Luận án Nhóm con của nhóm tuyến tính tổng quát trên vành chính qui Von Neumann

NHÓM CON CỦA NHÓM TUYẾN TÍNH TỔNG QUÁT TRÊN VÀNH CHÍNH QUI NON NEUMANN NGUYỄN VĂN NHUẦN Trang nhan đề Mục lục Mở đầu Chương1: Nhóm con chuẩn tắc của nhóm tuyến tính ổn định. Chương2: Nhóm con chuẩn tắc của nhóm tuyến tính tổng quát trên vành chính qui von Neumann. Tài liệu tham khảo

pdf45 trang | Chia sẻ: maiphuongtl | Lượt xem: 2072 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận án Nhóm con của nhóm tuyến tính tổng quát trên vành chính qui Von Neumann, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
, . ~ 4 ? , CHUaNG 2: NHOM CON CHUAN TAC CUA NHOM K , ,.? , " , TUYEN TINH TONG QUAT TREN VANH CHINH QUI VON NEUMANN Vanh A dU<;1cgqi la chinhqui vonNeumannnC'u: \j x E A , 3 YEA: xyx=x NC'uA la vanhchinhqui vonNeumannthl mqiideal va mqivanh thuongcua A clingla vanhchinhquivonNeumann. Ta khaosat cacnh6mconchuffndc cua GL(M) trongtnfongh<;1p M c6coscihuuh?n.Khi d6,GL(M) ~ GL~(A). Xet n2:3 vaA lavanhchinhquivonNeumannhayt6ngquathall, A la vanhkC'th<;1pvoi donvi 1 ma A/Rad(A)la vanhchinhqui von Neumann,tasekhaosatcacnh6mconcuaGLn(A)chuffnboabCiiEn(A). Chungla nhungnh6mconH dtNcxacdinhbCiidiSuki~n:t6nt?i duy nhit idealB cuaA thoaEn(A,B)c H c Gn(A,B). 2.1MQts61{haiui~mvaHuhcha'tcdsd : NQidungcuam\lcnayneutenmQts6Hnhchit cobannhit cuacac tr~nsvectionsocip. Cacnh6mconEn(A),Gn(A,B),En(A,B)cllaGLn(A) sedu<;1cdinhnghIa, motacacph§nti1'va nhungHnhchit co banclla chungnhamph\lcV\lchoph§ntiC'ptheo. 2.1.a MQt s6Hohcha'tcua traosvectioosdc;1p: Xet x,y E A , cactransvecsionsocip thoanhling Hnhchit sau: l)xij .yij~(X+y)ij, l~i=l=j~n 2) (Xijrl =(-X)ij 3) [x~i, ykI] = In nC'uj =1=k vai =1=l .. k I k I .. Sur ra: xl] .y =Y .xlj xij . ykl (- X)ij =ykl 4) Xik. yjk =yjk.xik xki.ykj=ykj.Xki 5) [Xij ,yjk] =(xy)ik j =1=kva i =1=l j =1=k va i =1=l i , j , k khacnhaud6imQt. i , j , k khacnhaud6imQt. i ,j , k khacnhaudoi mQt. 6) VgE GLn(A) , Vy E A, V k, l E {I, 2, ...,n } kl -I 1 'g.y .g = n+gk.y.g I voi gk la cQtk cua g, g'tla dong l cuag-l. 15 Chung minh : C~ctinhcha'tta I dSn5 dedangsuyra ta dinhnghla,ta trlnhbay chungminhtinhcha't6 : Vdi g=(gij), g-I=(g'ij) EGLn(A),YEA,tac6: - ~ g e -1- ~ g' e kl - I +g - L , g - L t t ' y - n y.ekli,j=1 1J 1J s,t=1 S S k l -1 ( I ) -1 g.y g =g n +Y ekl g -1=g.g =In =In = In = In = In = In = In n . n + c.~ gijeij)'yek[. I g'stesl I,J=1 s,I=1 n n + ( .:?:gijyeijekl) ( I g'stest) 1,J=1 s,I=1 n n + (?:gikyeikekl) ( I g'steSl) 1=1 s,I=1 + (t gikyeil) (~ g'stest)1=1 s,t-l , + gk.y. g l vdi gk la cQtk cuag , g'l la dong l cuag-1 2.1.bNhomconEn(A) : Trang I.l.b , ta dadinhnghla: En(A)= Vdi B la ideal cua A, En(B) chInh6rncan cua En(A) sinhbai cactransvectionsoca'p bij, b E B . n L I+ gikYgsteilest i,s,t=l n L '+ gikyglteileZt i,t=l n L '+ gikyglteit . i,t=l M~nhd~5 : ( xem[1] , 1.2.26 trang36) .Vdi n C::3 , i :;z!:j va x E A, nhomcanehuctntdesinhb(JixU trangE,lA) La E,l La ideaL eua A sinhb(n x. Dgebi~t,hhomcanehuctntdesinhb(Ji lij trangE,lA) LaE,lA). 2.1.cNhomconGn(A,B) : Ki hi~uGn(A,B) chianhngu'<;1ccuaHimGLn(A/B)quad6ngca'u chinht~c: q>: GLn(A) (aij) ) GLn(A/B) ~ (ai) Ta co : q> la d6ngca'unhom. Nh~nxet : Cell (GLn(A/B)) la nhomconchu~nt~ccuaGLn(A/B) nen Gn(A,B) lanhomconchu~nt~ccuaGLn(A) M~nhd~6: g =(au) E Cen(GLn(A) g = a ,In, a E Cen(A) (g Lamatr~nvahudng) Chungminh: (i,j) = [0:::0} anI t ( C(jt j ) all"""", a1n 1,0 00000000 g.eij = eij.g = l omo } [ a \ ( ~ II aln I ao a. a. o.k. ° ~ J = .10.ln ) (dong j ) , n1 a ! nn (i,j) V ,. \-I' . ., 1"2" "> 2 .-01: g.eij = eij.g v 1*J, 1,J=, ; ,n va n - , taco : ." [ O:::O } . = anI ( a~j"J dongi t cQtj f a.. =a.. 11 J J => ak i =0 'v'k;i: i lajt =0 'v't;i:j La"yi , j l~nhtQtb~ng1,2, 3, , n , i *j , taco: all =a22=. . . =ann=a akl =0 ,. V k ::;cl g = [ all 0 ]0 ann rao °a) =a.In (matr~nvohuang) Ta chung minh a E Cen(A) : 'v'~E A, (a In) . (~.In)=(~.ln).(a.In) ~ a ~.In = ~a.In ~ a ~ =~a V~y a E Cen(A). Cu6icling,tachungminha khanghich. g EGLn(A)~:3g-IE GLn(A):g.g-I=In Ta chungminh g-lding thuQcCen(GLn(A)). Th~tv~y,'v'h EGLn(A),g-I.h =g-I(h.g).g-l -I ( h) -I h -1=g . g g = .g V~y, g-l E Cen(A) =>g-l= f3.In (a.1n ) ( f3.1n)= In =>(a.f3).In=> Do do : a E Cen(A)* M~nhdf 6 dachangminhxong. Ap dl,mgm~nhde 6 chotam (GLn(AIB)), taco : 1VI~nhd~7 : , . (f3 E Cen(A) ) a.f3=1=>a khanghichtrong A gECenGL,lA/B)g=a.I Trangd6 : a E (Cen(A/B))* , r- 0 ')- 11 I I=lod Til dotacothSmota Gn(A,B)bc3im~nhdesaD: M~nhd~8 : r a.. =0 (aij) E Gn(A, B)i - ~J-..- . . l aji - a JJ- ex , i oFj, a E (Cen(AIB))* au = Oij.a (mod B), a E (Cen(A/B))* 2.t.d.Nhom COllEn(A,B) : Ki hi~uEn(A,B) chi nhomcon chu§'nt~ccua En(A) sinhbdi cac transvecsionsddip xi.j trongGn(A,B) . En(A,B) = Nh~nxet: En(B) c En(A,B) c G,lA,B) M~nhd~ 9: Voi n ~3 , taco : En(A,B) = Chung minh : f)~t: E =. Ta chungminh: En(A,B)=E. HiSn nhien:E c En(A,B),tachIdin changmhlh:En(A,Bc E. Xet phftntasinhba'tkl cuaEn(A,B)codC;lng: . h =yk l xij( _y)k l , i * j , k *- I, X E B va YEA. =[yk l , xij ]. xij Ta co caetn1C1ngh<Jpsau: . k *-j va I *-i : [ ykl, xij ] =In~ h=Xij E En(B)c E . k *-j va I =i: [yki, xij ] =(YX)kj~ h=(YX)kj :Xij x E B ~ yx E B ~ (yx)kj.xij E E ~ h E E. . k =j va I *- i: h =yjl xij (_y)jl =xij (-X)ijyjl xij (_y)jl =xij. [(-x)ij, yjl] =xij.(-xy)il E E . k =j va I =i: h =y.iiXij (- Y)ji E E V~yh E E trongmQitntC1ngh<Jp. Do do: En(A,B)c E V~y: En(A,B)=E Mt%nhd~ 9 da:chungminhKong Phdn tie'ptheo ta xet eaema triln boan vi : ]a matr~nma m6i dongva m6icQtchIco duynha'tmQtphftnta khac 0 1a 1. M6i matr~n hoanvi p tlidngung1 phepthe"(j E Sn codC;lng: p = (8j,cr(j)) Ta co :p -1=«>i,o--I(j))' Th~tv~y, d~tq=( i,o--I(j)), ajj =1;1 i ,0-(k) . k ,CT -I (j) . i ,0-(0--}(j)' 0--1U) ,0--1(j) , ( so'hC;lngkhac 0 duynha'tungvoi k =(j -IU) ). p.q =(aij) V~y : ajj =bij , '\! i,j -1 ' Suy fa: p.q=In ~ p =( i ,0--1(j) ) Xet : p .Xkt.P-1 =In + (8 i,O"U»)k ,X.( i,CT-I (j) )t (CQtk) (dong t) 81,0-(k) = In+ - I -I X (8 t,o- (1),...,8 t,o- (n)) 80 ,0-(k) 0 = In + x ( 0 ... 1 ... 0) !rI dong cr(k) CQt cr-I (t) 0 0 = 10 + I I 0...... I .'rIL~£!!!L(j(i<:) -fO cQ'tcr -let) = X er(k),er- I (I) M~nhd~10: vdi n ~3 : En(A,B)dli(/Cchu6nhodbiJi tqpcdclnatrqnhodnvi. Chungminh. X6tph~ntitsinhcuaEn(A,B)dc;wg: kt ij ( ) kt B A .. ky.x.-y ,XE ,YE ,1*-J, *-t GQi p = (8 k,er(I)) la ma tr~nhoanvi , ta co : kt ij C ) kt -1- kt -I ij -I ( ) kt -I P y.X -y P - P . Y .p .p.X P .p. -y p =yo- (k) 0--let) .xo- (i)o- -I (j) ,(-y)o- (k)o- -let) EEnCA,B). 2.2.Nh6rn.conchufintdccuanh6mtuye'ntfnhtangquattren vanh chfnhqui yonNeumann: Xet A ]avanhehinhquivanNeumann,tasedide'n2 dinhIi m6 tacaenh6mcan H euaGLn(A) ehu§'nboabdi En(A). GQi B la idealeua A. Nhomcan H eua GLn(A) duQegQila nh6mcanmdeB ne'u: En(A,B)c H c Gn(A,B). DinhIi 1neucaetinheha"teuanhomEnCA,B)vaehoke'tquamQi nh6mcanmtieB euaGLn(A)d€u ehu§,riboabdi EnCA).DinhIi 2 eho tachi€u ngtiQel~i: mQinhomcaneuaGLnCA)ehu§'nboabdi En(A) d€u la nhomcanmde B. Tli do,taco th€ motatfiteacaenhomcan euaGLnCA)ehu§'nboabdi EnCA)thongquacaeidea]euavanhA. 2.2.aDinhIf 1 : Gidsa A/Rad(A)la vanhehinhquivanNeumann,n 22 va B la idealeuaA, fae6.. (a) EnCA,B) ehuaedemalr(ind(lng In +vu, lrongd6 v la n- d)1 frong A, u la n - dongtrongB va u v =0 . Titd6,faco'EnCA,B) ehudnfdelrongGLnCA). (b) En(A,B)::J [ EnCA), GnCA,B)]. SuyramQinh6mcanmueB eua GLnCA)d~uehudnhodbiJi En(A). (c) Khi n 2 3, fae6.. EnCA,B)=[EnCA),EnCB)]=[ GLn(A),EnCA,B)]=[Eil(A~,H] wJi H la nh6mcanmueB. (d) V&iA la vanhehinhqui vanNeumann,laco .. EnCB) = EnCA,B) H(mnaa, v&i n 23, fae6.. EnCB)=[EnCB), En(B)]. CluIngminh. Chung minh 1. a : (v ) v=(Vj)= lvJ ,VjEA,i=l,...,n U=(Uj)=(U', un) , ujEB,j=l,...,n Truong h(jp 1: 1 + VnUn E GL1(B) f)~t : d =1+Vn Un d' =1+UnVn => d'- 1 E B UV =0 => II "UovoL.., 1 1 I =0 => u'v' + UnVn=0 =>d' =1- u'v' Taco: ( 1 - Und-1vn) d'= ( 1 - Und-IVn) ( 1+ UnVn) = 1 + UnVn- Und-I Vn - Und-I (VnUn) Vn = 1 + UnVn - Und-l Vn- UIId-I ( d -1 )Vn 1 d-I d-I=. +Un Vn - Un Vn - Un VII + Un VII = 1 d' ( 1 - Und-1vn) = (1 +UnVn)( 1 - Und-l Vn) = 1 - Und-I Vn+UnVn- UII(VnUn) d-I Vn = 1+UnVn- und-1vn- UII(d -1 ) d-IVn 1 d-I d-1= + UnVn- Un Vn - UnVn+ Un VII =1 V~y ( 1- und-Ivn)d' ~d'( 1- und-IVn)= 1, Suyfa d' khanghich. Do d6 d' E GI1(B) va (d' rl = 1- Und-IVn Khi d6 : VU [ VI J (U' Vn = ( v'U' V n U ' Un)= In +VU = ( In-ol+V'U' VIUn ) = VnU' l+vnun ( 1 +v'U'11-1 VnU' E)~t : ,- 1 ", d-1 ,a ,- n- 1 + v u - V un VnU = 111-1 + v'(1 - Und-1Vn) U' =111-1 + v'(d'ylu' Ta ch1?ngminh : In + vu ~ (l"~ XetOv€ phai : V,~"d') (~ ( 10-1 g:= o V.~"d-') (~ 0 ) (10-1 d ld-Ivo u' =(a0 VIUO ) (lool d ld -I v uI0 01 1) (a +V'U d-Iv u' =l v0 u' 0 0 v'u 1 d OJ (10-1 +,V'U'. v U0 v>J ( 10-1 V~y : In +vu = o Voi : V';"d-') (~ 0 ) ( l ln--I d d -I V U In (1 ' d-I ) (1 01n-I V Un l n-I ) E E' Bo 1 ' d-Iv0 u' 1 n( ) ( a 0 )In + vu E En(A,B) o d En(A,B). v I 1.1 J n V nun v'u J n d 0 ) (10-1 01 d ld-IvnH' 1) 01 1) 01 d Ta c~nchungminh: ( a . 0 ~) E En(A ,B) Tnloc he't,taphantich: (~UI ~)=(~" 0 ) ( 111_1 1 0 - yldl-I ) ( 111-1 1 - u' :') (~"' 0 , d,-J j = ( 1+V1dl-IUI - U I ~J = (-:' ~) Tht vy , xetvSphcH: h :=("' - V'd") C ) (n-J ') ("-' 0 'n-I d'--J)1 -- u' = Co-' - v'r'l C n (h y I d ,..1, ) n-J ). 0 1 :- UI d 1- I = ('" - vor') (1 y' d 1-\ , In-I - u'yldl-J+d,-1)1 - u I = ("-' - Y'd'-I, (1 v'd 1-\ , ) In-I (-llIV'+l)dl')1 - u' = ("-' -V'd'.') (1 y I d 1- \ , l n - I d '. d' J)1 - U I =('" -Vt'd"'J e,,-: v ' dJ ,- 'J-u V~y : C:I OJ ~ (~"' -Vldl-I ) ( 1n-I 1 - u' ~) (~n-I n (~"' ~I'-'J Ta cung co: (1 +u 'y 'd' -1). d' =d' +U 'y , = 1- u 'y , + U 'y , =1 Suy fa : (~"' Nen: ( a -u' Vdi: (~"' d,-1 - 1 + U'y' d,-l -V'dl-I J ( 1- n-I 1 0 = (~"-' - ( 1n-I - 0 - ( 111_1 - 0 - v' (1 + "; y'd,-I )J - V'-V't:'V'd'-'] - VIUIVldl_l ] ( 1 11-1 1 0 - VIU . 'Vld'-I) ( 1 1 j 0"-1 J=(~~' -V'U~V'd") (~" - VIUIV'd'-I J ( 1n-I 1 ' -H' ( In-1 Suy fa: 0 VI ) -I ( In-I .1 -H' - v;] : ')' VI ) --! (111-1, 0) ( 111_1 1 - U I 0 0 ) EE (B) ( In-I 1 n, 0 ~) (~n-I ~')E En(A,B) VI )1 E En(A) V . I ) ( In-1 0 J1 0 d,-I V~y : (-:' 0 ) ( 10-1 1 E En(A,B) 0 0 ') d 1-.1) Nen: (~ ~)=C: J(~I Ta clingco : (~ ~) =(~ Nen: (~ 0 ) ( 10-1 d . E En(A,B). 0 O J ( 10-1 1 E En(A,B) 0 0 J ( 10-1 d'-I u' ~J ~) (~" (:) 0 J ( 1n--1 d,-I u' OJ (~"' ~J (d" 0 ') ( 1 1 d'-I) ; ~)=(~"-' Suyfa: (~ ~) E En(A,B). Tlido : ]0+ vu E En(A,B) . ( In-1 (1'--1 l1' ~) E En(B) . 0 ') d'-ld) E En(A,B) , ( Ke'tqua tU [5], ~2) ( 0) (1,_, O)( OJ (O, 0 ) (I", 0 ') (1, Jd EEn(A,B) 0 d,-I d d' 0 d'-I) on-- Ta co: ("-I 0) (1"_- OJ ("-' 0 ) = (1"-J ,,) (:t ad')d,-I u' d' 0 Truong hqp2: ::3i E {1,2 , ... , n} : ViE Rad(A). Ntu i =n : Vn E Rad(A) =>VnUnE Rad(A) =>1+VnUn khanghichtrongA Soy ra : 1+VnUnE GL1(B) =>In +VU EEn(A,B) (tnf<JnghQp 1). Ntu i < n: xet phep the- (j =( i p =( 0j ,0 (k) ). £)~t: n) Vamatr~nhO<lnvi tlfdngltng ° v =pv= (OI.a(l)Vl +OI.a(2)V, + ...+OI,a(,,)V" I I O'2,u(1)V 1 +52,crC2)V 2 + ... +O'2,crCn)V n I I . I l~","(l)Vl +O","CZ)VZ+ ...+o"."c,,)V,,) (VI) I I I . I I I = I V II I <Em~?I1~mi I. I l~J ( matr~nco du'Qcb~ngcachhoanvi cacdong'i & n cuav) UO=U P =(UIOlp(l)+:..+ullb;l,a(l)'Ul~,a(2)+"'+Ullb;1,O"(2)'...,U1O1,acn)+...+Unb;],acn)) =(U1 ,. . . , Un ,...Ui ) ( matr~nco du'<;1cb~ngcachhoan vi caccOt i & n cua u) Ta co: uOvO=up.pv =u(p.p)v=0 vnO =Vi E Rad(A) => In + va UOE En(A,B) In+ v u =p.p-l+ p.pv.up.p-I=P On +vaDO)p-l E En(A,B) Truonghqptangquat: - - Voi A / Rad(A)la vanhchinhqui vorlNeumann,taco : ::3xEA:vn.x'Vn=Vn vn - Vn. X . Vn E Rad (A) (vn - Vn . X . Vn). UnE Rad (A) vn( 1- x Vn).UnE Rad(A) 1 + VnO - X Vn)Un khanghichtrong A. 1 + Vn(1 - X Vn)UnE GL1(B). g := In + v(1 - X VB)U E En(A,B) (tnrong hQp 1) Ph§n tie'pthea,tach(tngminh: h := 1n+ V X VnU E En(A,B) Xet: t = (- Vn-l.xt-1,n( In + VX VnU) ( Vn-l:Xt-1,n =In ( . )n-l,n ( )( ) n-l,n+ - Vn-l.X . V X VnU . Vn-l.X =.In + ( ) n-I n )- Vn-l.X '.V X Vn (U(Vn-l.xt-1,n) D~t U 1=U .( Vn-l.xt-I,n (la n- dong trongB ) 1 ( )n-l,nV = - Vn-l.X .V X Vn (]a n- cQt trongA ) 1 1- ( ) n-l,n ( )n-l,n -. - 0U V - U . Vn-I.X - Vn-l.X .V X Vn - U v X Vn - 1 0 '\ (VI '\ . II V21 . I I . I X.Vn ;. ~. -V"l'.xJ U (1 \0 VI =I' l~ 0 ... ( VI lI V2 VI =I . I XVn l v - V XV Jn-I V nn-I n V \1-1 =Vn-l ( 1 - X. Vn ) X Vn =Vn-l ( XVn - X . Vn X Vn) =Vn-I X ( Vn - Vn X Vn) VI Vn - Vn X Vn E Rad(A) lien vln-I E Rad(A), ta SHYra : t =In +Ul VI E En(A,B) (TnfOnghQp2voi i =n-I) h - ( )n-l,n t ( )n-l,n E (A B)- Vn-1.X - Vn-l.X En, g.h =(1n+ v(1 - X Vn) U ) .( In + V X VnU ) = In + v(1 - X Vn) U + V X VnU + v(l - X Vn) U . V X VnU =In +v(1 - X Vn) U +V X Vn U =In + vu - V X VnU + V X VnU =.In + vu g , h E En(A,B) => In + VU E En(A,B) Ph§n tie'ptheo, tachllngminhEn(A,B)chu!Inuk trongGLn(A): Ta thl/chi~ncacbu'ocsan: 1. Tn(oc bet xet cac phgn tU'bgtkI g E GIn(A) , xij E Gn(A,B), i 7=j , taco :X E B. En(A,B) du'Qchu§'nboabdi t~pcacmatr~nhoanvi Henco th~ghi sU'(i, j ) =(1,n).Taco: g xl,ng-l = In +v X w (VI' I v21 voi V =I . I lvJ Ia cQt 1 Clla g . ( ) 1 , d' ?-1W = WI W 2 ...W n a ong n cua g . WVlaph~nti'ta dong n , cQt1 clla -1 1 " 0g g = n Den WV = £>~tu=XW , taco UiE B ,'\1i = 1,2,...,n. UV=(xw)v=X (wv) =x. 0 =0 Suyfa : g.x1,n.g-l= In+vu E En(A,B) 2. Tie'pthen, taxetcacph§.nti't g E GIn(A), h=yi i Xi j (-yyi , i *-j , X E B,YEA, taCO: g h g-1=g yji Xij(_y)ji gol= (g yji) xij(g yii rl E En(A,B) ( Ap d\lllg bttoc 1 cho g y-i) 3. Cu6i cling, xet gE Gln(A) , h E En(A,B) ta co : n-l h =Il hi , i=l vdi hi la ph§.ntit sinh d<;1ngy-iixij (-yi cua En(A,B). n-l g h g-1=g ( Il hi) g-l i=1 n-l =TI g hi g -I E En(A,B) i=1 Chung minh l.b: [En(A), Gn(A,B) ] c En(A,B) Ta thl,fchi~nquacaebuoc: a) Trudc h€t, ta chung minh : [1ij, g ]E En(A,B) ,\/ g E Gn(A,B). . . .. .. I [11,.I,g] =11,.I.g(-I)l,.I.g- En(A,B) c1t(Qcchu~nboa bdi t~pcac malr~nhoanvi Denco the gia siT (i, j ) =( 1, n ), khi do : [11,Il,g]= 11,Il.g.(-1)I,n.g-I =11, n ( 1n - VW ) ydi y = (:J H\CQt 1cuag, W =( W' W,,) Iii di, ng n cuag~ I w.v laph§.ntud()ngn , cQt1 cua g-l:g= In ~ wv=O. A/Rad(A) la vanh chinh qui van Neumann lien : .3X E A : VnX Vn- Vn E Rad(A) Ta chung minh (xvn)I,n va g giao hoan theomodulo En(A,B). Ta co: h:= In - vxvnWE En(A,B) (TntonghQpt6ngqUCttdiu (a),apdvngchou =- w ) gE Gn(A,B) va Vn la ph§.ntiTthuQcd()ngn , cOt 1 cua g nen Do do: X'VnE B VIlEB (Xvn) I.il E En(B) [ (xvn)1.0, g ] =(xvn)1.n(1n- VXVnW) E En(A,B) Tiep theotachungminh (1 - x Vn)I,n cling giao hoan voi g theo modulo En(A,B) . Ta co : [(1 - XVn)1,n, g ] = (1 - XVn)1,n, (1n - v(1 - XVn)w ) £)~t u:= -(1 - XVn) W =( u' un). [(1 - XVn)1,n, g ] = (1 - XVn)I,ll ( In + 'lU ) vdi VllUn=-vn(1 - XVn)Wn=(Vn X Vn -Vn)W E Rad(A) Suy fa: d :=1 +VnUnE GLI(B) £)~t: ,- 1 ", d-I ,a .- n-1+v U - V Un VnU Chungminhtu'dngtv Callla , taco : (1 ) 1,n (1 ) (1 ) 1,n ( In-I -XVn n +vu = -XVn 0 V'l . lnd-Ij ( a 1 ) 0 0 ) (1,,1 0) d ld--'vnu' d g E Gn(A,B) => V2, v3, .', , Vn - 1 E B d-I d-I . dol B=>V2Ull ,v3un ,...,vn-IUn E, , D6ng thai, xet trong GLI1(A/B) va GLj(A/B), taco : g = a - , I ; g-l - = f3 - , I vdi a - , f3 E Cen(A/B)* (l-xv,,) I,n (1" (1 . . . I-xv,,) (1 V'U"do') 1°' - - ° I I - -. v,u"d' II = -- II OJ.. vur,1- - - - I ' ,,( I' , . , . ,. lo ) l-- v d,1. , . . 1 n-Illn )0 . . . . 1 (1,.. vlud-'+I--xv) I "n I 10 1.. v2u"d-I .1= I l' : : : ; <, l:"d', jO. . . . . 1 g -I. g - =I => a - . B - = 1 => VI Wn - = 1 . Vn E B => xvn - = 0 u =-(1 - xvn)W => un=-(1 - XVn) WII => U" =- W n d E GL1(B) =>d-l E GL1(B) => ~ - == 1 VI . U" . d-I =VI (- w. " ). I - =- 1 Nen : vlund-1+ 1 E B vlund-1+ 1- XVn E B 1n ( In-I (1-XVn) , 0 V'~"d-') E E,,(B) In (a (1-XVn) , (1n+Vu) E En(B) \0 0 )d En(B) Ta co: (~ 0 ) . d E En(A,B) (Chang minh 1a ) [( 1- xvn)l,n, g] =(1-xvn)l,n (1n+vu) E En(A,B) Tom l~i, taco [(xvn)1,n,g], [(1-xvn)1,n,g] E En(A,B) , tU(10: [11,n,g]=[(xvn+l-xvn)l,n,g] = [(xvn)I,n(J -XVn)1,n, g] = (xvn)1,n(1-xvn)1,ng (-1 +XVn)1,n(- XVn)1,11g-I = (xvn)l,n. (1 - xvn)l,ng (-1 + xvn)l,ng-1. g (-x.vlI)l.ng-1 = (Xvn)I,n.[(1-xvn)l,n, g ](-xvll)I,II(xvn)I,n.g.(- xvn)l,ng-l = (xvn)1,n[(1- XVn)I,n,g] (- XVII)I,n . [(xvn)I,n, g] E En(A,B) b) X6t phtlntil' thuQc[En(A),Gn(A,B)] cI~ngI ylJ, g J , YEA, i :;i:j, gE Gn(A,B): En(A) la nhomconchu§'nt~csinhboi ] l,n trongEn(A)nen : 3ZEA: yi,.i = Zkl 11,11(-Z)kl,k;t:.l. [yi.j,g]=Zkll1.n(_Z)kl g Zkl (_I)I,n (-Z)kl g-1 . =Zkl. 11,n. (- Z)kl g Zkl . (-1 )l.n . (- Z)kl g-1Zkl .(- Z)kl £)~th=(- Z)kl .g.Zkl g E Gn(A,B)=>h E Gn(A,B) Tli chungminhph~n(a),taco : [11,n,h] E En(A,B). [yi,j,g]= Zkl 11,nh(-1)1,n h-1 (-Z)kl =Zkl [11,n,h] (-Z)kl EEn(A,B) D~ktt thucchungminhphfin lb, tagQiH la nh6mconmo.cII vachungminh H chuanboabdi En(A): Taco : En(A,B)c H c Gn(A,B) V xij E :Bn(A),V h E H, xijh (-x )ij . h-1 E tEn(A) , Gn(A,B)] Ma: [En(A), Gn(A,B) ] C En(A,B) C H Sur fa xij h (-x )ij . h-1 E H =>xijh (-x )ij E H V~y H chu~nboabdi En(A). Chungminhloc: Chung minh En(A,ll) c [En(A), En(ll) ] : X6t ph~ntl'isinhba'tki cuaEn(A,B) co d~ng: yj i xij (-y )j i , X E B, YEA ~I ~ i -:(::.i ~ n Taco: yjixij(_y)ji =[yji,xij]xij =[yj i , Xi j ] ( I.X )ij =[yji,xij].[1ik,xkj] (ChQnk-:(::i,j) Sur fa yji xij (_y)ji E [En(A), En(B)] En(A,B) c [En(A), En(B) ] Hi~nnhi~l1,taco : [ En(A), En(ll) ]c [ GLn(A),En(A,B)] Chung minh [GLn(A), En(A,B) ] c En(A,H) : X6t ph~n tU' [g, h] E [ GLII(A), En(A,B)], g E GLn(A), h E En(A,B) En(A,B) la nhom con chu§'nt~ccua GLII(A),( chang minh la) nen : g h g-l E En(A,B) ~ [ g , h ] =g h g-l.h-1E En(A,B) Do do : [ GLII(A), En(A,B) ] c' En(A,B) . Suy fa : En(A,B) c [ En(A),EII(B) ]c [GLn(A), En(A,B)]c En(A,B) V~y ta CO : En(A,B) =[En(A),En(B)]= [GLn(A),En(A,B)] D~ke'tthueph~nIe, taehu'ngminhEn(A,H) =[ En(A), H) : Taco : En(A,B) c H c Gn(A,B) En(B)c En(A,B)c H Dodo: En(A,B)= [En(A),En(B)]c [En(A),H ] D6ngthoi : [En(A),H ] c [En(A),Gn(A,B) ] c En(A,B) V?y En(A,B)=[En(A),H ] Chung minh l.d : Chung minh En(B) =En(A,B) : Ta daco: En(B) c En(A,B) , chI c~nchungminh : En(A,B) c En(B) X6t ph~ntti sinh bat ki cua En(A,B) q<;lng(- yi i) Zij yi i, ( ZE B , YE A, 1 ~ i =I:j ~ n ) . Vi En(B) dl«;1Cchu~nhoahdi t?P cac matr?n . hoan vi, taco th€ giil sU' (i, j ) = (1 , 2). Ta chang minh : h:=(_y)12z21y12EEn(A,B), (zEB,YEA) Vi A chinhqui vanNeumannnen t6nt~iphfintU' x E A thoa: z =z x z . Khi do: h := (- y )12Z21Y12 = (-xzy)1 2(Xzy)12 (-y )12Z21yl 2(-xzy)1 2(Xzy)12 =(-xzy)12. ( xzy - Y )12 Z2I( Y - xzy )12. (xzy)12 vdi (xzy)12E En(B). X6t g :=( xzy_y)12. Z21. ( Y - xzy)12 Ta l~pcong thlic tinh aI2b21(-a)12,a, bE A. Ap dl,lngcongthlictrencho a=(xz-I)y E B , b =z ab =(xz-l)y.z ba =z (xz- 1)y =(zxz)y- zy=zy - zy =0 -aha=-a (ba)=0 Ta co: g=a12b21(-a)12 ( a 1 I 1 I a12b21(-a)12 =In + I I b (1 -a 0 ... 0) l ) I (CQt 2 cua a12) (D()ng 1 cua (-a)12 ) (ab -aba 0 ... 01 I b -ba 0 ... 0\ =In+ I 0 0 .\I l 0 ) (xz - l)yz I z g =In + I 0 l 0 0 ... 0\ I 0 0 ... 0 I 0 . . '1 ~j00 0 \ 0 I I Ij Ta co th€ pMintich g thanhd<;lng: rl . (xz-\)yzx 0 ". 01 (I 0 01(I (I-xz)yzx 0 ... 01g = l ~ ~ :..::::::::..O J I~ I :::::::.o J II~ ~ '.'~~~.'..'.O J ' 0 : I ~O 1 ~O..." 1 = «xz -1)yzx )12. Z21.« 1 - xz )yzx )12E En(B) Th~tv~y, xet : (1 (xz-l)yzx 0 ... 0\ (1 0 0\ (1 (l-xz)yzx0 ... 0 \ t := I I ~ ~ ::::::::..o J I!~ 1 ::::::::.() J l l ~~""""'~"""":"'::::::~:"~" J I 0 1 ~O I 0 1 (1+(xz-l)yzxz (xz-l)yzx ... 0\ (1 (I-xz)yzx 0 ... 0\ = I I ~ 1. ...::::::...O J I ~ l"."".""::::::::"~ J I 1 ~o' I. (1+(xz- 1)yz 0 0 ... I z 1 0 ... = I 0 l 0 0 . . (1+(xz-l)yz (xz-l)yzx ... 01 (1 (l-xi)yzx 0 ... 01 =I z . 1... 0 110 1 0 I l j \ )0 1 ~O 1 (1+(xz- l)yz (l +(xz-l)yz)(l- xz)yzx+(xz-l)yzx 01 =I z z(l- xz)yzx+1 0 I l , j0 1 Taco: z(1 - xz)yzx =zyzx- zxz.yzx =zyzx- zyzx =0 (1+(xz-1)yz)(1- xz)yzx+(xz-1)yzx=(1+(xz-l)yz - ] ) (xz-l)yzx =(xz-] )yz(xz-] )yzx =(X7,-])(yzxz - yz) yzx =(xz-l )(yz - yz) yzx =0 /. 12 21 J 2 Do do : g =t=«xz -1)yzx) . z . « I - xz )yzx) E En(B) Suy fa h = (- xzy)12g (XZy)12E En(B) V~yEn(A,B) c En(B) . ChungminhEn(B)=[En(B), En(JJ)] vOin 2 3 : Hi~nnhien[En(B),En(B)]c En(B) . Taclingco : V ZlJ E En(B), zij =(zxZ)ii, x E A zij= (ZXZ)ij=[(ZX)ik,zkj]E [En(B),En(B)] (chQnk:f=i,j) Nen En(B) c [En(B),En(B)] V~y :En(B)=[En(B),En(B)]. DinhIi 1 dachungminhxong. D~didSndinh112,tac§nmQts6b6d~. Trangph§nsau, ta ki hi~uA ia v~nhkSthqpvoiddnvi 1 vathaimandi~uki~nA/Rad(A) lavanhchinhquivanNeumann, 2.2.b.B6d~1: Chon 2 3,aE A , a :;r0 va a kh6ngLaLtcJCdla 0 . H Lanhomcon cua GLn(A) chwinhodbiJi tqpcac aU, i :;rj thodtlnhchatH chaa g =(gij) thod gn]=0 vat6ntc;zi, j sao cho g kh6nggiaohoanvcJi ij 1<. '<a, - l :;rJ - n, Khido, H chaa mQtransvectionsacapkhac ill' Chung minh : n-I Tru'onghqp1: g=Il b;,n voi bi E A va t6n t~i j <n thoa bj -:f=().i=1 ChQns6nguyendu'dngk thai: k <n va k -:f=j , taco: kj ( kj ) H [ kj ] - kj ( kj ) -I Ha .g. - a E. => a, g - a .g. - a .g E. [ kj ] - kj b I,n b j,n b n-I,n ( kj )(b )n-I,n (b) j.n (b) I,na , g - a 1 ... j ... n-I -a - n-I ... - j ... - I NSuj =n - 1 , ta co : [akj,g] =akj bIl,n ...bjj,n (-a)kj(-bj)j,n... (- bI) I,n NSuj <n-1 : bn-In-I,n(-akj).(-bn-dn-I,n=(-a)kj[aki,bll_tll-I,n]=(-a )ki Dodo: [ kj ] = kj b I,n b.j,n b n-2,n(- ) kj (-b ) n-2,n (-b.)j,n (-b ) I,na , g a I "'.1 ... n-2 a n-2 "'.1'" t =akjblI,n ...bjj,n (-a)kj(-bj)j,n... (- bt) I,ll V~y: [akj,g] =akjblI,n ...bjj,n(-a)kj(-bj)j,n...(- bI) I,n,V j S;n - 1 =akjbI,n b. j-I,n (-a)kj [ kj b.j,n ] (-b. )j-J,n (_b) I,n. "'.1-1 . .a,.1.' .1-1 ... I =kj bI,n b. j-I,n (- )kj (ab .)k,n(-b. )j-I,n (-b )I,na ... .I-I a .1' .I-I ... 1 = kj bI,n b. j-I,n (-a)kj(-b. )j-I,n (-b )I,n (ab.)k,na ... .1-1 . .1-1 ... I . .1 [akj, g]= akjbl,n ...( bj-2)j-2,n(-a)kj,(-bi-2)j-2,FI... (_b])I,n,(abl,n = akjbI,n(-a)kj (-bI)I,n (abj )k,n=akj (-a)ki. (abj /,n =(abj )k,n V~y H chlia (abj)k,n-:f=In Truong hqp 2 : gnl=gn2= ...=gn,n-I=1- gnn =0 Ntu g giao hoanvui ai,n, vUi i batki nhi}ho.nn : g aLn=aLng =>g ( In +a.ejn) =( In +a.ejn) g => g.aein=a.eing 0 0 . . 0 . . 0 g l.ia g2,ia 0 0 = agn,1 ag",2 agn,n (dong i) 0 g n.ia 0 0 => J gj; a = 0, V j,ti 19.. a = ag = aII nn gji= O,\ij:;ti => (gii - 1)a=0 gji = 0, \i j:;ti => gii =1 L§y i tu 1 den n -1 taco : 1 . . 0 0 .1 . 0 gl,n g2,n n-I = TI (g i,n ) in i=1 :;t In, (g khong giao hmln voi aij)g = .gn-I.n 0 . . . 1 Nen t6n t~i i < n saocho gin:;to. Suy ra g thoacaedieu ki~ncua trtiongh<;1p1 V~y H ehua IDQttransvectionsd dip khac In gtt :::I 0) (0 0) I gll .. gl,n a I = I ' a I I . I (dong i) g n.l 0) \,,0 0) "gn,t .. gn.n Ntll tUnt(liml)t i nho hdll n thod g khonggiaohoall vai ain : [ in ] ( in -1 ( ) i n ) Hg,a' =g. a'. g.-a , E [ .i,n] ( i,n -1 ) ( ) i,n (1 + ' ) ( ) i,n g,a = g. a . g . -a = n gi.a.gn . -a ( gi, g'n l~nltTQtla cQt i, dong n cuag va gol) Ta chungminh: g'n=(0 0 ... 0 1) Th~tv~y: -1 1g.g = n => r ~ ( -I ) j ~gok g k j = l~gnk(g-')kn= an j ,jsn-l ann { <g-I)nj=0 ,j:<:n-l (g-I)nn=1 => => g'n=(0 0 ...0 1) Tli d6: r gl' 1 g2:'i I (0 0 ... gJja 0 0 ... g2ja , gi a g n= a(O...Ol)= gn-I.i .gn-I,ia 0 () 0 ... () 1 0 0 1 '" g I i a ... g2ia ] 0 ... 0 1 ... 0 0 On+gia g'n)(-a)i,n= ... ... ... ... ... ... 0 0 ,.. - a I (dong i) 0 0 0 ... gn-I,ia ... 0 ... 0 0 ... g lia g 2; a I 0 0 - :.+,~i~aj Suyra : (1 + ' )( ) i,n ( . ) I,n ( ) 2,n ( + ) i,n ( ) n-l,n n gi a g n -a ::;::gli a . g2i a -a gi i .a . ... gn-I,i'a V~y [g, ai,n]E H thmldiSu ki~ntn1ongh<;1p1. SuyraH chuaillQttransvectionsoca'pkhac 1n . TruonghQpt6ngquat: Ntu tallt{Iii thod:g khollggiaohoallvo'iali, (2::;i::;ll), taco: [ Ii ] ( Ii -1 )( ) li (1 ' )( ) Ii g, a = g. a . g -a = n+gl.a.gi -a ( gl, g\ l§n h1Qtla cQt1,dong i cuag va g-I) , gl.a.g i = r gJ" g2,1 I' l~~-" a(g'il...g'in) gl.a.g'icodongcu6iclingla : (0 0 ... 0) In+ gla.g'i COdongcu6iclingla : (0 0 ... 0 Dodo: (1n+gl.a.g'i).(-a)1i codongcu6jclingla : (0 0 ... E> ~ t h [ Ii ] [ Ii -I ( ) Ii ] H(;t :=g,a =g.a.g.-a E. 1) 0 1) Ta co : hn1=hn2 =...= hn,n-l=1- hnn=0 Suy ra h thoacacdiSuki~ncuatrtionghQp2. V~y H chua illQt transvectionsoca'pkhac 1n Ngli(fC [{Ii, lltll g giao hoall vui llU;Ji aI,i , 2 .s i .s ll, taco : l,i l,i 'o.r-I' 2 3a .'g=g.a ,vl=, ,...,n. 1 0 0 1 I... .. = 0 0 (In +aeIi ).g=g. (In +a e Ii) , \j i =2,3,... , n. ae Ii .g=g .ae Ii , \j i =2,3,... , n. (C{Jti) , , 0 a 0 gll g',n 0 . . . . 0 gll gl,n = gn,l gn,n g n,l g n,n (agi1 agi2 ... ag.. ... I 11 l:. . . . . . . 0 { agii = gIla ag.. = 01] agin l ( 0 10 I _I . -I J l~ , \j i =2,3,... , n , \j j *-i { ag.. = g a1I 11 . gij = 0 ' \j i =2,3,... , n , \j j *-i Ta l(;lixettiSp 2 khaDang: (qt i) . . 0 a 0 0 . . . . 0 g J I a g 21 a g 3 I a g n 1a (CQt i) (1) 0 ) 0 I I 0 I oJ . Ntu t611t{lisf/ i =2,3, ..., n-1'thoag khonggiaohoanvai ai,I: h [ i ,I ] i,l [ ( ) i,1 -I ] H=a,g=a.g.-a .g.E I::'\~ h" ( ) il -I 1 '.Llong t 01: g . -a '.g = n- gi .a.g 'I Voi gi 1aCQti cua g,g'l 1adong1cuagol Tli (1) taco : gni=0 gt,i g2,i , gi .a.g 1= a.(g'lJ gn-I.; ° , g 12 g'ln) Suyra : gi .a.g'l COdong n la ( 0 0 In+gi .a.g'l COdong n la (0 0 h co dong n la (0 0 ... I ) V~y: h thmlcaedi~uki~ncuatru'ongh<Jp2. H chua mQttransvectionsocffpkhac In 0) I ) . 'Ngll{fCltJinill g giaohoanvf1iffl(Ji ai,l,2 ::;i ::;n-l, faco : g.ai,l =ai,l.g g(In+a.ei,l ) =(In + a.el,i)g g.a,ei,l =a.ei,l. g ° ...,..,..,...° g. :l. .. , 0 dongi gli.a o l g2i.a ..., . . . . go,.a '. '. '. '. oj = ~ ~ 0 1 al . .g ;) I .' . oj I I! dong i = Suy ra ': g12.a=g13.a=...=gl,n.a=0 g12=g13=... =gl,n=0 , (2) Ti'i (1)va(2) chota g la matr~ncheo,suyra g-l clingla ma tr~ncheo. Khi do: [g,aij]=gaij. g-l (-a )ij E H ij -1 1 'g a . g = n + gi.a.g j (gi, g'j la cQt i, dong j cua g,g-l ) g aij. g-1 = In + r oI . I ~ gOO I \I I . la (0 " I lo) , 0 ... g jj ... 0) (0 0'1 I. . . . . . . . . .. . I I° ° ... gjjag'jj ... o I =In+IO ""'" o J I l~ "',, "" 0 - ( , )ij- gii.a.gjj [ ij ] - ( , )ij ( )ii - ( , )i jg, a - gii.a.gjj -a - gij.a.g,jj - a [g,aij ] ]atransvectionsd cffp khac In thuQcH B5dS 1 da:chungminhxong. 2.2.cB6 d~2 : Cho H la nh6mconcuaGLiA) vachullnhod!xiiEiA) , n ;: 3 . Ne'u H khongla tamcua GLiA) the H chliamilt transvection.'Ie!c{{p khdcIn Chungminh: Truonghqp1: H chuag=(gjj) thO<l gn,I:;: 0 va t6nt~jk -::/= 1saG cho g khonggiaohoanvai 1k,1E En(A) . Khi do H va g thoacacdi€u ki~ncuab6dS 1. V~y H chuaillQttran~vectionsoca"pkhac In. TruonghQp2 : H chuah =(hij) thoa hn2 -::/=0 va t6nt~i YEA thoa, hnl +hn2'Y =0 £>~tg:=(gjj):=(_y)2,I.h.y2.1,taco gEH. ( I ... 0 (h" h" ... h...J r1 ... 01g = l ~.~ .~. ::: .~. l ~~.t ~~~ ::: ~~~ J l '~' ,~, ::: .~, j0 ... ... 1 hnt hn2' ... hnn 0... ... 1 Suyfa : gn1=hnl +hn2 Y=0 gn2 =hn2-::/=0 Ta chungminh gkhonggiaohoanvai 12,1: S 121 /" h;:o t ? t ' d' " 1 l'uy fa : g. cop an U ~1ong n, cQt a: gnJ+gn2 hIt h'2 '" hl.n 1 (1 ... 01 -yh'l +h21 -yhl2 + h22 I l: 1 01... -Yh,..+h,"j ,.. J = I ... ... ... ... ... hill hn2" " hnn ... ... glt gIn I e ,0] 121 I' . I l 1 J g. = gill goo) .l r:;. 0 121.g= 0 . . 1 gll . . ginI . I gnl . : gJ N" 121 " h;: t? t . d' " 1 1,en. .gcop an ti' c;t!ong n, cQt a: gn!. D6ngthai: gn2*-0 =>gol+go2*- gol Suy ra : g 121*- 121g . V~y: g khong giao hmln vai 121. Suy ra H va g thoacac diSu kit%nct1atrtiangh<;1p1 H chuamQttransvectionsd ca'pkhac In. Truonghqp3: H chuag=(gij)~CeDeGLn(A)) vagn,l=0 Ne"ut6nt~i cacsC;k,l khacnhausaocho g khonggiaohoanvai 1k,tE En(A) thl H. va g thoacac diSu kit%ncua trtiangh<;1p1 Den H chuamQttransvectionsdca'pkhac In. Ngti<;1cl~i,ne"ug giaohoanvai l k,lg. = g.( 1+ekI) = l kl /. . k I /, , VOl mQI *-, ta CO: l k,l .g ( 1+ekl ).g g.ek1 = ekl'.g Thlfchit%nttidngtlfph~nchungminhcl'Iamt%nhdS 6 , taco g la matr~nvo htiang, dodo : g = gll.ln , gll E A* g ~CeDeGLn(A)) =>:3h E GLo(A): g.h*-h.g =>gll.h *- h.gll =>:3YEA: gll.Y*-y.gll Khi do: [ g, /2] =g. y12g-\_y)12E H [ 12 ] ( 1 ) 12 ( -1 1 . 12g,Y = gll. n Y gll. n) (-y ) 12 -1 ( 12 = gll Y gll -y ) = gl\ g~IIIY0 .., ~ j l 0 ,.. ..' gll l (g~11-g~:y 0 '" -I , gll l~ 0 -1 glJ 1 -y+gl1ygl~1 0..,'0 0 1= 0 1 ( -1 ) 12= -y +gll Y gll . -1 Ta co: y.gll *-gll,Y => Y *- gll.Y gll =>- y +gll Y gl1-1*-0 [ 12 ] ( -1 12 g, Y = -y +gll Y gl1 ) *- In V~Y H chua [g, y12] la mQttransvectionsd ca'pkhac In ' Truong hqp 4 :H chua h =(hij)~Cen(GLn(A)) va h22E GL](A) Ntu (h-l),rl =0: Ta co h-1E H va h-1~ Cen( GLn(A) ), (h-I )n,1= 0 nen H thml cac diSu ki~n Cllatnfdngh<;1p3, V~y H ch((a mQttransvectionsd ca'pkhac In' va h-1 Ntu ( h-l ) III :;z!:0 : E>~t: g=h-1. 11,2.h (-1)1.2 Ta co : 11,2.h (_1)1.2E H =>g E H g =( (1n+(h-1)1.1.h2).(-1 )1,2 Voi (h-1)1la cQt1 cuah-I h2 ladong2 cuah (h-l)lI (h~1)21 g=( In + (h21 h22 ... h2n) ). (-1)2,1 (h-I) nI go t=(h-t)o 1 .h2t - (h-1)nt h22 gn2=(h-t )n1h22 X6t hai truong h<;1p: Truong h<;1pgn2=0 : (h-I)n 1h22=0 => (h-t)n I. h22 .(h22)"1 =0 => (h-I)n 1=0 (tnli gia thie't (h-I )n,1=f::-0 ) Truong h<;1pgn2 =f::-0: Voi YEA, ta co ,: go 1+ gn 2'Y =(h-I )n 1.h2 1 - (h-I)n I .h2 2 +(h-I )n I h2 2Y ChQny =h22-1 ( h22 - h21 ), tasuyfa : gn,1+gn,2'Y =(h-I )n 1.h21 - (h-I )n 1h22+ (h-l )n t h22 . h22-1(h22- h21) =(h-l)n 1.h21- (h-I)n 1h22 + (h-I)11 1h22 - (h-I )111. h21 =0 Nen H va g thoacaediSuki~ncuatruongh<;1p2. Truonghqp5: H chuah=(hij) ~Cen( GLn(A)) va hn2~0 . D~tf: = (~1 10) Ta co: (~ ~) (~1 01) (~ ~) = (~1 \) (~ IJ ~ (:1 10J Suyra : f= (~ \) (~1 OJ (~ \) D~t: (~ 1 ) ( 1 0 ) ... 1 ' -1 1 Hin It(9tla f] , f 2 Ta co: f =fl . f 2 . fl E E2 (A) D~t f' =G ~J Taco: =11,2(-1)2,1 11,2E En(A) D~t: g:= f' .h.(f'rl , taco g E H. Ne'ug E CeDeGLn(A)) thl g.f' =f '.g f '.h=f 'g Den h =g , (mau thu~nvoi h ~CeDeGLIl(A) )) V~y: g ~CeDeGLn(A) ) D6ngthai: ( 0) ( 0 Htl 0)= (flf2 O) (fl J1n-2 0 In-2 0 111-2 0 111-2 0 - (flf,f, 0) - '0 1 f11-2 Vy: f' =( 0 )(f2 lJ ( 0)In-2 0 1n-2 f' = 1 ~ (f'r1 = 0 -1 . . o l1 0 . 1 -I 0 .. 1) 0 1 . . 0 -1 0 0 - - . 1 0 1 . . 0 -1 0 (0 -1 . . 0 I 1 0 g = 1 . I .h. 1 l~ . . . 1 0 . - 1 ( \ (0 -1 . . 0\ I' . . . . .. 'I 0 I I. . . . . .. I . I = I. . . . . .. , .~ 1 '1 l~,: 'h,,', '..".. 'hJ l~ , , : ;) ( tachiquailt~mdSndongcu6iclIng) Dodo: gnI =hn,2=0 Suy fa H va g thmicaediSu kit$ncua tfu'ongh<;1p3 . Truong hQpt6ngquat: H *-Cen(GLn(A))~:3 h=(hjj)EH: h ~Cen(GLn(A)) A/Rad(A)lavanhchlnhquivonNeumannDen: :3X E A/Rad(A): hn2 =hn2' ~ .hn2 Suy fa : z:= hn2.x.hn2- hn2 E Rad(A) Bi;}t p := 1 - hn2 X . ~ Ntu p. hill =0 thl (1 - hn2.X ).hn I =0 Suy fa hn1- hn2.(x.hn1)=0 0 NSu hn2 =0 :H vah thoacaediSukit$ncuatru'ongh<;1p5. 51 0 Ne'uhn2"* 0 :d~ty =x~hn1=>hn 1-hn2 Y=O. H va h thai!cacdi~uki~ncuatnI'Cingh<jp2. Ntu p. h"l ;r:O:taco p"*O. E> ~ t - ( ) .- h-I I,n hC;l g- gij.- .p. Ne'u g E Cell GLn(A) thl g.h=h.g D d~ h In h . in0 O:g. =p'. ,suyra:g=p' Khi do: pi,n E Cell GLn(A) nen pI,n la matr~nvo hadng,di~u naymallthu~nvdip "*0 . V~y, g ~CenGLn(A). . Ta co: g = In+(h-1)IP hn Vdi (h-t)I la cQt 1 cua h-I , hn .la dong n cua h. g22= 1 + (h-1h1.P.hn2 = 1 + (h-1h 1( 1- hn2.x) hn2 = 1 - (h-1h1 (hn2.x.hn2-hn2) = 1 - (h-1h 1.z Vdi Z E Rad(A) => (h-1h 1.ZE Rad(A) => g22 E GL1(A). H va g thoacacdi~uki~ncuatraCinghqp4. B6d~2 dachungminhxong. 2.2.dB6 d~3: Cho H la nhomcancila GL,lA) vachwinhodbiJiE,lA) , n 2 3 . Neu H chaa xU, trongdo x E A, 1s i ;r:j s nva B la ideal2 phia cila A sinhbiJi x thi: H:::J E,lA,B). Chung luinh : Xet tEA, 1~k ;r:I sn, taco : [x ii, t kl] =xii. t kl (- x)ii (- t kl) E H [tkl,xij]=tkIXii(-t)kl .(-X)iiE H Ta chungminh XkI E H , vdi k,l ba'tkl thai! Ta cocactraCingh<jpsail: *k;r:i,j: -z ;r:i,j: l~k;r:t~n -l=i: XkI =(1.x / I =[ 1k i, X it ] X if =( x.I ) i I =[ X i.i, 1i I] E H ::::> Xk I E H XkI =Xki =(x.Oki=[ Xk.i,1j i ] k' k' k'" kl X .f =(1.x)] =[I I, K I]] E H ::::>x E H kl k' k' k'" X =X ] =(1.x) .f =[I I, X I]] E H I ;r:i. Xkl =Xii =(x.I)it =[x ii, Iii] E H Xk I =xii E H -Z=j: * k =i: taco -l;r:j: -l=j: 52 * k =.i" taco l;r .i. . . l;r i .. Xkl =Xj l =(1.x)j l = [ 11i, X it ] X it = (x.1 ) it = [ x i.i, 111] E H ~ Xk I E H. . l = i .. Xk I =Xj i=(1.x)J i =[ 11P,Xpi] ,( chQn p;r i ,j ) X pi = (X.1)pi = [xpJ, 1Ji] X pj = (1.x)p1 = [ 1pi, X i1] E H ~ X piE H ~ XkI E H V~y, trong mQi tru'ongh<;1p,ta CO XkI E H . Xet phfintusinhbfftki cuaEn(A,B) codCJ.ng: y I k II (-y) I k , YEA, Z E B, 1s k ;r l S n B =xA =>Z =xt , tEA. Zkl = (xt)kl = [Xkp, tPI] = XkP. tPI (-X)kp(-t )pl E H, (chQn p ;;tk,l) Soy fa : y I k II (-y) I k E H . V~y: En(A,B) c H. B6 de 3 dachungminhxong. 2.2.e Bjnh Ii 2: Giil sa n;:::3 va AIRad(A) la vanhchinhqui van Neumann.Khid6,mQinh6mcanH cuaGLiA) chwinhodbcJiEiA) d~u la nh6mconnlllc B, nghfala.. EiA,B) c H c G,lA,B),V(ji B lelideal cuaA. Chung minh : GQi H lanhomcancua GLn(A) chugnboabdiEo(A). Voi phfintIt X bfftki thuQCA, gQi Bxla idealcuaA sinhbdi x, taco Bx=xA =Ax. B~t B = {X E A / Eo(A,Bx)c H }, tasethvchi~ncacbu'ocsan: a) ChungmillhB faideal cua A: 0,,2=1 E H =>Eo(A,Bo) c H (bB de 3) .'" V~y: 0 E B =>B;;t 0 GQi x,y la2 phfintubfftki thuQcB, tachungminh : X - Y E B: Ta co Eo(A,Bx) c H va Eo(A,By) c H , cfin chung minh Eo(A,Bx-y)c H: Phfintusinhbfftkl ctla Eo(A,Bx_y)co dCJ.ng: h =tji (( x-y) Z)ij (-t )ji ,voi t, z E' A, i;;tj =tji (xz-yz )ij (-t)ji =~i(XZ)ij . (_YZ)ij(-t)ji =tji (XZ)ij (-t )ji .tji (-yzij (_t)ji xz E ax=>tji (XZ)ij (-t)ji E Eo(A,Bx) c H 53 -yz E By ~ ~i(_yz)ij(-ti E En(A,By) C: H Sui fa: h E H V~y : En(A,Bx-y)C H ~ x - Y E B Cu6i cling ta chungminh \/ x E B, \/y E A, xy E B vayx E B Ta co En(A,Bx) c H, din chung minh En(A,Bxy) c H va En(A,Byx)c H. Phfin tasinh ba'"tkl cua En(A,Bxy) co d?ng: h =tji «xY)Z)ij(-t)ji, voi t,ZE A,i-:f:.j =tji (X(YZ»ij(-t)ji =tji [ Xik, (YZ)kj](-t )ji , (ChQn k ,-:f:.i, j ) =tjixik (YZ)kj(-X)ik (_YZ)kj(-t)ji =tiixik (-ti. tji (YZ)kj(-X)ik (_YZ)kj(-t)ji Voi : ~iXik(-t i E En(A,Bx)c H (YZ)kj(_X)i\ _YZ)kjE En(A,Bx)c H~ tji.(YZ)kj(-x)ik(_YZ)kj.(-t ).iiE H Suy fa: h E H En(A,Bxy) C H ChungminhEn(A,Byx)c H hoantoaDtu'dngtl!. V~y,B la ideal2phiacuaA. b) Chu1lg11li1lhEn(A,B) C H : Phfintusinhba'"tkl cua En(A,B)cod?ng: h =yjiXi.i(_y)ji,voi XE B,YE A,i-:f:.j Ta co : x E B Den En(A,Bx)C H D6ngthai: x E Bx~ yjixij(_y)jiE En(A,Bx)c H ... ~hEH V~y: En(A,B)c H c) Chu1lgmi1lhH c GII(A,B): 54 c.l. TntochSt,ta co A 1avanhchlnhquiVallNeumann.nen AIB Ia . vanhchfIlhquivonNeumann.Do do (AIB)/ Rad(A/B) clingIa vanh chinhquivanNeumann. c.2. GQi H'=q>(H), q>(En(A)) =En(A/B). Ta chungminh H' du'Qc chuffnboabdi En(AIB): La"yba"tkl h' E H' , (x)ij E En( AIB ) , ( i:f=j), ta chungminh : (x)ij h'(-x)q E H'. Ta co : h' =q>(h), h E H. (X)ij h' (-X)ij =q>(Xij ).q>(h ).q>«-X)ij) =q> ( (X)ij . h .(-X)ij) h E H ~ (X)ij. h .(-X)ij E H Do do (H) (X)ij .h' (-X)ij E H' V~yH' du'Qchuffnboabdl En(AIB). c.3.Chungminh H' c CenGLn(AIB) : Ta changminhbangphilochung: giastYH' r:r.Cell GLn(AIB). Khi do, AIB va H' thoamancacdiSuki~ncuab6dS 2 DenH' chuamQttransvectionsdca"p(X,)ij khac'matr~nddnvi cua GLn(AIB). Do do t6nt(;liph§nttY x ~B d~: r - 1 0 0 1 (X,)ij = l> 0\ X "' J '... ~. . 1 ( i, j ) Dodo : (x,)ij =q>(h)voi: 55 bl h=. . 0 °1 0 I (Dong i ) bJ bi ... X ... t CQtj Caethanhph~nbi eua h thml: bi -1 E B , V i = 1,..., n f)~t g =(-x)ij.h,taeo : r~1 g = (-xij I. l~ (1 I. - I. -, l~ bi ... X 01 (11 .1 I. I ... -x ... O J I. t t l . °1 °, 1 a (i,i) (i,j) 56 01 . I ... 0 I bn) (i,i) 0) I q ... x ... ~ I bJt I f (i,j) rbl ' I : = I l~ bi ... x-xb.J t t I' r 01 I ... ~ I bJ (i,i) (i,j ) (bl I . I = I. I I . l~ °l b; on x(1- bj) 0 I . I bJ x( 1 - bj ) E B => g E Gn(A,B). D6ngthai: xij.g= h E H X6t [xi.ig,J.ik]=xi.ig.1jkg-1(-x)i.i(-1).ik, (chQn k :;t:i,j) Xii g E H=>g -1(-x)ijE H:::::>l.ikg -1(-X)ij(_l)jk E H =>[xi.ig,ljk]E H Ta clingco : [Xi.ig, Jjk] =Xi.ig.1.ikg-1(-x)i.i(_1)jk. =xij Ijk .(-l).ik g l.ik g -1.(-X)i.i (-l).ik =xij Ijk [(_1).ik,g] .(-X)ij (_l).ik 57 =Xij Ijk (-X)ij (-l)jk. tjk xU [(-l)jk,g] (-X)ij (-l)jk =[Xij ,ljk]. Ijk xij [(_l)jk,g] (-X)ij (-l)jk =Xik , Ijk xij [(_1)jk,g ] (-X)ij (-1)j k g E Gn(A,B) =>[(-l)jk ,g ] E [En(A) , Gn(A,B)] c En(A,B) ,(dinh Ii l.b) Ta suyra : xij[(-l)jk,g](-x)ijE En(A,B) ]jk .xij [(_1)jk, g] (-X)ij (_1)jk E En(A,B) [Xijg, Ijk] E XikEn(A,B)c XikH [Xijg, ljk] =Xik.t , t E H Xik = [ xij g , Ij k] . t -1E H Do b6d~ 3, taco : En(A,Bx) c H => X E B , di~unay mall thua"nvoi X ~ B . V~y H' c CenGI.iA/B) Suyra H c Gn(A,B) Do do E.iA,B) c H c Gn(A,B) Dinh Ii 2 dadlf<;Jcchungminh. D~cbi<;t,ne"uA Ia vanhchlnhqui vanNeumannva n;?:3 , til dinh 11I.d, En(B)=En(A,B) nenco th~suyra : 2.2.fHf:qua: Ne"uA IavanhchinhquivanNeumannva n;?:3,taco H la nhomcancuaGLn(A) chua"nboabdi E,iA) khivachikhi : En(B)c H c Gn(A,B) 58 Ke'tlu(ln: De ma ta cac nhomcan cua nhom'tuy€n Hnht6ngqmH GLn(A) chu§nho~bdi En(A), tad~tdtiQcacke"tquasau: * Ne"un vah~n: H la nhomcan cua GL(A) chuffnboabdi E(A) khivachIkhi t6nt~iduynha'tideal B cua A saocho: E(B) c H c GL(B) Khi do, H cungla nhomcanchu§nt~ccuaGL(A) va k€t qua naydungchovanhA ba'tk1. . * Ne"un hullh~nva n ~3 , d6ngthai A/Rad(A) la vanh chinhqui vonNeumann,taco H la nhomcancuaGLn(A)chuffn boa bdi En(A) khivachIkhi H la nhomcanmilc B, nghlaIa t6nt~iduynha'tidealB cua A saocho: En(A,B) c H c Gn(A,B). * N€u n hull h~n va n,~ 3, A la vanhchinhqui van Neumann,H la nhomcancuaGLn(A)chu~nboa bdi En(A) khi va chI khi t6nt~iduynha'tideal B cua A saocho: En(B) c H c Gn(A,B). 59

Các file đính kèm theo tài liệu này:

  • pdf4.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf2_2.pdf
  • pdf3.pdf
  • pdf5.pdf
Tài liệu liên quan