7K lalorn.Voi xc6djnhA(x,.):K-7 KIa 16i (ii) ::1v> 0,c >Yz saccho0 <A(v,O)<v (2) vaA(o,v)~c.A(v,o) . Khi doA coduynhitdiembit dQngX*Evatucacdayli[lp xn=A(Xn-l,Yn-l); Yn=A( Yo-!.Xn-l)u~1 (3) Voi cackhdid~u(Xo,Yo)E Xtuyy, taco II Xa:'" x* II -70, IJ Yn-x* II . -70 (n.-7oo)vOit6t dQhQitl;l : 29 II x,_x'II ,; N'( 1~c)' II v II } . }IYn-X*II~N~(l~C t II vii . (4) Chungminh: a.,T6n tc;lidilm beitdQng. B?t Uo=0,Vo =v tac6Uo<vo'Giasa Un= A(un-I, Vn~I), Vn=A( Vn-I,Un-I), n.=1,2,.., (5) VI A tangtheobie'nthlinha'tva.giamtheobie'nthli2 nen 0 =Vo <U I::;u2~'" ~Un~ Vn~... < V2~ U I ~ Vo=v (6) (6')TITgia thi~t(2)ta c6 Un~UI ~cv I~cVn B?t tn=Sup { t >0 : Un~ tvn} n=1,2,... Khi d6 Un~tn,Vn(7),Theo (6') va tinhcha't U~+J ~ Un~ tnVn.;:::tnVn+J ta c6 0 < <t <t < <t < <1 A t)l: t ' 1' t - t* ' 0<t* <1- c - I - 2- ,..- n - , nen on ql lID n - va - - n BaygiGtasechIfa t*=1 Th~tV~Y,tugiathie't(i) tac6caeh<$thlicsau rjx ]:,;X2,Y J :0;Y 2, t E [ 0,1]: A( tx I+(I-t) x 2,Y) ~t A (x bY) +(1-t)A( X2,y) A (x, t YI +(1 - t) Y2)~ t A (x, Yl) +(1 - t) A (x, Y2) (8) (9) A{x,y)=A(x,1-fly) ~t A( x, fly) +(1-t)A(x,o} (10) rjtE [0,1] Tu (10)talqi c6 A(x, fly) ~ fl[ A(x,y)-(1-t) A(x,o)] , rjt E[O,I] (11) 30 Tii'caehl$thuc(5)(6) (7)(11)(8) (9)(10),va giathie'tA la toantU'h6nhQpdon dil$utaco Un+1=A( Un,vn)~A(tnvn,vn)~tnA( Vn'Vn)+(1-tn)A(o, Vn) -1 . ~ tnA(vn, tn Un)+(1-tn)A(o, V) ~ tn[tn-lA(vn,un) - tn-l(l"-tn)A(vn,o)]+ (1-tn) A(o,v) . . . =A(vmUn)+(1-tn)[A(o,v)- A(vn,o)] 1 . ~Vn+1+(1-tn)[UI-V 1] ~Vn+l+(1-tn)(l--)u]c . 1 . 1 ~Vn+l+(1-tn)(1--)Vn+ 1=[ 1+(1-tn)(1-- )] Un+1 C C Tii'dosuyra 1 1 tn+l~1+(1-tn)(1- -) =>I-tn-l$ (1-- ) C C (12) Do giathie't(ii),tatha'yco th€ coiY2<C$ 1va0< l' -1 <1, c do v~ytii'(12).suyra dU<;1C: . I-tn+I$ (1-tn)( ! -1)$ (! -I)\I-tI) $ (l-c )n+l C C C tii'd6suyratn-7I(n->oo) (13) Tii"(6)va(13),taco 0$ Un+p- Un $ Vn- Un$ (1-tn)Vn$ (1-tn) v. DoKIa nonchuffn,voiN lah~ngS9chuffn,taco: II Un+p-unll$N(1-tn) v II $N(l-c rllvllC .11vn:-unll $N( I-tn) II vii $N(l-c r Il,y II . . . C , Tii'(14)vaX la kh6nggianBanachnent6nt<;tiJimUn=u*n Tuongtl,l',tachi duQct6n.t<;tilim 'vn=V*.. n~~ (14) (15) 31 Cungtii'(14)khi chop-700tadu<;5C II un;:Jl * II ~N(.!.tc IIvii II vn-v*11~N(l-c t " v II c Vi Un ~v* ~v* ~vn,ta co 05;v* -u* ~Vn.:.Un~(1-tn)V Dov~y II v*-u*11 ~N(1-tn) Ilvll'-7o(n-7oo)vau*'=v* La'yx* =u* (=v*)thix* E 0 Tuun~,x*~Vo>Un+l=A( Un,vn)~A( x*, x* ) ~A(vn,Un)=Vn+l La'ygioih(,ln(khin -7 00 ) ta dU<;5c. X*~A ( x*, x* ) ~x*, Nghlalax* la di€m ba'tdQngcuaA. b.81/duynhfitcuadiim biltdQng. _Giasli'Xla mQtdi€m ba'tdQngnaodotren[o,v]cuaA, khido - -- Uo=0 ~ X ~ V =V0 A ( X' , X) =X Den, . U 1=A(uo, Yo)~A ( x/x)=X ~A( Yo,no)=VredoA 1ah6nh<;5pdondi~u).B~ngquy n(,lpta co Un~ X ~VnV n'~1 La'ygioi'h(,lnkhin-7oo,tadu<;5CX =x*, v~ydi€m ba'td~I).g1aduynha't. c. ToedQhQitl!. V Xo,YoE [o,v],tuongt1,1'( 6)ta.co Un~ Xn~ vn; Un~ Yn~ vn-Theo (15) ta dU<;5C II xn-x*II~NII Yo-Un II~N2(1-C)n II V II c II Yn- x*" ~ N "vn -Un II ~N2 (1- C)n II V II Binh 19dU<;5Cchung minh 0 C Dinh IV4.1.2.Giii sli'K 1anonchu5n;A.~1aroantli'h6nh<;5p dondi~u.,Giasli'A(o,v)>Y2Vva 32 (i) Voi y c6dinhE ,A( . , y) :~ 1a16i,voi x c6dinhE , A:(x,.) :~ 1a15m. (ii) c6h~ngs6c: y~ c:::;1 saccho A( v,o) :::;cACo,v)+(I-c)v (17) Khi d6A c6duynha't1di€m ba'tdOngx* E .HonmIa,voi xo,YoEtuyy, day l~pXn=v- A( v- Xn-I,V-Yo-I);Yn=v- A(v- Yo-},V-Xn-I)n=1,2...(18) C6 S1;1'hOit1;1 v-xn~ x*;V - Yn ~ x* (n~CIJ) (19) Chungminh: Ta d~tB (x,y)=v-A(v-x,v-y)'\Ix,Y E f5 rangB 1aroantli'h6nhQpdon di~u,NguQcl~ivoiA, voi y c6dinhY E ,B (. , y): ~ 1a15m;voi x c6 dinhx E,,B( x,.):-7 1a16i. - .. . Ne'uA( o,v)=v thlA( x,y)=v ('\Ix,Y E <o,v»vaA(v,v)=v(VIAla h6nhQpGon di~unenA tangrheabie'nthunha'tvagiamrheabie'nthu2 vanha(17). Ne'uA(o,v) <v thl0<B(v,o)=~- A (o;v):::;Y2V, (dogiathie'tcuadinh1y:A(o,v» '12v vadinhnghlaB) Tli (17)tacoA(v,o)<cv+( l-c)v =v Vav- A(v,o)~v - [ c A(o,v)+(I-c) v ] =C [ v - A(o,v)] NghlalaB(o,v) ~CB(v,o).Do dataco(2)trongdint 1y4.1.1. Va nhaphepchungminhhoanroantuongt1;1'tasuyduQcB codungmOtdi€m ba'tdOng y*>O.Tuc la. * * * * * y =B(y , Y ) =v - A (v - Y ), (v- y ) * " * ". * hay A (v -;-Y , v - y ) =v- Y D~tx =v- y , taco x*=A (x*, x*).Honnua,'\IXo.YoE nha(18), (20)vadinhly4.1.1.taduQC " " Xn-+Y , Yn-+Y 33 " " . " V ,-xn~" x* ; v- Yn~ x* va""dinh19dU<;1Cchung:minh 0 Binh IV4.1.3 " Giii sacacdi~ukien(i) , (ii) ciladinh194.1.1du<;1cthoa.Khi d6t6nt(;lis6AO~1 saGcho.r\..A(v,o):::;v, va "i/A E [6, AO] phuongtrlnh u=AA (u, u)coduynha'tnghi~mU(A) Giii saUo(A)=0, Vo(A)=vva Un(A) =A A (Un-I(A), Vn-I(A)) Va vn(A)=A A (Un-I(A), Vn-I(A)) Khi do ta UOClu<;1ng . II Un(A)~U(A)11 :::;N (l~c)n Ij~ II ~o(n~:oo) (21) c "II Vn(A)-U(A)11 :::;N(l-Ct II v II ~o(n~oo) (22) C Chungminh Ne'uA=0 thlke't)u?nlahi~nnhien,va u())=(1f)~tAO=sup{t>0: tA(v,o):::;v} . giii sar~ngA E(O,AO) . Tit giii thie't(ii) A(v,o):::;v =>AO~1 " I Tli 0 <AA(v,o):::;AOA(v,o):::;v va " AA (o,v)~ coAA(v,o) (do(2))ta tha'yr~ngAA thoacac di~uki~ncila dinh 19 4.1.1.V?yAA coduynha'tdi~mba'tdQngU(A)Evau (A)>0. . Cac ke'tlu?nve uoclU<;1ngt6cdQhQit\1trong(21),(22)la r6 rangtheodinh19 4.1.1 f)~chungminhdinh19tie'ptheotac~nb6d~sau Bddl 4.1.1 Giii saX lakhonggianBanachdu<;1cs:1pbdith~nonduongKj, Y lakhonggian BanachdU<;1Cs:1pbdinonchu~nduongK2.Giii satoanta:A: DAcX ~ Y la loantalom Q" " ho~c16iXoED (A) khidoA lienWct(;lixone'uvachIneuA bi ch~ndiaphuongt(;liXo' .Nghiala t6nt(;li8 >0 saGchoA bi ch~ntrongHinc?nNo (xo)cilaXo 34 Chungminh a)Di€u ki~ncdn:A lientl.1ctC;liXonenVE>0,38>0: II x - XoII II A(x) - A(xo) II <E. , ,. V'~yne'ula'yNI) (Xo)={xED(A) : II X-XoII < 8} thlll A(x)11~II A(xo) II + E tren NI)(xo) b)Di€u ki~ndu:GiasaA bich~ntrenNs(Xo)=B(xo,8).B~ngcachgiam8,cothe coiB(xo,8)c D(A). X6t dayXnE D(A),JimXn=Xo'Ta cothe.vie'tXn=X6+tnYnvoi tn>0, n--+'" , Xn - Xo 8 limtn. =0/,11Ynll ~8/2. Th~tv~y,chidnla'y Y~rrx . [ " 2 ' 'I{~n- Xo! .t...=1::I1X~-Xo~ ./ t' Khi nauIOndein~1,tavie'tXn=(1- tn)xo+t~(Xo+Yn)vaapdl.1ngtinhl6i cua A, taco Axn~(1- tn)Axo+tnA(xo+Yn). =>Axn- Axo~tn[A(Xo+Yn)- A(xo)] VI taclingcoXo=Xn+tn(-Yn),d6i vaitracuaxo,XntacoAxo- Axn~tn[A(xn- Yn)- A(xn)].V~y ta co . -tn[A(xn-Yn)-A(xn)]~Axn- Axo~tn[A(xo+Yn)- A(xo)](*) khin duIOntacoXn - Yn, xn,Xo+YnthuQcB(xo,8)nencacdaythll'nha'tvathll'3 trong(*) hQit1,1v€ O.Do K2 lanonchugnnendayAxn'- AxohQit1,1v€ 0.0 Dinh z.-v4.1.4 -' GiasaK lathenonchugntrongX; A:KxK --+K la toantahanhQpdondietl, A(v,0)~0vacacgiathie't(i)(ii)trongdinh194.1.1duQcthoa. Khi dophuongtrlnh AA (u,u)=u AE [0,do] (23) codungmQtnghi~mileA)thoa 1)u(.) : [0,Ao]--+lien t1,1C 2) VO<AI <A2E 'Ao,ta co 35 1..2 '\ u (A 2)~ - C .U (I'.I) A) (24) U (AI) ~ ~ c. u(A2) 1..2 (25) , . . Oday' Ao =sup[t>0: tA (v,o)::;v] Chungminh.. . 1.Ta d~tuo(A)=O;VO(A)~V un(A)=AA (Un-I+(A), v n-I (A); V'n~)=AA CYn-1 (A),' . . n-I (A); n cAI2/'" (26) Til dinh194.1.3,tacosvhQitvcuaUn(A)~ U(A) v (A)~ U(A) (t'I-~CtJ)la d~utheoA E [0,Ao].Til dosuyra . «(A) lien t1,ICtren [0, Ao]ne'uvoi m6i 'l\~ 1,uYi(A),VYI(A) lien t1,Ictren[0,AoO.] . , Bay giGtaseChIra un (A),vn (A) lien t1,Ic\in, ~ 1.. Th~tv~y,voi XO,yo E KG ,,;x,y E taco II A (x,y) - A (xn,Yn) II ::;II A {x,y) - A (xn,y) II + II A (xn,y) - A (xn,Yn)II. , f Theob6d~4.1.1, neBY codinh, A( .y)la bi ch~ntrennenA ( .y)lient1,IC tc,tixo,tu'dngtv A ( xo, . ) lient1,Ictc,tiyo.Nentheo(27)A(x,y) lienWctc,ti( xo,yo).vi ( xo,yo).latuy9nenA lient1,ICtren( KG(I ).R6rangtaco limileA)=limAA (U(A) . i~O i~O , ileA)) =0=u (0). Til (2)va (26)voi chu9dng A ( v,o)>0,\i A E [ 0, AO]coUI (A) =AA (O,u»O; VI (A) =AA (v,O»Ovaui (A), V.:t(A) la lientvc. , Til (6}( trongdiilh194.1.1)taco u~(A)~O;v~{A»;Qvab~ngquync,tptadu'QcUn (A), Vn(A) lient1,Ictren[0, \-J . NghIala tacoke'tlu~n1) 2) Vi UCA) E , nho(2)tacoU(AI) =AI A (u(AI),(u (AI) ~\I A (O,v)~AI CA (v,o) Al '\ . A) ~ - C 1'.2A(u (A2),U (A2)=-. Cu(A2) 1..2 1..2' 36 A . . tu'ongttftaco U(1.,2)~-2- e . U (AI) 0 , Ai. He !Iud4.1.1 Giasii'KlanonchugncuaX A: K x K --+KIa toantli'h6nh<;lpdondi~u,thoadi~uki~n(i) voi ~codinh. A (. , y ).:K --+K la lorn.Voi x codinh A (x, .) :K--+K 1<\16i. Va ::Je, ::Ju, ve.K saDchoY2<e ::;1 A«u-,v>. <u,v» c <u,v» (28) A (u,v) ~e A (v,u)+(1-c ) u. Khi doA codungmQtdi~mba't.dQngXE . Chungminh E>~tB (x,y)=A (x+ u,y+u ) -u "ifx,Y E K (29) Khi doB ( x ) c la toantli'h6nh<;Jpdondi~uthoa (i).Honm1'a B (v - u,0)=A (v;u)-u }B(o,v..-u)=A (u,v)-u (30) Tli'cach~thlic(28)(29)(30), taco B (v.-u,0)::;v -u;A (u,v)-u~e A (v,u)- eu,nenB (o,v-u)~e B (v- u,0) Ta coth~giathie'tr~ngB (v - u,0)>0(vIne'uB (v - u,0)=0 Thl A (v,u)=D, do (30),tlido "ify,x E X ,A (x,y)=uvauseladi~m ba'tdQngduynha'tcuapY.Nhu'v~ygia thie't(ii)trong dinhly 4.1.1dU<;lCthoa,nenB co duynha'tmQtdi~mba'tdQngx* E ,nghlala . . A (x* +u,x* +u)-u=x* hay A (x,x) =~, d dayi =x* +u0 lJe qua4.1.2 GiasaK lanonchugntrongX . A :x --+la toantli'h6nh<;lpdondi~u,giasli'di~uki~n(I) trong dinhly 4.2.1dU<;lCthoava::Je saDchoA (u,v) ~Y2(u+v) 37 Yz <C ::;1, A (v,u)::;C A (u ,v)-+(1- C) v Khi doA codungmQtdi~mbeftdQngx E <( Chl1J!gmillh D~tB ( x,y)=A (x+u,Y.+u ) -.u '\Ix,y TudngWnhuchungminhdh~qua4.1.1.T: B: x ~ thoaml B coduynheftdi~mbeftdQng. x* E <0,v - u;,.nghIa1ax*=B (x*,x*) =>A (x* +u , x* +u)=x* +ud~tx=x* cuaA 0- & -u> sa duQc ,ie'tcuadinh194.1.2.Nhuv?y ~ +u, x* +u)-u 5x ladi~mbeftdQngduynheft § 2. Di~m t1}.'aba'tdQngcua toaD ta hOnhQp ddnmen. 2.1.Caekhainiem x lakhonggianBanachdu<;Jcsa:pbdinonK D =vaD1=D2 =... =Dk =D eX Dinh nghfa4.2.1 . Tmintti'A: D1x Di x...Dk~ X du<;JcgQilabonhdpddndieune'uA tang d6ivoimoimQtrQngmbie'ndgutienvagiamd6ivoimoimQtrongcacbie'nconI~i. . GiasaA: D1x D2X ...Dk~ X la bonhi€m(x,y) E D x D du<;JcgQila capdi€m tu'aba'tdongcuaA ne'ux =A (S1,S2,'..., Sk)va Y =A (S'1 , S'2, ,..s\ ) ? d daySj=xvas\=yne'uA tangdbienthlii Sj=y vaS'j=x ne'uA giamd bie'nthlii Nhfinxet J) Ne'uA la roantti'hon.h<;Jpddndi~uvatang,d6ivoimbie'ndgu, giamd6ivoik -m bie'nconI~ithl taco th€ xetroantti'A' xacdinhtrenD' =D x D tuX' =X x X VaG X' nhusau: A' (x,y) =A (x , x, , x , y , ...,y) illbie'n m-kbie'n Ta coA' tangrheabie'nthlinha'tvagiamrheabie'nthli2 (1) 2)TrangkhonggianBanachX',taxetnonK' =K x(-K) . , Va ky.hi~u" ex"Ia quailh~thlitl;1'trongX' sinhbdinonK'. Ta tha'y (x,y)a (x',y') <=1x.::;x' , ly':6;yvoi"::;"Iaquailh~thlitvsinhbdinonK 39 D~dangki~mtraduQcdmgne'uK cotinhchit chu§'nhaychinhquyhay minihedta1thlK' clingcocactinhchit ~uongtv. , ' Xetanhx~B:D'-7X' xacdinhboiB(x,y)=(A'(x,y), A'(y,x)). (2) Bd dl 4.2.1 Giii sil'A:Dk-7 X 1atoantil'h6nhQpdondi~uvaB :D' -7 X' duQcxacdinhboi (2).Khido ' 1.(x,y)1ac~Pdi~mtvabit dQngcuaA ne'uvachine'uno1adi~mbit dQngcuaB. 2.B 1a.anhx~dondi~u(tiing)d6ivoiquailh~,!CX" 3. Ne'uuo~A(uo,"'uo,vo,...vo);A( vo,'..vo,uo,..uo)~Vothlv'0exB( u'0); B ( v'o)a v'0;trongd6 u'0=(uova);v'0=(vo,uo)'" , Chungmink: Cackh~ngdinhtrend~dangduQcsuyfa, ch~ngh~ntaki~mtrakh~ngdinh2). Voi z' I =(XI, y I) Z2=(X2,Y2)thuQcD' ,ta c6 : Zl a Z2=> [I ~X2 { A'(XJ,y I) ~A'(X2,Y 2) - bl~Y2.. => 'A'(YI,xl)~A'(Y2IX2)=>B(zl)aB(Z2} 0 2.2.Trliilngh(lptOlllltitlientac: DinhIV4.2.1Giiisil'Di'=DVi =1,k,A =DI X D2X...xDk-7 X 1atoantil'h6nhQp dondi~u,cotinhchit: Uo::;;A (x I".xm,Xm+J,...Xk)va A ( ' " , )Vo ~ X I;...,Xm,X m+I,"'Xk (3) ? d dayxi=uo,x'i =VovaXj=vo,X'j=Uovoi 1~i~ m,m+1~j~k. Giii sil',them nfi'a,mQttrongcacdi~ukl~nsailduQcthoa. (HI) K 1anonchidnvaA hoantoanlientl.JC 40 (Hz)K 1:1lionchinhquyv:1A 1:1tl.!a.IientlJCye'u,tue1:1ne'uXn-7x; Yn -7Ythl . . .A(xn, ...xn,Yn...Yn)ye'~A (x,...x,y...y). Khi d6,A coc~pdi€m tl.!aba'tdOng(u*,v*) nghiaIaA( u*,...u*,v*,...v*)=u*va A(v*,...v*.u*,...u*)=v*.ddayu* xua'thit$nambie'ndftulien,v* xua'thit$nak-m bie'n.conI<;ii,tronght$thuedftu.V:1aht$"thuc2,v* xu~thit$nambie'ndftu,u* xua'thit$na k-IILbi!nconI<;ii.Hon nuau*~v* vavoi.e~pdi€m t1,1'ab 'tdOngba'tky( x,Y ) eilaA taco: u* ~x ~v* ; u* ~Y~ v* . Voi un=A( un- J,... Un-I,vn-l,...Vn-I) Vn = A(Vn-I...Vn-1 ...Un-I Un-I).' , , Vn~ 1 Vauo~ u~...~un.~...~Vn~VI~Vo (~ Tacou*=Jimu v*=limv0' n' . . n-+oo n-+co Chungminh:X6t anhX?A': A:D,xD-7DxaedinhbaiA'(:t,'i!) '=A(')(...'J(.)1"'~-)- : ~'~~ D~tu=A'( uo;vo), VI =A' (vo,uo)'Til gia thie'tA h6nhQpdon dit$u,Uo~Vonen: Uo~UI~VI~Vo Ta xaedinh ~, Un+1 =A'( Un,vn) . Vn+1~.A'( vn,un)- , (5) Til gia thie'tUn-I~Un~Vn~Vn-Iva A h6nhQpdondit$unenUn~Un+1~ Vndo do ta co Cdt) TasechungminhUn-7u* EX. 1.Khico(HI)VI K Ianonehugnen {Un} lientlJCnen~p {u I ,...Un }Ia compiletu'ongd6i. 1:1t~pbi chiln.Do A ho~mloan Dodo3{und kc {un}n:Unk-7U*EX. 41 Hi<innhienUn~u* ~Vn \in ~ 1 Khil>nkchungtacoo~u*-li2~u*-unk.Tudo II U*-UI II ~N 1IIIu*-Unk..J1 C5dayN la h~ngsf)chugncuanon K. V~yill-> u*(l-7oo).Tu'ongtl;l',co Vn-7V*(n-7oo). 2. Khi co (H2).Tu (4)vatinhchinhquycuanonK, suyfa f~ngUn-7 U*, Vn-7v* (n-700). Vi A' la t1;lalient\lCnen Un+l=A; (un,Yn)ye'u~A'(u*,v*)(n~>oo) ...J Vn+1=A' (Vo.un)~0.A'(v*, u*) (n-7oo). !. Cho n-7 00,apd\lng(3) ta duQc.u*=A'(u*,v*) . . .. v* =A'(v*,u*). Nhuv~y(u*,v*) la c~pdi<imt1;laba'tdQngcuaA'. Va f6 rangu* ~v*. BaygiotagiastY(~,yo)la mQtc~pdi<imt1;laba'tdQngnaodocuaA'. Khi do x = A' (x, y) ; y=A' (x,y).Vi uo~x~YO;uo ~y~vo . NencoUI< x<v; ; UI~Y ~VI; t6ngquatco: - . - . un ~ x'~vn; un ~ y~vn . Cho n ~ cOco : u*~x~v* vau* ~y ~v* 0 lJinh 1£4.2.2. Gia stYcacdi~uki~ncuadinhly 4.2.1duQcthoa,bonnua:3oc:0 < oc<1saDcho IIA(x,...x,y,...y)-A(y,...y,x,...x) II ~ocll x-yll (6) \i x, Y ED. Khi do,A codungmQtdi<imba'tdQngx trongD Chungminh : Ta stYd\lngdinhnghlaA' quaA vacacky hi~unhutrongdinhly 4.2.1,tu(6)ta co: 1/ v,n.+1-1l!:.n+1 II ~ II A' (v~,'u~)- A' (u.wv~)II ~:ocII v~ -LJ J II (11=1,2... ) 42 L~pl<:liI~plu~ntrentac6: II v n+I - Un + I II ~ ex:\<, II VI - uI11~ 0 (n~ oo)(vl c{E (0,1)) Tli'ke'tlu~ncuadinhIy4.2.1.suyrac6X=v* :=u*, Xladi~mba'tdQngduynha't cuaA. 0 R5rangkhik =1thl (6)18.di€u ki~nLipschitstruy€n thongdii bie'tcho anhX<:lco. 2.3.Trztifnghdptoantitkhonglientuc FJinhif 4.2.3. Gia sii'Uo, VoEX, K la n6n.Minihedralm<:lnh, . . A: ~~ X la tOaDtii'h6nhQpdondi~usaDcho(1)trongdinhIy 4.2.1 duQcthaa Kpi d6,A c6c~pdi~mtl,l'aba'tdQ.ng(u* , v*) v:diu* ~V*.Honnuavdic~pdi~m tt,I'aba'tdQngba'tky (~,y)cua A taluanc6u* ~~~vk , U* ~y~Vk Chung minh : Ta chidn apdl;}ngb6d€ 4.2.1vake'tquatuonglingtrongdinhIy.2.4.1chotOaD tii'B xaydl,l'ngtrongb6d€ 4.2.1 0 Chli v :C~pdi~m.Waba'td6ng(u* , v*) trongdinhIy 4.2.3c6th~duQcxacdinh rabon.Ch~nghk: A (XI"" X , y, ...y) ~X va A (y, ...y ,X ; ... ,x) ~y ~ . Tli giathie't(1)tasuyduQcD :f. ~ G,iasii'DI =~ X : (x,... X., Y , ...y) E D voiyna?d6~ D2 =~y: (x, ...,x , y, ...y)E D voix naGd6 ~ V~yv* =supDI, u*=infD2 FJinhif 4.2.4 Gia sii'Uo, VoEX, Uo<Vova A :k~ X la tOaDtii'h6nhQpdondi~uthaa(1)trongdinhIy 4.2.1va A « Uo, Vo>k)la t~pcomp~cttuongd6itrongX. 43 Khi doA coc~p di~mtl,tab1td6ng Chungminh 'fa chI.dn sll'd1,1ngb6d€ 4.2.1hc$qua2.1.1cho.anhx~B xacdint trongb6d€ 4.2.10 EJinhIf 4.2.5 Gia Sll'Uo, VoEX, Uo<'Va A: k~ X 1aroantll'h6nh<;fpdon dic$uthoa(1) trongdint 194.2.1; va K 1anon chinhquy. Khi do,A coc~pdiemt1;lab1tdQng(u* , v*) voiu* ~V*.Honnu~ne'u(~,y)1a diemtl,tabit dQngnaGdocuaA thlu*~x ,y~v* Chungminh Ke'tquasuydU<;fCkhitasll'd1,1ngb6d€ 4.2.1,hc$qua2.2.1varoantll'B duQcxac dint trongb6d€ 4.2.1.0 r5 44

Các file đính kèm theo tài liệu này:

  • pdf7.pdf
  • pdf0.pdf
  • pdf2.pdf
  • pdf3.pdf
  • pdf4.pdf
  • pdf5.pdf
  • pdf6.pdf
  • pdf8.pdf