Luận án Phát triển một số phương pháp nhận dạng ảnh văn bản tiếng Việt

PHÁT TRIỂN MỘT SỐ PHƯƠNG PHÁP NHẬN DẠNG ẢNH VĂN BẢN TIẾNG VIỆT VŨ HẢI QUÂN Trang nhan đề Mục lục Chương 1: Giới thiệu. Chương 2: Các kỹ thuật xử lý ảnh văn bản. Chương 3: Các phương pháp đối sánh mẫu. Chương 4: Các kỹ thuật phân lớp mẫu dựa trên xấp xỉ hàm. Chương 5: Mô hình Markov ẩn. Chương 6: Một số phương pháp nhận dạng tiếng Việt. Chương 7: Kết quả thực nghiệm. Chương 8: Kết luận và hướng phát triển. Tài liệu tham khảo

pdf41 trang | Chia sẻ: maiphuongtl | Lượt xem: 2218 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận án Phát triển một số phương pháp nhận dạng ảnh văn bản tiếng Việt, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
nhs6 h6a.Ban d~urie'nhanhla'ym~u(j dQphangiai cao,saud6 de'ndQphangiai tha'pbon.C\l th€ la truoclien,<lnhdu'QclammabfingbQIQclow-passvasaud6riEnhanhla'y 9 mill con.D~dongiangiasar~ngLlx=Lly=Ll.Ne'usadl;mgbQ19Ctftns6thipFIR (FiniteImpulseResponse)codQdai L.Ll, dinhly liy mill phatbi~ur~ngdn s6liy mill con(l/L1sub)phaiIt nhit b~nghailftntftns6nguongcilabQ19Clow-pass.Nghla la 1/Llsub>2/(L'Ll)ho~cL>2'(Llsub/Ll),trongdo Llsub/Llla h~s6liy mill con.Vi d~,ne'umu6nliy mill continhi~uvoih~s6la 3,bQ19Clow-passphaitlnhm5igia tq outputmill b~ngcachH1YtIlingblobit nhit 6 giatri inputmill. MQth~s6liy mill con b~ng2 di;ltdu<;lcb~ngcach liy trungblob 5 mill inputb~ngmQtbQ19C low-passki~uGauss.LOi;liky thu~tnay hi~ndangdU<;lcsa d~ngd~phanlOi;liky tv trongnhlingphilom~mnh~ndi;lngkytv (OCR)thuongmi;lichlnhxacnhit. i(x)t 1T 0 l l x i(k) t I~t0 ~ i/x)t It oL /---,' ~ il(k)b - I I I I ' , ,-~ ';. ~uuur---~ ...~ ztEimmr---b k. "unuu. . Hinh 2.2Anh huangcuavi~cILiUthongtinvi tri Bay giGchungtase chuy~nsangvin d~xacQinhdQphangiai.MQteacht6ng quat,dQphangiaiGangcaothlthongtindu<;lchmgiliGangnhi~u.Tuy omen,mQt dQphangiai quacaoclingco th~lamlQke'tciu n~ncilavanban.Honnlia,dQ phangi,Hcaoclingdoihoithie'tbi d~t i~nvaphucti;lPbon,duarakh6ilU<;lngdli li~ukh6ng16,khongdn thie't.Cu6i clIng, ch9nh!a dQphangiiii dU<;lcxac djnh b~nghai ye'ut6: nQi dungcila vanbanva m~cdichcila nhlingthaotaGtie'pthee. Th~tv~y,mQttai li~uvanbanin voimQtfontIondoihoi liy mill (j dQphangiiH 10 tha'pbond€ c6th€ dQcdu'Qcsovoi vanbantu'ongtv nhu'ngvoifontchii'nhabon. .. Ne'uthaotactie'prheala'ym~ula nhjphanh6a,tadn dQphangiai caoboneho cacmucxam. SimondenghjchQnL1sacehosaukhinhjphanh6a,ca'utrucdong manhnha'ttronganhvan banphairQngit nha't3pixel d€ tranhgay kh6 khantrong nhii'ngthao tac tie'prhea.C6 nhii'ngdQphan giai khac nhaudff du'QCde nghj sii' dl,mgchonhii'ngungdl,mgkhacnhau.Vi d1,l,Dengelsad1,lngmQtdQphtingiaira't tha'p(75dpi)trangbu'ocphando~nchoanhthu'tin.Trongkhinhii'ngh~th6ngOCR c6dQchinhxaccaol~isii'd1,lngdQphangiaitu300de'n400dpichonhii'ngvanban "thu'ang". 51,(dad~ngcuanhii'ngdQphangiaidu'QCsad1,mgbdicactaegiakhacnhaudenghj mQtungd1,lngphuct~p baag6mnhieutaeV1,lconmam6itrangso'd6c6th~thvc hi~nt6tbangeachsad1,lngdQmQtphangiai thichhQp.Nhu'v~yanhband~udn du'Qcla'ym~ud dQphangiaicao.DQphangiaitha'pboncuan6saud6c6th~d~t du'Qcbangcachsii'd1,lngky thu~tla'ym~uconmotabentren. N6i ng~ngQn,tie'ntrlnhIa'ymiiula bu'ocdn thi&tkhichuy€nd6imQtvanbanra d~ngso'boa.N6 c6th€ gayma'thongtin.Tuynhiensvma'tmatnayc6th€ du'Qc dieukhi€n banganti-aliasingvoinhii'ngthamso'du'Qcki€m soarbangdjnhIy la'y miiu.Ky thu~tu'ongtvclingc6thi dl(Qeapd1,lngkhichungtamu6nla'ym~ucon mQtanhso'h6a- la'ymiiud dQphangiaiband~ucaobon.Djnhly Ia'ym~ukhong doihai vanbanphaidu'Qcla'ymiiud mucdQphangiainacoDieunaycu6icling phl,1thuQcVaGung d1,lng. 2.2.2Lu'<jngh6a Mftu,sinhbditie'ntrinhIa'ym~u,nh~nnhii'ng iatrithvc,lient1,lcvanhu'v~ydn phaidu'QcIu'QngboathanhmQtso'hii'uh~ncacmuexamd~c6thi xii'Iy bangmay tinh.Ne'us6muexam,L bang2, 1u'<;Jngh6acan gQila nhjphanh6a.Nhj phanh6a la mQtthaotacph6bie'ntrongphantichanhvanbanvi haily do.Thu nha't,h~uhe't cacanhvanbantronggi6ngnhu'chic6haimall,denvatrang.Nhl(v~yY tu'dngnhi f L phanhoacovetlfnhien.Thuhai,nhiphanhoalamddngianra'tnhi~unhungthaa lactie'pthea,nhuphanda~nvanh~nd~ng.NhuV?y,trudelien chungIa sexem xettie'ntdnh1uQnghoat6ngquatmQteachng~ngQnvasaildo t?P trungVaGnhi phanboa. BinaryCode r(v) III lIO 101 100 011 010 001 000 r T r: t r ..j.. r~ + .. I r3 T ! r2 i Saturation- rI _. J "'- r.- [) ",-to.. I I I I i I Yo VI v? V1 V4 Vs v6 V7 Vg Sample Value Hinh 2.3.Hamd;j.ctrLlngcuatrinhILlQ'nghoa v~m~tv~t1y,1uQnghoaduQeth\1'ehi~nbAngmQtthie'tbi di~ntu:gQi1abQehuy€n d6ituclngt\1'-s6,g~ntrangnhungthie'tbi sO'hoahi~nd~i.Hlnh2.3minhhQamQt. ~ hamd~etrungeuamQtthie'tbi 1uQnghoadi€n hlnh.Thie'tbi d~ebi~tnayehuy€n d6im6igiatrim~uth\1'ethanhmQtrangtammueriengre,duQemahoabAng3bit sad\mgmahoanhiphan.Nhunggiatri Vjva rj gQi1.1caemuequye'tdinhvatai thie'tmQteachtudng(tng.TrangmQtsO'thie'tbi sO'boa,nguaisl'td\mgcoth€ ehQn s6muexam(bAngsO'muetaithie't),thuang1amQtlily thuaeua2.Trangnhungh~ th6ngkhae,consO'nayduQecO'dinh(j mQtgiatrikhalOn,256.Thie'tbi 1uQngboa tronghlnh3 d6ngnha'trangnhungmuequye'tdinheachd~unhau.Nhungthie'tbi lu<;Jnghoat6ngquatdu<;Jcxemxetbell dudikhongdn phai rheaquy1u~teh~tche nay. Thongthuang,nguoitath\1'ehi~n1u<;Jnghoatronghai bude.Bude thunha't,mQtcan sO'lOn,256eh£ngh~n,caemuexamdu<;Jesa dl;mgd€ hamd~etrungcuathie'.tbi lti<;Jngboahh nhumye'ntlohvdidQbaaboa.Trangoudetbu'hai,mQtcansonha 12 bon,tit2 de'n8, caemuexamdu<;1csa dl:lllgdlfavaoke'tquaeuabuoethunh!t. f)i~mchinnye'ueuacachtie'pc~nhaibuocnayla: buocthunh!trho tacachbi~u di~ns6eoth~dungehonhil'ng iai thu?tlinn vi nhuhistogramming,d~xacdinh mQthamd~ctru'ngt6iu'urhobuocthuhai. Tieuchuffnrho linn t6i u'uthuangdu<;1esadl:lllgnh!t la sais6 blnhphuongtrung blnh(MS£)giil'agiatrim~uvvamuetaithie'tr(v). E{e2}=E{[v-r(v)[}=f[v-r(v)[ p(v)dv (2.1) Trangdop(v)la hamm~tdQxaesu!teuabie'nng~unhienv,co th~la dQu'utien du<;1ebi 'trudceuanhil'ngvanbanho~eduQcx!p Xlb~nghistogrameuanhil'ngia trim~utrangdeh tie'pe~nhaibude.Vdi mQts6ehotrudeL caemuexam,MSEeo th~du<;1cbi~udi~nbdi : E{e2)=I to.(v-r)2 p(v)dvJ (2.2) dar(v)=rj lah~ngs6trongdo~nlvJ'vj+IJ. Vji p(v) ehotrudeva s6 caemuc tai thie'tL c6 dinh,cae muc quye'tdinh vj,j=l,...,L-l va eaemuetai thie'trj,j=O,...,L-l clfcti~uhoaMSE tuantheo nhil'ngquailh~gall: r I +r v;=;-2 ;; j=l,...,L-l (2.3) v., Jvp(v)dv r;=:;o' ;j=l,...,L-I (2.4) fp(v)dv Vj Tuynhien,kh6ngconhil'ngeaehgiaiquye'tdudid~ngkhepkinnaot6nt~itritkhi chapnh~nmQts6 phepx!p xl. M~tkhae,nhil'ngphuongphaps6 phaidu<;1es1l' dl,lng,d~nde'neachtrlnhbay d~ngbangeuaVjva r.irho nhi~uphanb6 tham86 ehuffn,nhuGauss,LaplacevaRayleight. 13 Bay giOchungta xernxet tru'onghQpngo~i1~nhu'ngquailtrQngvoi L =2. Do 1a tru'onghQpnhiphanboaanh.Khi doMSE trdthanh: E{e2}=f(v-ro)2p(v)dv+r (v-rl)2p(v)dv0 I (2.5) Gia sadingp(v) co th€ du'Qcu'oc1u'Qngtit histogramva Vo.V2tu'ongungvoi VmimVmax' Con 1~iba tharns6 dn du'Qctinh loan, do 1aTo,rI va VI' Tharns6 VI du'QcgQila ngu'ongnhiphanboa.Honntl'arivI) va rlVI) qic ti€u MSE, voi rnQtgia tq cho tru'ocilaVI,dongian1anhtl'ngiatritrungblnhtrongdo~ntu'ongung(2.4): ro(vl)= £vp(v)dv r p(v)dv r.(V ) - rvp(v)dvI 1 - rp(v)dvI (2.6) (2.7) Nhu'v~ydil d€ bie'nd6i VI titVode'nV2.MSE du'Qctinhb~ngeachthayrova rI b~ng rivI) va rlvI) tu'ongungvachQnVI* sacchoMSE la qic ti€u. Otsud~nghirnQtcachtu'ongttfnhu'nglieu chu~ndongianhonv~rn~tinhloan dtfatrenphantichbi~ts6.TrongGongthUGnay,MSE tu'ongdu'ongvoiphu'ongsai lOptrongO"~/(VI)'Ne'uO"~/(VI)du'Qcb6 sungVaGphu'ongsai lOpgitl'aO"l(VI),ta du'QcloanbQbie'nd6i 0"/ (dQCl~pVI)'Nhu'v~y,thayVIctfcti€u MSE,giaithu~t cilaOtsuq1'cd~iphu'ongsaigitl'alOp: VI* =argmax{po(v1)[,uo(v,)- ,urf + PI (Vl)[,ul (VI) - ,ur]2} Trangdo Po(VI)=m(vl) PI(VI)=I-m(vl) ,uo(VI)=,u(vl)/m(vl) ,ul(VI)= ,ur- ,u(VI) I-m(vl) ,ur = ,u(V2 = vma..,J Va 14 (2.8) (2.9) (2.10) (2.11) (2.12) (2.13) UJ(VI) =fp(v)dv" J.L(vJ = r: vp(v)dv Bi~uthuc(2.8)co th~dU<;5cdongianthanh: (2.14) (2.15) VI * =argmax { [J.LT.UJ(VJ - J.L(vI)f }UJ(vl)[l-UJ(v,)] (2.16) Khi v/ dadu<;5cxacdinh,caemuctai thie'trova r] co th~du<;5ctinhb~ngcachsa dl:lllgbi~uthuc(2.6)va(2.7),ho~cmQteachtuongQUang: 1'0 * =J.L( VI *) I UJ( VI *) r * - J.Lr- J.L(vJ*)I - 1-UJ(vl*) (2.17) (2.18) Th~tfa,cont6nt~imQts6lieuchuinlu<;5nghoakhac,ch~ngh~nentropy,clingdlfa trenhistogramcuacacmucxam.Histogramco th~du<;5ctinhtu loanbQanhvan banho~ctumQtHinc~ndiaphuonggioih~nxungquanhdi~manhdangxet.Cac histograml~nhungth6ngke khonggianb~cnha't.MQts6 th6ngke b~chai,sa d\lllgcaematr~nd6ngxU<lthi<%nclingda du<;5cnghiencUutrongva'nd~nhiphan boa. Noi chung,nghienCUllnhungke'tqua lu<;5nghoa la kho khan VI tinhkhong tuye'ntinhcuahamd~ctrungtrongtrlnhlu<;5ngboa.Ne'uL lOn,ch~ngh~n16, nhungke'tquacuanotraDendangchuy vacoth~gayranhungsail<%chmeamo khongth~cha'pnh~ntrongmQts6ungd\lllg.VI nhiphanhoara'tthudng ~ptrong Linhvlfcphanrichanhvanban,tase xemxetchi tie'tnhunganhhuangcuano trongmQttrudngh<;5pdi~nhlnh. Chncling vi d\l trongphftn2.1.Gia sa ding la'ymill i(x) d~tdU<;5cq~ai,(x), la phienbanlQclow-passcua i(x), xemhlnh2.4. il(k) la tinhi<%ula'ymill nhungchua dll<;5Cnhiphanhoa(ho~cla'ymill va lu<;5nghoavoi mQtgia tq ra'tIOnL). Gia thie't r~ngnguongnhi philo hoa VI du<;5ctinhbai giai thu~tOtsu va la'ygia tri V!I)=~. Phienbannhiphanhoacuai1(k) chIdinhbCiii}J)(k)vad6ngnha'tvoi i(k).Giatri nayd~tdu<;5cb~ngeachla'ymftutrlfctie'pi(x)makhongsad\lnglQcanti-aliasing. 15 Nhoding i(k) duQetrlnhbaykernv~m~t hill thongtinvi tri.Ham if2)(k) Ia phien bannhiphankhaed~tduQeb~ngeachgiastrr~nggiaithu~tOtsuclingea'pmOtgia tri nguongkhaeV~2)=X. D6tha'yr~ngtruonghQpt~nha't,buoenhiphancoth~ mangl~isais6v~vi tri la .:tL1I2.Nhuv~y,t6ngeOngsais6v~dOrOngcoth~eao b~ng,1.Ne'ui(x)bi~udi6nph~ngiaonhaueuamOtea'utruedo<;lnth~ngmanhvoi dOrOngthl;t'esl;t'eua2,1,truonghQpt~nha'tudnglingvoi sai s6 co lienquailla 50%! i(x). r- -~L~lJ. - - . ) '--~ ii' 1 ~ ~ ' (2)'I / ,-- - " . '=3/4/' I -~ I~I. ----- 0 nor--"- - v"'e on,,(k~--~=f-_ui- - . 'F:~ii-U ,.. . "",']. i i-LL. i~2\k~ i . r I() . x--.- k-. I 1- . k.- Hinh2.4.Meo!nOvitridonhiphanhoa. Toml~i,nhii'ngke'tqualuQnghoaco th~khongduQechuy trongh~uhe'tnhii'ng anhvan banne'uchungtastrdl;mgnhi~uhdn4 bitchom~u(L =16mucxam).Voi nhii'ngvanbanehliacacanhtl;t'nhien,nhuanhchVpcaethenh~nd~ng,L nenduQC chQnIOnhdn.Nhiphanboa,la truonghQpd~ebi~teualuQnghoavoiL =2,cofch trongnhi~ukhiaqnh. No giamluQngdii'li~uhilltrii'(xemph~nsail),vaddngian nhii'ngtbaolactie'pthea,nhuphando~nvanMn d~ng.Tuy nhien,nocoth~dua densl!mil matthongtinquailtrQngehonhii'ngea'utruedo~nth~ngnha-ea'utrue tlmtha'ytrongnhii'ngkyt~tincokichthuoeaha. 16 2.2.3Mah6aanh MQtanhvanbandU<;1cla'ym~uvalU<;1ngboacoth6chuamQtlU<;1ngduli~ukh6ng 15,di~unayco th6gaynennhungva'nd~v~m~tlu'utru,chuy6nd6i vaXl(ly. Phgnnayduaravi~cmahoaanhnhumQtgiaiphaprhova'nd~nay.Chungtachi quailHimtdinhunglu<;1cd5mahoakhongma'thongtin,traingu<;1cvdinhunglu<;1c d5ma'thongtin.Ma hoakhongma'thongtinnghlala anhbandgucoth6du<;1ctai t(,10mQteachhoanhaotuphienbanmaboa.Honnua,chinhunganhnhiphanse dU<;1cxtrly, dovai tron6i b~tcuachungtrangnnhvl,l'cphanrichanhvanban. Co hai di6mchinhcua ma hoa anh.Trudc he'tla mo hlnh lang gi~nggall.Ch~ng h(,1Q,nhungdi6manhk~cuamQtanhco khuynhhuangnh~nrunggia tri,tdng ho~cden.Tinhcha'tnaydoi khidu<;1cgQila "duthuakhonggian".MQteachd~c bi~tdongianmahi~uquakhacd6 l<;1idl,mgtinhduthuakhonggianla xemxet nhungduongch':lYk~nhaucuacaedi6manhdenva tr~ngthayVI xemxetchinh caedi6ma,.nh.Ke'tquanayflamtranglU<;1cd5mahoarun-length.Di6mthuhaila mahoaentropi.No khaithacd~cdi6mla mQtsoca'uhlnhkhonggiancoth6xua't hi~nthuongbonmQtso khac.Y tudngg5mstrdl,mgnhungtumahoang~nrho nhlingca'uhlnhthuongg~pvanhungtumadaibonrhonhungca'uhlnhhie'm,ke't quala duli~ulu'utrutrungblnhit bon.Trangphgntie'pthea,chungtasedungmQt vi dl,ldongiand6 minhhQamahoarun-length(2.3.1)va mQtlU<;1cd5 mahoa entropidu<;1cbie'tduditengQimahoaHuffman(2.3.2). 2.2.3.1.Ma h6arun-length Ma hoarun-lengthg5mbi6udi€n anh,rheatungdong,bangnhungvi trivachi~u dai cuanhungduongch':lYmaudenk~nhau.Nhuv~ymQtduongch(,1ydu'<jccm dtnhbangmQtc~pso.Sothunha'tchivi tricuadi6mcinhmatidend~uliendoivdi bientnii cliaann,trangkhisothlihaibi6udi€n socacdi6manhmaudenk~nhau tieprheadi6md~ulien.Moi dongduQcke'thucbangmQtso,chingh(,1nla0,bi6u di€n EOL (ketthucdong).Nhuv~ymQtdongtrongbi6uthibdimQtkyt1!EOL. 17 ,....- TronghinD2.5,dongthunha'tla tr6ngva nhuv~yduQcbi~udi~nbdi mQtEOL. Duongch~ydftutiencuadongthuhaiba:td§udcQthuhai,co7di~mannden,va. nhuv~yduQcbi~udi~nbAngmQtc~p(2,7).Tudngtv,duangch~ythuhaicuadong thuhaiduQcbi~udi~nbAng(13,2).Nhuv~ydongthuhaichicohaiduangch~y,va mQtEOL theesail c~p(13,2).Tie'ntrinhtie'pt1;1cde'nkhi chungta de'ndongcu6i rung. Cuoi rung,chungtaduQcke'tquanhusail(EOL duQcmahoa la 0): 16 f() Hinh 2.5.MQtVIdv v~anhnhiphan Nhuv~y,hinD2.5QuQcbi~udi~nbdimQtday50so'.Ne'usa d1;1ng4 bitd~bi~u di6nm6iso'till toanbQ ph~mvi [0,13],do~nmake'tquaseco4 x 50=200bit, daihoneachbi~udi6nchu§:nband§u:10x 16=160bitLTuynhien,coth~tha'v- J ding ph<;tmvi [0, 13]kh6ngduQcsii'dt,mgtO~illbQva trongthvct€ chi t~phQpbon s6 {O,2, 7, 13}la dn thie't.Nhuv~y chI dn hai bit d~ma hoat~p hQpnaybiing phepgan,vi d1;1, 18 0 (2, 7) (13, 2) 0 (2, 7) (13, 2) 0 (2, 7) (13, 2) 0 (2, 7) (7, 2) (13, 2) 0 (2, 2) (7, 2) (13, 2) 0 (2, 7) (13, 2) 0 (2, 2) (7, 2) (13, 2) 0 (2, 2) (7, 2) (13, 2) 0 0 10 ..... 0 -> 2 -> 00 01 7 -> 10 13 -> 11 DI nhienphepgall phai du'<jesiip xe'pho~ctruy€n mQteachthichh<jp.Bay giOanh c6 th6du'<jcbi6udi~nchib~ng2 x 50=100bit. Ki6u phepgall nay trangth1;1'cIe' t':lathanhd':lngbandfiucuaphepmah6aentropi.(xemphfintie'prhea) Ton t':linhi€u phienbankhacnhaucuaphepmah6arun-length.Vi dl,l,thayVIma h6avi td cuadu'angch':lYbdikhmlngeachtuy~td6ieuan6d6ivoibientrai,chung taclinge6th6mah6an6bdikhaangeachtuy~td6id6ivoi du'angeh':lYtru'oecua clingda':lnthJng.Da tinhdongi.lnvakhongma-thongtint1;1'nhien,phepmah6a run-lengthclingc6th6du'<jesadl;mgffiQteachtr1;1'ctie'ptrangnhii'ngthaotaexa Iy .lnhnhu'IQcnhi~u.Vi dl,l,m6idu'angeh':lYng~nkhongc6Iane~ntrangdongtru'oe cling nhu'trangdongtie'prheae6th6du'<jela':li,khongquailtamde'neachbi6udi~n chufin. Ma h6arun-lengthla ffiQteachd6khaithacs1;1'd1;1'thilakhonggianeuacae.lnh.N6 khongxemxets1;1'du'thilagiii'acacdongk€ nhau.51;1'du'thilagiii'aeacdongnayc6 th6du'<jckhaithacb~ngeachsad~ngnhii'nglu'<jedomah6ac6th6d1;1'daantru'oc, nghIala sa dl,lngdii'li~ucuadongtru'oed6 d1;(daandongsailva mah6achi la nhii'ngkhaebi~t.Vi dl,l,dongthabatranghlnh5 tu'on"gt1;fdongthahaivanhu'v~y khongdn dlt<jCmah6a;chimQtilmab6sungdu'<je100trii'ha~etruy€n.MQtkhai thacdfiydu tinhdu'thilakhonggianla ma h6anhii'ngdi~mbieneuaanh.Tuy nhien,bQgiaimasaild6phainh~ndu'<jcroanbQanhtruoekhin6c6 th~giaima dongdfiutieDvanhu'v~ydn mQtvitngd~mIOnbon. 2.2.3.2.MaHuffman Ma Huffmankhaithactinhphanb6khongdongd€u eua'nhii'ngkhaDangtu'<jng IfltngtrangmQtthongdi~p.NghIala, caeky t1;(thu'angxua-thi~ndu'<jcbi~udi~n b~ngnhii'ngtil mangiintrangkhinhii'ngtil madaidlt<jesadl,lngchocacky t1;fit 19 xu.1thi~n.Ke'tquala dQdaitu trungblnhng~nhdn.Nhuv~ydi€m chinhye'ula ki€u tu mavdi dQdaic6th€ thayd6idt«;5c,dvatrennhungk..l}aHangtu<;5ngtru'ng. Trudclienchungtasexemxetphepmah6avasaild6la phepgiai IDa,di€u nay kh6ngddngiannhutru'ongh<;5pmah6arun-length. Vi~cxaydvngnhungtumag6mhaitie'ntrInh,rUtg9nvaphanchiaoXetvi d1,1t~p h<;5pcacs6 {G,2,7, 13}thudU<;5ctuphepmah6arun-length(xemhlllh2.6).C6th€ llh~nth.1ydingdn s6cilachungkh6ngb~ngnhau.Ta ses~pxe'pl,;lirheathlitlf giamd~nxacsu.1t(t~ns6tudngd6i)vagallcackyhi~u{Si;i =1, ...,4}chachung. Xet caccQtthlinha'tvahaitronghlnh2.6(a).Trangtie'ntrlnhrutg9n,take'th<;5p haiky hi~utftns6nh6nh.1thanhmQtkyhi~umdic6xacsu.1tla t6ngcilahaixac su.1t.Di€u naygiambdtmQtkyhi~u. (l~I~.'-: ::~J~=-:J~ ~-_; m_-r8;50-~~- ~!~--;:;{ 0.2°. I - ,---~i..L m- l_._~_~ -., 0.52I 1 (b) 0 Hinh 2.6Vi dl,lphepmah6ahuffman. (a)tie'ntrJnhrutg(;>n,(b)tie'ntrJnhphanchiao T~ph<;5pmdi cac ky hi~udU<;5cs~pxe'pl<;limQtl~nnuarheathli t1,1'giamcila cac xac su.1t.Di€u nay haant.1tlftn l~pthli nh.1tcila tie'ntrlnhrut g9n.Tie'pt1,1ctie'n trlnhde'nkhi chaconhaiky hi~u,hlnh2.6(a).Trangtie'ntrlnhphanchia,caeky hi~udt«;5et<;labaygiodu<;5cphanehiamQtcachd~quy.Luc nay,cactumadu<;5c xaydvngdftnb~ngeachthemcacbitGva 1VElacacke'tquaphanchia,xemhlnh 20 I i P(s-) --:'l: 2 I - --0.48 1 "'----0.48 1 .....,.0.52---- ------------- " I $2:0 01 <--0.20 01 -'. 0.0.32 0<1" . 0.482.------ $3: 7 000 '0.16 O(V o' '0.20 01 1 ! $ -t: 13 001 -<"0.16fool----------- 2.6(b).Cu6icling,tathudU<;1cmQtt~ph<;1pcaetITmacocacdQdaico thethayd6i {Sl : l'S2:01,s3:000,S4:0Ol}.£>Qdai trungblnhtfenky hi~ula: L =IJ.p(s;) i =1.0.48+2.0.20+3.0.16+3.0.16 =1.84bit/ (2.19) Nhodingmahoarun-lengthcilaanhtranghlnh2.5t~ofa 50ky hi~u.Nhuv~yma hoaHuffmanchocaeket quamahoarun-lengtht6ngcQngla 1.84.50=92bit. £>i€unaydu<;1csosanhvoi 160bitdoih6i choeachbi€u di8nchu§n.Lu'uy f~ng 100bit d~tdU<;1caph~ncu6iclingclingla mQt10~imahoaentropi.NhungsO'chua sad~lllgiua0va13kh6ngconhungtITIDa. Vi~cgiaimadu<;1ctht;t'chi~nquacaygiaiIDa.Di€u nayclingdU<;1cKaydt;t'ngtfong lien trlnh phanchiaoM6i phanchia du<;1canh x~thanhmQtki€m tfa d€ xac dinh xembit tiep rheala 0 hay I, hlnh2.6(b)va 2.7.M6i la cila cay bi€u di~nmQtky hi~u.Tientrlnhgiaimab~td~ua g6ccay,nuta.CacduangdidU<;1cxacdinhb~ng caclu6ngbit.Bit ky khinaod~tdenmQtnuthi, mQtkyhi~udU<;1cphatfa valien trlnhtfal~ig6c,b~tdfiugiaimamQtkyhi~umoi. ~ SlRoot ~ /. ~a ~ o~ 0 G Hinh2.7.Caygiaima Vi dlJ, haymahoahaidongdiu eilahlnh2.5thanhmQtlu6ngbitsaildomahoa chung.Ma hoarun-lengthduafachu6icaesO'sailday: 0,2,7, 13,2,O.V€ m~tk:Y hi~u,chungta du<;1c525j53545j52.B~ngeaehsa dlJngmaHuffman hlnh2.6(b),chu6i du'<;1cchuy€n thanhlu6ngbit: 011000001101.Tien trlnhgiai ma su dlJng cay giai 21 mavab~tdftud g6c.Khi bitdftutieDla0,chungtade'nnutb.Bit thuhai1a1.Nhu v~ychungtade'nkyhi~uS2,truyennoill, vatrdl<;lig6c.Bdi vi bitthubala 1- de'n ky hi~uSI>truyennodi vatrdl<;lig6c.Tie'ntrinhnayduQctie'pt1;1cde'nkhimQibit duQcdQc.Cu6i clIng,chungtaduQcchu6icacky hi~uS2S]S3S4S]SZtudngungvoi chu6icacs60,2,7,13,2,O. De'ngiil'ath~pDieD70,maHuffmanduQcxemnhucacht6tnh§t.Trangthlfcte', maHuffmanchi t6iu'ukhicacxacsua'tcuakyhi~ula caclily thuanguyendudng cua(112).H<;lnche'naygftndaydaduQCgiaiquye'tb~ngmQthQmamoi,cacmas6 hQc. Ma hoaanhcomQtItchsttlaudoivahi~nnay,nhieuluQcd6mahoathlfcte'duQc chu.1nhoabdiUy banTuva'nDi~ntha<;livaDi~nbaaQu6cte'(CCI1T)vaT6chuG Tieu chu.1nQu6cte'(ISO).DuoislfbaatrQcuahait6chuGnay,JBIG ciliaramQt chu.1nchacacanhnhtphanva JPEG ciliarachu.1nchacacanhmUGxam.Vi d1,1, phuongphapcuaJBIG sttd1,1ngcachxaydlfngdQphangiai khonggiantangdftn thayvi cachma-run-length,thea sanbdimQtbQmahoas6hQcthichnghithayvi bQma hoaHuffman tTnh,sttd1,1ngtrangvi d1,1truoc.ddQphangiai200dpi,JBIG thoduQcty l~Dengiil'a5 va62chacactaili~uthudngm<;likhacnhau.Nhlnchung, ty l~DentangrheadQphangiai. , K ~? 2.3 PHEP BIEN 001ANH Bie'nd6ianhla mQtthaataGxttly anhinputthanhanhoutput.Nhuv~yphepbie'n d6iduQcd?ctabdiquailh~input-output,matinhtlfnhienph1,1thuQcvaam1,1cdich cua thaatacoNhil'ngbie'nd6i hinh hQC(m1;1c3.1) co th~ph1,1cV1;1m1,1cdichdieD chinh nhil'ngslf sai l~chmeamo tuy rheaanh nh~nduQcva chu.1nhoachil'vie't l~ch.LQc(m1,1c3.2)If!thaataGcanbantrangxttlyanhvacoth~giupciiitie'nvi~c tachanhDen(ml,lc3.3).Phathi~nbiend6ituQng(m1,1c3.4)valammanh(m1,lc3.3) la hai (haaUlCthuongsttd1;1ngtrangphanrichanhvanban.Chung t<;lathanhgiaa di~ntudi~manhde'ncachbi~udi€n c§pcaabon. 22 - 3.1.Cacphepbi~nd5ihinhhQc A.nhvan banthudu'Qctu thie'tbi s6hoachill nhi~ulac dQnghlnhhQCkhacnhau,va co th€ du'Qcdi~uchinhb~ngnhii'ngbie'nd6i hlnhhQcthiGhhQP.Vi dt,l,mQtvanban khangd€ th~ngtrenmayquetse chora anhs6hoabi nghieng(hlnh2.8).Cacphep bie'nd6i hlnh hQccling co th€ du'QCsadt,lngd€ chu~nhoa chii'vie'ttay bi lc$ch. Trangnhii'ngbanve ky thu~t,cacky 11/va cacs6 co th€ du'Qcvie'ttheonhii'ng hu'angkhac nhauva nhu'v~yvic$cnh~nd~ngchungdoi h6i mQtmQtphepquay tru'ac. --'1 -~- lr<rat-. ~ :---..;1'J" , ~ "" C'...' ... .., 1r,,-..".' . . . " /eOW/e O nI , ' '.. ~t4. .~.. ' p. ' .. ' J' am. ", kien'rt'" anXl/? , fJrJic ' " y. ,,'ve «17a'." ,la ~., thamg;a ' Yltonn'J... J'. MINHVongt' .' I va~ II euI J.. thl/i, 1;~nme ~' 0 cUdc' '"Kue Va, Thon JYng,v/j IJaO ~onlatais,~h(J1.nayla PhlfCtCJp,va . :huYen 9thuang" '. ~~... (tn.faUyr P~alc611~'m9tIron" " lIay "., , "0/ de,.. .- , 117lak'" un,N", 9:tlsanc " ",U9"n.hr'h "vOlnl . a" ."18nii n 1Il/r}. . g \l:o o' , .,Uarn' ' oiV,Un r" ,na/./i" ... '" 9th. I , 'I nganh. flJh(fe'+/-."g <Jygi ~e""b ,(J1. " . . ta17g'/..[-~.. ' anntoar, ang ' 'lfeen.. ,VI ClO(j;' J/ lien . ' . C(jthe~ . CoquYen: CiP.Itakhi ' elmehot,..~qanhiJr) ~ithUiCh~sClCh \Ia",,;l?pthliho C a ha?han"e " u.'khk ofif)v."y '..'[l,nghi'a!",, len ..' "'anoilL' 'v Pat "1 h- q Ciy?-ro Q Ihyi naYd-oec!lIacYa' ~!i{h~'ch/'.m~laiSaon~Cokh';.'~eiaf ;~IU~19a~:~~fU?t~~:ne~ang:~h'!191trong~h~eCh~e~;~gth~~ .uq~tlen,H : ...yaChung~h~aviitra~h{1[Jho~cbatl/r}~dletJkie u,hOl I c~lQh.. h,alv~nban. lqCOqa..1,8f}l1tha,9l/ tochtJ.'~k()tJCi Thong~.' u Phap- AI ~Uaf7IroTi;"~dll1hrorao. 1)S!.'If!qUac t.911f7 dUn,, vOrAI.. IV("f:>,.,L." )01..1,1+1.-,'. ,0,."..., P '~ Hinh2.8.Motph~nanhvanbanbinghieng B€ d~tdu'QcmQtke'tquadi~uchinhdung,dn conhi~ubu'ac.Tru'ache't,chungta phai xac dinhki€u bi bie'nd~ngcila anhva tl;10mQtmahlnhtoanhQc.Trong tru'onghQpanh2.8,ki€u sai lc$chanhr5 rangla mQtphepquayva mQtmahlnh quaychinhxact5nt~itutoanhQcchu~n.Thuhai,chungtaphaixacdinhcacgia tri thams6cuaphepbie'nd6i,ch~ngh~ngocquay.Bi~unaypht,lthuQcvaoung dl,lllg.Tranghlnh2.8,gocquaycoth€ du'QcxacdjnhcnoloanbQvanbantrongkhi co tru'onghQpphaidu'Qcxacdinhct,lcbQchom6inhomkyt1!.Cu6icling,banthan sl;!di~uchinncoth€ d~tdu'QcquamOtquatrlnnhla'ym~ul~ianhs6hoabandffu. 23 2.3.1.1. Phuongphapcoban Nhungbie'nd6ihlnhhQcco th~du<;5ctrlnhbayIDQteacht6ngquat.D~ti(x,y)la anhbandauva {(x',y') 1ftanhbisail~ch.Haianhlienh~baicacphuongtrlnh: x'=J; (x,y) (3.20) y'=f2(X,y) (3.21) Anhbandaucoth~du<;5cbi~udi~ntheoanhsail~chnhusan. i(x,y)={(x',y')={(J;(x,y),f2(X,y)](3.22) Ki~usail~chanhdu<;5cIDOtabaitinht1!nhiencuafIC',,)vahC.,.).Cacphepbie'n d6iaffineCtuye'ntinh)g6IDtinhtie'n,dinhty1~,quay,vaxiencoth~du<;5cbi~udi~n b~ngmatr~n: ~){::: t){:)C3.2~ Bang1t6ngke'tnhii'ngtinhcha'tcuacacbie'nd6iaffine. Kiiu Tinhchat Tinhtie'n a;j=O;i, j =1,2. Thayd6i ty Iif: all =all =0 Quay a :g6cquay Xien ~:g6cxien Conhi€u hQbie'nd6ikhongtuye'ntinh,nhuphepchie'uvadathuG.Nhii'ngbie'nd6i naydu<;5csii'dl;lllgtrongvi~cIDOhlnhsail~chanhdoh~!h5ngcamerat~ofa.Trong lInh v~(cphantich van ban,tn;lcquailsatcua h~th5ngcameradu<;5csa:pxe'ptn,tc giaovoi ID~tvanban.Nhu v~y,cacphepchie'ukhongcanthie't.Trai l~i,cacphep bie'nd6idathUGra-tcoichkhiIDOhlnhcacsail~chanhdoh~th5ng5ngkinh.Hai lo~isai l~chanh thongthu'ongla barrel,do hlnhd~ngtroll cua 5ngkinhva pincushion- hlnh3.9.Cahaicoth~du<;5cxa'pXlbai: 24 all =cosa all =-sina all =sina a22=cosa all =1 all =tg all =0 all =1 . 3 r =Cm+Cd.r (3.24) Troncrd6r'=IX'2+y'2 r = 'X2+V20 'J ' V - Cmla dQphongd~iva Cdla h<$s6 sai l<$ch.H<$so cuoiclingamchobarrelva dudngchopincushion.H~so thli'hai la zerodo tinhdoi xli'ngcuah~th6ng6ng nnh.Bi~uthli'c(3.24)coth~dU<;1cvie'tl~iduoid~ngdathli'c: ( XI ) =Cm ( X ) +Cd ( X2 +<)X ) (3.25) y' Y (X2+y )y Nhlnchung,tacoth~sadl,mgcacphepbie'nd6idathli'cd~xa'pxi cacsail<$chanh hlnhhQckhacnhau. Biendi,lngBarrel Biendi,lngPincusion Hinh 3.9.cac biendi,lngquanghocdoongkinh 2.3.1.2. U<ic1u'<Jngthamso Do co nhi~ubie'nd6ihlnhhQcchocacli'ngdl,mgkhacnhau,chungtachixernxet haitruongh<;1ptrongphffnnay.Truongh<;1pthli'nha'tla xa'pxi gocl~chcuatrang vanbanvathli'hailaxa'pxih<$s6sail<$chanhcuah~th6ng6ngnnh. Giai thu~tudclu<;1nggocl<$chdu<;1cxernxettrongphffnsaild1,1'av oki~rntragia thie't.NghIala,chungtachie'uanhtheernQts6trl,lC,tinhcacbi~ud6theehudngva chQnhuangd~tc1,1'cd~itheelieuchuffnth~nghang.Xernhloh3.10.Trudclien, bi~u00chophepchie'ugoca du<;1ctinhboi: OJ H(y/;a) =2)<Xk'Y/) (3.26) k=-oe OJ = Ll(cosa..xk-sina.yJ,sina_'k+cosa.y/) (3.27) k=-oo 25 Vdi cae quy ude {(x~,y;)=On~u(x~,y;) n~m ngoai van ban, va /(x~,y;)={~ound(x~}round(Y~)]n~unguQel<,li.Sail do, vi~exac dinh tieuehu~n th£nghangA(a) dvatrensVbi~nd6i histogramgiuacaeduangth£nglien ti~p nhaurheahuangchidinhbdi anhusail: OJ A(a)=2)H(y,;a)-H(YI+I;a)]2 (3.28) 1=-«> ~y C, Hinh 3.10U8c llic;ng 6cnghieng Cu6i cling,goel~ehudelu<;1ngehobdi: a*=argmaxA(a)(3.29) Phuongphapnayco timquailtrQngthvet~VInocothSthaotaetrveti~ptrenanh muexammakhongdn phando<;inho~enhipMlnhoatrude. Bay giOchungtaxemxetvi~eudelu<;1ngcaeh~so'sail~ehanhdo6ngldnhrhea biSuthue(3.25).Phuongphapnayg6mnhi€u bude.TrudetienanhduQexaedinh, i(x,y) d~ttrongmQtludihinhvuongvaphienbanbi sail~eh{(x',y')eilano.Sail do,so'NcpcaediSmdi~ukhiSnduQe hQn,eh£ngh<;incaediSmgiaoeilaludi;Ncp phai IOnbonso'h~so'ehuabi~ttrangbiSuthue(3.25).Ti~pthea,caequailh~ ('\>Yj)B (x~,yJ,j=1 ,NcpduQethi~tl~p.Cu6icling,caeh~sf)ehuabi~tduQexae c1inhb~ngphuongphapblnhphuongevetiSu.Bi€u thuG(3.25)co thSduQevi~tl<;ii dudi d<;ingmatr~nnhusau: 26 z' =Z.C (3.30) Trangdo: Z'= ( X: ) ;Z= [ XI(x: +y2)X ) ;C =(cm )y YI(X-+y2)y \..Cd (3.31) Vdi m6ic~pdi~m{(Xj,yJB (x~,yJ,j=1,...,Ncp},chungta chnh~phuongtrlnh Z~=Zj .C +Rj' trongdoRj la vectorsais6cuaphepdo.Giai phapbinhphuongq(c .,? ,,\,Nrp RTR d h b? heu L'...Jj~l j j u<;1c 0 ch: A ( NCP ) -I ( NCP JC = ~Z~Zj ~Z~Z~(3.32) Trongdotchichuy~nvi cuamatr~n. Phuongphapdanhgianaybaatrumph~nsail~chanhtrenroanbQph~nanhdU<;1c mahlnhbdicungcach~s6. 2.3.1.3.La'ym~uI~ianh 56h6a Budccu6icungtrangdi~uchinhhlnhhcla xaydvngli;licuaanhkhangbi sail~ch 19tl(dngtll'phienbanbi sail~ch,quabi~uthac(3.20),(3.21)va(3.22).Nhii'ngbi~u thacnaydn dU<;1cdi~uchlnhchocacanhs6hoa i(k.f);x,I. /1y)va i (k'./1x',[. /1y'). Vdi mQtdi~mchotrudc(x=k.f);x,y=[./1y),di~m~',y,)tuongangdi;ltdU<;1cb~ng bi~u thac (3.20)va (3.21)nhln chungkhangn~mtren ludi xac dinh bdi {(k'./1x',z''/1y')/k',z'EN}.Nhuv~y,dn mQts6xa'pxi. Xa'pxi dongiannha'tlaphuongphapnguoitanggi~ng~nnha't.Nghiala, i'NN(x'. y') =1"[M roUn1 ~J6Y'roun{;,)] (3.33) Phuongphapt6thonla nQisuyluongtuy~n.Trudclien,chungtaxacdinhhlnhchii' nMt ABCD baaquanh(x',y')(hlnh3.11)saildotinhi(x',y') : " ( o,.,) _",(b1 ( ,, " ) 1SL x,Y -1 As'l ~) 1CD-1 AS, Jl (3.34) Trongdo: 27 i'AB=il(A)+(;,)U'(B)-i'(A)] (3.35) i'co=i'(C)+(;,)U'(D)-i'(C)] (3.36) NQiSHYlu'ongtuye'nnhinchungduGapungh~uhe'tungdt).ngtronglInhv\fcphilo richvanban.Tuynhien,ne'uanhdu'<;1cdi~uchinhco ty l~la'ymftutha'phdnannh bi sai l~ch,la'ymftul~isethaotic trenmOtphienban19Clow-passcuaanhbi sai l~chd6tranhrangcu'a. y ~x ~ ~ c b I Ay B a x Hinh 3.11.PhLiongphilpnQisuyILiangtinh 2.3.2.LQc Ph~nnaygidithi~uhaid~ng19Cs6hoatuye'ntinhvakhongtuye'ntinh.Mt).cdich la cungca'pcaecongct).cdbanchonhii'ngungdt).ng19Canhd6ivdi cacanhvan ban.L9Cg6mbie'nd6imOtannhinputi(k,l)thanhmOtanhoutputio(k,i)thu'ongIa mOthamnh~ncacgiatri inputtrongmOtvi tri quanhmOtHinc~nct).cbQ i(k,l). Tinh tuye'ntinhclingnhu'tinhkhongtuye'ntinhcuahamnayxacdinhcacbQ19C tuye'ntinh(khongtuye'ntinh).Ph~n3.2.1trinhbaycacbQ19Ctuye'ntinh.Sando hai ldpcacbQ19ckhongtuye'ntinhsedu'<;1Ctrinhbaytrongph~n3.2.2va3.2.3,xe'p lo~icac bQ19Cthut\l'va cacbQ19Chlnhthai. 2.3.2.1 LQctuye'ntinh Xet ldpcaebQ19CFiniteImpulseResponse(FIR),du'<;1cmotabdibi6uthucxo~n: 28 "" "" io(k,l)=i(k,l)*f(k,l) =L Li(k-k',l-l').f(k',l') (3.37) k'=-oo/'=-00 Trongdo f(k,l) la bQIQchuangungxung,condu<;1cgQila ID~tn~ho~cd~ngrnftu. Cahai i(k,l)va f(k,i) IaphffnrnarQngh~nche',nghlalachungnh?ngiatrizero bellngoaivunganhhuang.NhuV?y,t6ngtrongbi6uthuG(3.37)du<;1cgiOih~n trangIDQt?Ph<;1pconhuuh~ncacchis5.Vi d1,l,vairnQtID~tn~3x3,ph~rnvi cila t6ngcacchis5la k',t =-1,0,1.Cachuangungxungtie'prheathuangdU<;1csii'd1,lng trangphanrichanh: [ 1 2 1 ] It 2 4 2 1 2 1 +[~ [ -2 1 t 1 4 -2 1 [ -1 t -2 -1 {-:2 (3.38) (bQh}clowpassho4cliunmjn) 0 -1 ] 0 -2 (3.39) (bQ19Cxacdjnhbiend9C) 0 -1 -2 ] 1 (3.40) -2 (bQphathi~nbienLaplaceroi r(lc) 2 -1 ] 4 -2 (3.41) 2 -1 (bQ19Cxacdjnhthdngdang) -2 1 ] 5 - 2 (3.42) -2 1 (bQ 19Cmi'J rQng) NhungIan c~nIOnhon3x3clingc6th6du<;1Csii'd1,lng. Nhii'ngtinh chat cila IQc tuye'ntinhdU<;1cbie'tde'nva du<;1cIDa ta trongnhieutai li~u.N6i chung,cacbQIQctuye'ntinhthuangdu<;1csii'd1,lnglienke'tvai cacthaotaG khangtuye'ntlnhkhac.Vi d1,l,bQphathi~nbienLaplacephaitie'prheabairnQthli t1,lCphathi~nzero-crossingd~xacdinhcacdi6rnbien.£)6phathil$ndong,nhieu bQ IQc nh':lYearn vai IDQthuang C1,lth6 du<;1cap d1,lngva cac ke'tqua du<;1Cke'th<;1p vdi roantii'max-operatord6xacdinhhuang.lnhhuangC1,lCbQ.HonQua,c6th6can 29 sa dl,lllgde>phangiai dakh6nggiand6phathi~ncaedongco caede>fe>ngkhac nhau.Nhungvi dl,lminhhQavaitfOeuacacbe>lQctuy~ntinhtrongxa19anhvan ban:chungla nhungthanhphftncuacaegiai thu~tphliet~pnhunghi~mkhi sa dl,lngde>el~p.Ben qlllh do,nhi€u tar Vl,lphanrichco th6th1!ehi~nb~ngnhil'ng phu'ongphapthayth~dongianbon.Vi dl,l,phathi~ndongco th6du'<;1cth1!ehi~n b~ngnhiphanhoavalammanh(3.5),it nha'tchonhil'nganhvanbancoeha'tlu'<;1ng t6t. 2.3.2.2LQcs~pthuhi Caebe>lQes~pthlit1!kh6ngtuy~ntinhvacoth6d~tdu't Ianc~n3x3quanhdi6manhmachungtaquailtamirk,!).f)~tSk,/lat~phQpcaede> xamtrongIane~neua(k,!): Sk,l ={i(k',/')llk'-kl~1,11'-/1~* (3.43) va Rk,lla ehu6ico thli t1!euano: Rk.l={lj~r2~...~r9h E Sk,l} (3.44) Caeroantas~pthlit1!nhu'saildu'Qcbi~t: iik,l) =r] (anman) iik,l) =r9(giiinnil) (3.45) (3.46) (3.47) (3.48) iik,l) =r9- r] (phdthi~ndLlongviin) iik,l) =r5(trungtuyfn) Be>IQctrungtuy~nla be>lQes~pthlit1!ph6bi~nnha't,VInoco th6khanhi~uxung 11!ckh6nglammaanhinput.Nhlnchung,caebe>lQeco th6du'<;1capdl,mgehocae anhnhiphanvacaeanhde>xam(xem3.3.1).Chungtasetha'ytrongphftnti~prhea r~ngconhil'ngdi6mtu'ongt1!giii'acaebe>lQes~pthlit1!vacaebe>lQehlnhthai. 2.3.2.3.lQChinhthai LQehlnhthaid1!atrencaekhaini~m19thuy~tt~ph<;1pvarutracaed~ctru'ngeua d6i tu'tphftnta du'<;1eea'utruethiehhIJpva m9ttoantli'hlnh thai thiehh<;1p.No xemxetcaeanhnhu'caet~phQpva thaotaechungsa dl,mgcae thaotac logicnhu'he>iva giao.Toantii'hlnhthaitr1!equailnha'tla hit-or-miss. 30 Nghlala, chungtaquetanhinputvasosanht<;lim6ivi tricaediemanhIane~nvdi ph§ntaea'utrue.N6ue6mQtd6isanhbeanhac,giatridu<jexacdinhtrudeduc;1c gall ehoanhoutputt<;livi tri d6; trai l<;lianhoutpute6theduc;1ethi6t l~pclinggia tri nhu gia tri d6 euaanh inputho~eph§nbi! euagia tri duc;1edinhnghlatrude.Ch~ng h<;ln,phffntii'ea'utrue3x3tronghlnh3.12,trangd6"1" chiradiemanhthuQephffn ta ea'utrue,c6 theduc;1esad\:mgdedi~nvaocae16nhaeuaannhnhiphan.Cac roanta hit-or-missthfchhc;1pehocaetaevt,ldongiannhungkhongthfchhc;1Peho caetaevt,lphuet<;lp.Ti6pthea,chungtatdnhbayb6nthaotaecobanla nhungn~n tangquail trQngnha'tcuaquatdnhlQehlnhthai.. . . . . . . I ....... 1 1 1 . 1 1 1 1 1 . --1.1-- .11111. 1 1 I . 1 1 1 I 1 . . 1 1 1 1 1 . . . I . 11. . 1 1 1 1 I . ....... . . . . . . . Anhinput Philotli cautrue Anhoutput Hinh 3.12 Toan tlihit - mis B~tA la t~phc;1pbiendi€n anhnhiphan,nghlala, A={(x;,yJji(xi'yJ=I},vaB la phffntaea'utrue.(Ah duc;1exaedinhnhumQttinhti6neuaA baivectorb=(Xb'Yb)' nghlala, (A)b={(x"Y;)+(Xb'Yb~(Xi'Y;)EA}.B6n pheproanhlnhthaicobaneuaA ehobaiB duc;1edinhnghlanhusan: DilationAEBB=YeAh beB (3.49) Erosion A0B =I (ALb beB Closing A.B=(AEBB)0B OpeningAoB =(A0B)EBB (3.50) (3.51) (3.52) Chungta da tdnhbayt6mtiit cacpheproanhlnhthaitrencaeanhnbi phan. DilationmarQngvaerosionrutl<;lianhbandffu.Chungthuangduc;1esadt,lnglam millduangvi~n,lamdffycae16nhavakhanhi€u. 2.3.3Tachroi anhvan~n H§u h6tcaeanhvanbanla k6tquatitquatrlnhin a'nho~evi6ttrenmQtn~ndang nha't,eh~ngh<;lnnhutagia'ytr~ng.Tachrai anh- vanbanho~ecaebanverakhai 31 n~nlamQttrangnhungthaotaGdin bannha'ttrangxii'1:9anh,ph1,lcV1,lchoeacthao taGtie'pthea,nhuphando~nva gall nhan.Phffn2.3.3.1duara tie'll trlnhtachdl,l'a trennguongmUGxam,giathie'tn~nla d6ngnha'trangcahaimoitruongnhi~uva khongnhi~u.Trangphffn2.3.3.2chungtabo gia thie'td6ngnha'tva xettachroi anhtun~n. 2.3.3.1Ngu'ongdQxam Ne'uvanbancocha'tluQngt6tvacon~nd6ngnha't,quatrlnhtachcoth€ du'QCthl,l'c hic$nb~ngcachsii'd1,lngtrl,l'ctie'pphuongphapnhiphanhoamotatrongphffn2.2. Nhil'ngvanbanlo~inayne'uduQcquetd dQphangiaicaosechomQtke'tquatach hffunhuhofmbaa.Rtli thay,trangmQtso'truonghQpkhichungtaapd1,lngpht(ong phapnaychoanhcocacvungtdongphankhacnhau,ke'tquakhongnhumongdQi. Cac dongtuongphantha'pbi boma't.B~ngcachdi~uchinnnguong,co th€ khoi plwccacdongnay.Tuynhien,lUGnayl~ixua'thic$ncacdi€m anhnhi~utrenn~n. Phuongphal?di~uchinhduQcd~nghig6mch(;mmQtnguongvoi mQtty l~ph~n tramchotruoc,ch~ngh~n10%,cacdi€m annco dQxamtha'phonnguongnay (phuongphapp-tile).Trongphffnsail,chungtatrlnhbayhaicachtie'pc?nd€ giai quye'tva'nd~nay.D€ dongian,chungtasechiminhhQacacphuongphapnguong roanCI,lC,tuydingtrangmQtso'truonghQp,caephuongphapngu'OngC1,lCbQthleh hQpbon. Cachtie'pc?ndffubaag6mlQcanntruockhinhiphanboa,sii'd1,lngbQlQclammill tuye'ntinh,clIngca'pbdibi~uthUG(3.38).Co th~tha'yr~ngnhi~ugiambot,nhu'ng cacca'utrucdongdayd~cla chomQtso'pixeldinhvaonhau.Clingco th~sii'd1,lng cacbQlQcl'J16ngtuye'ntinh,nhutrungtuye'nch~ngh~n.Tuynhienke'tquakhac bic$tla ra'tit. Cachtie'pc?n tnuhai thii'lo~ibenhi~usailkhinhiphanboa.MQtbQlQctrung ruye'nduQcapdl,lngchoanhnb!phantra thanhhQlQcchinhcoth€ la'pd~ycac16 32 rnho,lamkhitcackhehonhovalo~ibonhi6uxung.Cachnayd6ikhiphavoke't cffuho?clamdinhcacchCi'l~i. 2.3.3.2N~nk~tc~u Nhi~uchudngtrinhso~nthaovanbanhi~nd~iclingcffpkhanangt~oran~nke't cffu.Ch~ngh~n,mQtvanbanduQcthie'tke'n6i b~td~16icu6ns1,1'chu9cuadQc gia VaGmQtsO'vungnaGdo.Kh6ngmay,no t~ora nhi~uvffnd~d6i vdiOCR. Trongph~nsau,chungtam6tamQtky thu~tddngianvahi~uquadlfatrenqua trinhlQChlnhthaid~giaiquye'tva'nd~tachanhkhoin~n. Trudclien,anhduQcnhiphanhoa,sii'dl,mgphudngphap cuaph~n2.2.Tie'prhea mQtpheploanerosionduQc.ap dl,mg,sa dl,mgph~nta ca'utruc3x3.Cu6icung, pheploandilationduQcthlfchi~ntrenanhduQcanmOllboiclingph~ntii'ca'utruc. NghTala, anhnhiphandffduQcnO.Co th~nh~ntha'ydingne'ukichthudccuacac ph~ntii'ke'tca'unhohdnkichthudcuacacph~ntaca'utrucvacuavanban,ky thu~tnaythlf.chi~nt6t.Ne'ukh6ng,sedn xa19pht1ct~phdn. 2.3.4.Bi~udi~nvaphathi~nbien Sau1u1.itachkhoin~n,cacd6i tuQngduQckhoanhvung,danhgia va cu6icung phanlo~i.MQtd6ituQngduQcchidinhhoanroanboibiencuano,biencoth~duQc phathi~nboigiaithu~tsau. 1. Quet anh den khi gq.pdiem anh den. GQi no la pixel 1. 2. L~p Neu "diem anh hien thdi lei den" Thi "do ngu<;1c" Nguqc li?-i "sang phai" Ben khi "gq.p pixel 1" Giciithu~tdotlmbien 33 I I ------------- > Hinh3.13 Dotimbienclangian Hinh3.14 Do timbienvdinhi~udOitll<;1ngphacti;lp (011) 3 (010) 2 (001) I 000) 4 0 (000) 7 (Ill) 5 (101) 6 OW) Hinh3.15 Mii chu6iFreeman 34 ~4 ffinh3.13minhhQavi~cpMt hi~nd6ituQnglienke'tdongian.Chungtahillyding pixelgi6ngnhau,ch~ngh<;\npixel1,dllQCphathi~nnhieul~n.Tuy nhien,co the khii'chungmQtcachd~dang.Noi chung,anhcothechuanhieud6itllQng,g6mcac 16h6ng,made'nluQcchungcothechuanhi~ud6ituQngnhobon.Ch~ngh<;\n,vi~c dorimphaiduQcl~p d~quyd€ phat hi~nmQibienbellngoaivabelltrongcuamQi d6i tUQng.ffinh3.14trinhbayquatrinhdorimanhchuacacd6i tuQngl6ngnhau. LttuY dingdo rimmQibientrongva ngoait~onenmQtphando<;\nanhinputvdi nhieuvung(xemphfin4). MQt bien dllQCchi dinhbdi cactQadQ(x,y)- trencacdi€m anhcuano,gQila cac diembien.MQteachbi€u di~ncodQnghonlamahoaFreeman.ChicactQadQ (x,y)- cuadi€m biendfiutienduQcIttugiil'.Cacdi€m bientie'prheaduQcmahoa lienquailde'ndiembientrudc.ffinh3.15trinhbay8machu6i,m6imaduQcbi€u di~nb~ng3bit.Vi dl;l,cacdiembienhinh3.14duQcmahoanhusalt: 077 175 4 443 3 1 Ho~c: 000 III III 001 III 101 100 100 100 all all 001 CacdiembienthudllQCcod<;\ngmQtdllongcongdong.Noi cachkhac,chu6itQa dQ(x,y)tuanrheamQtchuky.Di~unayco nghiala bienco th€ dllQcbi€u di~n b~l1gnhil'ngchu6iFourier,vdicach~sO'd~ctadllongcongdong.Honfilla,nhil'ng h~sO'naycothedu'Qcke'thQpvaocacbQmotaFourierduaracactinhchatkhong d6irheaphepquayvaphepthayd6ivi trL 2.3.5.Lammanhvabi@udi~neautrue Hfiuhe'tnhfrngd6itllQngtronganhvanband~ucocaeeautruedong.Trongnhil'ng lingdl:lngct,).th€, mQtthaythe'thichQpd€ bi€u di~nd6ituQngbdibiencuanola bi€u di~ndong.No co tfimquailtrQngth1!cte'vinocoth€ dongiannhi~uthaotac tieptheetrangphanrichCalltruc.Cachbi€u di~ndongco thed<;\tdllQcb~ngtie'n trinhlammanh. 35 Hinh3.16Quy LfacIanc~ndi!!lammanh Y tlidngchinhcuaquatrlnhlammanhla x6anhi€u l~ncacdi€m biend~giamb€ fQngdongconmQtpixel.Di€u nayphaidu<;JcthlfChi~nkhongcin tachraid6i tu'<;Jng(tachd6itu<;Jngthanhhaiph~n)clingnhukhongdn x6acaedi€m cu6idong. N6i cachkhac,chungtac6th~nh?ntha'ylammanhla x6acacdi€m bienc6di€u ki~n.Giiii thu?tsongsongdongian,khongnh~yearnvdinhi~uduangvi€n, nhu sau. Sa dt:mgquyudcl?nc?nhlnh3.16,d~tNT(P1)la s6cacbi6nd6i0 (tr~ng)thanh1 (den)trongchu6ic6thITtlf ,vaNZ(P1)la s6cacIanc?nkhac0 cuaPI- Di~manhPI du<;Jcx6a(d~tbAng0) n6u: 2=:;NZ(~)=:;6 (2.53) va: NT(~)=1 (2.54) va: Pz.P4.Ps=0 hor;icNT(P2):j;1 {2.55) va: Pz.P4. P6 =0 hor;icNT(P4):j;1 (2.56) Tien trinhdLtr;cli;ipdenkhikh6ngconthayd6inaatrangdnh. MQt s6 IOncac giai thu?tlammanh,khacnhaubdi nhil'ngdi€u ki~nx6a,da du<;Jc d€ nght-TrangmQtGongtrlnhnghiencUug~nday,20giaithu?tkhacnhaudadu<;Jc tht!chi~ntrongd6xemxetcaclieuchugnnhu'khaDangxayd!,1'ngl~i,t6cGQtinh roan,tinhn!ongtlf Goivdi Calltruelien quail,chatlU<;1ngcila ca'utruc,tinhk6tnoi saukhi lamminh,vavand€ songsong. 36 P3 P2 P9 P4 PI Ps Ps P6 P7 Noi chung,caedongmanht<,toboi giai thu~tlammanheh1i'ahai ki~upixelden, di~mthongthudngvadi~md~ebi~t.M(>tdi~mthudngco2pixeldenIane?ll.M(>t di~md~ebi~tco 0, 1,3 ho~e4pixeldenIan e~n.Nhii'ngs6naycon dU<;1egQi1ath1i' W'euapixel den.Nhu v~y,m(>tpixel co th1i'tv 0 la mQtdi~meachly, th1i'tV 1 la di~mke"thue,th1i'tv2la di~mn~mtrendong,th1i'tv3la di~mchii'T, vamQtpixel coth1i'tv41amQtdi~mgiao,hlnh3.17a. MQteachthichh<;1pd~motadiu trueeuaanhlammanhIabi~udi€n d6thi.Cae nut dU<;1ek "th<;1pvdi caedi~md~ebi~tva caedudngeongvdi caedongmanhgiii'a caenutne"uco, xemhlnh3.17b.Chinhxaebon,mQtnutdU<;1echI dinhboi ki~ueua no (caehly, diEmcu6i,chii'T, ho~cgiao)vavi tri (cactQadQx,y).MQtclinggiii'a hai nutco thEdu<;1cbi~udi€n boimaehu6iho~cboi mQts6xa'pxl, nhucacll,lc giaeho~cacb-spline. . Di€m cuoi Di€m col~p Di€m thU'C1ng Hinh3.17 a.Minhhoacaeki~udi~m b. Bi~udi~nea'utruedla a M(>tgiaithu~tdongiand~tlmxa'pXldagiaeeuamQtdudngcongnhusau.Xa'pXl dudngcongb~ngdo<,tnh~ngn6icaedi~meu6iA vaB. Ne"ukhoangeachtitdiEm xa nhit trendudngeongC de"ndo<,tnAB lOll honnguongdinhnghlatrudc,n6i A vdi C va C voi B. L~pl<;lithuwe ehonhii'ngdo<,tnmdi AC vaBC de"nkhi nguong dinhnghlatru'dedU<;1cthoa. 37 A ? 2.4.PHAN E>OANANH Phando~nla tie'ntrlnhehiaanhthanhnhi€u vung,m6ivungchuamQtd6itUyng ho~cmQtnh6mcacd6itU<;1ngclingki~u.Ch~ngh~n,mQtd6i tu<;1nge6th~la mQt ky tl!trenmQttrangvanbanho~emQtdo~nth~ngtrongmQtbanve Icythu~tho~c mQtnh6mcaed6i tu<;1nge6th~bi~udi~nmQtt11ho~ehaido~nth~ngtie'pxuevoi nhau.Trangphanrichanhvanban,4 giaithu~tphando~nthuangdU<;1csii'd\mgla gallnhiinthanhph~nlienthong,phanrichcay-X-Y, lamoboerheaduangch~y,va bie'nd6iHough.ChungsedU<;1Cmotachitie't rongcacph~nsau. 2.4.1.Cannhanthanhphanlienthong Ky thu~tnaygallrhom6ithanhph~nlienthongcuaanhnhiphanmQtnhanrieng bi~t.Nhanthuangla caeso'tl!nhienb~td~ut11mQtde'nt6ngso'caethanhph~n lien thongtronganhinput.Giai thu~tquetanht11traisangphaiva t11trenxu5ng duoi.Trangdongthunha'tchuacaepixelden,mQtnhanduynha'tdu<;1egallrhom6i duangeh~ylien t1,lcuacacpixelden.Voi m6ipixeldeneuacaedongtie'pthea, cacpixelIanc~ntrendongtruocvapixelbelltraidu<;1cxemxet(hlnh3.l8(a)).Ne'u ba'tky pixeLIan c~nnaGdu<;1cgall nh11n,nhiintudngtl!du<;1egall rhopixeldenhi~n thai; ngu<;1cl~i, nhiin tie'prheaehuasii'd1,lngdU<;1eehQn.Thu t1,lCnay tie'ptl,lcclIo de'ndongcu6iclh anh. Luc ke'tthuctie'ntdnhnay,mQthanhphftnlienthongc6th~chuacacpixelc6cac nhiinkhacnhauVIkhichungtaxemxetIanc~ncuapixelden,ch~ngh~npixel"?" tranghlnh3.l8(c),pixeld5ivoi Iane~ntrcHvanhungIane~ntrongdongtru'oce6 th~dU<;1cgallnhiinmQtcachriengbi~t.(Trongvi d1,lnay,chungtasii'd1,lngnhiin euaIanc~ntrai).MQttlnhhu5ngnhuv~yphaidU<;1exacdinhvagill I~i.Sauti~n tdnhquet<lnh,vi~cgallnhandu<;1clIGanta'tb~ngcachth5ngnha'tmallthu~ncae nhiinva gall l(;licaenhiinchuasii'd1,lng.f)~minhhQarho thut1,lC,xemhlnh3.18. 38 . p p p . . L ? a. Uin c~ncua"?";P=dongtnlac;L=lanc~ntrai ** *** 11 222 ** *** 11 222 **** **** 11112222 ******** 111?**** * * * * * * * * *** * *** * *** ** *** ** * * * * * * * * * * * * * * * * * * b. Anh band~u c. Tien trinhdanhnhan ...11...222 11...111.... ...11..222 11...111.... ..1111.2222 1111.1111.... . . . 1 I 1 1 1 I 1 1 . . . . . . . I 1 I 1 1 1 1 1 . . . . . . . . . 1 1 I 1 . . . . . . . . . . . I 1 I 1 . . . . . . . . 1 I 1 . . ) . . .. . . . . . 1 1 I . . 2 . . . ..111..)). 111..22.. .44..111. .)) ))..111..22.. ..44 ))....... d. Saukhiquetd~ydli e.Ketquadanhnhansaurung Hinh3.18E>anhnhancaethanhph~nlienthong 2.4.2.Phantichcay-X-Y. Phanrichdiy-X-Y la giaithu~tphando~nph6bi€n trangphanrichanhvanban.Y tudngcdbancuagiai thu~tla khaithacdnhco ca'utrUcdQcho~cngangcuah~u h€t cacanhvanban.MQttrangvanbanthuangg6mcacdongvanbanngangkhac nhau.Nh~nxetnayd~nd€n ytUdngchi€u ngangcacpixeldentrencactn,lcdQc, phando(lntrangthanhcacdaitr~ngvacaedaivanban.MQtdaitr~ngtuongling vdi ffiQtt~phQpcaedonglien tl,lcit bonn pixeL,vamQtdaivanbanlingvdi t~p hQpcaedonglientl,leeoit nha'tnpixeln€u nguongduQed~tb~ngn. Saudo,m6i 39 dai van ban e6 th€ duQeehi€u dQetrentl1;1en§.mngangthuduQecac vi trl cila cac ky tl!trongdelinay.Thil tl,1Csaltc6 th€ duQCsadl,1ngd€ rutracaeky t1,1': 1. Tfnhroanphepchieungangd{fiwJi roanbi?trang. 2. Phiin tickphepchieudi rut ra cacdong. 3. V6'imJi dong,tinhphepchieudQc. 4. Phiin tickmJi phepchieudt;ltdu(/ctrongb£c6'c3 di rut ra cackYtfC. Tuy nhien, t5ngquathdn,c6 th€ dn thlfehi~nnhi~uhdnhai phep ehi€u d€ d(;lt d€n cac ky t1,1'.Hlnh 3.19trlnhbay mQteffuhlnh khonggian (caeky t1,1'duQcbi€u di~nmQteachtuQngtrungbdi cachQp)trongd6mQts6ky tlf chid(;ltduQcsaltphep ehi€u thti'ba (ngang).C6 th€ nh~nthayf§.ngnhungvan banphti'ct(;lpbone6 th€ doi hoinhi~uphepehi€u hdnd€ rutfa caeky tlfriengbi~t.Nhuv~y,d€ baadam co th€ ho(;ltdQngduQe,giaithu~t5ngquatsechi€u vanbandQcvangangd€n khi hai phepchi€u lien Wcd(;ltk€t quatudngt1,1'. Saukhi thtfchi~n phepchieuthu2 .+. chieu dung :~ - - ~::8]J:0: ::0::::::::' ~:o~:~:~:0: ~:D~:~O:~:~:~:O:~:~O:~:~:~:~:~:~:~:~:~:~::: Saukhithl,fchi~n phepchieudiiu tien(chieungang) Hinh 3.19Vi dl,JcuamQtvanbandoihoi baphepchi€u. Cffutrueduli~ut1,1'nhiend€ lu'uk€t quaeilagiaithu~tla mQtcaye6caenutbi€u di~ncaevunghlnhehunh~t.M6i nute6th€ c6nhi€u nutcon,m6inutconbi€u di~nmQtvungconciia vungchaoCaenuteu6i(nutla) la nhungnutkhongth€ phanchiathemdu'Qcfilla.Chungbi€u di~ncacvlingkhongth€ phanehiavaduQe 40 I gQila cacth1,1'cth€ figureDto'.Hlnh3.20trlnhbaymOtvi dl,lcilavanbantrongdo cacky t1,1'dU<;1cbi€u di~nbdicachOp,vabi€u di~ndiy cilano. Anh vanban Hinh 3.20 Anh vanbanvad;;tngbi~udi~ntheocaycuan6 MOtvin d~vai giaithu~tphanrichcay-X-Yphatsinhtrangs1,1'hi~ndi~ncilamOt sO'd.;lllgd6hQaCl,lth€. Khi do,dn thie'tkhoanhvimgchungvaapd1,lngphantich thanhphftn,lienthong. Trangphftnmotabell tren,phanrichcay-X-Y beanloandU<;1cxemxetnhumOt giaithu~thaicip theenghiakhongcotrithuGcilavanband€ th1,1'chi~nphando~n. MOtsO'lacgiasii'd1,lngtri thUGd€ huangdftnphanrich.S~l'ke'th<;1pthongtincip caova thip rhoke'tquat6tnhu'ngdoi.hoir~ngphftntrlnhbaycilavanbancomOt ciu trucdu<;1CdinhnghianaGdo.QuailtrQngbon,saisO'trongduli~udonhi~uco th€ dftnde'nthit b~iv~phando~nvakhongth€ suachuadt1'<;1c.VOJeachtie'pc~n trongdo tie'ntrinhcip caovacip thip du<Jctachrai, vin d~duli~unhi~udu<Jc beande'ngiai do~ngall nhansando.Vu di~m13.lu<Jngdii'li~uphaigiai quye'tsan do nhohonnhi~ucachbi€u di~nbandftu. 2.4.3.Lamnhoedu'ongch~y(run-lengthsmear) Gi6ngnhuphanrichcay-X-Y,giaithu~tlamnhoetheeQuangch~u-RLSdoihoi s1,1'Qi~ucblnhdQl~chtruac.TruaelienRLSphathi~nmQiQuangch~y{fAng(cacsO' 0 lient\Ic)Clladongvasandoehuy€nd5inhungQuangch~ycoehi~udaing~nhon 41 nguongdinhnghlatrudc,T thanhnhii'ngQuangch~yden.Cac Quangch~yden khongd6i.Ch~ngh~nvdiT=3,RLSchuy6nd6idong 000 1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 1 100 thanh: 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 Ho~tdQngcilagiaithu~tRLSnhusau:trudctienapdt:mgrheatUngdongvasaudo rheatungcQt,thuduQchaianhriengbi~t.A.nhcu6iclingduQcktt hQpbdiphep roanlogicAND giii'ahaianhvuaduQcsinhtrudcdo. Ktt quacila giai thu~tRLS co th6duQCsa d\mgd6 gall nhanthanhph~nlien thong,thuduQcmQtt~phQpcacvung.Nhii'ngvungconch thudcra'tIOnrheacac tQadQx,y- thuangtuonglingvdicacd6ituQngd5hQatrongkhih~uhtt cacdong vanbant~oracacvungduQckeodairheachi~ungang., 2.4.4.Bie'nd6i Hough Khongnhunhii'ngphuongphapphando~ndaxemxettrudcday,trangdocacd6i tuQngriengbi~tphaiduQctachrai,bitn d6iHoughlamvi~ct6tk6cakhicacd6i tuQngbi dinhvdinhau.Xetbie'nd6iHoughdungd6phathi~nduangth~ng. y b b=xla+Yl x a 1 I , Xl X2 X3 .a Hinh 3.21 Ph<ithi~ndl1<'1ngth~ngb~nggiaithu~tHough Chungta hayxemxetphuongtrlnhcila mQtdo~nth~ngy =ax+b,cacthams6 (a,b)daduQcxacdinh,xemhinh3.21.Ntu di6m(Xl>YI)thuQcv~do~nth~ng,thlr5 rangdingba'tky ci,ip(a,b)thoaYI=ax!+bclingIamQtlerigiai.Noi cachkhac,vdi 42 rnQtdi€rn (Xf,YJ) chotn.toc,du'ongcongb=-xja+YJtrangkhonggiantharns6 (a,b) rno ta rnQiWi giai c6 th€. Bi€u tu'ongt1,tcling dungchocac di€m (XbY2),(X3,Y3),... N~u n di€rn (Xf,Yj),(Xz,Y2),..., (xmYn)niirn tren cling rnQtdo~nth~ngtrongkhong gian anh,cac du'ongcongtu'ongungcua chungphaica:tnhauclingrnQtdi€rn (a*,b*)trongkhonggiantharns6.D1,tatrentinhchfftnay,giai thu~tHoughdu'<;jc rnotanhu'sau: 1. Lw;mghoakh6nggianthamso(a,b)thimhcactebaa. 2. T(;lO6 tichlilyAcc(a,b)vakhiJit(lOcacthanhphdncilanobangkh6ng. 3. Vai m6ipixelden(x,y)trongkh6nggiandnh,mri tebaac£laAcc(a,b)thoa b = -XCI+y dLC(!Ctang len mQt. 4. Phathi?ncactri qtcd(lidiaplutO"ngtrongkh6nggianthamso'(a,b).M6i tri ung vaimQt{)ph(!pcacdilmcungdLCimgthangtrongkhonggiandnh. TrongthlfCt~,giatrta khongxacdtnhchocacdu'ongth~ngdung.MQtd~ngdu'ong th~ngtharns6 thichh<;jphonla r =x.cose+y.sinB,trangd6 ria khoangcachtit tamcuakhonggian(x,y)d~ndu'ongth~ngva e la g6ccuaphaptuy~nd~ndu'ong th~ng.Bi€u nayd~nd~nrnQtdu'ongconghlnhsintrangkhonggiantharns6(B,r) chorn6idi€rn (x,y).Gi,Uthu~tHoughkhongd6i.Nhi€u khiaqnh thlfchi~nv€ 1:9 thuy~tkhaccuabi~nd6iHough,baag6rnlu'<;jngh6atharns6vaphathi~ncaccrt clfcd~idtaphu'ongdadu'<;jcnghienCUll. Bi~nd6iHoughc6 th€ du'Qcapdt,mgchobfftky du'ongcongtharns6nao,ch~ng h~ndu'ongtroll,ellipse,vaciinhii'ngdu'ongcongkhongtharns6.N6 torarfftrn~nh d6i voi anhnhi~uva d~cbi~tgiupichtrongvi~cphannchcacbanve Icythu~t, trongdohftu h~tcacdu'ongcongla nhii'ngdo~nth~ngvacaecungtrOll.Honnii'a, cacchu6ivanbantrongcacbanveIcythu~tco th€ du'<;jcphathi~nquabi~nd6i Houghbiingcachxemm6iehu6inhu'mQtdo~nth~ngeocaephftntli'lacaek:Ytlf. 43 2.5clal THI~UTRICH CHQN D~CTRVNC MQttrongnhlingml;ledieheuaphantiehannvanbanla phanlo~icaeIcytt,tvacac ky hi~uthanhcaelOp.TriehehQnd~etrungla mOtbuoctrQgiup,lamehovi~c phanlOpd€ dang.TriehehQnd~etrungla mOtd6i tuQngnghieneUutrongnh~n d~ngm~uva co th~duQechia thanhhaieachtie'pe~n,th6ngke vaca'utrUc.Ml;le dieheuaphftnnayla trinhbaymOts6phuongphaptrieDehQnd~etrungdongian vahi~uquadaduQesli'dl;lngrOngdi tronglInnvt,tephantiehannvanban. 2.5.1.Cacd~ctrlinghinhhQc Caed~etrunghinhhQedongiancoth~ra'tcoannhudngtrongnhi€u lingdl;lng. Ching h~n,caekiehthuoet~eohuangx-vay-euathanhphftnlienthongcoth~du dephanbi~tcaeky tlftucaephftnd6hQa.Duoidayla mOtdanhsaehkhongdfty ducaed~etrunghinhhQe. 1. Caekiehthuoetheophuongx,y,vatyl~euachung. 2. Chuvi 3. Di~ntieh 4. Caekhoangeachelfed~ivaelfeti~utubiende'ntamkh6i 5. S6cae16 6. S6Euler=(S6thanhphftnlienthong)- (S6l6) 7. E>O5nd!nh=(ChuVi)2/(41t.Di~ntieh) 8. Caeda'uhi~u(phepehie'ungangvadQCcuacaepixelden) TronglInnvt,tephantiehanhvanban,nhlingd~etntngnaythuongduQcsli'dl;lngd~ phanlOptruoecaed6ituQngthanhky tt!vaanhd6hQa.Saudo,caethanhphftn tronglo~ikY tt,tdu<jegli'iehotrlnhOCRtrongkhicaethanhphftnd6hQaduQephan tichbdi trinhnh~nd~ngd6hQa.Ngoaiml;lediehphanloptrUoe,mOts6d~etntng teenclingcothi gapphftndangk~vaophanlopcaeky tt,teu6icling. 44 2.5.2.Caemoment Cacd6itu<;1ngclingcoth€ du<;1cmotabaimoment.ChungdU<;1cdinhnghlanhusail: Mp,q =J li(x,y),xPyqdxdY(5.57) Trongdop vaq la cacca'psO'nguyenkhongamcuamoment,i(x,y)la anhmt1'c xam cua d6i tu<;1ng,va D Ia phftnma rQngkhonggian cua d6i tu<;1ng.Lu'uyrang ne'ula anhnhiphanvaigiatri 1chocacpixeldenva0chocacpixeltr~ng,thiMo.o la di~ntichcuad6i tu<;1ngtrongkhiMl,ova Mo.lla cactQadQx,ycuatamkh6i IU<;1ng.Co th€ tha'yding t~ph<;1pvo hC;lncac moment{Mp,q;p,q =0, 1,2, ...}xac dinhi(x,y)mQtcachduynha't.Tuynhien,vaicacgiatrip vaq lOn,cacmomentlId nennh~yearnd6ivai nhi€u nentrongthl{cte'chicacgiatrip va q nhodU<;1csa' dl:lllg. Cac momentdinhnghlabai bi€u tht1'c(5.57)dQcl~pvi tri va nhuv~ykhongth€ dU<;1csa dl,lllgmQteachtrl{ctie'pd€ sosanhhinhdC;lng(ngoC;litrll di~ntich).MQt dinhnghlakhac,caemomenttam,nhusail: M;,q=JJDi(x,y).(x-xy(y-jiYdxdY (5.58) Trong do: MIo -- Mo,l (5.59)x=~, y- MMo.o 0,0 T~p h<;1pcaemomentamea'phai (p+q=2),M;.o,M~.2,M~1d-inhnghlaellipseqUail tinhcuad6i tU<;1ngva thudU<;1cquacacvectoreigen,huangBchinhcui:1d6i tu<;1ng: 1 [ 2.M~1 ] O=-arctan M e -Me,2 2.0 0,- (5.60) £)i:!.cbi~t,coth€ nh~ntha'yrangcaet6h<;1pmomenttamsaildQcl~pvaihuangcua d6i tU'<;1ng. rfJl=M~.o+M~.2 (5.61) rfJ2=(M~.o-1}1~,2)2+4(M1~1)2(5.62) 45 Do tinhcha'tkhongd6itheophepquay,caet6h<;fpcuamomentra'thii'uichd6ivdi OCR. 2.6. KET LU~N Trongchuangnay chungta dffxemxet caephuongphapxii'19anhkhacnhau thuangsii'dt,mgtrongnnhvrj.cphilotichanhvanban.CaephuongphapdU<;1cnh6m thanh4 lol;li:thunh~nanh,bie'nd6i anh,philodol;lnanhva trichchQnd~ctrung. Cacht6 chucnaydrj.avaocaebudcxii'19cuanhi€u h~th6ngphilotichanhvan ban hi~ndangdU<;1csa dt,mg.f)i~mchinhtrongchuangnay la trlnhbay cae9tudng eoban,va dongian- nhungky thu~tn€n tangnha'trangphilotichanhvanban. 46

Các file đính kèm theo tài liệu này:

  • pdf3.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf10.pdf
  • pdf2.pdf
  • pdf4.pdf
  • pdf5.pdf
  • pdf6.pdf
  • pdf7.pdf
  • pdf8.pdf
  • pdf9.pdf
Tài liệu liên quan