Luận án Phép chỉnh hóa tikhonov cho một số bài toán ngược

PHÉP CHỈNH HÓA TIKHONOV CHO MỘT SỐ BÀI TOÁN NGƯỢC LÊ NGÔ HỮU LẠC THIÊN Trang nhan đề Mở đầu Mục lục Chương1: Toán tử Compact trên không gian Hilbert. Chương2: Bài toán ngược, tính không chỉnh và phép chỉnh hóa. Chương3: Phép chỉnh hóa Tikhonov. Chương4: Chỉnh hóa một bàn toán Cauchy cho phương trình Laplace Tài liệu tham khảo

pdf13 trang | Chia sẻ: maiphuongtl | Lượt xem: 2105 | Lượt tải: 2download
Bạn đang xem nội dung tài liệu Luận án Phép chỉnh hóa tikhonov cho một số bài toán ngược, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
CHuaNG 2: IAI 'fOANMGU'~e,'filtHHHONGCHiNNVA PHi, cHiNNMOA& 201HaitO1inguQevaeaevi d\}o Haibili loandu\1cgQila nguQcnhaune'unhugiathie'tcuabai loannayl~iHl ke'tlu?ncuabaitoankiavangu'Qcl~i.ChungtasegQimQtronghaibaitoannay la bai loanthu~nth1bai Loanconl~isc gQila bai loanngu'<1c,Tuy nhienthong thu'ongc6 IDQtbai LoanduQCnghienCUlltrudcnen n6 duQcxem nhuHi b~dloan thu?n. Vi du1(Bai loannhi~lnglt<;lcthaigian) Xet b~dtoanthu?n1abai toaDCauchy<.:hophU'ongtdnhnhi9t: [ au a2u 81=a;/ u(x,O)= vex) (XEIR,t>O) (xelR) Trangd6vex)HimQthamlient\lcvabi ch~ntrenIR.Ta bierdingnghi9mlien l\lcvabi ch~nu(x,t)cuabaiLoannayla t6nt<;\ivaduynhfft(xem[3]trang115)cho bdi: 1 - [ . 2 }u(x,t)= I. Jv(q)exp- (x- q) II;2"m-<0 4t Bai LoanngU'Qc: [ au a2u -=~ (x EIR,( >0)at ax u(x,l)=lex) (xelR) TIm u(x,O)=vex). Vi9Cgiai bai LoannaydiindenVi9Cgiiii m(,lphuongtdnhtichphanthuQcd~ng tich <.:h~p: 1 7 [ (x- q)2 }2;;~v(~exp- 4 1;=lex) Chlidng2: Sai toan ngt(q'c... f3 V{du 2 (Bai todnngu<Jctrongvi~cthCimdOdiGchat) X6tbiii tmlnthu?nIii Hmthiinhph~nth~ngdung/vCliahiehapd~nlsinhfabCli mQtmi~nCJdQsituh phladudim~tdilt bitt Svthayd6i elmm~tdQv~tcha't(mass density) Iii p =p(x) 0 ~x ~1(Bai roan mQtchi~u). m~tda'tx h f fv 0 1 Thea dinhlu~tha'pdancuaNewtontaco: f m ( 1 , h"" ,=r 2"" r a angsolr9ngtrLfong).r Trangtruongh<jpdu<jcxct: . m=p(x')L1x'Iakh6iIu<jngcuamQtddnvi thericht~ix'. . r =~(x- X')2+h2 IakhoangeachgiUahaidi~mx vax'. Taco: 4.fv(x)=4.f(x)cosB= rP(X')L1x'cosB= yhp(x')tu' (X-X')2 +h2 3 [(X - X')2+h2F Suyfa: I .f,,(x)=yhJ p(x')dx' 0 [( 3 X-X')2 +h2]i Bai roanngu<jctrangvi~cthamdodiachiitIab~ngdl,lllgC1,ldod~cngu'oitaeo thexacd1nhdu<jcIvvatli'dotimfa p. ChU'O'I1g2- 8ai toanngU'q'c... 14 2.2TinhkhOngchlnh. HadamardchodingmQtmohlnhtoaDhQceilamQtbili toaDV?t19'Iii chlnh (well-posed)n6unhunothaaman3tinhchillsauday: 1. T6nt<;linghi~mcilabailoan.(Existence) 2. Bai loancokhongquatnQtnghi~m.(Uniqueness) 3. Nghi~mcilabili loanph\)thuQclientl)evaodit'ki~n.(Stability) v~phuongdi~nloanhQe,slft6nt<;linghi~mcoth~d<;ltdU<;1cb~ngeachmbrQng khonggiannghi~m.N6ubai loancoquamOtnghi~mdi~udoeilngconghlala ta thi6uthongtin v~nghi~m.Trong trUongh<;1pnayb~ngeachchothemthongtin v~ nghi~mta co th~d<;ltdU<;1cHnhduy nhiltcila nghi~m.Nhu v~ytrongba Hnhchill trentinh6nc1)nhIii quantrQngb~cnhilt.N6limQtbailoanthi6utinh6ndjnhthlv~ m~thlfct6bili toandokhonggi?1idu<;1cVItabi6tr~ngbiltkymOtphepdod<;lcnao dingconhG'ngsais6d~nc16ndG'ki~neilabaitOaDloonbj nhieu.Chodilsais6tren dit'ki~ncilabili tOaDconhad6ndauthldotinhkhong6ndtnhcoth~dftnd6nsais6 rilt Wngiit'anghi~mtinhtOaDdU<;1evC1inghi~mthlfe8lfeilabai loan. Ta co th~phatbi~utinhehinhduC1id<;lngtoanhQcgall: Dink nghia2.2.1 Cho X va Y la hai khonggiandjnhehuiin.F Iii mQtanhX<;ltUX vao Y. Phuong trlnh Fx=y QU<;1egQiIii chinhn6uthaacacdi~uki~ngall: 1.T6n t<;li: \ly EY,3xEX:Fx =y 2.Duy nhilt: \Ix],X2EX,Fx] =Fx2=>Xl =x2 3.Ondjnh: \lex,,)c X,Fx" ~ Fx=>x"~x Nhungphuc1ngtrlnhkhongthaamQttrongbaHnhchilltrenduQegQiIii khong chinh(ill-posed). Vidu MQtvi dl,le6di~nv~tinhkhongehinhdl1<;1Cdl1afa b('1iehfnhHadamard:bai' toanCauchychophl1c1ngtrlnhLaplace. Chl1linq1'~B~iJoan "9U"11;... 15 TIm hams5u(x,y)thoa: I:!.u=82u+(iu =0 8X2 8y2 u(x,O)-:;:lex) 8u -(x,D) -:;:g(x) 8y (x,y) EIRx (0,+00) XEIR XEIR Nghi9mlingvoitrtfC1ngh<Jplex) -:;:0,g(x) =!sinnx du<Jchob<'1icongiliac:n u(x,y)=~-sinnxsinhnyn Ta co: 1 sup(jf(x)I+lg(x)1)=- ~ 0 oyeR n Nhting: suplu(x,y)l=~SinhllY~ 00xeR n DoV?yHnh6ndinhbi vi ph<;lm. Do eachd?t va'nd~cuaHadamardHentru'ocday ngtiC1itaChIxetcaebai loan cMnh.Caeb~tiloannayVIdu<Jcxettru'C1cneng9i Iii bai loanthu?ndftnde'ncaebai toanngu<JcthuNngIakh6ngch1nh. Nhi~ubili loanngU'<Jcdftnde'nvi(;cgiaimQtphU'dngtTlnhrichphiloIo<;1imQt. Cac toaDtli'tichphiin nay thuNngcompactvoi nhungdi~uki(;nn~lOd6 cua nhan. cacm9nhd~sanchungtophuongtr'inhF.x=y voiF Iii loantii'tuye'ntlnhcompact thuongIii kh6ngch1nh. M?nhd~2.2.2 ChoX, Y Iii cackh6nggiandjnhchuffnvaF Iii toantU'tuye'nHnhcompactthoa dime¥KerF)=00.Tc}nt~iday(x,,)c X saochoFx"~ 0 nhltngx"-40. Honnaa taco th~ch9ncho IlxlIll~00. ChlfO'ng2: Biii toaongu'q'c... 16 Changminh Tadabittkhonggianthudng'lKerFHiffi9tkhonggiandinhc{1U~nvdi chufin: II[x]II:=inf{llx+zll:zEKerF} Xet loanta F t1t"YKerF vaoY dinhngh~abdi: F([x]):==F(x) Toantanayxacdinh,1-1vacompact.Th~tv~y: D~t: \ B=={xEX:llxll<l}, B={[x]E'lKerF:II[x]lI<l} Taco: F(B) =={Fx:ll[x]lI< I} c {Fx:IIxII<I} ==F(B). Do F 13.compactliensuyfa f,(B) Hi.compactu'dngd6i. Toan ta f,-l:F(X)-'t'lKerF la khonglien Wc VI neu tnli l~i t011ntit J ==](-1](:X Iv }~ -'t X IK F se ]a tichcuamottoanfitcompactvamottoanrifIAer' Ii,er '..' . lien t\lcliennocompact.Di~unaydh de'n13 la compacttu'dngQ6ilien ~erF ph:?ticochi~uhuuh~n. p-I kh6nglientvcchota: 3([zIIDc 'lKerF: FzlI -'t 0 valI[zll]II~E> 0 ,Vn ChQn v" EKerF th6a I/z"+v,,11~ va d~tXII ==Z"+V" thl: . Fx"==Fz,,-'tOvallxlIll~; Ta co th~giii si'tFxII"*0 '\InErNva d~t: XII x,,:==Jlx"II~11Fx,,11 Khi do: Iln"I!= IIFxlIlI <~IIFx] IIxlIll~IIFxlIll- E -'to Chuang2: B1HtoanngU)fc... 17 1 --)-00 !lx"ll=~"Fxnll 0 .. M?nll d~2.2.3 Cho F: X --)-Y la loantit tuyentinhcompactgiil'ahaikhonggianHilbertv(Ji dimX =00va {x,,}la mQtdaytnfcchu§'n.Khi do: Jim }00 Changminh Tnf(Jc tieRtaco Fx" ~ 0VI: (Fx",y)=(x",F*y) -) 0 vy EY 00 «x"' F*y)Iah~s6cuamQtchu6ihQitv2)F* y,x")x,,(M~nhde1.1.4»,,=1 Neu Fx"~ 0 thlsecodaycon{u,.}cuaday{x,,}saocho: !lFu"ll~s>oVnEftJ (*) DoF compactnentu{Fu,,}nencoth~rutradaycon{Fv,,}hQitv.Taco: Fv"--)-V } 0=>v= Fv"->.0 (theotren) Dieunaymatithu~nvoi(*). 0 Trongtnfongh<JpF khongcompactneutabuQcthemdieuki~nchoRangeFta clingsecophu'dngtrlnhFx=y lakhongchlnh. Mfllhdi 2.2.4 ChoX, Y lahaikhong ianBanach.F:X --)-Y la mQtloantli'tuyentinhlien tQc,1-1vai RangeF"*Y vaRangeF=Y .Khido F-1khonglientvc. ChltO'ng2: Baitoannglt9'o... 18 Changminh Dogiathie'tveRangeFlH~nt6nt?i: y ~RangeF,Y" ERangeF:Y"~ Y Titd6: 3ex,,)c X:y" =Fx"~ Y ~RangeF N'" F -1 I ' A h1eu' lcntlJct : Ilx"II=IIF-1Y"II~MJIY"II {YJI}hQiW Denla dayCauchydlinde'n{XJl}la dayCauchytrongkhonggian Banachnen x" ~ x , Luc d6 Fx" ~ Fx=Y ERangel"mallthulin. 0 Trongtru'(jnghejpF phituye'ntac6m<%nhdesau: M?Il11dl 2.2.5 x, Y la hai khongglaDHilbert, F: X ~ Y Ja toaDtitcompact,lientvcvadong ye'u(nghlala xJI-" x,Fx"-" Y =>Y=Fx) vaX c6s6chieuvoh'.\n.Khi d6t6nt?i day {x,,}c X saocho FxlI-> FxonIningXII-fi Xo' Changminh Do dimX =r:I)Den qua du d6ng ddn vi B' la khong compact tu'dng06i, nghla la t6ntalday {z,,}c B' khongc6 dayconnaohOitlJ.Nhungqua,du B' trong khonggianHilbertl<;ticompactye'uBen{z,,}c6 dayconhQiWyell.Nhuv~yset6n t<;liday {VJI}sao cho: VII ~ X nhung VIIh x Ta kh~ngdl0h Fv"~ Fx, Th~tv~y,nc'u FvJIA-Fx nghiaIii co day con {ulI}cua{v,,}saocho: 35>O:IIFu" -Fxll? 5 {UJl}hQ1tlJyc'uDenbi ch?nvadoF compacttarutraduejcdaycon{x,,}thoa Fx"~ Y , To' (16: ChuO'ng2:Bai foal!nglitfc... 19 Fx" ~ Y } ::::>y =}x (dongye'u) x,,-"'x M~tkhac: IIFx,,-Fxllz5::::>lly-Fxllzs,mauthuiin. 0 MQtdieudangquailHim1aHnh6ndinhph\!thuQcvaokhonggiannghic;:m,ne'u tathuh(fpkh6nggiannghic;:mthlco th€ d<;ltdli<JcHnh6ndinh.Mc;:nhd~sailcho tha'ydieudo. M?nhdi 2.2.6 ChoX, Y 1ahaikhonggiandinhchuffnvaU 1akhonggianconcompactcuaX. F:U ~ Y 1amQtloanti'tlienhJc,1-1.Khido F-1lienl\lc. Chzingminh X6t ph~nta WERangeF va day {w,,}c RangeF.rheaw"~ W. f)~t: U'= F -1wva U '=F-1w, "',, Ta kh~ngdinhu"~ u. Th?tv~yne'ukhongcodi~unaytIll set6nt<,lidaycon {u,,*} rhea: Ilu" -ullz &>0 '\InErNk VI U1acompactDent6nt<,lidaycon {u"*r}hQit1,lve phftntii'ZEU.. Til'dnhlien !:\lCci'IaF ta nhi;lndu'<Jc: w =Fu ~ Fz ::::>Fz=w::::>z =u "Xl "Iq M~Hkhac: Ilu" -ullz &::::>O=llu-uliz&,mallthuiin.xl 0 ChUb'ng2: Biiitoanngu'lle... 20 2.3Saisa tru'onghQpxa'unha't(Worst-caseerror). MOtcall hc)idu'<jcd~tra la: VOlsai s6cuadil ki~nbe h<1n8 thl sai s6cua nghi~mIOnnh1tlabaonhi6u(nghIala trongtru'ongh<jpx1unh1t).M~nhd~2.2.2 chotacall tra1OjtrongtHrongh<jptoaDtU'tuyentinhcompact:sai s6co th~vo clIng lOll. Tuy nhi6nnnhhlnhnayco th~khacdi nelltachothemthongtinthuhypve nghi~mchinhxac.Cl;)th~tacodinhnghlasan: Dill" nghla2.3.1 Cho F:X ~ Y la loan t11'tuyentinh li6n t\lCgiila hai khongglaDBanach. XI eX la m0tkhongglaDconvOichuffnII'. 111m~nhh<1nchuffntrenX. Khi do ta dtnhnghlasai SO'ln((Jngh(/px([unhatcho sai s6 8 trendil ki(;n va thongtin cho tru'acvenghi~mIlxll!::;E la: ,~(5,E,II,lll ):=sup{llxll:xEX"IIFxlls:o,lIxll,S:E} Diell chungtamongmu6nla sais6tru'ongh<jp'xa'unha'tnaykhongnhu'ngchi h0itl,lv~0khi 0 ~ 0 manoconlamOtvoclIngbetheomOtb(icnaodocua8.Neu F-1 lien tl)cthl dieunayla hi~nnhienvlllxllS:IIF-111.IIFxll.Tuynhien trongtru'ong h<;1ptoaDtii'tuyen tinh compact va II . 111=II . II thl sais6 tru'ongh<jpxa'unha'tkhong hOitvnhu'm~nhd~sandaychIfa.Di~unayd~ndenvi~ctaphllidungmOtchuffn m~nhh<1n. Mfnh d~2.3.2 F: X ~ Y la mOtloantittoyeDtlnhcompactgiilahaikhongglaDdinhchuffn trongdodjm('lKerF)=00. Khi do: VE >0,3c>0,00>o:/Ifi(E,o,II.II) ~c '110E(O,Oo) (Xem [7] trang15) Trong phepchlnhhoa Tikhol1oVmata nghienCUll(j chu'<1ngsanta se xet hai tru'ong h<jp thong tin thu hyp ve nghi~m chinh xac (j d?ng XERangeF* vax ERangeF*F trongd6F* la toant11'tuyenHnhlienh<jpcuatoaD ChUb'ng2: Bai JoanngliC}'c... 21 tit tuye'ntlnhF giuahai khonggianHilbert.Dinh1ysauchotadaubgiasai s6 tru'ongh<Jpxa'unha't. Din" lj 2.3.3 ChoF la loantittuye'ntlnhcompact,1-1gifi'ahaikhonggianHilbertX, Y vdi RangeFtmm~trongtmm~trongY. (a)D~tX,:=F*(Y) vaIIxl!!:=IIF*-'xiivdix EX,. Khid6: g;(o,E,II.II,)s.J8E Hdn nuavdim6iE >0 t6nt~imQtday 0/1~ 0 saochog;(on,E,II.II,) ==~o"E . (b) D~tX2:=F* F(X) vaIIxl12:=II(F* Fr' xii vdi x EX2- Khi d6: 2 , g;(0,E,II.lb)s03E3 2 1 Hdn nuavdi m6iE >0 t6nt~imQtday 0/1~ 0 saocho g;(on,E,II.lb) ==0~E3- ChUngminh ChufinII . IIIva II . 112hoanroanxacdinhVIF* vaF*F 1a1-1.Th~tv~y: F*y=O~(F*y,x)=O,\tx EX ~(y,Fx)=O,\tx EX ~ (y,z) =0,\tz ERangeF ~ (y,z)==0,\tzERangeF(doRangeF==Y) ~y=O F* F la 1-1du'<Jcchungminhtu'dngtV- (a)'D~t x =F*v vdi IIFxlls 0 vallxlils E nghIa1a: IIFF*vlls0 va IIvllsE Khi d6: IlxW=(x,x)::::(F*v,x) =(v,Fx)sllvll.IIFxlls5E Dande'n: g;(o,E,II.Jb)s.J8E X6t (/111'x"'y,J lasingularsystemciiaF (xemdinhnghIa1.3.9).Ta c6 : Chltdng2: BiHtoilnngU'q'c... 22 . fi" >0,fill ---+0 . Fx"=fi"y",F*Y"=fi"X" Ch~m.~,,:=£.1'* y" va (),,:=p~£---+O.Khi <16: Ilx,,111=11Ey"ll= E IIFx"II=IIE.F1'* y"l\= Efi~IIY"II=8" Ilx"II=IIEfi"x"II= Ep" = .j8"E Suy fa: $(8",E,I) .111)=.j8"E (b)D~tx=F*FwvdiIIFxll:::;8vallxlb:::;EnghlalaIlwll:::;E.Khid6: IIxl12=(x,x)=(1'*Fw,x)=(Fw,F."'()sllFwll.IIFxll Ma: II Fxl12 = (Fw,Fw) = (w,F* Fw) =(w,x) :::;11wll.IIxll Suyfa: IIxl14sllFxl12.IIFwI12sllFxW .IIwll.llxll:::;82Ellxll Hay 2 I Ilxlls 83£3 V~y 2 I $(8,E,II.lb):::;o3EJ Chon x .=E' F* Fx va 5,.'.= P 3E~ _\. 0 Khi <16:. ".. " UV. 11 -, . Ilx"lb=IIEx"ll=E IIFx"II=IIE/1~y"ll=Efi~=0" 2 I Ilx"'I=IIE.F*CJl"y,Jll=EjJ~llx"ll=Ep~=8~E3 V~y 2 J {¥(o",E,II.Ib)=O~E3 0 Chu~ng2: BiHtoanngilt/coo. 23 2.4Phepcmnhboa. Trongph~naytagiasitF:X ~ Y lamQtmintit lient\lcgiuahaikhongian HilbertvaphuongtrinhFx=y comQtnghi~mlax*. Trenthlfcte',takhongbaagiC1bie'tduqcchinhxacy machIbie'tvoimQtsai86 8>0 tUGla co )i:llyO- yllso. PhU(1ngtrlnhFx==yOcoth~khonggiaiduqcVI yOkhongthuQcRangeF.Dod6 chungtadn xacdinhm(>txa'pXl XOEX chonghi~mx* saochosai s6da nghi~m khong"xauh(/n"sai s6 truC1nghqpxa'unha't.Them vaod6 ta yell cfiunghi~mxa'p Xl phaiph\!thuQclien tl,lcV8.0dil'ki~nyo. Din" nghia2.4.1 MQts(/dJ chlnhh6a(regularizationstrategy)la mQthQcaetOaDtittuye'ndnh lient\lcRa:Y~ X,a >0 saocho: limRaFx=x,'ifxEX a~O . ChQnx;:=RaYc5nhul8.mQtxa'pXlcuanghi~mchinhxac.Khi do: Ilx;-x*lIs/iRayO- RaY/l+IIRay-x*/i sllRall.IlYo- YlI+IIRaFx*-x*1I Dfinde'n: IIx; -x*lIs bllRall+11RaFx*-x*1I (2.1) 56h"mgthlihaitrongve'phaicua(2.1)d~nv~0khia ~ O.dodinhnghia2.3.1 cons6hc;lllgfulinha'ttrongtru'C1nghqpt6ngquatkhongd~nv~o.C\l th~tac6m~nh d~sau(xem[7] trang25). M?nhdi 2.4.2 ChoRa18.mQtsod6chlnhhoacuatoaDtittuye'nHnhcompactvadimX=00 thl: 3(a j ): 1.imllRa 11=00 J~ro j Chu'O'I1g2: BaifoBng~c... 24 sais6 II RaFx *-x*1I IRailo a. . Tadn ch<;ma =a(5)phVthuQcvao0d~gillchot6ngsais6(Jrml'cnhenha'tco thedu<1c.Cv th&tacodinhnghIasan: Dink ngkia2.4.3 MQtsod6chlnhoavOia =a(5)du<1cg<;il \"admissable"n{§unothoaman: . a(5) ~ 0 khi 5 ---)0 sup{lIx~(o)-xll:IIFx- yll~5}---)0 khi 5 ~ 0,'t;JxeX. ChU'O'ng2: Bai toBnng«'9'c... 25

Các file đính kèm theo tài liệu này:

  • pdf4.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf2.pdf
  • pdf3.pdf
  • pdf5.pdf
  • pdf6.pdf
  • pdf7.pdf
Tài liệu liên quan