Luận án Nghiên cứu và ứng dụng một số thuật giải mô hình ứng dụng khai thác dữ liệu (data mining)

NGHIÊN CỨU VÀ ỨNG DỤNG MỘT SỐ THUẬT GIẢI MÔ HÌNH ỨNG DỤNG KHAI THÁC DỮ LIỆU (DATA MINING) Đỗ Phúc Trang nhan đề Mục lục Dẫn nhập Chương_1: Tập phổ biến và luật kết hợp. Chương_2: Đoạn lặp phổ biết. Chương_3: Gom cum dữ liệu. Chương_4: Một số ứng dụng. Kết luận Các công trình của tác giả đã công bố có liên quan đến đề tài luận án Tài liệu tham khảo Phụ lục

pdf53 trang | Chia sẻ: maiphuongtl | Lượt xem: 1744 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu và ứng dụng một số thuật giải mô hình ứng dụng khai thác dữ liệu (data mining), để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
51 Vdi t~pphdbi€n {iI, i 2 , i3},eoth€ t~olu~tk€t h<;ipeod~ng: Co50%khdch angmuaMANY(nhi~u){il,i2},muaMANY(nhi~u)(ill. 1.7.4.Tun lu~tke"th(/pcaengii'canhkhaithacduIi~umit[7] GQiFFS(O,I,RF,{/-li};r,minsupp)la t~ph<;ipcaet?Pph6biencuangii'dnh khaiiliacdii'li~umoungvdibt)hamthanhVieD{J-li},giatIi nguongchuy€nd6i figii' dnh 1: va nguong minsupp.Vdi ba bt) ham tMnh VieD {J..liMANY},{J-liAVER},{/-liFEw}cho tUngm~thang iEI, co th€ t~ora ba ngii'dnh khai thacdii'li~umokhacnhauvattrdosii'dt,mgcacthu~tgiiii£lmt?Pphdbi€n da trlnhbayd cacph~ntrend€ tlmcact?p: . FFSl= FFS(O,I,RF,{J-liMANY};r,mimsupp)ti'ngvdi bt)hamMANY . FFSz=.FFS(O,I,RF,{/-liAVER};r,mimsupp)ti'ngvdibt)hamAVERAGE . FFS3=FS(O,I,RF,{J..liFEW};r,mimsupp)ti'ngvdibi)hamFEW. TIm SFl E FFSj,SFzEFF~zsaDcho SFI2=SF1nSF27:0vaphanra SF12 thanhcaet?Pcon X, Y khacr6ngcuaSFI2saDchoSFI2=XuYva XnY=0 d€ t~oIu?t keth<;ipx~ Y giii'acacngii'dnh khacnhau.N€u lu~tnaycodt)tinc~y vu<;itngu'Ongminconf,thicoth€ cq.,caelu~tk€t h<;ipeod~ng: ,,"",,9 . C6 56%khdchhangmuaMANY(nhi~u)m(ithangX, thisemuaFEW(it)m(it hangY 1.8.DUNG LV! T KET H(1PDE PHAN LOP DULltV VA M<1RQNGHt s6 PHt}THVQC THUQCTINH TRONGLY THVYET T~P THO [9] 1.8.1.Caekhaini~mcdban lJinh nghia1.22.Bangquyetdinhnhiphan Xet ngii' dnh khaiiliacdii'li~u(O,D,R)vdi0 la t~pkhaer6ngcacd6i tu<;ing,D la t~pkhacr6ngcacchiM.o( thut)ctlohnhiphan),choH vaC la cae t~pconkhacr6ngcuaD saDchoD=HuC, HnC=0, bi)ba(0, D=HvC,R) (hf\1e gQiIII mi)tbangquy€t dinhnhiphan. 52 Bang1.11:MQtvidl,lv~bangquye'tdinhnb!phan Bang 1.11 Ia mOt vi dl,l v~ bang quye'tdinh nhi phan voi H={dl,d2,d3,d4,d5}vaC={cl ,c2}.ThuQctinhcl xacdiohlOpam;thuQctinhc2 xacdinhlopdlfdng. Djnhnghia1.23.Lu~tpMnlopireDbangquye'td!nhohiphao rho bangquye'tdinhnhiphan(0, D=HvC,R),gQiS lacact~pcookhac, dingcuaH, lu~tpMn loptrenbangquye'tdinhnhiphan(;6d~ngS~ {c}voi CEc.HampMnlopf dU'c;1c~otitlu~tphanlopcod~ngf =1\ dEH" dva H' c H. VidlJ1.8.MQts6lu~tpMnloptrangbangquye'tdinhnhipMn(jbangL11 RI:{d3,d4}~{c2li;'R2:{d2,d5}~{cl};R3:{d5}~{el} Cac hampMo lop tu'ongt1ngIa fl=d3 " d4; f2 =d2 J\ d5, f3=d5.E>6itlfc;1ng0 thoahamphanlopf ne'uacochttata'tcacacchIbaacom~trangH'. 1.8.2.Dq chinhxaccuahamphanlap rhobangquye'tdiohnhiphan(0,D=Hr..£,R)trongdocacd6itu'c;1ngcua 0 du'c;1cxe'pvaohailop.GQi0+la t~pcaed6itu'c;1ngcua0 thuQcv~lope2 va0- la eact~pcaed6itu'c;1ngcua0 thuQcv~lopcl. rho f lamOthamphanlop, eo th€ stl'dl,lngcactieuchu~nsand€ xaediohdOchinhxaecuahamphanlOp f [24],[38],[48]. GQi TP={OEO+I f(a)dung};FP = {oEO+1f(a)sai} dl d2 d3 d4 d5 c1 c2 01 1 0 0 1 0 1 0 02 0 1 0 1 0 0 1 03 0 0 1 1 0 0 1 04 1 0 0 0 1 1 0 05 0 1 0 0 1 1 0 06 0 0 1 0 1 0 1 07 0 1 0 0 1 1 0 08 0 0 1 1 0 0 1 53 TN ={0 E 0-' reO)dung};FN ={0 E 0-' f(o)sai} Be>chinhxac ciiaphanlop cI dtt<;1ctinhbAngGongthti'c: 11N! ITPI+I1N1 (1.5) Be>chinhxac cuaphanlop c2dtt<;1etinhbAngGongthti'c IIPI I TP I +11N I (1.6) VidlJ.1.9.Voi bangquye'tdinhnbiphantrongbang1.11 . Xet lu?tphanlopcl : {d2,d5}~ {c1}voif=d2J\ d5 0+={02,03,06,08}ti'ngvoi c2;O.={oI,04,05,07}ti'ngvoi c1 TP={o E 0+1reo)dung}=0; FP= {oEO+1 f(0)sai}={02,03,06,08} TN ={0 E 0.1 reo)dung}=~05,07}; FN ={ 0 E 0- I f(s) sai }={0 I, 04 } B6chinhxacphanlopc1 11NI I{o5,o7}I =10 . ITPI+I1N1 101+I{o5,o7}1' . Xetlu?tphanlope~'d~ng {d3,d4}~{e2}voif=d3J\ d4: 0+={02,03,06,08}ungvoi c2;O.={01,04,05,07}ti'ngvoi cl TP ={0 E 0+I reo)dung}={03,08} FP= {oE 0+I f(o)sai }={02,06} TN ={0 E 0.1 res)dung}=0 FN={oEO.1 f(s)sai}={ol,04,05,07} Be>chinhxacphanlopc2 - ITPI = I{oJ.o8}I -1,0 ITP I+!nv I I{oJ,oS}I+101 1.8.3.Dung lu~tke'thc1plam lu~tphanlopdii'Ii~u Cho bangquyetdinh to, D=Hl£,R) va caengtKJngminsupp,mine:onf, t1mcaelu~tke'th<;1pcod~ngr:S~{e}.voic ECvaS cH. Co th~dl{aVaGlu~t 54 ke'thQpnaylamcaelu~tphanlOpdii'li~u.rho bangquye'td!nh(0, D=Hl£.R) va caengu'<Jngminsupp,mineonfun caclu~tke'th<;1pcodl:lngr: S~{e}.vdi ceC vaS cR. Theodinhnghi'adQtinc~y eualu~tke'thQpr: S~{e}la : CF(r) IP(S)~~({C})I va peS)Ia t~pcacd6itu'QngcoehuacaethuQctinhtrong S, p({e})la~pcaed6itu'QngthuQelOpcdodop(S)np({c}}sexaedinhcaed6i tu'<;1ngthuQeIdp e va co chuacaethuQcnnhtrongS. Ne'ue la ldp e2 thi Ip(S)()p({e2})1=TP, peS)=TP uTN hayIp(S)1=ITPI+ITNIvi TPnTN=0. Noi cachkhae: ITNI CF(S~{el })=ITP I+1TNI ITPI CF(S~{e2})=ITP I+1TNI (1.7) (LX) \ Nhqnxii: Co thEsad~ngdQtine~ycualu~tke'thQpd~daubgiadQchinhde euahamphanldp Vi d~1.10.Vdi bangquy~tdinhnb!phantrongbang1.11,secocaelu~tke'th~p .~' theengtttJngph6 bie'nt6i thi~uminsupp=OJ2va nglliJngtin e~yt6i thiEu mineonf=O.7 rl:{dl}->{ell;SP=0.25 CF= 1.00 r2:{d3}->{e2};SP=0.38 CF= 1.00 r3:{d4}->{e2};SP=0.38 CF=0.75 r4:{d5}->{ell;SP=0.38CF=0.75 r5:{d2,dS}->{c1};SP=0.25CF=1.00 r6:{d3,d4}->{e2};SP=0.25CF=1.00 Trongdococaelu~tphanldpdung100%If!: rl,r2,r5,r6. 55 1.8.4.Uimg Iu~tke"th(jpd~md rqng h~s6ph~thuQcthuqctinh trongIy thuye't~ptho 1.8.4.1.Caekhaini?mcd bantrongIi thuylttqptho Ph~nnaysii'd~ngcacdjnhngmacdbancua1:9thuyet~ptho lamcdsa xiiydlfngh~s6phl;1thuQcthuQctinhmarQng[33],[79]. Dinhnghia1.24:H~th6ngthongtin Chot~ph<;1p0 hii'uh~n,khacr6ngcact~pd6iut<;1ngvaA la t~phii'uh.,n khacr5ngcacthuQctinhroi r~c.GQidom(a;)Iii ffii~ngiatricuathuQctmhaiEA RAIl va V=Udom(a;),hamis:O~AxV xacdinhghiteiciiacacdoittf<;1ngU'ngvoicac 1=1 thuQctinhcuaA. H~th6ngthongtin Iii bQba(O,A,fs). Bang1.12MQtvi d~v~h~thongthongtin \ '.z~ BangLI2.la mQtvi d1,lv~h~thongthongtinvdiO={01,02,03,04.o5,06,07,08} vaA={a.b.c}. Choh~th6ngthongtin(O,A,fs).BcA, kyhi~uneB)130gicitri thuQctinh cuat~pthuQctinhB U'ngvoid6itu'<;1ngu.M5i doittf(1ngCEOse U'ngvdi ffiQt vectord~ctntngchodoittfvoi a E A va v=o({a}).E>6itu'<;1ngI trongbang1.12tu'dngU'ngvoi vectord~ctrungchod6i tu',,<c,6». O/A a b c 01 1 4 6 02 2 4 7 03 3 4 7 04 1 5 6 ',05 2 5 6 06 3 5 7 07. 2 5 6 08 3 4 7 56 Dinkngkia1.25.Quanh~bit khaphanvaphanho~cht~pd6itu<;1ng Choh~th6ngthongtin(O,A,fs),BcA, quailh~bit khaphanind(B) tren t~pdO'ittf<;1ng0 du'<;1cd!nhnghla nhu'sau: 'ifB c A , 'ifu,V EO, U ind(B)v ~ u(B)=v(B) (1.9) Quanh~bit khaphanind(B)xacdinhhaid6itu<;1ngu vav coclinggiatIi thuQctinhdO'ivoitit d caethuQetinhtrongB (u(B)=v(B » . ChoBcA, coth~ki€m ITaquailh~bit khaphanind(B)Ia mQtquailh~ tu'dngdu'dng.Quanh~bit khaphanind(B)xaedinhmQtphanho~eht~pdO'i tu'<;1ng0 thanhcaelopttfdngdu'dng.Vdi u E 0, k9 hi~u [U]ind(B)130lOp ttfdng du'dngeilau theoquailh~ind(B)va O/B Ia phanho<:1ehdu'<;1c1<:10tll quailh~ ind(B).M6iphgntlieilaphanho~chO/Bdu'<;1cgQiIa IDQlt~pcosahayIDQtIdp tu'dngduong. VidlJ1.11:Vdibangdii'Ii~uabang1.11vaB={e}secocaeloptu'dngdu'ong: . (jngvdi ., [ol]ind(B)=[04]ind(B)=[~~1jnd(B)=[07]ind(B)={ol,04,05,07} e (j ng vdi [02]ind(B)=[03]ind(B)=[06]ind(B)=[08]ind(B)= {02,03, 06, 08} Dinkngkia1.26:Bangquy€tdinhtrong19thuy€tt~ptho Choh~thO'ngthongtin(O,A,fs),gQiHR vaCR la caet~pconkhacr6ng eilaA saochoA=HRuCRvaHRi1CR=0,(0, A=HRuCR,fs»du'<;1cgQihi mQt bangquy€tdinhtrong19thuy€tt~ptho.T~pHR du<JcgQila t~pcaethuQetinh di~uki~nvaCR la t~pcaethuQctinhquy€t dinh.Bang1.12.Ia IDQtvi d~lv~ bangquy€td!nhtrang19thuy€t~pthovdi H={a,b}vaC={c}. 57 Dinkngkia1.27.Xa'pxl t~ph<;fp Choh~th6ngthongtin(O,A,fs),X, lacact~pcankhacr6ngcua0, XcO vaB la t~pconkhacr6ngcuaA, BcA. -BE 1!oeIu'<;fngt~pX caed6i tu'<;fngqua t?P B cac thuQctinh,Z.Pawlakdungkhai ni~mxa'pxi du'oieuaX quaB ky hi~u laB.(Xrva xa'pxitreneuaX quaBkYhi~uIaB*(X)[79].Caexa'pxidu'oiva trenB.(X)vaB.(X) dtr<;fCdinhnghianhu'sau: B.(X)={u EO I[U]ind(B)C X} . B (X)= {U E o ([U]ind(B) II X * 0 } (1.10) Dink nghia 1.28.H~so'ph1,1thuQcthuQctlnh Cho tru'dchai ~p con khac r6ngU, V cua ~p thuQctlnh A, h~sO'ph1,1 thuQcthuQctinhcuat~pthuQctmhV VaGt~pthuQctinhU du'<;fCsa d1,1ngdEkhao sat s1,1'ph1,1thuQccuat~pthuQctinhV VaGt~pthuQctlnhU va du'<;fcdinhnghIa nhasau: y(U,V) = LIU.(X)IIIOI XeOIV (1.11) -t. Ph1,1thuQcthuQc"tihhcuaV VaGU du'<;fCkj hi~ula: U~V , k. Voi k =1, t?P thuQctlnhV beanloan ph1,1thuQCVaGt~pthuQctlnhU. Voi k<I: V phtJ. thuQcmQtph~nVaGU; Voi k =0: V bean loan khong ph1,1thuQcVaGU. H~so'ph1,1thuQcthuQctinhy(U,V) du'<;fCsu-d1,1ngdEphananhmti'cdQph1,1 thuQcuahait~pthuQctinh[79]. Vidl}1.12.Vdih~th6ngthongtindbangdii'li~u3.2,rho:U={a,b} vaV={c;}, haytinhY (U,V)? a)V8i U={a,b }seeocae18pttfdngdtfdng: . {; }: UI=[ol]ind(U)=[oI] {; }: U2=[02]ind(U)=[02]. 58 . {;,}:U3=[03]ind(U)=[08]ind(U)={03,08} . {; }: U4=[04]ind(U)=[04] . {;}:U5=[05]ind(U)=[07]ind(U)= {05,07} . {;}: U5=[06]ind(U)={06} b)V8iV={c}secocae18ptudngdudng: . (fngvdi XI= [ol]ind(V)=[04]ind(V)=[05]ind(V)=[07]ind(V)={01,04,05,07} . (fngvdi X2= [02]ind(V)=[03]ind(V)=[06]ind(V)=[08]ind(V)= {02,03,06,08} Bi tinhh~s6pht;1thuQcuathuQctinhcuaV vaoU b~ngc6ngthU'c1.11, dn tinhU*(X)vdix eON. . VdiXl={01,04,05,07},U*(Xl)={01,04,05,07} . Vdi X2={02,03,o~,08},U*(X2)={02,03,06,08} y(U,V)= 2)u.(X)I/IOI-lu.(Xl)I+IU.(X2)1-XeDif' 8 - 1,0 ~f ,~' V~yh~86pht;1thuQcthuQctinhcuaV vaoU la 1,0hayV pht;1thue}choan toanvaoU. 1.8.4.2.Mil TQnghi sitph1;lthuQcthuQclinh [9J Phin nay trlnhbay cd sd 19lu~ndE dinhnghiava tinh tminh~s6 pht;1 thuQcthue}ctinhmdfe}ng. Dinh nghia1.29.Hamphananhmucde}baoham ChongU'ongdomuedQbaoham8e[0,1],gQi~(S,T) la hamphananh muedQbaohamcuaStrongT, ham~(S,T)dU<;fC(t!nhnghianhusan: 59 J.lc(S,T) =IS II T)IIISI (1.12) Neu J.lc(S,T);:::8, thit~p h<;1pS du'<jcgQila baahamtrangT vdi mUGdQ baahamla 8. Neu8=1,0thiS c T Dtnhnghia1.30.Xa'pXldu'oimdfQng Vdi dinhnghlacilahamphiloanhmuedQbaaham, co th~ dinhnghia Xa'pXlmofQngB**(X)trongIy thuyet~pthonhu'sau: B**(X)={u E 0 I J.lc([U]ind(B),X ;:::8 J\ U EX} (1.13) Dtnhnghia1.31.H~s6ph\!thuQcthuQctfnhmdfQng H~s6ph\!thuQcmofQngdu'<;1cdinhnghlaquahamphananhmuedQbaa ham.Chohait~pthuQctinhU vat~pthuQctinhV, M s6ph\!thuQcthuQctinhmo fQngcilaV vaoU du'<;1ckyhi~uIa '¥ (U,V)vadu'<;1cd!nhnghianhu'sau: '¥(U,V)= II U..(X)l1!0I XeO/V (1.14) Vi dl,lI.13saildayneuleDkhaDangphanldp cilah~s6ph\!thuQcthuQc tinhmdfQng. ~{' Vidl}1.13:Xetbangquyetdinh1.12,choU={b}vaV={c},taco: . Voi U={b}secocaeloptu'dngdu'dng: [01]ind(U)=[02]ind(U)=[03]ind(U)=[08]ind(U)={01,02,03,08} [04]ind(U)=[05]ind(U)=[06]ind(U)=[07]ind(U)={04,05,06,07} . Voi V={c}seeocaeloptu'dngdu'dng:- [ol]ind(B)=[04]ind(B)=[05]ind(B)=[07]ind(B)={ol,04.05, 07} [02]ind(B)=[03]ind(B)=[06]ind(B)=[08]ind(B)={o2,03,06,08} Dungh~s6ph\!thuQcthuQctinhtruy~nth6ngy(U,V)=II U.(X)1/101=0 'eO/! 60 Trong1:9thuyttt~pthokhiy(U,V)=Oconghlal?iV khongph\,!thuQcVaG U,nhungtheoyeucftucuapIlaulapgftndungv~ncoth8suyfaduQCV tIcU. Tit hailu~tphanldp: ~ ,dQchfnhxaccuapMnlap=0,75 ~ ,dQchinhxaccuapMnIdp =0,75 D\faVaGnh~nxettren,lu~nanmdfQngkhaini~mxa'pXlduOicuat~ptho nh~m(ijnhnghlah~s6ph1,1thuQcthuQctinhmdfQng\fI(U,V). Vdi cact~pcdsdcuaphanho~chON vamucdQbaahame=0,75: Vdi Xl= {oI,04.a5,a7},U..(XI)={a4,05,07} Vdi X2={02,03,06,08},U..(X2)={a2,03,08} \fI (U,V) = II U..(X)I/ 10I = (I{04,05,a7}1+I{02,03,08}I)/101=6/8=0,75 XeOIV ", Dov~yM s6ph1,1thuQcthuQctinhmdfQngcokhaDangpMn ldpt6t hdn h~s6ph1,1thuQcthuQctinhtruy~nth6ng,d~cbi~tl?icacpMnlapg~ndung[91. Nhq.nxet:KhinguongdomuedQbaaham8=1,0thl'¥(U,V)=y(U,V). 1.8.4.1.Chuyintl/Jibangquye'Fi1/nhtTongIi thuylttljpthosangbangquyltdink nhjphlin IAII Choh~th6ngthongtin(O,A=HRuHC,fs),V=Udom(a,),gQiD Ia t~ph<jp ;=1 cacembaad=eAxVvathoahamis.Tit (O,A=HRuHC,fs)t~oquaDh~hai ngoiRcOxD,saDcho0R do(a)=va d=. Bang1.1I Ia bangquyttdinhnhipMn du<jchuy~nd6i tubangquytt dinhtruy~nth6ng(bang1.12)vdicacchIbaadnhusan: dl=;d2=;d3=;d4=;d5=;cl=;c2= XethamattributesduQcdinhnghlanhusan: 61 v SeD, attributes(S)={ae A I-eS } (1.15) Hamattributesd~la'ytencacthuQctinhtrongt~pconScacchibaacua D. Tinhchat1.6: Voi c~pham(p,A) dfidtnhnghiaaireD,gQiU eA vaOIU la mQtphiloho~cho theequaDh~ba'tkhaphiloind(U)vaU1,Uz,.,Uklacac~pcd sacuaphiloho~chOIUthip(A(Uj»=UjV j=I,...,k. Vidl}1.14:Voi U={a,b} vat~pcdsacuaphanhOi;lChOIUungvoiloptttdng du'dngU5=[o5]ind(U)=[o7]ind(U)={o5,o7}du'va. TheocachmahoaireD,haichibaatttdngunglad2=;d5=.Dungc~p hamp,Ada du'<;1cdtnhnghiaaireD, ta co: A(05, o7)={d2,d5,cl}; p(A-(o5,07») =p({d2,dS,cl})={o5,o7}=U5 1.8.4.4.Tinhhf srfphI}thul)cthul)ctinhmdrl)ngquadl)tincljyvadl)philbitn cualuatkit hd,rp "-.. , Rtldl 1.1:ChoSeD vaTeD, mucdQcuapeS)baohamtrongpeT)du'<;1ctlnh: J.Ic(p(S) ,peT»~=Ip(S) tlp(T)llIp(S)1 =CF(S-+T) (1.16) -.}- .,~. DinhIi 1.7([9]).Cho(O,A=HRuHC,fs)la bangquye'tdtnhvabangchuy~nd6i quye'tdtnhnhtphilo(O,D=HuC,R)tttdngung,gQiU vaVIa hait?Ph<;1pconcua A, Uj la cact?PcdsacuaphilohOi;lChOIU vaX la t?PcdsacuaphilohOi;lCh ON, J la t~pcacchis6 saorhoVjeJ, !lc(Uj,X)~ethi: 'I' (U,V) =I I(CF(A.(Uj)-+A,(X»*SP(A,(Uj))) XeOlVjeJ (1.17) Trangdo D la t~pchibaacuabangquye'tdtnhnhtphan(O,D,R)dtt<;1c chuy~nd6itITbangquye'tdtnh(O,AJs). 62 Chungminh:GqiJ Ia~pcacchis6 saGcho'v'jeJ,J.1c(Uj,X);::e voi l!j Ia ~pcd sdcuaphinho~ch01U,coth€ tinhI(U (X»I bhg: I(U (X»I =IIUj(JXI jeJ Dol(Uv cD, A.(X)g), lu~tke'th<;1pA.(Uj)-+A.(X)di'idu<;1etlnh dQph6 bie'nva dQtinc~yDenCF(A(Uj)-+A,(X»= Ip(A,(Uj»(\ p(A,(X)l/lp(A(Uj»1.Theo tlnhcha't1.6doUj va X la cact~pcosdeuaphinho~chDen p(A(Uj»=Ujva p(A(X)=X,dov~yIp(A.(Uj»n p(A.(X)I=IUjn XI =CF(A(Uj)~A(X»*IV).Ngoai fa, dQph6bie'ncua~p h<;fpA(Uj)Ia SP(A,(Uj»=Ip(A(Uj))I/IOI=IUpIOI,Den IUjl=SP(A(Uv)* 101.Tom l~i:IUjn XI =CF(A(Uj)~A(X»* SP(I..(Uj»* 101 Ne'uA.(Uj) lat~pph6bie'nvaA(Uj)~A(X)lalu~tke'th<;fp,coth€ tlnhh~ s6ph1:lthuQcthuQctinhmdrQngnhusan: '¥(U,V)= I I( GtF(A(U)~ A(X»*SP(A(Uj))) XeD/VjeJ 1.8.4.5Xliytb!ngthuQ.tgiai dJ!atrenhi siJphlJ.thllQCthuQctilllzmllTQng Chobangquye'tdinh(O,A=HRuCR,fs)vanglliJngdQehlnhxaecuaphin ~. lOpminprecisione[O,I],funcaelu~t'phinlopS~T voiS~HRvaTcCR, saGtho dochlnhxaecualu~tphinlopS~ V Ionhonho~cbingminprecision.Chobang quye'tdinh(O,A=HRuCR,fs),gQi(O,D=HuC,R)la bangquye'tdjnhnb!phin dU<;fCehuy~nd6i tUbangquye'tdjnh(O,A=HRuCR,fs).ChotrUoccacnglliJng minsupp,minconf,minprecision.GQiFS(O,D=HuC,R,minsupp)la t~pcaet~p ph6bie'ncia (O,D=HuC,R)vaR(O,D=HuC,R,minsupp,mincont)la t~pcaelu~t ke'th<;fpeod~nglu~tphinlopS~ T, saGchoS~HvaTcc.A=Huc. Thu~tgiai 1.11.sandfty sad1:lngh~s6ph1:lthuQcthuQetinhmdrQngd~ tlmlu~(phanIdpdlili~u. 63 Thu4tgiiii 1.11:TImlu~tphanlopdt!atrenh~56ph1:1thuQcmdrQng Vao:Bangquy~tdjnh(O,A=HR0CR,fs) NgU'Ongminsupp,mineonf,minpreeision Ra:T~pcaelu~tphanlopS~ T, sacchoSc H,T c C, A=HuC, ngU'Qngphan lOpla minprecision. BlIUc 1: Chuy~nbangquy~tdtnh(O,A=HRuCR,fs) sangbang quy€t djnh nht phan(O,D=HuC,R) BlIf1c2: Tinh FS(O,D=HuC,R,minsupp)va R(O,D=HuC,R,minsupp,minconf) theecaethu~tgiaifunt~p h6bi€n valu~tk~th<Jp. BlIUc3: Phan hoi;1cht~pR(O,D=HuC,R,minsupp,mincont)ra cae nhomlu~it phanlop S ~ T, cocacthuQctinhtrongt~pS gi6ngnhauva caethuQctmh trongt~pT gi5ngnhau,gQiC={G!,Gz,...,Gdlacacnhomlu~tsankhiphanlop. ,BlIUc4: g6mcaeb1foegall: 1)For eachG E C do 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) La'y rEG var=S ~ T GQiU=Attributes(S)v~VlaAttributes(T) :::::;':;1 /I Tinh '¥(U,V) Psi=O Foreachr:S ~ T var EG do TinhCF(S~ T) vaSP(S)II dungthu~tgiait1mlu~tke'thc;1P Psi=Psi+CF(S~ T)* SpeS) Endfor/I r If Psi~minprecision Ghi(U,V)vaot~pKetQua Endif 13)Endfor/I G 64 Vi dl!-minhh{Jathuq.tgidi 1.11 Voi bangquytt dinh nhi phan (j bang 1,12,ngU'ongph6 bitn t6i thi~u minsupp=O,1.ngu'Ongtinc~yt6i thi~uIII minconf=0,75,ngu'ongcmnhxactoi thi~uIii minprecision=O,75.Ungdl,mgcacthu~tgiairimIu~tphanloptitlu~tktt h<jpsethudU'<JccacIu~tphanlOpsan: NhomGl: . Lu~tke'th<;1p{dl} 40 {el} r1:~ ThuQctmhvt trai a,thuQctinhvt phaic, SP(rl)=0,25 CF(rl)= 1,00SP({dlD=0,25 . Lu~tke'th<;1p{d3}40 {e2} r2:~ ThuQctinhvt trai a,thuQctinh,v€phiiic. SP=0,38 CF= 1,00 SP(r2)=0,38 CF(r2)=1.00SP({d3D=0,38 Tinh'P({a},{C})=CF(rl)*SP({dl})+CF(r2)*SP({d3}}=0,63 NhomG2: . Lu~tktth<jp {d4} 40 {e2} -.J c~",' r3:~ ThuQctinhvt trai b,thuQctinhvt phiii c. SP(r3)=0,38 CF(r3)=0,75SP({d4})=0,5 . Lu~tktth<;1p{dS}40 {el} r4: ~ ThuQctinhvt trai b, thuQctinhvt phiii c. SP(r4)=0,38 CF(r4)=0,75 SP({d5})=O,5 65 \f'({b},{c})= CF(r3)*SP({d4})+CF(r4)*SP({d5}}=0.5*0.75+0.5*0.75=0,75 NhomG3: . Lu~tke'th<;1p{d1,d4}~ {el} r5:* ~ ThuQctinhvetnIi a,b; thuQctinhveph:iic. SP(r5)=0,13 CF(r5)=1,00 SP({d1,d4})=0,125 . Lu~tketh<;1p{dl,d5}~ {el} r6:* ~ ThuQctinhvetnIi a,b; thuQctinhvephaic. SP(r6)=0,13 CF(r6)=1,00SP({dl,d5})=0,125 . {d2,d4} ~ {c2} r7:* ~ , ThuQctinhvetnii a,b;thuQctinhvephaic. SP(r7)=0,13 CF(r7)=1,00 SP({d2,d4})=O,125 . Lu~tketh<;1p{d2,d5}~ {el} r8:* ~ ThuQctinhvetnii a,b; thuQctinhveph:iic. SP(r8)=0,25 CF(r8)=1,00 SP({d2,d5})=O,25 0 Lu~tketh<;1p{d3,d4}~ {c2} r9:**~ Ten thuQctinhve tnii a,b; tenthuQctinhveph:ii c. SP(r9)=0,25 CF(r9)=1,00SP({d3,d4})=O,25 . Lu~tketh<;1p{d3,d5}~ {c2} rlO:* ~. ThuQctinhvetreEa,b ;thuQctinhvephaic. 66 SP(rlO)=0,13 CF(rlO)=1,00SP({d3,d5})=0,125 Tinh'I'({a,b},{c})=CF(r5)*SP({dl,d4})+CF(r6)*SP({dl,d5))+ CF(r7)*SP({d2,d4})+ CF(r8)*SP({d2,d5})+CF(r9)* SP({d3,d4})+ CF(rlO)*SP({d3,d5})=1,0 1.9.KET LU~N Chu'c1ngayphattri~ncacthu?tgiiiihi~uquad~tlmt~pph6bienvalu~t ke'thQptrongCSDLbiingcachghlmdQphuct~pcilannhtoaDvagiamso lftn truyc~pCSDL.Co hailo~ithu~tgi.H du'Qcphattri~nla thu~tgiaikhongtang cu'ongvathU?tgiaitangcu'ong. Trongthu~tgiaikhongtangcu'ong,mohlnhvectorbi€u di~nt~pm~thang va baadongd:idu\1Cd€ xu!tnhiimbi~udi€n CSDL thanhngfi'canhnhiphan niimtrongbQnhomaynnhvagiamsolu'c1ngt~pungVieDdn tinhdQph6bien d~DangcaDhi~ustIltthu~tgiai. , Trong thu~tgiai tangcu'ong,thu~tgiai (~OdaDkhai ni~mcilaR. Godin d:i du'Qcdi biend€ funt~pph6bie'n(itcackhai ni~mhlnh£huc£rongdaDkhai ni~m.Thu~tghHtrendaDkhaini~mngoaikhaDangtangcu'ongconcotnIdi~m "f, la chidn truyc~pCSDLmQ(Iftn'atiynh!tlacoth€ t~odaDkhaini~m. Ke'de'nlacacnghienCUumdrQnglu~tke'thQptruy€nthongsangd~ng lu~tke'thQpphild!nhvalu~tkethc;ipmo. CuoiclIngchttc1ngaytrlnhbaycacnghiencUudunglu~tke'thc;iPlamlu~t , phanlOpdfi'li~uvaxaydl,l'ngh~soph1,1£huQcthuQctinhrodfQngtrongly thuyet t~pthonhiimDangcaokhiiDangkhaosatmli'cdQph1,1thuQcgifi'acac~pthuQc tinhtrongcaebaitoaDphanlopdii'li~ug§ndung.

Các file đính kèm theo tài liệu này:

  • pdf3.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf10.pdf
  • pdf2.pdf
  • pdf4.pdf
  • pdf5.pdf
  • pdf6.pdf
  • pdf7.pdf
  • pdf8.pdf
  • pdf9.pdf
Tài liệu liên quan