Luận án Sử dụng phương pháp số vào một số bài toán cơ học

SỬ DỤNG PHƯƠNG PHÁP SỐ VÀO MỘT SỐ BÀI TOÁN CƠ HỌC Trần Văn Lang Trang nhan đề Mục lục Lời nói đầu Chương_1: Tổng quan về mô hình và phương pháp giải một số bài toán cơ học. Chương_2: Một số bài toán dao động và biến dạng của thanh đàn hồi. Chương_3: Một số bài toán mô tả bởi phương trình PARABOLIC phi tuyến. Chương_4: Một số kết quả tính toán. Tài liệu tham khảo

pdf64 trang | Chia sẻ: maiphuongtl | Lượt xem: 1561 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận án Sử dụng phương pháp số vào một số bài toán cơ học, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
baitoin duqegiai trendo~n[t"-I,t,,] (III.2.36) ~ ~.~, ~ a~-::;-+U1--t-V1-:::--t-W1-:::-=vxY~+vz~, at ax oy az aT (III.2.37) av Ov Ov &v a2v ---1..+11 ---1.+v ---1..+W ~ =v Llv +v !.a -1 a 1 ~, 1 a xv 1 z.. ~ ,t lX u'y . Z - 02- (III.2.38) Ow Ow Ow Ow a2w --!..+lL --!..+v --!..+w --!..=v .6..w+v ---!.'" " a l~, 1", xy 1 Z a~'at x uy 02 Z~ vai dH~uki~nd'au (III.2.39) ,,-1 ,,-1,,-1 ,,-1 ,,-1 ,,-1 U. =u , VI =V , WI =W -Bucrethuhai,xettrendo~n[t"-1't"+1]'eoh~phuangtrlnh (III.2.40) aU2+.!.Op2+lv2=0, at p ax (III.2.41) Ov2+~Op2-lu2 =0, at p By -59- ~ 3: ~ d-~ uu. ~ 6:p:,~ ~ u Ut~ t1tW.p~ ~ ~ (III.2.42) OP2=pg,az (III.2.43) au2+Ov2+aw2=o. ax 8y az v6i caedieuki~n<fAll (III.2.44) ,,-1 " ,,-1 " ,,-1 "u2 =Ul' V2 =vI, W2 =WI - Bu6ccu6icling,bai loanduqcxettrendo,:\-n[tn,t,,+l]'chungta co h~ phuongtrioovadieuki~nd~utU<1ngt1l(III.2.36)- (III.2.39) (III.2.45) a a a ~ a" ~ +u ~ +v ~ +W ~ =V A 11 +v -~ at 3 ox 3 8y 3 oz xy~ z OZ2 ' (III.2.46) Ov3 Ov3 Ov3 Ov3- 02V3-+u." -+V~-+Wo - - V",,~V3 +v ;;-, at - ox -'oy -,oz -; , 8z- (III.2.47) 0 ~ ~ ~ ~.,W~ ~~ ow3 ow3 u~~~---=...+~---=...+v-+w -= v ~W+v ~at _ 8 3" 3 a X" 3 ' a2'~ oy z ~ z v6i dieuki~ndau (III.2.48) Un=Un+l V"= V,,+1 Wn=W,,+132' 32' 3,,2' H~phuongtdnhd~tiln b9 nghi~m(upvpw1)va (U3,V3,W3)gi6ngooau (cungxuatphattittOaDtirA), d~giaih~naychungtatier t~cphftnraloantir~ thanh3thanhphan: (III.2.49) 1\=All +~2+A13 trongdo, (IIL2.50) j. -"'1;- R 0, 0 l\ 0 0 0 0 0 0 0 0 R 01,, 0 0 '\Ii=1,2,3 -60- e~ 3: ';1l4e<JJJ& ~ 4«9 ~ ~ Ht:iJt4 Jk ~ Ptix4 ;::;~ {i:4t~ D~ tim <P'~,chUng fa dn phiin do~ [tn-p!n]thanh hai do<;mcon [tn-l'~"-:~]'[t,,-;~,tn]'Trendo~n[tn-ptn-~],h~phuongtrinhco d.:mg (IIL2.51) Ba<Pll+ j (f'I = 0- "11'1'11 ,at (UL2.52) 8(P'2;\ - 0B~ +.""2<P12- ,at . (III.2.53) am B~+~CP13 =0,at contrendo~n[tn-;~,tn]chungtaxeth~ (111.2.54) B0<P14+ 4. (f\ =0~ "..3'1'14 ,ot (UL2.55) B O15=0, , at (III,2.56) n a<P16T' 4 <'p =0,b- "4.1 16at B<p;;l =B<p"-1, Bq>;;l = B<p;~;{, B ,,_, B ~_l.\<P;3.= <P;2', B n-)1.- B n-;-'S<P14 - <P13, B<p;;~ =B<p;4'- B<p;~X=B<p~5' (trongd6 <P1i'j =1,...,6kyhi~unghi~mtinhtoanquatUngbuce). Ket quatmhtoan<P;6sauclingchinhlanghi~m<p;. D~tim<p~+1chungtagiai11lnluqtcaephuongtrlnh(III.2.5l) - (UL2.56) cho trenhai do~n[tn,tn+)L.],[tn+)L.';"+1]tuong illlg. Bily gia chungta xetsV xapXl va 6n d~ ctlabai toan(IIL2.51)- (III.2.56).Cacphuongtrinhnaydeucod(~ng (IIL2.57) oU+uoU- v 02U=0 at oJ.. xy aK ' (trongdoA cotheho~cxho~cyho~cz; U, U1acaeleYhi~utuqngtnmg),nen vi~ckhaosatsv xapxi theefj,ttuO1lgtv nhuffil;lCtruac,chungtaco M~nhde sall: -61- ~ 3: 1H#~.~~ ~ ~ ,,~_u Ut~~ ?~~~ M~nhd~1: Bilitoansaiphantheetho;gian ,,-~ ,,-I 11 B<Pll - <p]/+Av<p~-/2=0, 1=1,2,3M " ,,-~ B <fIJ]- <PJ] +1\6-/+1<P~=0, 1=4,5,6 M x[p xi cacbaitoaDtUOllgilp.gc[p haithee~t. H~cacphUOllgtrlnhfanluqttrongnh6m(III.2.51)- (IIL2.53)b6quadiet ki~ncTh.uc6th~vietduai d~g toanri':rIh~Usau: (III.2.58) av - p-+ 1;),V=0at ~~ , Vi =1,2,3. TheokhOnggiancactoaDti'r~,~, R3 duqcxa:pxi bCrlcaetoaDti:rsaipha.n (IIL2.59) ( -" - Y" .,Y 1k i-l)~_ I " l -" I+} R;.v j = P Uijk 2~i 11"1'k- 2f;~ +11"lk J v 1+]' 'F' 1- J xv. (~J2 ' (IIL2.60) ( Tl" IT" Tl" ')TT" TT" \_ I " . " +H - I'" H . " . H - ~r ',L +.'" 1k J 1;)11 = v" I}V< ,)-'" - V I}+'" I}A I}- ~'2 j P ijk 2~Yj xv. (~y)2 ' (III.2.61) _ I " ( V" vn V" - - J p V =P .W -" ijk+1- i}k-l iik+1- 2V'k' +V~ ~"'I " / V . I) I/k-l - k I}: 2&k z (&k)2" Vai cacxapxinhuv~y,chUngtac6M~nhdesau(xem[31][32][33][34][35]): Menhde2:Nghi?mtlmduqctUcacphUOllgtrlnhd':tng(III.2.58)x[p xi phuang trlnhvi phantuOllglIngv6ib~c0(&; ,~y:,lvlax{;].:;;i~}). 1\Thuv~ychungtadlikhio satdugetfnhxa'pxi v~.6ndinhcuacaephuO'Ilg trinhlienqUaildenloantir ~. D~giii duqch~n'ay,chungtal'anluql QuatUngh~ -62- ~ 3: ~ d ~ ~ 4«9 ~ ~ -d &k~ ~ ;D~ {tM~ phuangtrinhphaufa ve d~g phuongtrlnhd~iso tuyentfnhbaduangcheo chfnh,titd6apd\lngphuangphaptroydu6i. IJngvOiroantir1\chungtac6h~ (IU.2.62) V_" V-"-l v_" v_" v_" J V-" +v_"" k - "k '+1'. - ' l 'k '+1,'. - ~ " k ' l 'kIJ IJ +-" I J" I-J 1. " IJ I-J _ 0- U'k -v ~ -, ~ 'J' 2&1 xy (&)~ ho~cviet dumd~ng3duem.gcheo (IIL2.63) ( '-," J l " 2 1'\ ( 1" J v U"k -. V , -~ ,v .l" k -xy L- 'vn" - r'j +_,IV~ + xy +~ vn , = l (L~XJ2 2Axi "'I' (Ax,)' !Jt) 'fr l(Ax,)' 2Ax, ,-ljl- V~-l =-~ 6t Dat GII.2.64) -"v u", A= xy-~ (&)2 2L\X;' (UL2.65) -" v~. Il.J';"B= ~.' +~ (ill;J2 2D.xi' (UL2.66) 2v 1 c= xv+- (&:)2 ~ ' (III.2.67) ~m-1 F=~ fJj' thih~(III.2.63) du<?,cvietl~i (IIL2.68) Av-n rri.l"+JJV-" - 11" +l'k -\...~" ' l 'k --.1.I J 'J" ,- J Tuangtl!truemghqplieUa phanchuthichcuam\lctren,lieUcodieuki~n 2v (IIL2.69) IU;~kl<&~ I thih~troydu6iCUL2.68)dnd~nh(xem[5][40][71][74]). -63- ~ 3: ~. J Ut UM ~ ~ ~ 1M U Ut ~ ~ ?a~ flM.~ BangcachtuangtV,chungtaclingc6 duQ'cdieuki~n6n dtnhchoh? phucmgtrlnhcholoantir~, ~ nhusail: (JILl. 70) 2vxy 1 -" 1 <-, Vijk ~Yj (JILl. 71) 2v I _,. 1 <-2. Wijk &k,. Titd6chungtacoDinhly - -- DinhIv2: N~ucacdi~.uki~n(II!.2.69),(1II.2.70),(111.2.71)thl h$ phuong trlnh(111.2.62)vacach~phucmgtrlnhchotoantv ~, R3c6thegiitiduQ'C. Riengh$ (III. 2.40) - (111.2.43)(ho~cd(;lngt6ngquat(1II.2.32),(111.2.33» chUngtatinhloannhu sail: . . Tich phanphuangtrlnh(IIL2.42)theetrl;lcOz tudayle.nm~thoang,taduQ'c: (111.2.72) P2(x,y,z,t)=-pg(11- z)+Pk<;(x,y,t), saild6thayvaocacphuongtrinh(III.2.40),(1II.2.41),(IIL2.43)vathemdieu ki~nd(>nghQc(IIL2.10),chUngta co h~b6n phuangtrlnh sail dayde (im Up V2'W2'Th: (IIL2.73) ~ 1ap. au2- gd11i+- k<;+lv2=0, at . ax p ax (IIL2.74) ~)2 - g8,,2+~a:q -lu2=0, at By pay (IIL2.75) au2 8v2 aW2- 0-+-+--a ,x oy oz (!ILl.76) On rlr, ~ -.!1.+u l ~+V I 0rJ2=W I . at -1'12 ax -1)2 &v -T)2 - 64- ~ 3: ?1!4ed d..ul'4<M4«9 4«-~ ~ td tit ~ ~ t:'~ {1M.~ D~giii h~phuongtrL.'1hCUL2.73)- CII1.2.76)nay,ngoaicaedieuki~ncho v~ toe iT,chungtac:mco themdieuki~neho112: (IIL2.77) nn-l=","-1,2 .J Caed<;tohameapm9tduqcxapxidumd~g: (IIL2.78) ~""in -"7" -'" oV I - Vi+lift- Vi-lift-I - Ox I 2&;oF' (IIL2.79) ~-I" V-n Vn oVI = ij+1Jc- ij-l~, 8yLik 2,6,Yj (UL2.S0) ~ .In -" -"oVI V, +1- V" 1- 'J~ 'p,- 8zI - 2,6,z liift k D~lllgsaiphancua(III.2.73)- (111.2.76)duqcviet.Mu sau: (III.2.81) ~ - ,,-1 ,,-1- ,,-1 p;' - p ~It , lL. TI2" 1 ' ", 2. 1. 1 ;.-.' 1. ;'r. 1. 1""J" ""jl< "'J ':'-1 + ..~'TJ '."-j +1 ",- 0-(' ' - V = {\+ .:;, ')1\, .'i\' if Zijk ' Ul ._Lj.:.~; p L..:..\-~i (III.2.82) " ",-1 ,,-1 ,,-1 p." - p " V?'ijk- V2ijk- a Tl2ij+!- Tl2ij-1+1 .~qij+lkqij-lI ."=0 A + 0 ,..,A ?~ ;P2;j,!; - , Lli ,,-,tiYj P - Yj (lU.2.83) ,~ " " ." " " U~.+I.' -U~. l ' V~..+lk -V~.. l ' W" +l -W".., 1 w; J.< -,- JI<+ ~'J ~'J-!A + ~;]'< "'<JI<-= 0 2ffii 2,6,Yj 2,1z~ (III.2.S4) ",,-1 ,,-1 .,,-1" ,,-1 ,,-1 112ij-1l2ij + ! llZi+1j -llZi-Ij, 1 llZij+1 -llZij-1 - I ' U! .-1 -r-VI .-1 - W "..1M -1]2;) 2&. -1]'211 2~y . -1]2/), J V6i cachsaiphannhuv~y,chUngtacoM~nhde (xem[74]) Menhde3: H~(III.2.82)- (III.2.84)xapxi h~(III.2.73)- (III.2.76)caphaithee A1:p,6,yj,6z<'CaegiatIi u2,V2'W2'Tl2duqctinhm9teaehtUO'ngminhfitnluqt titcaephuongtrlnh(III.2.81)- (III.2.84). -65- ~ 3: ~ ~6.u ~#<iiK~ ~ ~ --u Ut ~ ~ iD~ ft4t~ III. Mo hlnhd(mgIl;Ich-..ct~ phuangtrinhSaint.Venantl-chieu IILI Mo hlobbattmin 1110ngthuang,dtitfnhdongchaykhong6ndjnhtrenh~thongsongkenh ciiavimg3nhhuangthiiytrieu,nguCri.tasird1;lllgphuangtrinhSaint-Venant1- chieu([32][33]),trongtruangh91>n'ayinh huangcuamasatnhOtbi dKboqua vaxemS1!masatcuachAtlongvathanhranla dangk~.6 dAy,domuonxet hi~uUngnhOltacd\>ngleudongchay,de>ngthaixuAtphattitphuongtrlnhd\>ng 11!chcNavier-Stokes,phuOngtrlnhbaoloankh6iluqng,chungt6iduafa duqc m\>tmohinhtlJaphuangtrinhSaint-Venantl-chieu,trongd6c6s1!thamgiacua thanhph'AnhOtrongphuC1llgtrlnh[20]. ChUngtasirdl:1ngm\>ts6giathi€t saildAy: - ChAtlongde>ngchAt,khOngnenduqc,danghuang, - Ap suAt la t:.lJ.iiytinh. Khi d6tith~phuongtrinhchuy~nd<)ngt6ngquatbaagomcaetensorli'ng suatnhOt't~chUngtaco(xem[38]): (Il1.3.1) au au au au 1ap 1( at~ at~ Ot~ ) -+u-+v-+w-=---+- l-+~+- +Zvat ax By oz pax p ox By 8z ' (III.3.2) 8v 8v 8v 8v 1op 1 ( 81:~ 01:; O't; J -+u-+v-+w-=---+- -+-+- -lu at ax By az pay p ax oy az ' (III.3.3) ap az=-pg vaphuongtrinhbaaloankh6iluqng (III.3.4) OU 8v Ow -+-+-=0. ax 8y Oz (trongd6 I =2msincDd~ctnmgchoIlJc Coriolis) -66- - e,~ 3: ?It#.Ii.~"¥~ 4«9 4a ~ ... d Ut ~ &JWd.fT:1~ {I4t~ MienkhaosatQ cod~g: Q={(x,y,z)/Xd~x~XC'I:t~y~I:, -h(x,Y)~Z~ll(x,y,t)}, trongdo,X,j'Xc' Y.t,I: chicacc~ntrenva dumcuamientheoh1;1cOx,Oy. Dieuki~ntrenm~thoangvadumdayduqcchonhusail: (III.3.5) wi =DT1+ul DT1+vlDT1 1] at 1] ax 1]ay' (I11.3.6) ak ok W I =U I - +v l - .-h -h a. -h '"' X oy Lull Y d day,doch9nt:I¥ct9ad<)cohuangOznguqcvmhaibaitomcuahai ffi1;lCwac, lienu, v, w duqclAyt4i cacgia tti nguqcl~icuaz=T)(x,y t)va z=h(x,y). III.I.! Hephuon~trrnh2-chieu Chungtagiathi€tthemdingd<)sauH =1l+h cuaml;lcnuackh6ngdang kesovaim~tphingflamngang,c6ngmala H « min{Xc- Xd, J: - ~}. Khi dochungtacoth~duavaocaed~iluqngd~etrungchos~phAnb6 -- -- v~ t6etrungblnhtheoehieuthingdUng: (III.3.7) 1] U(x,y,t)=Ju(x,y,z,t)dz, -h " (III.3.8) 1] V(x,y,t) = J v(x,y,z,t)dz. -h Truaehet,chungtaxetphuongtrlnhlient1;le(III.3.4).Tfchphanphuon trlnhn'a.ytheoztU- h(x,y)denl1(x,y,t)taduqc: (III.3.9) 1]au 1J.8v 1]8w f~dz+ J -dz+ f~dz= 0, -h ox -hfJy -h8,. - 67- ~ 3: ~ ~ taL.u.m ~. ~ ~ fIt4- U Ik ~ ~ ~~ ~ ~ X6ttfchphftnthunhifttrong(III.3.9),ta CO 1) au a 1) Br1 BhI-dz= - Iudz-ul1)--uLr.-,-hax ax-h ax ax ho~c qII.3.10) IT) au au Or] ah-dz=--ul ~-ul -, -haX ax 1)ox -hax tll<1ngn;rtfch pha.n'thuhai .. (I11.3.11) ~8v av Or] ahJ -dz=--v\ --vi - -hOy Oy 1)8y -hay va tichphanthllba trong(111.3.9) (111.3.12) raw dz= wiT)-WI-h'-h8z Do di~uki~n(111.3.5),(II1.3.6),suyra (I11.3.13) 1) 8w . Or] Br1 Or] ah BhI-dz=-+ul -+vl -+ul _+vl - -h Bz at T) ax T) ay -h ax I-h 8y Thay(III.3.10),(III.3.11)va(I11.3.13)vao(I11.3.9)taduqcphu<1ngtrinh cho11,U, V: (1II.3.14) Or] au av-+-+-=0, at ax 8y VOi caek~tquatren,chungtacoM~nhd~ Menhde1:PhU<1ngtrlnhbaatow kh6iluqngtrongvungnuacnongtheovipl t6cU,v vad\)sa.uH cod<;lng: (I11.3.15) aH +au +av =O. at ax oy -68- ~ 3: ~ 4J i<u~ ~ ~ ~ --d tUt~ ~ 'P<f-~ pM.~ D6i v6iphuongtrinhchuyendQng,chUngtaco phuongtrinh(III.3.1), (III.3.2)vmdi~uki?n(III.3.4)duqcvii!tl~i: (III.3.16) au+au2+auv+auw=-!op+! ( m~+a't~+m~ J +IV, at ax 8y az pax p ax 8y 8z (III.3.17) av+ouv+av2+avw=_.!ap +.! ( m~+ 81;~+ a't; J -IU. Of ax ay az pay p ax iJy az TichphAnphuongtrinh(III.3.16)theez tU- h(x,y)denll(x,y,t)taduqc: (III.3.18) 1) au 1)au2 1)auv 1)Ouw r-dz+ J-dz+ J-dz+ J-dz=~hat -hax -IIiJy -haz 1 1)a 1 ( 'r8't1 1)81;1 1)O't1 J 11,. = --=-J-.E.dz+-=-J --.ldz+ J~dz+ J -2dz +J lvdz.p -hOX P -hax -hay -haz -II ChUngtallin luqtxetcaes6h<p1gtrang(III.3.18), Soh(;lngthY:nhat 1)au a 1) OT] J -dz=- Judz-ul -.at at . '1)at-t< -t< hay (III.3.19) 1}au au OT] J-dz=--u! --IIat Of 1)at Soh(;lngthY:hai --- .. (III.3.20) 1}au2 a 1) OT] ah J -dZ=- J U2dz-U21 --u2 1 -.ax ax 1} ax -II ax -II -h .. Caethanhphanuvavcothephanthanht6ngcuahaithanhph1ln (III.3.21) 1 u=-U+u', h+ll (III.3.22) 1 v=-V+v' h+ll - 69- ~ 3: ?14ed Gal.~ ~~ ~ ~ - t4 Ut.~ ~ ?~ ~ ~ trongd6, u', V' la-cacd~ilm;mgtrungbinhcuau vav. TichphtUl(III.3.21),(III.3.22)theez tadu<Jc 11 5u'dz=O-h va 11 5v'dz=O. -h Suyra 11 11 [ 1 2J]u' ] 5u2dz; 5 2U2+U,2+- dz -h - (h+T)) h+T) ho~c (III.3.23) 11 U2 11 5u2dz=-+ fu,2dz -h h+T) -h Thay(III.3.23)vito(III.3.20)chUngtanh~ du<Jc 11ou2 a v2 Or] oh f-dz=---u2 1 --u2 1 - -hox axh+T) 11ax -h ox' ho~c (111.3.24) 11ou2 0 U2 Or] 8h 5 oxdz=oxH -u2111ox-uth ox.-h TuCII1gh;T,so hq,ngthrtbatrong(III.3.18)ciingdu<Jcphanthanh . (Il1.3.25) f 1l ouv 0 UV 0 5 11 Or] I ah -h 8y dz=ByH +8y-hu'v'dz-uvlllBy-UVI-hBy. ConSohq,ngthrttutrongvetraicua(III.3.18)du<Jctinhl~inhu sau: J ouwdz=uwjll-uwl-h,-h 8z titdAysuyra (III.3.26) f 1l ouw r Or] Or] 0rJ ) ( oh ah )-dz=u! -+ul -+vl- +ul ul -+vl - .8z 11 at 11ax 11::n} -h I-h ax -h ~}~ , ~ ~ - 70- e.~3: 11Wd-~ ~ ~ bp:,~ -d Ut ~ &Wt4 p~ ~ ~ Tieptheochungtaphantichvephaicua(III.3.18). Truachet,tit(III.3.3)taco: 1) "" 1) f opdz =- fpgdz , OZ -it-h guyfa (IlL3.27) p(x,y,z,t)=-pg(TJ- z)+~q' Thay (JII.3.27)vaosohqngthz(nhattrongvephaicua(IlL 3.18),taduqc 1)op 1) ( 0Tj ) 0Tj 1) f~dz=- f -pg~ dz=-pg~ fdz, -hffi: -h ox oX-h khido, (IIL3.28) 1 1)op 0Tj - f-dz=-gH-.P -hOx Ox D6iv& cactensorlingsuat,chUngtatfnhtoinwongtt;t (III.3.29) ~ . 1) r 01:~dz=~~f1)1:1dz - ~( t11 0Tj +t11 Oh )"" a 1 1...' ' a 'P '" ox P x P ,r; ox . -fl X-h -h "' (III.3.30) ~f1) m~dz=~~J~1:1dz-~(t~1 0Tj +1:1 1 Oh ] , ;}., "" 2 - 1);}., 2 -h ;}.,P -hv)' P OY-h P v)' . v)' (IlL3.31) 1)~_1 1 1 1 1~f~ dz=t3 1)- 1:3-h'P -h OZ Deiv& thankphanlifcCoriolis,dol=l(x,y)nen .. 1) 1) flvdz=1fvdz, -h -h guyfa (IlI.3.32) 1) J lvdz = lV. -h - 71- ~ 3: '114e444&uu ~ ~ ~ -edUt.~ bWd ?~ Idt ~ Thay (111.3.19),(III.3.24) - (111.3.26),(111.3.28)- (111.3.32)vao(II1.3.18)chung nh~dugcBOdesau B6de1:Phuangtrlnhchuy~nd()ngtheeUtrongvUngnuacn6ngc6d~g (1II.3.33) au au2 aUV Or] a ( f T},2 1f T) 1 ) -+--+--=-gH-+lV+- - u +- tldz + at axH ByH - ax ax -h p -h +~ ( _ru'v'+-.!:.f1}tldZ ) --.!:. ( tl l Or]+t1 1 Or]-tl l ) - By .)-h P -h 2 P 11}ax 2718y 371 1 ( 1 1 ah 1 1 ah 1 1 ) -- t -+t --t p_--l.-hax 2-hBy 3-h . Tllangtt;r,chUngtanh~ dllQ'CphuangtrlnhchoY: B6de2:Phuangtrlnhchuy~nd<)ngtheeV trongvUngnuacn6ngc6d~g: (111.3.34) av 8 UV 8 y2 H Or] lOT 8 ( I 7I , 'd 11J r 2d ) -+--+--=-g -- +- - uv z+- t z + at ax H ByH oy ax -h P:h1 a ( I 1},2 1 J 1) 2 J 1 ( 2 1 Or] 2 1 Or] 2 1 ) ' +- - v dz+- t dz - - t - +t - - t - ~, 2 1 1/ax 2 1/ 3 1}v)' -h P-h P OJ 1 ( 2 1 ah 2 1 8h 2 1 ) -- t -+t --'f' P 1-hax 2-hBy "3,-h ChUngtaduavaocactensor (111.3.35) T} 1} 1} 1} N; =I t~dz-pI u,2dz, N~= I t~dz-PJ v,2dz, -h -h -h-h 1} 1/ NJ2= N~= J t~dz~PJ u'v'dz -h -h vatUB6de2,Bdde3chungtac6M~nhdesau -72- e~ 3: ~ d.I4t U<i.-~ ~ ~ -d Uc.~ bUIt4?~ ~ ~ Menhde2: Giasu (i) M6i trubngla ding huang't~='t;, (ii) H~s6nhOteuaeh~tlongtheecaehu6'ngIanhunhauvz=VX'J= v, (iii)TensorN; duqex!pxidumd~g: 6 1 au z av Nl ( au av ) (IIL3.3 ) Nl =2vp-, Nz=2vp-, z=vp -+- , Ox By By ax (iv)ungsuiftrenb~m~tfnhtheeUngsut(tgi6[26], (III.3.37) { 'tll17=1/p)v/ eoseg, 'tzl =Y zpw2sine17 gag g (v)ung sut(tmasat~ daytfnhtheemasatella'dongOndjnh, r g U(U2+V2)Yz I 'tll-h=2" P Hz ' i C V(U2 +V2)Yz I g I 't2 -h =c2 P Hz (vmPakh6iluqngriengcuakhongkhivac Iah~s6masatday) (III.3.38) Khi do,h~phuO'J1gtrlnhehuy~nd<)ngnu6'enOngcod~g: (III.3.39) au+~u2+i. uv=-gHfJr]+N+V~U+V~ ( au+av J - at axH 8yH ax ax ax iJy 2)h ~ g u(uz+V +1/ ~YV~/coseg, - Hz pCZ (III.3.40) av+~uv+~VZ=-gH8rt-lU-VI1V+v~ ( au+av ) - at OxH ayH fJy fJy Ox 8y v(Uz+vz)h -2- +1z~wzsine CZ Hz g p g g _TJ. - ~ 3: ~d- 4&~ ~ ~ ~_d Ut~~ 'P~fdt~ trongd6, I i l 8rl i l 8rl ' I (°- 12)'t' l =-'t1 --'t2 -+'t3' l-, "TJ 'TJox 'TJf}y 'T) I , j ah , I ah" ( ) 'ti-h ='t~-hax+'t~-h f}y+'t~I-h' i =1,2 Nhuv~y,M~nhde1vaM~nhde2 chochungtah~phu<1I1gtrmhli~nUJ.c chuy~nd<ingd~xacd!nh<;.hieucaoH ciingnhuphfulb6trUCingv~ t6cU, V trongm~tphlingOxy.H~caephuangtrlnhnllykhacsov6i h~phuongtrinh Saint-Venanthaichieubchb,e6thamgiacaethanhphllnd(;tohamb~chai. III.l.2 HephuffilitrinhI-chien Dngd(;tllgm<itehieutVaphuang trlnhSaint-Venant,chUngta gia thi~tday eualong clane6 d(;tllgnila hinh lang 1'1¥,stfthayd6ibem~tvadaytheo1'1¥cOykhongdangk~.Chungtac6d~dang B6de4: GiasirV =o. u lahameuaxvat.lucCorilolis1=0' lue fli6 WE!=0,H 'H " . '-' Khi d6h~phU'<1I1gtrlnhtronglongdAnc6d(;tllg: (III.3.41) aH+au=0,at ax (I11.3.42) au 0 U2 Or] g vial iYU a2u -+--+gH-+--=2v-+v- at oxH ax c2H2 ox2 8y2' (III.3.43) gH Br1- a2uv0 02 . Dinh Iv 1: Cao d<i11euam~tthoangva luu IU'<JllgQ cuadongchaythoa (III.3.44) Br1 aQB-+-=O at ax ' (III.3.45) 1 aQ 1 a Q2 Or] QIQI 2va20--+---+-+ ' =-- gAat gAaxA ax c2A2RgAax2 -74- e~ 3: ?It#!d ~ ~ ~ ~ ~ -cdUt ~ ~ JP~ pk ~ !Tongdo, -A ladi~ntfchm~tcatd13.longda.n, -B litchieuf<?ngm~thoang - R =;labankinhthuyl1;lcualongdiin, Chung minh ChUngtaduavaoham(j cod~gthactri€n tUhamUnhusail: (IIL3.46) U(x,I)'={~ v6i nhftngdi€m bell!Tonglongdiin v6i nhfi'ngdi€m benngoailongdiin Tfchphfulphuongtrlnh(IIL3.4I)'theey tU-ooden+00, chUngtanh~nduqc: 00 aR f 00au J-dy+ J-dy=O-00at -00ax ho~c (IIL3.47) a m a ": -- J Hdy+-:;-J Udy=0at-m ox-m Do Q la hmluqngdi quam~td.t co di~ntfchA vaothCridi€m t,thl (IIL3.48) 00 Q(x,t) =JUdy ~oo va (III.3.49) 00 A(x,t) = J Hdy. .. -m Thayvio (III.3.47),taco (IIL3.50) 8A + 8Q =O. ot ax -7S.. ~ 3: ~ d '" uu 4119bp;~ - u Ut~ ~ ?~ ~ ~ Nell qUaDt.ftmtheo1T1;ICOZva g9i l;=l;(z) la chieur()ngcua long dana caod()z,tIll aA a T} 1/ a~ ilr1 ah - =- J~(z)dz=J -'2dz+~(l1(X,t»)--~(-h(x»)-.at at-I< -I<at at at (0 dAydogiathi€t, n~nc6th~coi 11=l1(x,t)vah=hex»~. Do ~khOngph\! thu\>ct va ; ~i -h bangkhOngn~n aA ilr1 - =~(l1(Xt»)-.at 'at B lachieuf\>ngm~thoeing,nen;(ll(x,t))=B. Khi d6,phuongtrlnh(111.3.50)c6 th~vi€t l~idu6id~g cua(II1.3.<!4). (I11.3.51) D6i v6i phuongtrlnhchuy~nd()ng,chUngta lamtUongtlf. Ti:rphuong trlnh(I11.3.42)suyfa (III.3.52) "'au coa u2 m ilr1 00g vial J-dy+ J--dy+ JgH-dy+ J2~dy=-mat -wOxH -w Ox -",c H w a2u m a2u =]2v~dy+],,~dy -'" ax -m 8y . X6tIanluqttUngs6h~g vetniivaphaicua(III.3.52).Truochetchungta x6tca.c86h~g cuavefrii. Sohqngthu:nhdtdo (I11.3.48) (IIIi3.53) Jau dY=~JUdY=QQ. -OJ at at-'" at Ti:r(III.3.45)sohqngthu:hatc6th~viet '" au2 a '"u2 a '" ~2 ]--dy=- ]-dy=-]U Hdy,-",OxH ax-00H ax-CD do giathietneufrenva do (I11.3.49)nen, '"a u2 a ~,m a ( u ) 2 J --dy= -U~ f Hdy=- - A,-mOxH Ox -00 ax H -76- e~ 3: ?1t4eJ- ~ #u, ~ bp:;~ -d !.k~ tJWd7'~ pMbP1i vadoQ=U%, cu6icimgchUngtanh~ duqc (III.3.54) CD a u2 a Q2 j--dy=--,-CDaxH ax A D6i v6i so hq.ngth((ba,v6i cacgii thietneutren,nen:kh6ngphI thu<)cvaoy, taco (III.3.55) f gH 8rldy=g 8rl jHdy= gAm,. i::CD ax ax-<D ax Sohqngeuoiclingtrongvetriiicua(III.3.52),chungtacoth~viet fCDL UIU!dy=Lfulu!dy=L fU!U!dy2 H2 e2.1 I e2 I-- -a>e -(D 1Ong~ ho~c feD g vial g -1 - 1 f gul l V I I ~-dy=-UU dy=-;;---B. -<De2H2 e2 I IOngd.~ne~H ,HI V~y (III.3.56) fa>L UIU!dy=L QIQIBe2 H2 e2 A2-CD BtlygiGchUngtaxetcac s6h~g cuave phii cua (I11.3.52).SO'h(;mgth nhatduqcbiend6inhu gall: (III.3.57) (D a2u a2 (D yPQ J 2v-d y=2v- J Udy=2v-ax2 ax2 ax2'-(D -a> Sohq.ngthahai duqcguyfa tit(III.3.43)do:=0 nen (III.3.58) riu V fJy2=o. -77- ~ 3: ?/tfe4J ~ U<fUt,~. ~ ~ .-u Ut.~ tIUMI. 'P~ f'4t~ Thay(1II.3.53)- (I1I.3.58)vao(I11.3.52)chungtanh~ duqcphu<1I1gtrinh chuy~nd\)ng(1II.3.45). Nhuv~y,DPili 191chochUngtah~phuangtrlnhtmhloancaode>11va lUll luqngQ cuadongchayme>tchieutlI<1I1gu;rphuangtrlnhSaint- Venant, trongdocotfnhd~nhi~uUngOO6t(xuAthi~ntrongthanhphAnd(!.ohamb~c2). 111.2Phmm!!phap ~iais6 D~giaih~(III.3.44)~(111.3.45)chUngta sirdl;lngphuongphapkhai tri~n ti~mc~ theothams6 be [48][69].D~tf;=2;; , giasircaehamQ va 11duqc khaitri~ntheolily thuacuaf; OOusail: (III.3.59) CD Q(X,t,f;) =LQ",(x,t)~"', =0 (III.3.60) CD 11(X,t,~)= L11",(X,t)f;'" ",=0 v6'if; dunhod~coth~coiSign(Q)OOula Sign(~). Thaycacchu6i(III.3.59),(III.3.60)vaoh~(1II.3.44),(III.3.45)saild6 d6ngnhAtOOftngh~s6ciingb~ccuaf; clingv6'idieuki~nbienva d:iuthich hqp,chungtaOO~-duqccaeh~phuongtrlnhsaildayd~tinhcaeh~s6cua chu6i(III.3.59),(III.3.60). D6i v6'icach~s6Qo,110chungtacoh~.phuangtrlnh (III.3.61) B OrJo+ aQo =0,at ax ~ a~+~~Qo2+OrJo+Qol~1=0 gAat gAax A ax c2A2R (sJ Dieuki~nMU ciingOOudieuki~nbiencuah~naytrilngv6'idieuki~ncua h~phuangtrmh(III.3.44), (1II.3.45). -78- e~ 3: ~ d 6..uUeUt,~ ~ ~ -U 6<k.~ ~ p~ ~ ~ D6ivrncach~sO'Q"" 11""m=1,2, ...chungtacoh~phuongtrlnh (111.3.62) B Or]",+ 8Q", =0 at ax ' ~oQ", + 2 ~(1Q", +811",+21!20IQ",= (Sm) gA at gAox A . Ox c2A2R p",(!20,Qp...,Q",-J vmcaedieuki~nbienvadllud~g thumnhat.Trong(1II.3.62)thanhph1lnve phaieod~g: (II1.3.63) ~(!20)=~02~A ox2' d6ivmnhUngm~2 taco: (111.3.64) pJC20,...,Q",-J=~a2Q~-1 L: [ ~~ OrQs +QrQsSign(~) ]A Ox r+s=", gAox A c2AIRr~l.>'~l ChUngtanh~ thaybaitoan(So)d~g (III.3.63)l?iphi tuyen,trangkhi bailoan(8m)d~g (111.3.64)littuyentfnhvad~giaibitiloan(8m)nftychungta c1lnphai co tatca cae 1mgifu cua cae bill toan (sJ, i =1,2,...,m-1. Trongmts6baitoan,ch!ngh<;tn[43][47],thams6nhi~us xuathi~n nhulitmt?th~s6becuas6h~g phi tuyenvmd<;tohamcapthap.Truemghqp khih~s6nftyxuathi~ntrongs6h<;tngd<;tohamcapcaobon,ketquatinhtoan cho1mgiai6ndinhbon(xem[48]). D~giiiicaebititoan(s(J ), (sm)atrenchUng~asu dl;}ngphuongphapsai phfulvmd()xapxi capm()theothaigian(M) vakh6nggian(l~1ax{!hin. ~(so) D 1 1" '\ !h.ata=- 'Y= va 11..= !... . gA' c2A2R I M -79- ~3: ~44I.4t~ ~ ~ ~ _d Ut~~ ?~~~ Baitom (So)dugcvi~tdumd~g saiphAnnhusau: (I1L3.65) Bn ( n - n-l ) /Y' _/Y' =0i Yi 11oi 11oi +~i ~H , a~A,(nn, - nn,-I)+11n,- T)n, +a~ [ (~J2 - ('4:-1Y ] +Llx,y~nn,lnn, 1 =0I I ~I ~I 01 0,-1 I lin lin I I~' ~I L~ '<~-1 c6 th~tuy~ntfnhh6acac8,(5h~g phi tuy~nnhusau: (II1.3.66) (g;J2 ~ ~i-lg;i' (III.3.67) ~I~il~ ~¥2~i-ll. Khi d6h~phuangtrlnh (III.3.65)duqevietl~ (III.3.68) { nn - F: n +/Y' E n-l~i-l - j Y;T)o; ~; - j Y;T)o;, nn-l n - n + n - 1i~ = n n-l 11oi T)oH XiQ;;i a; '~l ~-l ai AiQ;; trongd6, (111.3.69) 'I/~=a~A.+a~Q;;;-l+~, y~ l nn,-l l . to, II lAin II~I Bi~udi~ntheed~ngtroydu6i,h~(II1.3.68)dugcvietl~i: (III.3.70) { ~i-l =Li11~+1;~i+~i' T)~= P;Q;i + R; trongd6caeh~86troydu6ic6d~g: (111.3.71) Li =BtAi' (111.3.72) 1;=1, (111.3.73) 5;=-B'/AiT)~~t, -80- ~ 3: ?1t1ed 6.uuu, ~ ~ ~ - td Ut ~ PWd jD~ fJ4t ~ (III.3.74) p a~IY'-1H -X. +~-1 p= I A", ' 1 1-AB~P - Ap;~If:nTl-l'. , .-1 . ~.-1 ~"-l (III.3.75) RH - A.If:P ,,71-1+'1 nn-1 A,a~FIY'.-1, . ,-1'10. J\,.~ - . , ,~ 1 71-1 ~= 'K ,,~,-1 - " X.a~If:nTl-11 A.B.P - . . ,~HI . ,-1 ~~1 Nhu v~y,phuangtrlnhtroy du6i (III.3.70) vOi caeh~so (IIL3.71) - (III.3.75)chophepchUngtaxacdjnhduQ'ctiltca,cacgiatq g'ftndungcuabai toan(So)khibietdieuki~nbienvem1!cnUde". III.2.1 B?dtmin(8m) Tuangtl.;lbaitoan(So),phuangtrinhsaiphaneuaphuangtrlnhthunhat trong(III.3.62)c6 d~g hoanlOangiongphuongtrlnhthunhatcua(III.3.65), Conphuongtrinhthuhaidoe6xetthemvephainend~ngsaiphanc6thayd6i: S;Yi("::"-,,';:2)+Q::U-0:-1 =0, (III.3.76) a~Aj(Q: - Q:::;l)+,,::..-"::"-1+2a.~(' ~Q;,.- ~-IQ::U-1J +'..1~ ..1"..~ "~-1 +2.6.x:v"IIY'. IQ" = A" lY'., , I, ~I "" LlA.1 .,, "" trong d6, (III.3.77) Q~Q;: Q~-IQ~-1 l 2 I " ~ - 71 p" = ga~0 Q"'-1 - ~ a~ A; A:-l - '\f~Q " QTlSign(QTI.)MI ':::I 2 L..J, A" I, n $1. 01 ux j r+s=", LlAj r~l; .~1 - 81 - ~ 3: ?!Ue.~~ uu 4419lip:,~ -- r,.lUt~ ~ ;D~,ut ~ D~g troydu6icuah~(III.3.76)nhusau: (III.3,78) {Q n. 1 =L:nn.+Tnn.+S.,J>U- ,""" ,~ , 'nn.=PQn.+R., 'J>U "... , vOicach~s6 (I11.3.79) L. =EA"I I,. , T =1,, S. = -B".A.'nn~l,, I ,""" (I11.3.80) . 1';-1- a~Aj- 2~jY71Q;'il-2a7( Q;;j - Q;;i-l )P.= ..1;' ..11', L'i L'i-1 1- "IBnp 2/..,.ansnnn. ' /\,. . . - ",~,-1, , ,-I ~~1 (I11.3.81) R. - ')".EP 'n1H+A.a~n7l~1-2Aja7B;Q;;i-l'nn~l+ lxxpn. ,-I ",-I""" "~I An ',"" "'" ~= ,-1 1- A.E P - 2A;C1.7B;~-1 I I 1-1 ..11' L'i-1 Nhuv~y,bangcachtUCJngtqbaitoan(So),chungtat1mduQ'C1mgildxAp xi cuabili tom (Sm)'Cu6i cimg1mgiiii cuabai tom (III.3.44),(III.3.45)~i nhfi'ngdi~mrmr~c(Xj,tJ seduQ'cbi~udi~nquat6ng1mgiaicuacacbaitoan (So),(s,J nhu(I11.3.59),(III.3,60), -82- e~ 3: ?J4ed ~ uu. ~ ~ ~ w4U Ut ~ ~ iD~ ~ ~ IV. BaitminIantruyenvakhuechtancUanguongay0nhi~m IV.l M6 blnbbili tmin D~khaosatbailoanveSlJIantruyenvakhwichtancuanguon6 nhi~m, chUngtagiasu<p(x,y,z,t)bi~udi~nIuqngnhi~mbin duqcIantruyenvakhuech tan detheeqiiy d~ocua caeh~tmoi t.n1emgehuy~nd'ing vm.v~ t6e V(x,y,z,t).MienkhaosatQ duqecoiIad6ngchat,kh6ngnenduqcvaduqcbaa bcbbi m~txungquanhL:: ,m~ttrenL::o vam~tdum.day2:H . Khi d6bailoanm6phongslJIantruyenvakhuechtin euanhftngngu6n g~y6nhi~mc6d~gnhusail(xem[22][23][24]): (InA.l) c<{) C([) em O([} 0 C(f) ~ +u-=- +v-~+¥v--'- =ULVD+-V---'-+ i , at ax ev Oz" aT GZ ' Y{V",.~)~n \.-I', In,T; 'i\-~'f"~iC:"""" ;;':<-"~l' trong d6, - Lt,V, 'vi! ha' tb?;-t, Phi.:n "'1'!'1V""'r'tor H:'in ..lU<C lito,' " "- hUlH '-~- '-~... ,_v, ': . , \"""J ,-: - 1-1 h~sokhuechtand9Ctheotll;lcOx, Oy, h~s6khuechtin d9CtheotI1;1cOz, nguongay0 nhit~m. - v -] D~giaibailoannay,ngoaiphuangtrinh(IlIA.!) chungtacanthemdi;.~u kiendati (III.4.2) <p=<Potrong Q, khit=0 'T>; ,~;;{' rt'l':-'\p ]:1 &-n hi ;5.p\.. -~ ,~ ~'- .~,':'H ~.'-... ,TTT J. "\..11. , ..J J q) ::::(j)s tren L:, t E (O,T]' .. i~,. ,1 i " \"U,J..'-T.-rJ D<p /. .," )'- t -., ( i T'-::;-=O:.<.p iT0il """0' C\-',l I, OZ (('" la ' ha ' m khA no Am ,.ta~c trung' ChosuturVno ta ' c ".AimO~1t""l".~o h,~-,u.., U 0 a , u.' -'.' VHO -< I'j,." -. l'-"'_.'LO '".. ,-,',, (III.4.5) 0«>=0 tren2:", t E(O,T].Oz " - 83- ~ 3: ~ J. tat Uht- ~ tip:.~~.a U Ut ft~, MuM.'PaltaU(k-fd/ m'fbr '---- IV.2 Slfduv"hatB~hiemeRahili tHan BiBbIv 1:Giasu~,v, u:, exIacaegiatr!kh6ng~mva (I11.4.6) w=0 trenLo va Lw rr d'lrong 0, - " {1TI /; '7\\..i.~l ; r11=('7;i) ntfn 11 '>n.. "' " "... ~v... ., ----H - < . " ' ,"" "':':' 1" " " ", ' L o '.. -n';-u l' < r\u~ Or; L- (IlL4.8) - i U" = U;,- Un. Khi do,baitoan(IlIA. I) - (III.4.5)c61aigiJj duynhaL C h11n g min h (xem[80]) . Dodieuki~nkh6ngDenduqcvad6ngchat (IIIA.9) divV=0 cuam6itruemgDenphuongtrlnh(I11.4.1)co th~vietl<;linhusail: 8<p ,- a c<p , , -+dIVV< p=~(D+-V-+ f,at ., ozoz'(IlIA .10) r1h5.nhaive cuaphuongmnh(IlIA.! 0)vill cp,saild6tfchphanthen!tc: oi~TitTf"-l ' ...to 'm (\ 04_~- LCL' '0 " 4,. _4L_4 -- ~:-"-- -,; t ' all"" () "t'roorari"k~ \ l V!.\ ~rl ' Jlh J\'~("""' en ta cc',.'..J..;'h,- ,-" ,'::;:- "~.' "<"" ,',J,-" . " (IIIA,II) (f) 2( ' X "71" )' .(I)2{y,,~nj J .:':,'F'(".'J ',r.-"'... "t""-.I...", . "",1.,'.,.' df:2-1 ""'d~2+ld!'~~(12 .J r) .'.! r;'" " ,,- 02::" -, T { lIf ( o ) 2 ( 0 \2 1 ( a \21 =-I dtI 1;: + -;)tva~)jdO+ +Tr d { U,r <Pacrd') +v( r <Pa<pd) - r<p°cpd')'\ I,l+ r dT! f(i)d~2"' 8 - "' a - ,J' - _ I ' "'," " n \ " - 0'7'" ~0 "" ,.. L. '" L J."o~ -" - /...1'" 0A r!,{«mt7 3: "1'Jt.y-~ii ;:a'(,N,il~ "f.j"t';!;,,-.{~':D'!""i;~i:': ,-'f(~-,'", (bdttyhl16'ngcuavectorphaptuyencuam~t2:0va 2:f{cohu6'ngnguqcnhau, nentrongtfchphiing1lncu6imangd~utim). Khi d6,tfehphantha:batrongvetraicua(IlIA. 11)dl1qcvietl';ti: J dtf (V.ii)(p2d2:=J dtf u: <p2d2:+ J dtf U~<p2 d2:, 0 an 2 0 ao 2 0 an 2 vadodi~uki~nbien(III.4.3)vagii thiet(III.4.6)cuaDinh191,taco ' J dtJ&';'1>' dL> J dtJ U:;' dL;+J dtt~.;; dL;, ' 0 an . 0 ~"': :..",o~"" (IlIA. 12) (IIIA.I3) T£ehphanthtthaitrongvephdicua~.IIA..II),do(III.4.3)c6th~vietl';ti T D( T 8 f d!f.1f<p~d2:=I-lfdtf <ps~d2:. 0 ~ an o. ~ ' On Do dieuki~nbien (III.4.S)nen tfchphan thItba trongvephdi cua . (IlIA. 1I) duqcviet: T o<p (IlIA. 14) fdtvf<p-d2:=o. 0 ~H oZ ' Tfchphtinthututrongvephii cua(III.4.Il) dl1<Jcsuyratir(lII.4A) nhusail: (III.4.1S) T .' a' -' T':, fdtv f<p~d2:=vfdtfa<p2d2:. 0 ~ oz o~- " Thay (IlIA. 12)- (IlIA. IS) vao(lII.4.11)tanh~ dl1qc: , ' (lII.4.I6) ) T + 2 f<p2(x,y,z,TdO+fdtfu,,<pd2:+ " 2 0 ~ 2, (1 .J:) , ,. '-':;'", . -, . - .... T'f { B 000 ] ' a' } T .. +fdtfi (~)2+(~)2 +V(~)2 dO+vfdtfa<p2d2:= 0 ol ax 8y oz 0 Lo 2 T - 2 TOT =f<PodO -5 dt5U"<PsdL: +!-l5dt5<Ps~d2: +5dt5f(pdO 0 2 0 ~ 2 0 ~ an 0 0 - 85- ~ 3: ~ J. &.ituu ~ Up:,~ - e.lUt~ ~ 1D~ ~ au,iM D~chUngminhsq~uynh~tnghi~mcuabaitom,chUngtagiii sitcohai nghi~m<PI'<P2thoaphuongtrlnh(I11.4.IO)cUngvOldieu,ki~,ncTh.u(IIlA.2), cac. dieDki~nbien(IilA3) -(II1.4.5)vacacdieDki~nb6sung(I11.4.6),(IIl:4.9).Khi d6hi~u~=<PI- 'P2thoamanphu<1Ilgtrlnh(xem[2~][24]) . . (IlIA.I?) . . - a ~ 8qi+divV~=~~+ OZv 8z '-at dieDki~n<fAu ~;."!!, . ~=0 trongQ, khi t =0'. vacacdieDki~nbien (I11.4.I9) .n.__,. . '~=O b-en1;,'te(O,T], : . ,~, ~001>tie~'Lo; i e(O,T],az (IIlA.IS) (IIlA.20) ~~0 ~~nLH, te(O,T].az , " D6ivOlbaitomchoham~nhuv~y,thayvito(IlIA. 16),tanh~ duqc: (I11.4.21) J~2(x,y,z,T)dO + J dtJ { ,J(~)2+(~)2 ] +V(~? } dQ 1:- g , 2 0 g L ax oy oz , , . , ., , T U+~2 T +J dtJ-E-dL +vJdtJ a~2dL= O. o',L2 ..0 Lo BCrlvi cacgiatri 1-1,v, u:, a trong(IIlA.21)deukh{)ngAm,Denh~thuc (IIIA.21) chi bang kh{)ngkhi ~=0, conghlala2" IV.3 Phuan~phap~iais6 D~giiiibaitom (IilA.I) - (IIlA.5Y;chUngt6isitdl;UlgphuongphapphAn fatheoquatrinhv~tIy d~duavegiiiihaibaitomsau(xem[79][80]): ~-". Trong(I11.4.1)chungtad~tv=0,1-1=0vab6quanguc'mgAy()nhi~m, d6ngthaichuydendieDki~n(IIIA.~),(IIlA.3), khi d6phuongtrinhc6 d~g phuO'IlgtrinhIantruyench~tgAynhi~mb£n: -86- e~ 3: ~ d t.u~ ~ 4tz~ ..sU &&~ /1ti:Ic4jD~ ~ ~ (111.4.22) o<p OU<p Ov<p i3w<p-+-+-+-=0 at ax By oz ' <P =<Potrong Q, khi t=0, <P=<PstrenL, t E(O,T]. O<P . Oz =a<ptrenLo, t E (O,T], , O<p=0 trenL1n t E(O~T].'"' -..OZ Hill toan(f2) Neu cho u=0,v=0, w=0, phUOTlgtrlnh (III.4.1) co d~g cuam<?t phUOTlgtrinhkhuechtan (IIIA.23) O<p a o<p ~=~<p+-v-+f, ot . OZ,OZ.. <P=<PotrongQ, khi t =0, <p=(PstrenL, t E (O,T], O<p (- =a<ptrenLo, t E O,T],Oz o<p . (- =0 trenLN' t E o,r].Oz D~giii bititoan(III.4.22),(TII.4.23)chungtaphanho~chdo~ [O:T]bai caedi~mt"=nM, '\In=O,[T/MJ.Khi d6i1ghi~mcuacac.'bili:toan.nayIanluqt I duqctlmtrentUngdo~ncon t"~t ~t,,+1. -D6ivOibililoan(Pi) chUngtatim<p~(x,y,z,t"+l)thoaphuangtrlnh .. O<PI OU<PI 8v<PI i3w<PI- 0-+-+-+-- at Ox fJy oz ' (TII.4.24) .<PI=<P;trongQ, khi t =t", <PI= <PStren L, t E (t",t"+1]' - 87- ~ 3: ?14t4i Ut U~ {dt.~ Ol==al!ten 'Lo, te(t"'/"+l]'oz O<pl~0 'tr~nLH:t e(t",t"+1].oz .,. - . .,\ Sail dotlm2(X,y,Z,t"+1)tUbili toan(P2): , O<p 0 o<p1.=I IL).m +- v 1.+f >,at r-T2 oZ 'az' ,,+1 (\ kh ' <P2= <PI !tong ~~, 1t = t", (IIIA.25) 2= <Ps!ten L, t e (t",t"+I]' O<P2= a<p2!ten Lo, t e (t",f"+I]'oz O<P2=0 !tenLH' t e(t",t,,+JOZ . - Dinh Iv 2:Lai gi:ii xApxi <P2titphUc1ngtrli1h(ITIA.25)sethoamanphuang!tlnh xuAtphat(Il1.4.10). C hun g mi nh (xem[23][24]) ChUngtatfchphfultheethaigianphuangtrlnh(ITIA:24)trenkhoang(t",t): (II1.4.26) I ~- J divV <Pldt In Thay<PI dumda:utfchphfulbai chinh(Il1.4.26)taco: (Il1.4.27) <P J x,y, z.l ) = <P;- [ di{ V( <P;- [ divV <p,dl)]dt ho~cvietl~i (IlIA .28) <p,(x,y,z,t); '1'(-'-(t- tJdivV<p; +[di{vIdivV<p,d}t, -88- e~ 3: ?X1e4J d.u~ 4«9 ~ ~ ~ d Ut ~ ~ p~ /1M~ suyfa (1IIA.29) <Pl(x,y,i,t)=<p{- (t- tn)divv<p~'+0(M2). ' Cho t =tM! va d~y & = tn+1- tn,h~thuc (111.4.29)duqc viet l~inhu sau: (II1.4.30) <Pt1=<p{- &divV<p;+0(&2). Tuangn" tichphfulphuangtrlnh (1IIA.25)trendo~ tn5 t 5 tn+!v6idieu ki~nd1lu<p;=<p;+!,tanh~ duqc: (111.4.31) tn+l ( 0 0 )(p~+l=<Pt1+!~<P2+ozv ~2+f d~,n khido, ( 0 0 n )(IIIA.32) <p~+l=<Pt!+&~<P~;+oZV:2 +f +0(&2). Thay<p;+ltit(111.4.30)vao(IIL4.32)taco: (1lI.4.33) <p;H='1';- ru( divV '1';- ,.w.<p;- ~v~;-:r)+a(ill' ) Chiahaivecua(IIIA.33)cho& vacho& -*0,tanh~ duqc o<p -+ 0 8<p (III.4A3) ~+divV<P2=~<P2+-v~+ f,at oz oz dieud6conghia<P2thoaphuangtrlnhxwltphiL .U H Degiaibaitoan(Pi), chUngtaduavitotofuti':r (IIL4A4) , . . 0' 0 '0 A=u-+v-+w-, ox ay oz ~ Khi dotaco (IIL4.45) ( ) J o<p o<p o<p ,A<p,<p= (u-+v-+w-)<pdO, n ox ayoz do (1II.4.7),tavietl~i (1II.4.46) 1 &2 8v2 8w2 (A<p,<p)=-J(~+~+~)dO.20 ax 8y oz -89- ~ 3: ~ d I..uU4M,4«9 ~ ~ -u Ut ~ DWI4 1D~ fi4t ~ GiasirmienkhaosatcuachUngtac6d~g hlnhl~pphuang,trencaebiend6i xUngMall,v~ tdcnh~giatrinhunhau,dOngthaidodi~u;ki~n(IIIo4.6),tac6:. (II1.4.47) (A<p,<p)=0, M\)teachhlnhthuc,coi .' i ,...! ' (IIIo4.48) A=~+~+~, trongd6, '. L1 O<p"'1<P=u-+ <Pouox 2ax' (I11.4049) .4z<P= v o<p+ <Pav By '2-By, ~<P=w o<p+<Paw8z 2&' Tuangt1!toaDti:rA, chungtaclingnh~nduQ'c (III.4.50) (.~<p,<p)=0, '\Ii=1,2,3. Tit (III.4.48)va(I11.4.50)chUngtac6M~nhdesan: Menhde1:CaetoantirA va~,~,~ dpmnghlabCri(IIIo4.44)va(I11.4.49)la toanti:rphanHennite. Nhuv~ydoM~nhde 1,chungtac6th~sudl;lngphuangphapphanfa (xem[91]),d~tachtoanti:rA theod~g (I11.4.48).Khi d6baitoaD(PI) duQ'cdua vebabaitoan: . Biii roanthttnhatt1m<P11tit<P2cuabaitoaD(P2) thoa: O<P11+u o<Pn +<P11au =0,at ox 2 ax (I11.4.51) <P11=<P~tfong Q, khi t = tn, <P11= <Pstren 2:, t E (tn,t"t1]. -90- 8~ 3: ?Jt~ d d.:u~ ~ ~ ~ ~ cd tf&~ bWd 'P~ tdt ~ Biii roanthtthai tlm<PntU<PHcilabai loanthunhat: (IIL4.52) o<p 'am m Ov --1l.+v2.!1.+~- =0 O "' t '" ') '" .0' ~0' ,,+1 ~ kl . <P12=<PH trong ~.:, L~ 11t=tn, <P12=<Pstren 2:,t E (t",tn+1]. Biii loanthttba tlmCP13tUCP12cilabaitoanthuhai: oCP13 913CP13Ow- 0-+W-+--- ,ot az 2 oz CP13=<p;;1trong Q, khit = tn, (IIL4.53) Ocp13= aCP13tren2:0, t E(t",t"+l]'az .' oCP13=0 tren2:H,t E(tr"t,,+Jaz D6iv6ibailoan(n), chungta ciingxettuangtv,trongdo loantitit co d~ng: (IIIA.54) A=- ( wl+~V~ ) .. ozoz Khido, (III.4.55) 0 ocp(Acp,cp)=- J (~cp+-v-)<pdQ, \l OZ iJz ti:rdAy suyfa, (A ~,~)=It {( :;)' +(:) ']+ {:;)}o Iad~ilu9'llgkhongfun,nencoth~tachtoantitA thanht6ngcilabaloantu111la xacd~nhduongtheod~ng(IIIAA8), trongdo, (III.4.56) , (III A .57) 02 1\ =-J..!ox2' 02 Al =-J..!fJy2' 02 A...,=-v OZ2' - 91- ~ 3: ~ 41~ ~.~It-4"9 Up:-~ .. e4Ut~ DUd;r>~ ~ ~ Tit (IIlA.56)chungtad~dangchUngminhduqcM~nhdesail: Menh de 2: Cac toanti1A va ~,A.z,~du<JcdPili nghiabffi (111.4.54)va (111.4.57)lani'raxacdiM ducmg. -' - - Nhuv~y,c6thesirdl:1I1gphucmgphanrad~duabaitoan(P2)ve babai toaD: Bai loanthunhatfun <P21~<P13cuabaitoan(IIIA.53) -,. (III.4.58) 'V<p21- a2<p21 at - 1-1-8.2 '- X <P21=<p;;I'trong Q, khit =tn' <P21='Pstren:t,'t E (tn,t~+I]. Bai loanthuhattlm <P22tU<P21cuabaitoan(IIlA.58) a<P22- a2<p22 at- 1-18)72 ' (111.4.59) 'P22='P~;1trongQ, khi t =tn' <P22=<Pstren'L, t e(tn,tn+J Bai loanthubatlm <P23tU<P22cuabaitoan(111.4.59) a<P23- a a~23-Of .-- ---v-+ ,at az az <P23=<p~1trong Q, khi t = tn' (1IIA.60) i a<P23=a<p23tren Lo, t E(t",t"+I]'az 8<p23=0 trenLn, t e(t",t"+I]'az . Tiep h;1c,chUngtasaiphancaebaitoantrend~duave h~-nhUngphucmg trlnhd~ s6tuyentinK Bai toan(IIIA.51) c6d:plgsai.phan:- (I11.4.61) ( ) ,,+1 ( ) " ( ) ,,+1 ( ) ,,+1 ( ) ,-. <PH ijk - <P2ijk ,,<Pu i+ljk- <Pu i-ljk <Pu ijk U~ljk - U~-ljk- 0+U.. + - . M Ilk 2&. 2 2&., , -92- ~ 3: "JJt1e d 64tU4UI.~ ~ ~ ~ td ~ ~ tJWd~~ ~ ~ Vietl~idurnd~ngmatr~ baduangcheo(xem[6]49][59]) (IIIA.62) trongdo, ( ) ,,+1 ( ) ,,+1 ( ) ,,+1 A <PH ;+ljk- C <PHilk +B <PHHjl<:= -.F, (IIIA.63) " A U"k=~ 2&,', " u"k 1B='-~ c=-- 2A~,' ill ', ( '" ( " "P")" k U' +I 'k -u. l 'kF=- -1)+'1 '-I. ill 4~.:"(,, Tir dAysuyranghi~m«PH):kduqctImdurnd~ng (IIIA.64) ( ) ,,+1 ( ) ,,+1 <PHHjk = a. <Pllilk +~;, trongdo,cach~s6truydu6iduqctfnhIDeocOngthuctruyhbinhusan: (III.4.65) , A. ~iB+Fa. - A - i+l - C-a,B' Pi+l- C-a.B'. I Ct2=0, ~2=<Ps' i . TuongtI;CchUngtacod~g saiphanchocacbairoan(IIIA.52) (IIIA.66) ( )"+1 / ) ,,+1 ( . ),,+1 ( ) ,,+1 ' )'" "<P1Z-ilk - \<PH ilk + " <P12 ij+1I<- ,<P12 ij-11: +«P12 ilk V;;+11:- V;j-1< =0V.~ . . 6t IJ 2!1Yj 2 2!1y.: ho~c (III.4.67) ( ) ,,+1 ( ) ,,+1 ( ) ,,+1 A,<p12 Ij+1<- C <P12ij/l:+ B <P12ij-1<=- F, vrn (IIIA.68) " VijkA=-, 2~Yj ( ) ,,+1 V~L 1 <PH'" V~+.c- V~oc B=-~, C=--, F=- 'i" + I)'" 'J-v.. 211Yj M ill 411Yj' Nghi~mdmdurnd~ng " (III.4.69) ( ) 1>+1 ( ) ,,+1 <P12ij-11:= aj <P12ijk +~j' vrncach~s6troydudi (III.4.70) a . = A - ~jB +F )+1 C-a.jB:~j+l-C-a.B' (;(.2=0, P2=<PS.) - 93- ~3: '1/tfed,~~ ~.~ ~_d Ut~t1UM4 fD~~~ D6iv6ibailoan(ITIA.53),phuongtrlnhsaiphfuJ.c6d~g (IlIA.71) ( ) "+1 () II+1 ( ) lItl ( ) lItl ( ' ) " <P13ilk - <P12ilk )1(', <P13iji:+1- <P13ijk-1 <P13ilk W~k+1- W~k-1- 0 ill + ilk 2&k + 2 2&k -, ho~c (IIIA.72) trongd6, , ( C ) ,,+1 ( ) lItl ( ) ,,+1 A <P13ijk+1- C <P13 ilk + B <P12ijk-!=-F, (I11.4.73) "",, ( )"+1" " A= Will: B=- Will:C=-~ F=- <P12ijl:+Wij.';+1-.~ijk-1. 2&k ' 2&k ' M ' ill 4&k Nghi~mclingduQ'Cfun du6id~g (II1A.74) ( ) "+1 ( ) "+1 13Ijk-1=,ak !13 ij{ + f3J:' trongd6cach~s6~z~132duQ'CtimtUdieuki~nbien(IIlA.53)OOu sau: (IIIA.75) A 13,B +F 1a'= 13 =) a= 13 =0k+1 C"- B ' jtl C - B' 2 1 A~' 2 .ak aj + aL1L.k DinhIv3:Neub lapthaigianthlln,chUngtac6 (I11.4.76) (IIlA.77) (I11.4.78) thl cach~phuongtrlnhd:;Li86(I11.4.61),(IIIA.66), (IIIA.7!) c6th~giai duQ'cd~ timnghi~mrOir~c<Pll,<P12,<P13tuongUng. Chung minh " Chungta chi c'AnchUngmiOOchophucmgtrlnh(I11.4.61),cacphucmg mooconl~ihoanloantuongtV. -94- ¥f! {;.I} < {ill:.}M Max{I . G Mill {b} i.j,): viiI: < ,) :Yjill ¥tf {1w;;.1}< {ill.}M e~ 3: 1It<fed d4tf4<Ue~ ~ ~ ~ cdUt ~~ ~ 'PVt~ ,W-rw,I4 Tu giathiet(III.4.76),taCO I "I ffi I U' kl< iIJ -- , &' suyfa I " "I I ,,! 1' U U u'" IAI +IBI = 1 7 ilk +- ') ilk I =~ ~- =Icl....,~, ...,~, ~, &, , , Tu da.ysuyraphU<1ngphaptroydu6i6ridiM (xem[74]). Baitoan(111.4.58)cod~g saiphAnnhusail ( ),,+1 { ) "+1 ( ),,+1 2( ) ,,+1 ( \,,+1 (IIL4.79) 'P21 <}k-, 'P" ;jk =f! 'P21 H Ifr - ('P21)~+ 'P21)Hik ,& ~,, .Du6id~gbadUOngcheo,chUngtacothevietl~i . . (IlI.4.80) trongdo, ( ) ,,+1 . ( ' ) ,,+1 ' ) ,,+1 . 'A<P21 ' +1'k -C <P~1 :" +B/en?1 ' 1" ='-F,. 'i ~Iji< \'f'-I-Ji< ' (II1.4.81) A=B=~ (L\xiY' 1 '21-Lc=-+- ( ) 2' & ~i F ~ «p13Y,:1 M. Nghi~mt1mcod~g (III.4.64)- (II1.4.66). ',. Baitoan(IIlA.59)cod~ng (III.4.82) ( ) ,,+1 ( ) ,,+1 ( ),,+1 ') ( ) ,,+1 ( ) ,,+1 <P22ilk - <P21 ilk - <P22ij+lk , <P22ilk + <P22 ij-li<. & -~ . ( ) 2 ' ~Yj . ~ ho~c (IIlA.83) , , , ( ) ,,+1 ( ) ,,+1 ( ) ,,+1 A <Pn ij+});- C <Pn ilk +B <Pn ij-lk =- F , v6i (IlI.4.84) A=B=~ (~yJ2' 1 2~C=-+- ( ) 2' & ~Yj ( ) ,,+1 F = P21ijk ' &' -95- ~ 3: ~ d 4.u~ 4«9 ~ ~ Wt4-td Ut ~ ~ iD~ fzM~ Nghi~mtlmco d~g (111.4.70)- (111.4.72). D6i v6i bili loan (111.4.60),chUngtaco ( r+1 ( ) n+l [( ) n+l ( ) n+1 ] [( n+l ] (1IIA.85) 23ift - 22ijk =VHl 23ijk+l - 23ijk - Vk 23)ijk- «f>23)~:~1 n /).t, ' . ,( t.zJ2 + !jk' ho~c (111.4.86) ( ) n+1 ( ) n+1 ( ) n+l A 23i'k+1- C 23i'k +B 'P221*-1=-F,"J ". "J" , J, . trongdo, (111.4.87) . ' ( " ) n+l A= Vk+1 B= Vk C=~ Vk+l+Vk - 'P22 ijk (A- ) 2' ( )2' A++ ( \2' F - ',' D£k ~k Llt &k) ill Nghi~mclingdugcfundumd~g (1IIA.76)- (1IIA.78). Vm caegia1IiA,B,C chob (III.4.81),(1IIA.84),(1IIA.87),chUngtadb dangcodugcD!nhIy sau: DinhIv 3:H~caephuongtrlnhd~is6(1IIA.79),(II1.4.82),(111.4.85)IubnIubn giai duqc d~t1mnghi~mrill r~cZl'22,'P23tuong,ling. V.Baitminvesl1lantruyenvakhuechtan nguonchatb~ntrongnuocdum<tat V.I M6 hlnbbili tmin D~khaosatdi~nbienm~ttI.!do cuanuocdumda:t,clingnhu stJ Ian truyenvakhuechtancuanhiingcha:thoatantrongnuoc,chUngtathietI~pm(>t h~phuC1Ilgtrlnhbaog6mhaiphuC1Ilgtrlnh(xem[77][83][84]): - phuongtrlnhBussinesqmbtam~tt1Jdocuanuocdumda:t,va - phuongtrlnhbieu di~nSlJ Ian truyenva khuechtan cua n6ng d(>ch~t hoa ta.T1trongnuac. -96- ~ 3: ~ d- ~ ~ .l!«9 ~ ~ HI8 U.t&~ ~ .,,~ p4t~ Giasirh~ttvctQadOxyZvmm~t phangxOy songsongv6i phuoogDam ngangcuachuy~nd(>ngphaixet.Khi d6 c6th~coim~tt;rdocuanu6'cdumdatla hams6cuatQadyx,y vathaigiant. z MienklulosatQ trongm~tphing xOy,vilngchuy~nd(>ngcuanuCtcva.chAt luqngnuC1Cnhuhinhve. Zd=Zd(xJ") 0 1'1..Y / ChUngtagiathier, -m~tt;rdocuanuCtcdumdiftZI(x,y,t) Damthifphoo sovdi m~tclift, - chuy~nd(>ngcuanucrcdumcliftganm~tdatlachuy~ndyngkhongap, - lapcliftsetZd(x,y)dummienchuy~nd(>ngcuanu6'cthamthayd6iit, - nuCtcdumdAtIa.chatlongd~ngchat,khOngDenduqc, - dongcharcuanu6'cdumda:tutintheodinhlu~thamDarcy[36][84] (IlL5.I) V(x,y,t)=-KVzJ:r,y,t), (trongd6K la.h~s6thifmcuaclift), - cliftlamoi trUOilgkhongDenduqcvading huang. Khi d6chUngtac6phuoogtrlnhBussinesqsaudAyd~motam~tt;rdo cuanuCtcduqidat: (IIL5.2) (j ~=V.[(ZI- zd)KVz1]+F, trongd6, - (j=a(x,y) : - F =F(x,y,t): dyr6ngcuadat, ... cuOilgdy cuanuC1Cm~thifmxu6ngm~ttt;rdo. D~rutra phuoogtrlnhthllhai (xem[21]),.chUngta gia sirtrongmr6'c chuachathoatanvmn~ngdykh6iluqngduqclaytrungbinhtheechieucaola S(x,y,t).Xet th~tichki~mtrahInhlangt.n;Iday dxx dyvachieucao(Zt- Zd)' kh6iluqngchittboatantrongkh6ithetichna.ysela: (IIL5.3) [a(Zt-zd)dxdy]S. -97- ~3: ~~~uu4"9~~_dUt~~ fDaJt4~pM.~ Suyra 811thayd6i theothOigian (IIL5.4) (;{~[(z,-Z,)S]}dxdY, Theokh6nggian,kh6iluqngn'a.ythayd6idodongthammangdi Ia .(III.5.5) , . V.[(zr-zJVS]dxdY vadokhuechtand6i lUll la" (IIL5.6) -V.[(Zt- z,JDVS]dxdy. Thayd!nhlu~thronDarcy(III.5.1)vito(IIL5.5),13nh~ du'lc (IlL5.7) '"'-V.[(Zt- z<t)KVztS]dxdy. - vathayh~86khuechtand6i luu D =AIVIvito(IlLS.6),13co (IlL5.8) -V.[(Zt-z,,)AKIVztIVS]dxdy. (trongdoA=A(x,y,t)lah~86tanx~). Trongmtdonvi thCrigian,kh6i Iuqngchathoatandongu~nnuacm~tF mangvitothetfchkiemITalit: (IIL5.9) FSdxdy. GiQ =Q(x,y,t) la cuem.gdtraod6i chAtlAytrungblnh theochieucao giuanuocvadAt,khi d6 luqngchAtboatantangthemtrongm\)tdonvi thCrigian dotraod6ichAtvOidAtsela: . (IIL5.10) Q(Zt- z<t)dxdy. Slf thaydoi kh6i 111gllgchaiboatantheothOigianva kh6nggian(do dongthfunmangdi va dokhuechtand6i lull) trongthetfchki~mITa8ebang t6ngcaengu()nbAndonuocm~tmangtOivadotraod6ichAtvOidAt. -98- ~ 3: ~ d-J.u ~ ~ ~ ~ HU.t4 Ut ~ ~ p~ ftk;~ Dodocluingtacophuongtrioo: (IlL5.II) ~~r( 7 - 7' )\S]- '\/ [(- - 7 )' ~ z C'J' - D f(-, - 7")'1 V!D- IID S]-Vatl.\""'t ~d v. ""t '"'<1f'..V tlJ V.L""'t ""d /w'AIV""t v - =FS+O(Zt -Z<1). Tfnhtofutuemgminhcaethanhphllnd~oham,(IlL5.II) coth~vietl<;ti: (IILS.12) (j ~S+(Zt-Zd)(j: - 'V'.[(Zt- zd)K"1z:]S-(Zt- z<t)KVz:VS+ -"1.[(z:- zJAKIVz:I'V'S]=FS+Q(zt - Zd)' ho~e (IlL5.13) [ az ] as 1 I --- '7 -, ("(7--\ --(--'" '" .J.. a Of V.[(L.: ""JKY'.:..:] F UT\..:..: kdJa ot -\"": ""d)J.T(\7""t"1SI r ( ')' I '] , )+'V'.lz: -z<1JAKj'V'z:I'V'S+O(z: -Zd . Dophuongtrlnh(IIL5.2),taco: (III.5.14) ( \8S" r'" I 1 ( ) Zt-Zd}(j &t=(,zt-zd)KVztvS+v.UZt-z,j)AK!'V'Zt!'V'SJ+Q(,Z:-Zd, chiahaivecua(IIL5.I4)cho(z:- Zd)'chUngta nh~ duqc phuongtrlnhcho Dongdch~thoatanStrongt111ooghqpthamphangOOusau: '(III.5.l5) 8S 'V'.[(z:-z<t)AKI'V'z:!'V'S]+KVztVS+Q.(j-= Of Zt- Zd ChUngtanh~ thayv& caeh~so (j> 0, A> 0",K >0, z: >Zd'l'V'z:1>0 thi (III.5.2) va (III.S.15)la phUffilgtrlnh d~g parabolictheo cac an Zt(x,y,t)vaS(x,y,t). V .2PhmYl12phap~jais6 V.2.! Phitan~trinh mat tit do D~giai caephuangtrlnh(III.5.2) a tr~n,chungtaduaved~g quellthu<)c nhu cacm\lc tI11O'c.T111O'Chet,chungta viet l<;liphuangtrinh (III.5.2), trangdo -99- ~ 3: ?14&4J t.i.t~ ~ ~ ~ ..,.d ~ ~ tJUtIk1D~ tW-~ cacth3nhphfu'tv~ t6c dugctinh theo(III.5.l) vOi Zt(x,y,t)ducx!p xi i:Jfan tinh trUc.1c. (III.5.16) OZ o(Zt- zes) o(Zt- zes) ( )( au av ) cr--'-+u +v + Z-z -+- =F. at ax ay t d ax By Kyhi~u (III.5.17) <p(x,y,t)=Zt(x,y,t)~Zd(X,y) thi(III.5.16)dugcvietl~i (IIL5.-18)- cro<p+u acp+v acp+ <p ( au+av ) =F. at ax By ox By Dogillthiet,chAtlongkh6ngnendugc (IIL5.l9) au av -+-=0 .ax By , nen (I1L5.20) craep+uocp+vaep=F. at ax By D~t a a (III.5.2l) A=uax+vBy' d6i vOi tOM ti':rA chUng ta c6 (A q>,ep)=J ( uBcp +v Bcp ) <fkiQ Q ox By ho~c (III.5.22) 1 ( au2 av2 J(Acp,cp)=21 0: + ;; dO. -100- e~ 3: ~ d.6atf4ht,4"9 ~ ~ ... ~..lUt~ ~ p~ {t4t~ Gia S11mienkhaosatQ eod~nghlnhchunhc).t,v~ toetrenbienbang khOng,khid6chUngtac6, (II1.5.23) (Acp,cp)=O. Til (III.5.23)chUngtac6M~nhdesau M~nhde1:Vaimi~nkhaosatQ=[X<1'Xc]x[~,YJthlloantUA xacd!nhbill (III.5.21)latoant11phanHermite. Do dieuki~n(111.5.19)toantUA duQ'Cvietthanht6ng (III.5.24) A= Ay+~, trongd6, (IlL5.25) <\<P= u O(P+ cpOUox 2ox' va (II1.5.26) .1 8cp cp '"' "-'2cp-=v-+- ov Oy 2ay' N dangthilyding (111.5.27) (~<p,<p)=f( u ocp+ cpou J <PdQ=f( u O<p2+cp2au ) dQ = n ox-- 2 Ox n 2 ox . 2 ox =f( .!.OU<p2 - cp2 OU +<p2ou ) dQ.=r .!.OUcp2dQ. n 2 ax 2 Ox 2 ox 02 ox... Tu dAysuyfa (IlL5.28) (r\p,cp)=O. Tucmgtl!chUngtaclingnh~duqc (III.5.29) (~<p,cp)=O. TiI (III.5.28),(III.5.29)chUngtac6M~nhdesau -101- ~ 3: "/It&.4J t4ct4U ~ 4a~ -d Ut ~ /JtiMk ?~ ~ ~ Menhde2: VOi mienkhilosat0= [Xd,Xc]x[y",J:]thl caetofu ti'r~,~ xae djnhben(II1.5.25),(II1.5.26)latofuti'rphfu1Hennite. Nhuv~y,tUcacM~nhde1vaM~nhde2chUngill co th~sirdl..lIlgphuong phapphanratheet9ad(?d~giiliphuongtrlnh'(III.5.20)(xem[79][80]). Caetofu ti'rl\, 1\ du<JesRiphanbencaetofu ti'rAt' A2nhusau: (1II.5.30) 11 11 u~+u~, ~ Uj+lj +Ujj 11 - 'J ,-IJ ,<p1l , 11-1 11 - 11<Pi+lj 2 dJ <Pi Uj+lj UHj( )11 2 + J, A1<P ij = 2~ 2 2~j, (111.5.31) 11 11 v~ +v~V"+l+ Vij 11 'J 'J-l <p1l 11-1 11 11IJ <Pij+l - 2 jj-l <Pij Vij+l- Vij-l( )11 2 + - , A2<P jj = 2!J.Yj 2 2!J.Yj . trongdoeacthanhphfinv~ t6edu<Jcxapxi dumd~g (1II.5.32) _11 _11 U n K Zti+l ' - Z ij = - J ti-lj 2!J.x ', va (III.5.33) _11 11 Zt' -z1l Vij= -K 'J+1 tij-l 2!J.Yj (vm Zt~la gia tti CURZti:J11mtinh l~ptru6c CUR<). VOiketquab cacml;lctru6c,chUngill coDinhly vesl;!xapxi vadndinh CUR1mgiilixapxi tuongUng. Quatrlnhphfulraduqegiilitufultl;!quacaebu6cnhusaudcitm nghi~m <p1l,<p1l+1tU <p1l-1CUR (II1.5.20) tren do~ [t1l-l't1l+1]: - TIm <p1l-1/2tUh~phuong trlnh (1II.5.34) 11-1f2- 11,-1 11-1/21 11-1<Pij <p'J +(A<p) =-F"cr 1" 2 I)M IJ - 102- ~ ~ 3: ~ d 64tuu. ~ ~ ~ f4 d Ut ~ ~ ;:;~ {141.hP!k - Tun <p"tith~phuongtrinh (IIL5.35) " ,,-1/2 (j <Pij- <Pij +(A <p)"=.!.F7-1/2, M 2 'f 2 " - Tun <p,,+1/2tUh~phuangtrlnh (IIL5.36) (p~,+J/2- (O~, ( ' ),,+1/2- 1F"If 't'lf + A {O - - '",.". 2't' " 2 IfV M If - Cu6i clingt1m<p,,+ltith~phuangtrlnh (IIL5.3?) ,,+1 "+1/2 <Pij - <Pij (A ),,+1;::;.!.F n+1/2(j + 1(0 ".M 't' ij 2 If Thay(IIL5.30),(II!.5.3l)vaocach~phuongtrlnh(IIL5.34)- (III.5.3?)chUngta nh~ duQ'ch~phuangtrlnhd<;\i86tuyentinhbaduem.gche<Yd<;\llg[6][49]: (IIL5.38) A<p a +l, - C{f'l~+Bma1 =-F,I J 't"J 't'1-. J d~tinh <p,,-J/2va <p,,+1,trong do " A - Ui+lf ' +u~ - IJ 4~ 'j B - u;+u~- - J I-lj 4~, 'I (IIL5.39) c =- .!2..M' - (j(P~ 1F =---Y...- -Fa vOia.=n-l hayn+1/2. M 2 If ' "' Bangcachtuongt1!chungtadingnh~ duQ'ch~ (IlLS.40) A<p~+1- C<p~+B<p~-l=-F, d~t1m<p"va <pn+1/2. Nghi~mtroydu6iduQ'cdmhoanloangi6ngcacm1;lctruacvatuongtV, chungtacodjnhly vesl;lgiaiduQ'cuah~phuangtrlnh(IIL5.38)nhusail: -103- ~s: 7JtfeJ.~~~~~_e.iUt~~ ?~~~ l!inIL.lY.l: Neucacdieuki~nsandftythoaman ~~aX&i S ~~{IU;+1jl,lu~I,IU;-ljl}, (IIL5.42) ~MF~YjS ~~{jV~+ll,lv~I,IV~-ll}. Thlh~(IIL5.38),(III.5.40)e6th~giii duQ'c (I1I.5.41) Sankhicaegiat:rirqir~e<p~t1mdU9ca lapthaigianthun,chUngt2.suy ra nghi~mcua phuongtrlnhm~tt1!do (III.5.2)a lap thCri.gianthu n theo (IIL5.17)nhusan: (I11.5.43) " "ZI " =H\..+Z..'J -r'J U'J V.2.2Phllan~trlnhIantrovenvakhuechtan D6ivmphuongtrlnhIantruyenvakhueehtin (IIL5.IS), chUngt2.c6th~ vietl~idumd~g (I1I.5.44) as as ascr-+U-+V-= fJt ox ay a [ ~ ] a [ . ~ ] =- (Zt-zd)AK/Vztl- +- (z,-Zd)AKIVztl- +Q. ax ax ay By Bangeachphftnratheoquatrlnhv~tly nhuM¥cIV, chUngt2.duavegiai hIDphuangtrlnhriengbi~t: (III.5.45) as as as cr-+u-+v-=O at ax 8y va (IlLS.46) ~ 0 [ as ] a [ as ] (j-=- (Zt-zJ)-K!Vztl- +~ (zt-zJAKIVztl- +Qat ax ox oy 8y Pbuangtrlnh(IIL5.45)c6 d~g gi6ng(III.5.20),Denphuangphapgiai hoantoantuangtt;r.Nghi~mdu<?etlmtrendo~ [t,,-pt,,+l]ranlu<?ttitcaeh~san: (IIL5.47) S"-1f2- S,,-l ) ,,-1/2 A., ij I (A S =, (j' 'I T 1 ij& -104- e~ 3: 1It&,d d4t~ ~ ~ tt~ ..;;.d Ut ~ ~ ?~ ~ ~ (IIL5.48) S" S"-1/2 (j ii - ii +(A 8)n =0 /:)J 2 ij , (IIL5.49) ,,+1/2- 8~ "'+1/"2.- 0Sjj IJ +(A28)" - ,(j IJ/:)J (IlLS .50) 8"'+1 8,,+1/2 (j ij - ij +(A 8)"+1=0 /:)J 1 ij , trongd6cactoanti':rAI' i\ duQ'cxacdinhthee(I1I.5.3D),(111.5.31). CilngoouPhanV.2.1, chUngtac6dieuki~nve s~on dlnhcuaphuong phaptroydu6i. . D~giaiphuongtrlnh(III.5.46),tru6'chetchUngtaxApxi h~s6khuechtan d6ilUlldumd~g: . . (IlLS.51) ( " ) 2 ( )2Z -" "" D ;::::D" =='),K i li+1j zli-lj + Zlij+1- Zlij-1 V 4(&,)2 4(lWY'j' Khi d6,phuongmoo(III.5.46)duQ'cx~pxi nhusau (III.5.52) (j as_ ( 828+828 ) = Q.. (ZI~ - Zdij)D" 8t 8x2 8y2 (Zt~- Zdij)D" Phuongmoo(IIL5.52)duQ'CQuav~d()l1gphanratr~ntUngdo~ [t,,-pt,,+J nhusail: (IIL5.53) (j: =(Zt~- zd,JD"~~+~Q, (111.5.54) cr: =(z,;-z"JD, ~~+~Q. X6t caetoanti':rsaiphantheekh6nggian (IIL5.55) (A,S):=- (~y(8;'.'1-2S;j +S;:,), -105- ~3: ~d ~~~~~~uUt~bUId 1D~~~ (IlL5.56) (A,SJ:= - ( 1)' (S.;.,- 2S""+.s:;J. ,b.Yj Sadc>saiphAncua(III.5.53),(III.5.54)c6d~g (IlLS.57) 0' (Z/~,- z ..)D A+ (S~-1/2- S~-l )+(A S) "-1/2 Q,,-l/2" I) "IS') h~ 'J 1" = ij'J (2 z"- 'lij ZlSij)Dh (IIL5.58) 0' (" ) (S~- S"-112) Z"i- zd;i D,JI.t 'i u' +(A,St= Q;'J '4Zt~~-zd.)D 'I) h (III.5.59) 0' (Zt~,- Z , )D A+(S~+1/2- S~ )+(A S)"+1/2 rY'+1/2 I) dlj h~ 'J 2" = ~ij'J (2 z" - 'Iii Zd;j)D;, (III.5.60) 0' (Zt~,- Z ..)D A+ (S~+l- S;"+1/2 )+(A S) n+l Q~+l ) d'J h~ J 2 Ij = ( 'j2 z,.- .lij Zd;j)D" Bangcachxa:pxi nhuv~y,chUngtading nh~ du<Jcacxapxi ca:phai.. Cach~phucrngtrlnh(IIL5.57)- (Il1.5.60)du<Jcduave d(~lllgba duemg . ch60,phucrngphapgiai hoantoantUcrng11;t. Trongcach~phucrngtrlnhnAy,do dieuki~n (IIL5.61) 0" (Zt~,-z)D A+>0, 'J dij ;,~ Denphucrngphaptroydu6ilu6nlu6n6nd!nh. ~ --- _n- . .. .. ... ':::'",.,..:.".. - 106-

Các file đính kèm theo tài liệu này:

  • pdf5.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf2.pdf
  • pdf3.pdf
  • pdf4.pdf
  • pdf6.pdf
  • pdf7.pdf
Tài liệu liên quan