PHÁT TRIỂN MỘT SỐ MÔ HÌNH PHÂN TÍCH DỮ LIỆU ẢNH VÀ ỨNG DỤNG
Nguyễn Đình Thúc
Trang nhan đề
Mục lục
Mở đầu
Chương_1: Tiếp cận máy học trong phân tích dữ liệu.
Chương_2: Hồi qui di truyền.
Chương_3: Phân tích dữ liệu ảnh bởi phép biến đổi Random.
Chương_4: Mô hình NNAG và ứng dụng trong phân tích dữ liệu
Chương_5: Áp dụng hồi qui di truyền trong phân tích dữ liệu và dự báo
Chương_6: Mô phỏng một số ứng dụng của phép cắt lớp.
Kết luận
Tài liệu tham khảo
Phụ lục
25 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1636 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận án Phát triển một số mô hình phân tích dữ liệu ảnh và ứng dụng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Chl1Ohg 1
TIEP CAN MAY ROC. .
TRaNG PRAN TICR DU' LIEU.
P hall tlchdir li~ugiupchocacnhanghienCUllphantlchvaly giaicac
k~tquanghienCUllthvc nghi~m;trenca s&do giupdinhhuangnghien
CUllvadv tlnh- dVbaacacva:nd~khoahQcmQtcachdungdilnvahqply
nha:t.
ChuangnaytdnhbaymQts5cachti~pc~ncuamayhQctrongphantlch
dir li~unhum<;1ngo-ran,logicmavathu~tgiaidi truy~n.Quanghien
CUllcacmahlnhdo, chungtai d~xua:tmQtmahlnhphant{chdir li~u
NNGA. Ma hlnhd~xua:tla mQtsv k~thqpgiirathu~tgiaidi truy~nva
m<;1ngo-ran.Thvc nghi~mchungto r~ngmahlnhd~xua:tcoth~duqc
dungra:thi~uquakhixaydvngcacmahlnhdv baatir t~pthvc nghi~m.
NQidungch{nhcuachU'angtdnhbay:
(1.1)Xay dvngmahlnhchodirli~u:MQtbaitoanngU'qc.
(1.2)M<;1ngIan truy~ngiai bai toanngU'qc.
(1.3)Xa:pxi ma.
(1.4)Thu~tgiaidi truy~ngiaibaitoanxacdinhthallis5.
(1.5)NNGA - mQtm<;1ngIantruy~nvai thu~tgiaihQcdi truy~n.
6
1.1 Xay dl,tngma hlnh cho dit li~u: MQt bai toaD ngl1Q'c
Phantichdif 1i~unh~mmvcdichxacdinhm<)tmahlnhtoanhQcphil
hQ'pvai t~pdif 1i~uth\l'cnghi~m- t~pm~u.Vi~cxacdinhdU'Q'cmahlnh
nhU'th~1am<)tbaitoanquailtrQngvac~nthi~trongnhieu1anhV\l'Ckhoa
hQcclingnhU'cangngh~.N~um<)tmahlnhdU'Q'cxayd\l'ngphilhQ'pt6t
vai t~pm~u;thl khangnhifngno giupcacnhanghienCUllco m<)tdinh
hU'angt6t chonghienCUll;macongiupxacdinhcacd\l'tlnh- d\l'baave
cacv~ndekhoahQcm<)tcachdungdiinvahQ'p1ynh~t.
Th\l'Cch~t,vi~cxacdinhdU'Q'cm<)tmahlnhtoanhQcphilhQ'pvai t~p
m~uchotrU'ac1am<)tbaitoanngU'Q'c.Theodo,phantlchdif 1i~ucoth~
dU'Q'cdinhnghianhU'sail:
Phan t{chdii lifu la m(jtph'liO'ngphaptoan h9C)tren cO'sa tiJp cac
dii lifU quansat a'liQ'c)xay dvng mo hinh bilu diln moi quanhf nhan
quagiiia cacbitn ph?!thu(jcveLD cacbitn a(jcliJp.
M<)tcachhlnhthuc,baitoancoth~dU'Q'cmata nhU'sail:
Bai toaD cd ban.
Cho t~pm~u:
n ={(Xi,1i) saDchoXi E IRn;1i E IRm;i =1,N}
Vai mQiE dU'O'ngcho trU'ac,tlm ma hlnh G : IRn ---7 IRmsaGcho
Vi=1,N , taco
IIG(Xi)- 1i11< E
7
Co nhi~uphU'O'ngphap co th~dU'Q'cS11dvng d~giai bai toan cO'ban
tren. M(>ttrong nhli'ngphU'O'ngphap truy~nthongdU'Q'cac nha nghien
cuu S11dvng la phU'O'ngphap hbi qui tuy~ntlnh. Rbi qui tuy~nt{nhra:t
phu hQ'pcho cac t~pm~uma trong do, cac bi~nphv thu(>cva cac bi~n
...
dtquailh~nhanquatuy~ntlnh. Trongtnl'C!nghQ'pmaquail
h~do khBngtuy~nt{nh,t~pm~uphaidU'Q'ctuy~nt{nhboab~ngm(>ts6
phepbi~nd6i;vamBhlnhxaydvngdU'Q'cla mBhlnhxacdinhtrencac
bi~n'd<:tid ~n'chocacbi~ntrongt~pm~u[42].Di~ukhokhanch{nhla
chU'acom(>tnghiencuud~yduhU'angd~ncachthucchQncacphepbi~n
d6id~tuy~ntlnhboam(>tt~pm~ukhBngtuy~ntlnh. Cacnhaphantkh
phaith11(thucBng)m<)ts6phepbi~nd6ichod~nkhi d<:ttdU'Q'cmBhlnh
phuhQ'pvai t~pm~u.Ra:tcoth~,cacnhaphantlchkhBngth~kiennh~n
chod~nkhi dU'Q'cmBhlnhthkh hQ'p!
M<)thU'angti~pc~nkhaccuatri tu~nhant<:t°d~giaibaitoancO'ban
trenla hU'angti~pc~ndungcBngngh~mayhQctrongphantkh dli'li~u.
CacphU'O'ngphapnaychophepxaydvngmBhlnhtoanhQctir t~pm~u
dccuacacbi~nphvthu<)cvaobi~nd<)cl~pla tuy~n
HnhhaykhBngtuy~ntlnh.Theocaccachti~pc~nnay,lC!igiai(mBhlnh)
dU'Q'chlnhthanhtrongti~ntdnh hQc.
Hi~nba phU'O'ngphapsail la cacphU'O'ngphapling dvngthanhcBng
cachti~pc~nmayhQctrongphantlchdli'li~u:
. MtphU'O'ngphapdU'Q'cphat tri~ntir nhli'ngnam 80va
ap dvng ra:tthanhcBngtrong nhi~ubai toan.
. Xa:pxi mC!.M(>tcachti~pc~ncuacBngngh~mC!vamayhQctrongxa:p
Xl hamlien tvc.
. Thu~tgiaidi truy~n.M<)tcachti~pc~nmBphongdi truy~ntv nhien
ra:tthanhcBngtrongcacbaitoantlmki~m.
8
1.2M<;tngIan truy~nva bai toan ngU'9'c
1.2.1M6 hlnh ffi<;tngIan truy~n tong quat
a- ~
a 1('£i=1aiWij - 8j)
an -
Hlnh 1.1:Nd-ron j cualap thu k :2'2vai ngl1Cing(}j. Gia trj cuanut j dl1qcxacdjnh tu cacgia trj ai, i = r;n
cua cacnd-ronthuQClap thu k - 1va cac tr.;>ngWij cua caccling tl1dngung. f la hamtruy~n.
M<;1ngIantruy~nt6ngquat,ky hi~uNN, la dbthtcotrQnggbmK 16p
tachbi~t.M8i nutj, dU'Q'cgQila mQtnO'-ron,thuQc16pthuk,2 <k<K,
comQtngU'&ng8j E JR va dU'Q'clien k~ttn,rcti~pv6i mQinut i thuQc16p
thu (k - 1);vam8icling(ij) naydU'Q'cg~nmQtgiatrt trQngs6WijE JR.
Hlnh1.1minhho2.
Khi thi hanh,dii'li~u,la mQtvec-tO'n chi~uX = (Xl?...,Xi, ...,Xn)E JRn,
dU'Q'cnh~ptn,rcti~pvao16pthu nh:1t(l6pnh~p),khi :1y,giatrt cuanO'-ron
i thuQc16pnh~psenh~ngia trt Xi, vaxU:1tra (j 16pK (l6pxu:1t).Gia trt
cuanO'-ronthu j thuQc16pk >2dU'Q'cxacdtnhtheocongthuc sail:
Yj =1j(8j) (1.1)
nk-l
5j =~aiwij +8j
z
(1.2)
trongdo,
- ai la giatrt cuanO'-roni thuQc16p(k - 1).
- Wijla giatIt trQngs6cuacling(ij).
- 8j la giatrt ngU'&ngcuanO'-ronj.
- nk-l la s6nO'-rontrong16p(k - 1).
- Va 1j la hamtruy~ncuanut j.
Hamtruy~nla hamcodtnhnghianhU'sail:
9
Dinh nghia1.1:Hamtruy~nJ laanhx~J : IR --7 IR thoa:
(1) J lahamlientVc.
(2) J la hambi ch~n:
Vx E 1R,3M E IR : If(x)1<M. (1.3)
(3) J la hamdO'ndi~utang:
Vx,yE lR,x <Y=} J(x) < J(y). (1.4)
MQihamthoadinhnghia1.1d~ucoth~dU'Q'cchQnlamhamtruy~ncho
m~ngIantruy~n.Tuy nhien,trongth\l'ct~caid~t,cacham8authU'Cing
dU'Q'C811dvng ph6 bi~n[1]:
(1)Hamlogistic:
1
J(x) =g(x)=-1+e-X
chogiatri thuQc]0,1]la hamthU'CingdU'Q'cdungdotlnhdO'ngiancuad~o
hambacnhat:
(1.5)
g'(x)=g(x)(1- g(x)). (1.6)
(2)Hamtanh:
eX- e-X
J(x) - tanh(x) =( 2ex +e-x)
clingthU'CingdU'Q'c811dvngkhi c~ngia tri thuQc]- 1,1[. Va d~ohamb~c
nhatcod~ng:
(1.7)
4
(tanh(x))'=(sech(x))2=(ex+e-x)2'
(1.8)
(3)Hamsgn:
{
1, x >0
sgn(x)= 0, x<O (1.9)
dU'Q'C811dvngkhi c~ngiatri chocacnO'-rontronglapxuat (lapK) cua
m~ngIantruy~ngiatri nhiphan.
10
Nhu v~y,m;;tngIan truy~nco th~dugcxemnhu m(>tanhX;;tNN :
IRn -7 IRm.Va m;;tngN N coth~dugcdungxaydvngcacmohlnhcho-
dif li~utIeDcosadinhly sau:
Dinh If 1.1 (Dinh If Hornik-White [16]):
M(>tm;;tngIan truy~nNN : IRn -7 IRmv6iso16p~nthlchhgp,coth~
xa:pXl d~um(>thamlient\lCba:tky f : D c IRn -7 IRmtIeDm(>tmi~n
com-p~cD.
M(>tva:nd~d~tra la lamthenaoxacdinhgiatri cactrQngsoWi,jcho
caccling(ij) vacacngu&ngBj cuaDO-Ionj.
D~tWOj=Bjvaao=1,congthuc(1.2)dugcvietl;;ti:
nk-l
S. =L aiWijJ . 02= (1.10)
thl baitOaDcuata tra thanhbaitoaDxacdinhcacgiatri Wij tuongung.
Ta gQichungla xacdinhcacgiatri trQngsochom(>tca:utrucm9>ngcho
tru6c.
1.2.2Qui tcdelta
Hi~nconhi~uphuongphapchophepxacdinhtrQngsochom(>tm;;tng
Iantruy~n.Parker(1985)[28],thu(>ctruCJngd;;tihQcCambridge,d~xua:t
thu~tgiaihQccotenlearning-logic.Le CUD(1985)[39],m(>ttacgianguCJi
Phap,clingd~xua:tm(>tsodbhQctuongtV. NhomnghienCUllxUl1phan
b6/songsongcuatruCJngd;;tihQcCaliforniadu6isvlanhd;;tocuaDavidE.
RumelhartvaJamesL. McClelland(1986)[31],[32]d~xua:thu~tgiaihQc
tantruytn nguQ'cltJi. Nhln chungcacphuongphapnayd~uxaydvng
tIeDcosaphuongphapgradientgiam,m(>tphuongphapd;;tngleaa6iv6i
thongtin trg giupla d;;tohamb~cnha:t.VI the,cacqui t~cdo dugcgQi
chungla quitdc delta.Quit~cdeltacoth~dugctrlnhbaynhusail:
Chot~pm~un ={(Xi,}i);Xi E IRn;}iE IRm;i= 1,N}
D~t
m
Ep =2;(Ypj - NN(Xp)j)2
j=l
1a16icuam~ngNN sov<1im~u(Xp,Yp)E D.
Va,
(1.11)
N
E = L Ep
p=l
(1.12)
1at6ng16icuam~ngN N.
Mv.cd{Chcuata 1axac dinh cactrQngs6w saochodi~uki~n:
E <EO, (1.13)
duQ'cthoa;V<1iEO1amQth~ngdU'O'ngba:tky chotrU'<1c.
Va qui t~cdeltadU'Q'ctom t~tnhU'sau.
Qui tdehgedeltala quitdelq.pr1ieuehinhcaetr9ngs6/w ehor1tnkhi
dieuki~n(1.13)duQ'ethod.Tr;tim6i budelq.p,th1/ehi~n:
(1) Vdi m6i mau(Xp,Yp),xaer1inhZp=N N(Xp) theocaee6ngthue
(1.1)-(1.2)va l6i Ep theo(1.11).
(2) T{nhtdngl6i E theoe6ngthue(1.12).
(3) Sau m6i bude lq.p,tung tr9ngs6/w r1uQ'eg,pnhg,tnhu sau:
w(t)t- w(t- 1)+C(t); (1.14)
trongdo,
C(t)=-ED(t); E E (0,1];
N
(
8E
)
D(t)=L
p=l 8w(t) p
(1.15)
(1.16)
E trong c6ngthuc (1.15)dU'Q'cgQi1ah~s6 hQc. T6c dQ hQi tv. cua
thu~1tgiai phv.thuQcnhi~uvao gia tri E dU'Q'chQn. N~uE dU'Q'chQn
12
kh6ngthichhQ'pseanhhl10'ngd~ntocdQhQitv cuathu~tgiai. Ta hlnh
dungm~tl8inhl1lamQthamE+w),thl hlnh1.2minhhoq.quatdnhgiam
l8i khi cacE quabe ho~cqual6n. D~chQnmQtgia tri thichhQ'pnha:t
choE,cacphantlchvienthl1CJngsuphl1O'ngphapthu-va-saib~ngcachcho
mq.nghQcnhieul~nv6icach~sohQckhacnhauvachQnh~sohQctotnha:t.
c. c.
a w w
Hlnh 1.2: Gia tri cuac:anh ht1dngMn t6c dhitlf CURthu{lttoan, (a) c:quanho, bi~nthien tr<;mgs6nho,
m-nglau d-tMn c,!c ti~u ham 16i, (b) c:qua Ian, bi~nthien tritlf ciao dnglen xu6ng
quanh C,!C ti~u ham 16;,
Nam1988,RobertJacobsvacQngs1,1'cua6ngdexua:tqui uk caiti~n
tirquit~cdeltavagQila quit~cdelta-baT-delta,congQila quit~chQcv6i
h~sohQcthichnghi[18].Theoquit~cnay,m8itrQngsodl1Q'Cg~nv6imQt
h~sohQcE(w) rieng.Trongquatdnh c~pnh~ttrQng,n~uh116ngiam
l8iclingbellv6ih116nggiaml8i0'(cac)b116ctr116c,thl E tangthemmQt
ll1Q'ngK > 0; ngl1Q'clq.i,n~uhaih116ngnaykhacben,E sedl1Q'Cnhanv6i
ffiQth~so cpE (0,1].
Trong qui t~cdelta-bar-delta, h116ngdl1Q'Cxac dinh theo da:ucua D(t)
theo c6ng thuc sau:
g(t+1)=Bg(t)+(1- B)D(t); (1.17)
13
BE (0,1].
Va h~so hQedU',exa dinh nhU'sail:
c(t)=
{
c(t - 1)+~ n~u D (t)g(t) >0
c(t- 1)x cp n~u D(t)g(t) <O.
LU'u'1ding, chi coqui t~ehQedelta121,cochungminh eh~tehetoan
v~tlnhhQitv d~nqre ti~uevebQ[35].Khi e~pnh~tbQtrQng,m6i tI
sodU',ee~pnh~ttheosaisodU',etlnh trentoanbQt~pmj,u. Qui t~e
delta-bar-deltakh6ngthirahU'&ngchungminhnay. Tuy nhien,trongt
t~eai dM, qui t~eh~so thich nghi hQitv rat nhanh hO'nso v6i qui
deltava clingrat dangtin. M~tkhae,qui t~eh~so thiehnghigiupn!
dungm<;1ngIan truy~nkh6ngphai boi roi khi phaj quy~tdinh ehQnh
hQenaG. M~edu qui t~eh~so thiehnghi co phv thuQeVaGba tham
(),cp,~nhU'ngno kh6ngnh<;1yearnnhi~uv6i caegia tri nay. ThU'c)'ngeh
dU',eehQnnhU'sail [35]:
(1
~=0.1; cp=0.5; B=0.7.
Va hi~nnay,thu~tngi1qui t~edeltacling dU',ehi~u121,qui t~ehi
thiehnghi.
MQt van d~rat quail trQngma h~uh~tcaenha nghienCUll1'1thl
ffi<;1ngIan truy~ntranh d~e~ptf1!eti~p121,vand~v~s6'lop an va s6'
trongm6i lop an. M~edu dinh 1'1Hornik-WhiteclingnhU'h~uh~tea
thuy~txap xi ffi<;1ngO'-ronchungto r~ngmQtm<;1ngN N : IRn --7
v6isonut~nthichh,pcoth~xapxi d~ubatky hamlientve f : 1
IRn--7 IRmtren mQtmi~ncom-pacD, nhU'ngkh6ngco dinh1'1naGeb
dU',ephaidungbaanhieunut ~nevth~.Sonut ~nthU'CingdU',eehQn
thuQekinh nghi~mngU'CiiS11dvngm<;1ng.N~usonut ~nit, ffi<;1nghQitv
eh~mva qre ti~uevebQd,ethU'Cingrat xa qrc ti~umongmuon;
s6nut ~nnhi~u,eveti~uevebQthU'Cing~nv6i eveti~utoan evenh
ffi<;1ngl<;1ikh6ngco kha nangt6ng quat boa eao;nghia la, m<;1ngthU'
anhX,ehQc.
14
T6cdQhQitv cuaquit~cdelta(ham1ca.qui t~chQch~s6thichnghi)
hi~nclingconrat ch~mclingla mQtvand~dangquailtam. Trangphan
cu6icuachU'O'ng,chungtai setdnhbaymQtquit~chQck~thQ'pcuanhi~u
phU'O'ngphaphQckhacnhaud~giiiiquy~tkhokhannay.
1.3Xap xi mb
1.3,1H~mb
..............................................................-.......__..........................-....................................., '
n~uAl thl BI
x n~uAj thl Bj '~B~giai mO'~Y =F(X)
n~uAk thl Bk
; ,
, ', ', ', '
""",-"",--,,-,"""""""""""""-"""'-"""""""""""""""""""""'" ,-.-........_.-..-.-.....-.-..
H' h 1 3 K '..!' t ' -t h- ' t .:l ' tIn ,: Ien rue mQ ~ mef ong qua , Bi~nnh~pX sekichho(ltsongsong
cacphfm 'n~u'cua k qui tAc va xac dinh mtlc do?Bj thuQcphf.n 'th\' ttlc1ngtlng. K~t xuAt B =2:jBjwjse
du,?,cgiai mb d~chogia tri Y =F(X).
H~mO'la mQtmahlnhtOaDhQcdU'Q'cxay d1,fngtren cO's&11thuy~tmO'
vamayhQc.Nam1991,Bart Koskod~xuatmahlnhxapxi hammO'va
dq.tenh~mO'.Theodo,mQth~mO'F la mQth~th6ngg6fi k lu~tfiO'co
I
dq.ng'ntuX =Aj thi Y =Bj; vafiQt fiq.ngnO'-rondq.ngbQnh6k~thQ'p
[23].M8i bi~nnh~pX VaGh~th6ngsekichhoq.tsongsongphan'n~u'cua
k lu~tfiO'vachocacfiUC dQBj tU'O'ngungtrongphan'thl' cuaqui t~c
theonguyent~ct~pfiO'[38].Va k~txuatF(X) cuah~th6ngdU'Q'cxac
dinhtheonguyent~ct5ngtuy~ntlnhcuacacBj nay.
NhU'th~,fiQt h~fiO'F : IRn --7 IRmhoq.tdQngnhU'fiQt bQnh6k~t
15
hQ'pmO'[19]. Hlnh 1.3 ma tit m9t ca:utruc h~mO't6ng quat.
1.3.2H~mb ellip x~pxi ham
H~mO'coth~dl1Q'cdungd~xayd1,1'ngmahlnhchocacdi1li~u.Bart
Kosko(1997)dachungminhdinhly sail:
Dinh Iy 1.2 (Dinh Iy Kosko [19]): M9t h~mO'F : IRn + IRm
vai so lu~tmO'thichhQ'p,co th~xa:pxi d~um9thamlien t1,1Cba:tky
f :D c IRn +IRmtIeDm9tmi~ncom-p~cD.
D~xa:pxi m9thamdich,KoskoSlrd1,1ngm9tt~pk caclu~tmO'ellip
choh~mO'vaS1,1'xa:pxi hamdlchchotrl1accoth~dl1Q'cxemnhl1S1,1'phil
d~uk ellipnayleDd6thi cuahamdlch. Hlnh 1.4minhhoi?-m9th~mO'
ellipd~xa:pxi m9thamdlch.
a x x
Hlnh 1.4:Trang hlnh (a) b6n lu(\t ma Ian phu m(\tph);.nham dich f : Dl C JR ---t ID2 C JR. Hlnh (b) sir
l'1oi,chi phi tlnh taanciing caahdn.
d\lngsir d\lngnhi~ulu(\t metellipklch thl1acnho d~xip xi ham f. K~tquaxip xi (b) t6t hdnrit nhi~u(a) bu
CohaimahlnhhQcd~xayd1,1'ngm9th~mO'.
Ma hlnh thu nha:t,hQcgiamsat, chig6mm9tgiaidoi?-nhQc(nhl1mi?-ng
llO'-ron)d~xac dinh caetrQngso wi' Nhl1th~,cacehuyengia phiti cling
16
ca:pchoh~th6ngcaclu~tellip thkh hQ'pv<1ibai toaDdU'Q'chao
Ma hlnh hQcthu hai,hQckhanggiamsat,phuc t;;tphO'nvag6mhaigiai
cIo;;tnchinh. Giai cIo;;tnthu nha:t,tu t~pcacqui t~ctho (chong~unhienk
ellip ba:tky) h~sehQCva hi~uchinhkichthU'<1cclingnhU'hU'<1ngthichhQ'p
chotung lu~tellipsaochophil kin nha:tt~pm~udl1Q'chaoGiai do;;tnthu
hai clingnhU'trongmahlnh thu nha:tla xac dinh cactrQngs6choh~mCi.
Tom l;;ti,h~mCicoth~dU'Q'cS11dvngd~xay d1!ngmahlnh chom9tt~p
m~u.Di~mchinhkhi xay d1!ngma hlnh la cling ca:pt~plu~tchoh~mCi;
t~plu~tnay co th~dU'Q'cxac dinh t1!d9ngnhU'ngphai chotrU'<1cs6 lu~t
c~nxay d1!ng.N~us6lu~tit, k~tquamahlnh sekhangt6t; nhU'ngn~us6
lu~tnhi~u,ta sedl1Q'cm9t ma hlnh sai s6 tha:pnhl1ngphai chi phi nhi~u
thCiigian may tlnh cho qua tdnh tlrih tOaD. NhU'th~,h~mCicling nhU'
ffi;;tngIan truy~n,conl~thu9Cnhi~uvaokinh nghi~mcua ngU'CiiS11dvng.
1.4 Thu~t giiii di truy~n giiii bai toan xac djnh thalli s6
, Trangnhi~uungdvng,baitOaDxayd1!ngmahlnhchodi11i~ucoth~
dl1Q'cdl1av~bai tOaDxac dinhthams6,m9td;;tngbai tOaDngU'Q'c[5],nhU'
sail:
Bai toan xac djnh thalli s6
Cho
n ={(Xi,~)IXiE IRn;~E IRm;i =1,N}
\
va
GA : IRn +IRm
trongdo,
A = (aI,a2,...,ap)E IRp
lat~pcacthams6chU'abi~t.
Vciicdl1O'ngchotrl1cic,xacdinht~pcacthams6A saochoV(Xi,~) E n
IIGA(XJ - ~II <c. (1.19)
17
PhU'O'ngphapthu{jtgidi di truyenla mQtphU'O'ngphaptim ki~mthlch
h<;ipd~xacdinhvec-to'thalliA nay.
1.4.1Cae khai ni~mcd ban eua thu~t giai di truy~n
Nam1975,John HollandtrongmQtcongtdnh nghienCUllv~cach~
th6ngtri tu~nhant~o[13]dadU'arakhaini~mthu~tgiaidi truy~n.Qng
ly lu~nr~ngt{nhhi~uquacungtlnh d~thlchungcuaS1fs6ngcodU'<;icla
doti~nboatrongchQnlQct1fnhien;va do do, ta coth~ap d1,1ngch{nh
nguyenly do trongcach~th6ngnhant~o.Va Hollandda d~xua:tmQt
phU'O'ngphaptim ki~mm6igQila thu~tgiaidi truy~n.
Thu~tgiaidi truy~nla mQtthu~tgiaimaytlnh tImki~mlai giaid1fa
trendQngl1fcti~nboa trong hQcthuy~tti~nboa cua Darwin. Y tU'Cing
ch{nhcuathu~tgiaidi truy~nnhU'sail:
- Xemd6itU'9'ngc~ntim cuabaitoannhU'mQtcdthe'.
- M6ta l6pcacd6itU'<;ingc~ntImtheomQtc{{utruetitn hod,tU'O'ng
t1JnhU'trongt1fnhien,cacsinhv~tcomadi truy~nlacacgene(chu5ichua
b6nlo~iNucleic).
- KhCiit~omQtqulinthl bandatigamcaccath~.
- Xac dinh cacpheptac dQngVEtOqUailth~gamcacphep:phep ch9n)
pheplai va phepaQtbitn mophongtU'O'ngt1fdQngcO'ti~nboatrong ti~n
hoat1Jnhien.
- Dinh nghiame>tde>do th{chnghi chocacca th~.
- Dungcacphepmophongti~nboatacde>ngVEtOqUailth~valU'utruy~n
qu~nth~quanhi~uth~h~.Qua quatrlnh di truy~ndo, qUailth~se ti~n
hoatheomQtdinh hU'c1ngdU'<;icqui dinh trU'c1cquadQdo th{chnghi. NhU'
th~,cangngay,qUailth~cangco nhi~uca.th~ti~nt6i m1,1ctieu tim ki~m.
- Trongm5i th~h~ti~nboa,ca th~thlch nghi nha:ttrong quail th~co
th~dU'<;icchQnnhU'lai giai (ho~cxa:pXl lai giai) cuabai toan.
Th1fccha:t,thu~tgiai di truy~nla mQtphU'O'ngphaptIm ki~mlai giai
trongmQtkhonggian caclai giai. Tuy nhien,khacv6i cacphU'O'ngphap
18
tlmki~mtruy€mth6ng,thu~tgiaidi truy€mconhilngd9-ctnrngsail:
(1)Thu~tgiaidi truy~n1aphuongphaptlm ki~mtIeDmQtt~pcacdi@m
(quanth@);khongphaitrentungdi@mdonIe,rC1ir~c.
(2)Thu~tgiai di truy~nchi S11dvngcacthongtin nQit~itrongqUailth@;
khongdungba:tky mQttri thuc phVnaokhac.
(3) Thu~tgiai di truy~nS11dvng cac1u~tchuy@nd6i dva tIeDxac sua:t;
khongphai tIeDcac1u~tquy~tdinh.
1.4.2Cae pheptoancd ban euaThu~itgiai di truy~n
Chot~pk kyhi~uk~thuc(t~pcacmadi truy~n):
T = {tl,t2,...,tk};
vaS 1achu6icochi~udaic6dinhl.
M6i cath~se1amQtS, trongdo
S[i]E T; i =W.
GQi
- M 1as6cath~trongqUailth~.
- G 1as6t6i da cacbu6c1i[Lp.
- Pr,Pc,Pm1acacthalli s6 (xacsua:t)di~ukhi~ncacquatrlnh tai sinh,
1ait~p,va dQtbi~n.
- f 1ahamdo dQthichnghi.
Thu~tgiai di truy~ngomcacbu6c ch{nhsail:
Thu~tgiai di truy~n- GA
(GAl)
- Tr;LongtfunhienmQtqulinthebanriliuP(O) chuaM cdthi!.
- D(jt t = O.
19
(GA2) VS E P(t)) tinhf(S).
(GA3) Nlu aieuki~ndung(1.19)thoahayt >G thi GotoGA6.
(GA4)Tr;LOmQtqu6nthe"mdi nhusau:
(GA4.1) Th1Jchi~npheptai sinhvdi xacswltPn cheFveLDQ(t).
(GA4.2) Th1Jchi~npheplai vdi xacsuraPC)tr;LOthl h~conchau
P(t +1).
(GA4.3) Th1Jchi~naQtbitn vdi xacsuo;/tPm)tr;LOra caccathe"lr;t
chottj,pR(t).
(GA4.4)P(t +1)f- P(t) UP(t +1)UQ(t) U R(t) va chi giiJ lr;tiM
ca the"t6'tnht{t.
(GA4.S)t f- t+1.
(GAS) GotoGA3.
(GA6)Gidimaktt qua.
Trongdo,cacphepdi truy~ng6m:
Phep chn:
- PhepchQnla m9tthut\lCmaytlnhmoph6ngquatrlnhchQnlQcm9t
cath~tirqu~mth~dl!atrenkhanangthkh nghicuano.
- Y nghiacuaphepchQnla giupchocacca th~th{chnghicaoseco
nhi~uca maydU'Q'cchQnlai ghepsinhra caccath~choth~h~m&iv6i
khclnangthkh nghicaohall. Ch{nhdi~unaygiupcaiti~nqu~nth~theo
hU'&ngti~nhoathkh nghihanv&imoitrU'Cfng.
- ThongthU'Cfng,phepchQndU'Q'cthl!chi~nnhU'sau:
(1)Phanhoq.chdoq.n[0,1]thanhM doq.ncon[ai,biJnhU'sau:
f( i)
al =O,bM=1,bi=ai+ -,aj+l =bjF (1.20)
20
Vi =1,M,j =2,M - 1.
trongdo,f( i) la dQthichnghicuacath~th1ii va
M
F='Lf(i).
i=I
(1.21)
(2)Ca th~th1ii seduQ'chQnn~ut<;tox +-Randomvax E [ai,bJ
trongdo,Randomlahamt<;tomQtgiatri ng~unhientrongdo<;tn[0,1].
SailkhimQtcath~daduQ'chQn,mQtbimsaocuanoseduQ'chepvao
illQtnhomrieng,nhomnaysephvcvv chocacphepk~ti~p.
Phep lai:
- Lai la quatrlnh traod6ithongtin giiXacaccath~duQ'chQntrong
qu~nth~.
- Mvcdichcuapheplai la t<;toranhiXngcath~m6ithirak~nhiXngd~c
t{nhdi truy€mcuachavam~.
- Co nhi~ucachthvc hi~nlai khacnhau(tuy thuQcbai toan). Tuy
nhien,mQtpheplai t6ngquatg6mhaibu6cch{nhsail:
(1)ChQncacdi~mlai trencaccath~chavam~.
(2)Tachtir cacdi~mlai naycaccath~cham~thanhcackhilcconva
hoanvi t6 hQ'pcackhilcconnayd~t<;tora caccath~m6i.
Phep d{>tbien:
- DQtbi~nla sv thayd6ing~unhiengia tri cuamQt(s6)vi tr{tren
chubicath~.
- DQtbi~nnh~mlamphongphilthemchoqu~nth~di truy~n.
1.4.3Hi~u qua cua thu~tgiai di truy~n
Dinh nghia 1.2: ChoT ={tI,...,td la t~pkyhi~uk~tthilc,vaT+=
T U{*}.
('*' lakyhi~ucoth~d~idi~nchomQtkyhi~uti E T ba:tky)
Sd db duQ'cdinhnghiala mQtchubiS,I vi tr{maSri]E T+,i = 1,I.
21
Tif dinhnghia1.2,ta d~dangsuyfa:
- SosadE>cochieudai l la (k+ 1)l.
- M(>tchu6ixacdinhlu6nco2lsadE>chuano,
- M(>tqu~nth~M cath~secotif 2ld~nM2l sadE>tliy theoSlJdad<;Lng
cuaqu~nth~.
Dinh nghia 1.3:
. B~ccuasadE>H, ky hi~uo(H) la sovi tri khac,*, trongsadE>.
. ChieudaixacdinhcuasadE>H, ky hi~u5(H), la khoangcachgiuavi
tri khac,*, d~utienvacuoiclingcuaH.
Va:ndecuata la 110'C111Q'ngxemcokhoangbaanhieutrongs62l d~n
M2l sadE>d11Q'cthu~tgiaidi truyenS11dvngtrongquatrlnhtlm ki~m?
Kh6ngma:tlnht6ngquat,ta chixett~pT ={O,I}, Va ta com(>tvai
qui 110'Csau:
- M(>tchu6i A d11Q'cvi~t l<;Li:A =al...ak;ai E T,i =1,k.
- A(t) la qu~nth~CJth~h~thu t; vaAj la m(>tcath~cuaqu~nth~nay.
M~nhd~1.1[11]
D110'ianh h11CJngcua phepchQn,s6m~uthu(>csa dE>H cJth~h~thu t
la:
m(H,t) =m(H,0)(1+c)t (1.22)
v6ic la m(>th~ngs6.
ChUng minh m~nh d~ 1.1
Gia S11cJb110'ct ta co m m~uthu(>csa dE>H, Ta vi~tm =m(H,t),
Xac sua:td~m(>tchu6iAi d11Q'cchQnla:
J( i)
Pi=p' (1.23)
86bansaDcuaAj sauquatrlnhchQn(n l~n)la:
Xi =M.Pi =M. J(i)
p' (1.24)
22
M.m(H,t).f(H)
m(H,t +1)= (").L.jf J
V6if(H) 1agiatri tIlingblnhcuacacchu6itrongqu~nth~thuQcsC1db
H t;;tith~th~t. D~t
Suy ra s6ffi~Ucua H cith~h~(t + 1) sail khi chn1a:
m
m(H,t+1)=LXi.
i=l
Ta co
m(H,t+1)=ML.~lf(i) =M.m.!;;L.if(i)
L.jf(j) L.jf(j)
hay
f =L.jf(j)
M.
Ta co,
f(H)
m(H,t+1)=m(H,t) - .
f
D~tf(H) =c.f + f, v6ic 1affi(>th~ngs6,ta co:
c.f +f
m(H,t+1)=m(H,t) - =(l+c)m(H,t).
f
Suyfa:
m(H,t) =m(H,0)(1+c)t.
(1.26)
(1.27)
(1.28)
(1.29)
(1.30)
M~nhd~1.2 [11]:Du6ianhhuCingcuaphep1ai,n~uPs1axacsua:tbn
tq.icuasC1dbH thl:
o(H)
P >l- p -
s- cl-l
ChUngminh m~nhd~1.2
Ta co,xacsua:td~ffiQtSC1dbH bi phaVcl1a:
o(H).
Pd=l - 1'
\ I ~ ~ .
vaxac suatton t;;tl:
Ps =1- Pd=1- o(H)
l- 1.
23
(1.31)
(1.32)
(1.33)
Nghia la, ill9t sCid6 v~nt6n tq.ikhi di~illlai n~illngoaidoq.nchi~udai
xacdinh.
N~upheplai duQ'cthvc hi~nng~unhienv6i xac sua:tPc, thl xac sua:t
t6n tq.icuaill9t SCid6 H la:
6(H)
Ps =1-pc-' l - 1
Gongthuc (1.34)khongxetd~ntruCinghQ'pcahaichu6iduQ'chQnlai
clingthu9CSCid6H. TrongtruCinghQ'pnay,xacsua:t6ntq.icuaH la 1.
Nhuv~y,ta coch~ndu6icuaPschoScid6H ba:tky. Hay
6(H)
Ps> 1- Pcl - 1.
Do pheplai sayra sailphepchQn,(1.22)va(1.31)chota:
f(H)
[
6(H)
]m(H,t+1)>m(H,t) 1 1- Pcl - 1 .
(1.34)
(1.35)
D6iv6i phepQ9tbi~n,nh~nxet r~ngill9t Scid6t6ntq.isailkhi d9tbi~n
n~uta:tcacacvi tri xacdinhv~ngili'nguyen(chicacvi tri da:u,*, bi d9t
bi~n).
GQixacsua:thayd6iill9t vi tr{trenchu6ilaPm'suyra xacsua:t6n
tC;1icllaill9tvi trila (1- Pm)'
Nhuv~y,xacsua:t6ntq.icuaill9tscid6saild9tbi~nlaPe=(l-Pm)o(H).
N~uPm << 1,xacsua:t6ntq.icuaH saild9tbi~nla:
Pe ~ 1- o(H).Pm (1.36)
Ap dvngcack~tquatren,ta k~tlu~nr~ngs6bansaocuascid6 H
nh~nduQ'cCith~h~k~ti~pdu6ianhhuCingcuacabaphepdi truy~nla:
f(H)
[
6(H)
]m(H,t+1»m(H,t) 1 1-Pcl-1 Pe'
(1.37)
guy ra
f(H)
[
6(H) 6(H)
]
m(H,t+1)>m(H,t) 1- Pc- - o(H).Pm+pc-o(H).Pm .
f l-l l-l
. (1.38)
24
1.4.4M<)ts6 van de khi sit dvng thuifttgiiii di truyen giiii bai
toan xac dinh thalli s6
Khi ap dvngthu~tgiitidi truy~ngiitibai toaDxacdinhthalli socho
t~pduli~un vdi d(;tnghamG bi~ttrudc,cactac giitthuc)'ngdungCali
trucchue;ichi~udaik codinhd~bi~udi~ncath~la m9tvec-tO'thalli so
A E IRk [11].
N~ukhCiit(;toqu~nth~P(O), M cath~thl t~pky hi~uk~tthucT chua
toi da k.M ky hi~u.Me;iky hi~ud(;tidi~nchom9t so thlfc duQ'ckhCiit(;to
ng~unhien. Nhu the m9t kh6nggian lCiigiiti
~={Ai E IRkIAi[j]E T}.
duQ'Ct(;tofa. Kh6ng gian~cotoida2k.Mph~ntu.
Vdi hi~usuattlm kiemO(M3) [13],trongph~nldn cacthlfcnghi~m
cuachungt6i, lieUM < 500vagiitsukh6ngdungphepd9tbi~nthl sail
khoitng50theh~,ta thuCingduQ'cath~tot nhatcuat~p~.
Mq.cdu hi~usuatcuathu~tgiitidi truy~nla rat cao,tuynhien,khiap
dvngd~giitibaitoaDxacdinhthalliso,m9tsovand~t6nt(;tinhusail:
(1)Kh6nggianlCiigiiti~ durat ldnnhunghuuh(;tn.Va nhuthe,coth~
~kh6ngchualCiigiiti.Nghiala,vec-tO'totnhatcua~v~nkh6nglam
chodi~uki~nIIGA(Xi) - ~II ~ 0;V(Xi,~) E n.
(2)Vand~thuhaidangluuyhO'n;dolavand~xacdinhtrudcd(;tngcua
hamG. Vi~cxacdinhd(;tnghamphuhQ'pthuCingdokinhnghi~mcua
nguCiiphantlch. Di~unaygaykh6ngit khokhanchonhungphan
tichVieDkh6ngnhi~ukinhnghi~m.
VI nhungly dotIeD,chungt6ikh6ngdungtrlfctier thu~tgiitidi truy~n
nhuneutIeDd~giitibaitoanxaydlfngm6hlnhphuhQ'pt~pduli~ucho
trudc;machidungthu~tgiitidi truy~nd~he;trQ'quatdnhhQCcuam(;tng
Iantruy~n.
25
1.5 M6 hlnh NNGA (Neural Network and Genetic Algorithm)
NNGA lam6hInhk~thQ'pgili'am;;tngIantruy~nvathu~tgiilidi truy~n.
Nhi~utacgiadasirdvngphU'O'ngphapk~thQ'pnaynhU'ngtheonhi~uhU'ang
khacnhau:
(1) Dung thu~tgiai di truy~nthay cho cacthu~tgiai hQccuam;;tngIan
truy~n. Theo hU'angnay, thu~tgiai di truy~ndU'Q'csir dvng d~tIm
bQtrQngcho m;;tngIan truy~n. NhU'chungt6i da phan tlch Ciph~n
trU'ac,co th~m;;tngchi hQitv v~C\1'Cti~ucvc bQ;VI kh6nggiankhCii
t;;tOband~ukh6ngchuaC\1'Cti~utOaDcvc.
(2)Dungthu~tgiaidi truy~nd~xacdinhc~utrucm;;tng.PhU'O'ngphap
nay co thalli vQnggiai quy~tdongthai hai v~nd~cuam;;tngIan
truy~n:xacdinhc~utruc(s6lap j,nvas6nut j,nchom6ilap)dong
thaiclingxacdinhlu6nvec-tO'trongtU'O'ngungvaic~utrucdo.Theo
chungt6i, phU'O'ngphapnaycodQphuct;;tpr~tIan va doih6imQt
kh6nggiannhaIand~coth~cungluc chuanhi~um;;tngkhacnhau
[14].(1)
Chungt6i ti~pc~ntheohU'angkhac.Nghiala, ta kh6ngthayhoantoaD
cacphU'O'ngphaphQCcuam;;tngIantruy~nb~ngthu~tgiaidi truy~nma
chidungthu~tgiaidi truy~nd~khCiit;;tobQttQngchom;;tngIantruy~n;
vasaildo,dungti~pm<)tthu~tgiaihQcd~ti~ptvc quatr'tnhdi~uchinh
b<)trQng.
Ngoaithu~tgiaihQcdeltachuj,nvathu~tgiaicaiti~ndelta-baT-delta,
coffiQts6thu~tgiaihQccaiti~nkhac[35].Chungt6i nghienCUllvasir
d\lngthu~tgiaiQuickProp.
1M. Othmanva caec(mgsll dung thu{Ltgiai di truyl:nxAyd\fngm(\tm",ng(ciu true va tr<;mg56)nh{Lnd",ngchi sau
nguy~nAm ti~ng Mii-lai tach rCti. K~t qua, phai mit sau ngay thi hanh tr~n may pentium 100Mhz, RAM 64 MB [14].
26
1.5.1 QuickProp, illccai ti~n
QuiekProp, viet tiit euaQuick Propagation,la phuO'ngphap dU'Q'ed~
xua:tb6'iScottFahlman[8];lamQttrong nhungdj tien nh~mnangeao
toedQhQitv euathu~tgiiiihQedelta.Chungt6i ehQnQuiekPropthayVI
ehQndelta-baT-deltaVIQuiekPropkh6ngl~thuQeVaGcaeh~sohQe.
y tU'6'ngehinheuaQuiekPropla xa:pxi haml8i b~ngmQtehu8icae
parabolcophanm6'hU'<1nglentren(hInh1.5(a)). T(;1im8ibU'<1e,trQngse
dU'Q'ee~pnh~tsaGehogiatri l8i E trong(1.12)d(;1tdenvi tri qreti~ueua
parabolke. Cv th~,e6ngthuee~pnh~ttrQngdU'Q'exaydl,fngnhU'sau:
- GQi
. D(t - 1)la gia tri d(;1ohamhaml8i 6'bU'<1el:;tptrU'<1e.
. D(t) la gia tri d(;1ohamt(;1ibU'<1ehi~nhanh.
. C (t) la bienthientrQngsoeuabU'<1el:;tptrU'<1e.
- Ta bietr~ng,t(;1ivi tri el,feti~u,d(~whamhaml8i seb~ng0,nhU'the
D(t+1)=O. (1.41)
Mvedieheuata laxaedinhbienthientrQngsoC(t) ehobU'<1ee~pnh~t
hi~nhanh.
Ta co:
C(t) D(t + 1)- D(t)
C(t - 1) D(t) - D(t - 1)'
The (1.41)VaG(1.42)ta dU'Q'C:
D(t)
C(t) = ( ) ( )C(t- 1).Dt-1 -Dt
(1.42)
(1.43)
V~y,trQngsodU'Q'ee~pnh~ttheocaee6ngthuesau:
w(t)~ w(t- 1)+C(t)
trongdo,C(t) dU'Q'exaedinhtheo(1.43)vaD(t), D(t - 1)dU'Q'exaedinh
theo(1.16).
27
Hlnh 1.5minh hQacachtlnh nay.
a w
D-o-l+~
w
Hlnh 1.5:(a) Ham 16iduqexflpxi bo-im(Jtehu6icaeparabol.Qua tr\nh e(ipnh(it trngla quatr\nh di ehuy~n
tit eVeti~ueuaparabolnay d~neVeti~ueuaparabolk~. (b) Hlnh anh euaparabolhi~nhlmhduqe xaedjnh
tit caegia trj D(t -l),D(t).
Nh~nxetr~ngc6ngthllCbi~nthientrQng(1.43)sekh6ngxacdinhkhi
D(t)= D(t -1). Trangtnl'dnghQ'pnay,C(t) sedU'Q'ctlnhtheoc6ngthllc
(1.15):
C(t) =ED(t).
QuickPropdU'Q'cMurraySmithx~pVaGnhomnhli'ngphU'O'ngphaphQc
b~chai vathl1'anh~ndingt6cd9h9i t1,lcuaQuickPropnhanhhO'nr.it
nhi~uIansov<Jithu~toanhQcdelta[35].
1.5.2M<;tngNNGA venthu~t giai hQc tren cd s(j thu~t giai di
truy~n
Bai toanxacdinhtrQngchom9tc.iutrucm<;1ngchotrU'<Jcchinhla bai
toanxacdinhthams6nhU'trlnhbaytrong1.4.aday,hamchotrU'<Jcla
anh X<;1N N : IRn ---7 IRm.Vat~pcacthams6A canxacdinhchinhla
vec-tO'trQngW. NhU'v~y,thu~tgiaidi truy~nco th~dU'Q'csir d1,lng.Tren
C(js&do, chungt6i d~lightm9tthu~tgiai hQccho m<;1ngIan truy~ntren
c(js&thu~tgiai di truy~nNNGA nhU'sau:
28
Thu~itgiiii NN GA
(NNGA1) Khdi tr;wvec-teJtr9ng W cho mr;rngIan truytn bangthug,t
gidi di truytn vdi t6/iaa G budc I(fp.
(Nhu trinh baytrudc)chungt6i ch9nG =50)
(NNGA2) Ntu aitu ki~n(1.12)chuathda)thi cg,pnhg,ttr9ngtheo
QuickProp.
1.6K~t lu~n
Tomlq.i,chungtai datdnh baym9tcacht6ngquailcacphU'O'ngphap
mciinha:ti~pc~nmayhQctrongphantlch dif li~u.M8i phU'O'ngphap,
nhudatdnh bay,d~uconhifngdi~mmq.nhvadi~my~unha:tdinh. N~u
khangcoin~ngvi~cxacdinhca:utructhlchhqpthl mq.ngIantruy~n,theo
chungtai la cachti~pc~nphuhqphO'ncachovi~cxayd1,1'ngm9tmahlnh
tU'Cingminhtrongphantlchdif li~u.PhU'O'ngphapti~pc~nly thuy~tmCi,
th1,1'ccha:tla m9tmar9ngcuarnq.ngnO'-ronh~mt~ndl,mgt6i datri thuc
cuachuyengia(phantlchviencokinhnghi~m).D~hq.nch~81,1'ph1,1thu9C
nay,chungtaid~lightmq.ngNNGA vciim9tlcip~n.Th1,1'cnghi~mchung
tor~ngphuO'ngphapd~lightthU'Cingchok~tquat6t (xemchU'O'ng4: Ma
hlnhNNGA apd1,1ngtrongphantlchcacdif li~uhoahQCvay khoa).
Thu~tgiaidi truy~nla m9tphuO'ngphapap d1,1ngra:thi~uquacho
nhiingbaitoanNP-Complete,la nhifngbai toanmakhanggianlCiigiai
lahiiuhq.nnhungdo81,1'bungn6cuat6 hqpvadotlnhhifuhq.ncuamay
tlnhlienkhangth~apd1,1ngnhifngphU'O'ngphaptlm ki~mtruy~nth6ng
ciU'qc.D6ivciicacbaitoancokhanggianlai giaivahq.n,nhU'baitoanxac
ciinhtham86chinghq.n,thl thu~tgiaidi truy~nkhangluandambaa8e
tlmduqclai giait6tnha:t.HO'nnifa,dq.nghamlq.iclingl~thu9CVaGkinh
29
nghi~mngU'Ciiphantlch,di~umata dangc6tranh,lamchothu~tgiaidi
truy~nkh6ngphatbuyh~ttacdvng.ChU'O'ngsauchungt6i setdnh bay
ID9tcachti~pc~nmar9ngthu~tgiaidi truy~nnh~mkh<icphvccach~n
ch~nay.
30