SỰ TỒN TẠI NGHIỆM CỦA BAO HÀM THỨC VI PHÂN DẠNG CỰC BIÊN
NGUYỄN KIỀU DUNG
Trang nhan đề
Lời cảm ơn
Mục lục
Lời mở đâu
Chương1: Kiến thức chuẩn bị.
Chương2: Các bao hàm thức vi phân thường có giá trị không lồi trong không gian Banach.
Chương3: Bao hàm thức vi phân có chậm dạng cực biên.
Kết luận
Tài liệu tham khảo
24 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1964 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Luận án Sự tồn tại nghiệm của bao hàm thức vi phân dạng cực biên, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
~2
CACBAOHAMTHOCVI PHRNTHUONGc6 GIA
TAlKHONGLal TRONGKHONGGIAN BANACH.
Phan1.KHAo SAT SU TON TAl NGHIEM CUA BAO. . .
HAM THUC VI PHAN THUONG DANG CUC BIEN. . .
ChoE Ia mQtkhonggianBanachthl;tc,kha1y,phanx~vaF 1amQthamda
. triduQcdinhnghlatrenmQtt~pconmd,khacr6ngcuaRxE vaoE co giatri
16i,compacvakhacr6ng.
Phffnnaytrlnhbaysl;t6nt~inghi~md6ivoibaahamthucvi phanthuong
d~ngqic bien.
{
X1EExt F(t,x)
xeD)=Xo
Y tUdngsad\lngph~mtrUBairechocacbaahamthucviphantrenR duQc
Cellinaduaradffutienvaonam1980.Saudocorfftnhi€u k€t quaUrn duQC
dl;t~.trendiM 1:9ph(;lmtrUnay.Nhungk€t quathuduQcsau1~inhovaomQtleY
thu~tmoiIa sad\lngphanho(;lchtrenmi€n t~oanhcuaF, saudoapd\lngthich
hQpdinh1:9ph~ngiaokhacr6ngcuamQtdaygiamcact~pcompackhacr6ng.
Fhatbilu kit quachfnh: Niu F compacva lient~c(haytangquath{fn:
niu F compacvathoadiiu ki~nCaratheodory)thit{jpnghi~mcuabailoan Ia
khacrang.Kit quatlt{fngt1/niu F lalf1r;mga-Lipschitz,a Ia kj hi~udQdo
khongcompacKuratowski. ~ ~ 14'cO'
I ?;:,
1. MO'dau:
I
! X6tmQthamdatri:
;p : I xX ~ WeE)
-10-
ddayI =[0,T] ;X =BE (xo.r) ;XoE ~(E);r>0
TanoiF thoa(H)neu:
(Hi) F falient1J.ctrenI xX
(H2)tQ,pA =F(l xX) facompactrongE
(H3)0h (A,0)
Voi F thoa(H),va XoE Xo,taxetcaebai toanCauchysail :
{
X'E F(t,x)
xeD)=Xo
(2.1)
{
X'E ext F(t,x)
xeD)=Xo
(2.2)
Cho XoE Xo, kY hi~u:
SF ={x:I ~E/x zanghi~mci'ta(2.1)}
SextF={x:I ~E/x langhi~mci'ta(2.2)}
SFIa compac,khacr6ngtrongCE(I)nenkhonggianSFtrangbi metrichQi
tvd€u Ia duo
f)~t9JF={f:IxX~ E /f latatcatlientlJCci'taF}
Lty f E .9'lp,xetthembai toanCauchy:
{
x'=f(t,x)
xeD)=Xo
NSu d~tPf={x: I ~E/x la i nghi~mci'ta(2.3)}
(2.3)
thlPf Ia mQtt~pconcompac,khacr6ngcuaSF.
Lty mQtday {In}C E* co Illnil= 1trUm~ttronghlnhc~udonvi cuaE. Ta
dinhnghIatheoChoquetham<PF:I xX xE ~ [0,+oo[nhu'sail:
<PF(t,x,v)=
f (In(v)J
n=l 2n
V E F(t,x)
+00 vEE\F(t,x)
.G9iQ1/Ia t~pttt ca.caehamaphintuE vaoR. Tieptheoxayd1,1'ngham
ip; : IxXxE ~ ] -00,+00[:
IPF(t,x, v) = inf (a(v)/ a E Q1/vaa(z)> C{JF(t,x z) vdiz E F(t, x)}
--------------------------
-=-~r~~~~;i;~i~~;-----------
BaygiOtadinhnghla:
dF: IxXxE ~ ]-00, +00[
dF(t,x, v) =iYF(t,x, v) -qJF(t,x, v)
thltacocacke"tquadu<;cnha:cl<;litrongm<$nhdS sau:
M~nhd~2.1
ChoF thoa(H),taco..
(i) Vaim6i(t,x) E I xX vav EF(t,x),taco0 :s;dF(t,x,v):s;M2.HCInniia
d~t,x,v)=0khivachikhiv EExtF(t,x).
. (ii) Vaim6i(t,x) E lxX,dF(t,x,0)ia lOmng(ittrenF(t,x) valOmtrenE.
(iii) dFianllalientl;lctrentrenIxXxE.
(iv) Vaim6ix E SF,hamt -f dF(t,x(t),x'(t))ia kh6ngam,giainQivakhd
richtrenI.
(v) Ntu day{xn}CSF hQitl;ld~utaix E SFthi taco..
fdF (t,x(t),x'(t))dt;:: Jim supfdF (t,x(t),x'(t))dt
I n~oo I
2. Phanho~chtrenmi~nt~oanh
Ta selamquellvOimQtphanho<;lchtrenmiSnt<;lOanhcuahamF vathie"t
l~pffiQtsf)tinhcha'tcuacaephepphanho<;lchnayd€ sadl:mgtrongph~nsau.
'ChoF thoa(H).f)~t:C=Xo +Vet-a) coA
tel
thl c c X VaC E «?f(E) (2.4)
Dinh nghia:
QI\f={x..I -f C/ x iaLipschitzvaihling<M}
Ql\flamQtt~pcon16i,compaeeuaCE(I)chuaSF.
~inhnghia2.1:
:Cho F thoa (H) Va}i E E* ; IIIJ =1,i =1,...d ; a> 0
Cho{Ik}Z:\lamQtphanho<;lcheuaI cobuckp.
------------------- ___om----- ----- ----------
-12 ---
Vdik=1,...kovah=(hI....,hd)E Zd,d~t:
R: = {(t,x) E IxC It Elk, hia ~IiCx)-2Mt<(hi+ l)a, i =1, ...d},
(j dayM Iah~ngs6trong(H).HQm tfftcacact~pkhacr6ngR: duQcgQiIa
IDQtphanho~~htrenmi€n t~oanhcuahamF tuonglingvdi {Ii}~=1va {Ik}~:1
cuabudckhonggiana vabuocthaigian~.DuongkinhIOnnhfftcuacact~p
R: khiR: thayd6itrenm duQckyhi~uIa v(m)vaduQcdinhnghlaIa chu§:n
cuapll.(Luuyr~ng,m Ia phanho~chuuh~ncuaIxC nghlaIa mIamQt hQ
hii'llh~ncact~pdoimQtgiaonhaukhacr6ngvacohQpb~ngIxC ).
'BaygiataIffy9;={ldc E*, II Ii II =1Ia mQtdaytritm~tronghinhc~u
donvi cuaE*.Voi m6in E N, IffyRn={R: (n)}Ia mQtphanho~chtrenmi€n
t~oanhIxC cuaF, tuonglingvoi {Ii}:l va ~:tn=lcuabuockhonggianan,va
budcthaigian~md dayan->0,~n->0khin ->00.
F.S.DeBlasivaG.Pianigianidachirar~ngconoE N saGcho'v'n>nothi
tacov(plln)<A.HonmIa,concob6d€ quailtrQngsau:
B6d~2.1
Cho F thoa(H). Lily 8> 0 vaa > 0 thi c6 mQtphan hOc;lChmcho mi~n
IxC,cuaF tu<JnglingveJi{IJ~=1va {Ik}::1 cuabu(Jckh6nggiana vabu(Jcthai
gianj3, 0 <P<min{8II I, 813M};wYichudnv(m)<AsaGcho
m(!!.;J<8 /1/
K ={l,...,ko}
WJi mQix E QJ\f
trongd6
va Kx={kEK:c6h EZsaochograph xlkcR:, R: Em}.
Tub6d€ nay,dethffyKxIakhacr6ngntu0<E<1.
Chopll={R:} Ia mQtphanho~chtrenmi€n IxC cuaF thoacactinhchfft
da neu trongb6 d€ 2.1. Voi m6i R: E pll, hay xet mQtphanho~ch
~J~=lE @(Ik) (d dayp =p(R:), vaIkIakhoangthaigiancuaR:.
h h"
D~t Rk,j =Rk n(JjxE) j=I,...p
--------------- -- -- -----------------------
-13-
GQiJj 1akhoangthaigiancuaR:,j. La"yg(' 1ahQta"tcacact~pkhacr6ng
R:,j nhu'trenkhi R: thayd6i tren g(.R6 rang g(' cling1amN phanhot;lch
euaIxC va g(' 1amQtst;lammillcua g( .
{
C a E111
}Ti€p thea,d~tPo=mill -:;-, 2M' 2koPo
voi Co=mill{I Jj 1/ R:. E g('},j
Po=max{p(R:)/ R: E g(}.va
'La"y0<~<~o.Voi m6iR:,j E g(',dinhnghia:
h h
Rk .(fl) ={(t,X)ERk. /tE Ij(fl), hia+flM slJx)-2Mt 5{hi+l)a-flM,J J
i =1,...d} (2.5)
. trongdoJj(~)=[tj+~,tj+l- ~]; haidiSmtj <tj+l1acaediSmd~uva cu6icua
khoangthaigianJj cuaR: ..,j
Dinhnghiatreneonghiakhi 0 <~<mill{Co/ 2,a / (2M)}.
Ky hi~ug('~1ahQta"tca cact~pkhacr6ng R:,j (~) khi R~,jthayd6i treng(',
vad~t A~= U R:./,u)
R;'j(ll)e!r{,
(2.6)
TITxaydt;lngtren,cothSchungminhk€t quasau:
B6d~2.2
ChoF thoa(H).Diy 0 O.Chog( la m(Jtphtinho(fchtren
mi~nt(fOanhIxC cuaF vaicaetfnhchtltdll(Jcneutrongb6d~2.1.Vdi g(', g('Jl
vaAJlnhllJ trenthitaco..
m(I\Ix)<2 &/1/ ttxE cYV
trongdoIx={tE1/ (t,x(t))EA~.
H(fnriTlaAJlla tqpconcompackhacr6ngcuaIxc.
..
3. Caeke'tquaerunh
---------------------- --- -- ----- -----_n_n_-n_n_n---
-14-
Baygiotasel~n1U<;ftxemxetcacb6d~chinhtruockhid~c~pWidinh1,9
t6nt(;lichobii loanCauchy(2.2)- mQtke'tquad\l'atrendinh1,9ph(;lmtrll
Baire.
ChoF thoa(H)vi 8>O.
D~tSe={~ESF/ fdF (t,x(t),x'(t))dt<8}
I
K€t quad~uliendSsuydU<;fcngaytuvi~capdlfngm~nhd~2.1(v),doIi:
:.B6d~2.3
Cho F thoa(H), V(yim6i ()>0,ttJpSBIa miJ trongSF' -
B6d~2.4
ChoF thoa(H).LtJyf E.9Pva()>0,5>othicomQthamg EgpsaDcho
VxE Q.I'\I;ta co ..
fdF (t,x(t),g(t,x(t))< ()
I
(2.7)
va
I
supII f[g(s,x(s)) - f(s, x(s))]ds II<6
leI 0
(2.8)
"Chungminh:
La'y f E .9F,8 >0,8>0,.
ChonEsaocho0 <E <mill
{ e 2 I I' 0 I I' I}
, trongdoM Ii
. 4(1+M ) I 2(1+4M) I
h~ngs6trong(H).
D~tZ=IxX
Bl/fJc1 : XtJpxl dtaphuongf biJi cachamcogill trtgdnvdicacdiimq(Cbien
cuaF.
.ta'y (s,u) E IxC, (C du<;fcchotrong(2.4)).Do f(s, u) E F(s, u) nen theo
dinh1,9Krein - Mil'man's,co mQts6Ps,uEN; co cac di~mv~u E extF(s, u),, ,
'- 1 " , "",\j . 0 ,\j <1 '- I h? ,\1 ~Ps,u_ 1J - , ...,PsU vacacso '" . <'" -, J - , ...,Psu t oa '" + ... + /\,s U -, s,U s,U 's,U'
saocho: -- --- - -----------
-15 ---
P"u" 8III AJs,u V~,u - res,u)11<-
j=l 3
(2.9)
Theom~nhd~2.1(i va iii) thldFla u.s.eva dFtri~ttieut~i(s,u, v~,u),
VI v~yco 0<p;,u <~ sac ehovoi m6i (t, x) E Bz((s,u),p~,u)va m6i
v E BE(V~,u'P~,u),j =1,"'Ps,u,tacodF(t,x,v)<E. (2.10)
VI F lientlfet~i(s,u) va vj E F(s,u)nenco 0 < pI < pO sacehovoiS,u S,u s,u
m6i(t,x) E Bz'(s,u),pI ), taco:F(t,x)n BE(Vj , pO ):f:.0,j =1,...Psu., ~ s,u s,u s,u '
.Theodinhly Michael,secoPs,uhamlienlientlfe:
zj :Bz,(s,u),pI )~ E sacehovoi m6i (t,x) E Bz,(s,u),pI )taco :s,u ~ s,u ~ s,u
j - (j 0 )Zs,u(t,x) E F(t,x) n BE vs,u' pS,u .
. Ke'th<;$pvoitinhlientlfeeuaf t~i(s,u)vatu(2.10),suyfaco 0 < pS,u < P~,u sac
ehovoim6i(t,x) E Bz'(s,u),p ), taco:~ S,u
II f(t,x)-res,u)II < ~3 (2.11)
IIZ~,u(t,X)-v~,ull<~
dF(t,x, zj (t,x» <ES,u
j=l,...,ps,u (2.12)
j =1,...,Ps,u (2.13)
Theoeachxaydvngtrenthlcaehamz~,unh~ncaegiatrig~nnhungdi&m
evebieneuaF(s,u)vaxa"pXlg~ndunghamf (theo2.13,2.9,2.11,2.12).
B1iuc2: Xayd1!ngmQt[atcdtr khonglient1jCcuaF trenIxc.
HQ {Bz((s,u),ps,u)l(s,u)ElxC}la mQtphumdeuat~peompaeIxC, VIthe'
nocophilconhUllh~n:
{BJSn' Un),P'n'"n)::,}
(2.14)
.GQi A.>0IamQts6Lebesgueeuaphilconnay.Theob6d~2.1,ehoEvaA.,
secomQtphanho~eh:97l={R~}theemi~nt~oanhIxC euaF, tudnglingvoi
{lJ ~=Iva {Ik}::0 ..eua buoe khong gian a va buoe thai gian p.
0<P<min{EI I I , a / (3M)},thGav(:~)<A.sacehoba"td~ngthlietrongb6 d~
-------------- - - - n_---- Un------- n -- ---
-16-
. 2.1dU<;fethoa.R6 rangm6i R~ E fill d€u dU<;feehliatrongit nha'tmQthinhe~u
euahQ(2.14).DoeachxaydlfngnenR~coduangldnhnhohonhin 'A.
BaygiGtal~y<D: fill ~ N la mQthameholingvoim6i R~E fillmQtva
emffiQts6nguyene6dinhtheomQtquit5etuyy giuacaes6 tlf nhien n,
1~n ~nosaGeho
Rkh C Bz(smun),Pn), (ky hi~uPn= P )Sn'Un
R: E fillvagiasa <D (R:)=nthi(2.15)thoa.
(2.15)
La'y
Theobuoe1,comQtPn= pEN; coPns6 'Aj='Aj voi 0 <'Aj ~ 1,
Sn'Un n Sn'Un n
'AI+'A2+A +'APn= 1; va co Pn di~m vj = vj E ext F(sn, un) saGeho
n n n n sn'Un
Pn . .
II
8" '\ J VJ - f(s U) <.-
L.../"nn n' n 3j=1
D6ng thai co Pn lat e5t lien tve z~ = Z~n,Uneua F dinh nghIa tren
Bz((smun),Pn)saGehovoi m6i (t,x) E Bz ((sn,un),Pn),taco:
"f(t,x)- f(sn'un)"<~3 (2.17)
Ilz~(t,x) - v~II <~, j =1,..Pn (2.18)
dp(t,x, z~(t,x))<8 , j =1,..Pn (2.19)
BaygiGtaxaydlfngmQtlate5ty coth~khonglientveeuaF trenI x C.
La'y R~ E fill ba'tkY va (R~)=n.
La'yPmJJn,v~va z~,j =1,..Pn,tuonglingnhutren.GQilkla khoangthai
gianeuaR~.xaydlfngphanho<;leh{Jj }~~1E @{lK) co dQdai
IJjl =JJn Ilkl j =1,...Pn. (2.20)
vad~t R~,j= R~n (Jj x E),j =1,...Pn, tasecophanho<;lchfill' la
hQ~~et~pRL khaer6ng.
DiM nghIay : I x C ~ E bdi Y (t,x) = Z~(t,x)n€u (t,x) E R~,j'
-- - ------ - - -- ----
-17-
. thldinhnghlanayIa xacdinh.Honm1adocachamz~,j =1,..Pn, 1acac1at
dt lientt;[cuaF trenBz((sn,un),Pn)::) R~,jneny 1amQt1atcatco thSkhong
lientt;[cuaF trenI x C nhu'ngthuhypcuano trenm6it~pRL Ia lien t1;lC,
Blluc3 : Caetinnchatcuahamr
Tircachxc1ydltnghamy voi m6ix E Q/V,tacodu'<;5C:
Jd F (t,x(t), y(t, x(t)) dt<()
I 2
(2.21)
'va
I
sup
II
J[y(s,xes))- I(s, xes))]ds
ll
<5
leI 0 2
(2.22)
Tasechungminhtinhcha'tnay.
Do-mdu<;5cxftydltngthoab6d€ 2.1nentaco:
m
(
ulk
)
<E I I I
keK\K"
(2.23)
trongdo K ={I, ..,ko}'
vaKx={kE K / coh E ZdsaochographXlkC R~,R~E p/(.}
VI 0 < E < 1 nenKx Ia khacr6ng,suyra co mQtR~ E p/(saocho
graphXlkC R~,vavdi 1::;;n ::;;no,(2.13)dU<;5cthoa.Honnua,1u'uycuaBu'oc2,
taco:
graph XI C R~J' C BzC(sn,un),Pn)j = 1,..Pnk '
(cac {Jj};~1va RL du<;5cxftydltngtrongBu'oc2)
(2.24)
vay(t,x(t))=Z~(t,x(t)), t E Jj, j = 1,..Pn.
Truoche't,voik E Kx,taco:
* Jdp(t,x(t),y(t,x(t)))dt < Ellkl
Ik
* IIJ[y(t,x(t))-f(t,x(t))]dtll<Ellkl
Ik
..
Th~tv~y,vdik E Kx thl:
---------- ----------------------------------------------------------------------------------
-18 -
Pn .
* Jdp(t,x(t),yet,x(t))dt=I Jdp (t,x(t), z~(t,x(t)))dt
lk . j=lJj
<8 IIJjl =81Ikl,
j=l
theo(2.19va2.20)
* "/fr(t,X(t»- !(t, x(t»]dtll=II~Jrz~(t,x(t» - f(t,x(t))]dtJ
'~I J[llz~(t,x(t))-V~11+ Ilf(t,x(t))-f(sn'Un)IIJdt+ I J[v~-f(sn,un)]dt
j=l J. j=l J.J J
< t(~+~)IJ;I + t(v~-f(Sn,Un»)IJ;1
=
= ~"II,I++ II~AJnv~- f(sn'Un)IIII,1
< 81Ikl
theo(2.24,2.18,2.17,2.20,2.16)
Lffyx E QJ\f.SadvngcaekStquatren,taco:
01<JdF(t,x(t),y(t,x(t))) dt
I
= I Jdp(t,x(t),y(t,x(t))}dt+ I Jdp(t,x(t),y(t,x(t)))dt
keKxlk keK\Kxlk
< I81Iki+ IM21Iki <8III+8M2III
keKx keK\Kx .
e e
< - (do8< 2
II
), suyra(2.21)
4 4(1+M )I
t
* lIJ[y(S,X(S))-f(s,X(S))]ds
ll
~ I
II
J[y(s,x(s))-f(s,x(s))]dsl!+
0 keKx lk
+ I
II
J[y(s,x(s))- f(S,X(S))]dS
II
+ ]1 y(s,x(s))- f(s,x(s))llds
keK\Kx lk lie
..
Nho l<;tiding IIiel=~<8 III, kSthQpvoi (2.23)taduQc
--------------------------------------------------------------------------------------------------
-19 -
tI[Y(S,X(S»-f(S,X(S»]dsll<k~x8lIkl+kEt~MIIkl +2M81I1
<8 III+28MI~+28M I~< ~ (dO8<2(1+~MJIIIJ
Vl t E I tuyy nensuyra(2.22).
Bu:fjc4 : Xfiy d1!ngmf)t[at cdt lien tIJCg cua F biing xdp xl 1-
ThuhvphamylenmQtt~pcompacthichh<;1pAll c I x C SeHimchoytrd
t4allhmQthitdt lientl,lccuaF trenAwTheodinhly MichaelthiycomQtmd
rQnglient\lCgclingIa mQtlatcfitcuaF. Ta seth1ydinghamgnhu'v~ythoa
cactinhch1tdilneutrongb6d~.
L1yg{vag{'nhu'dtrongBu'dc2.
D~t~o=mill {co/2, a / (2M),8111/ (2kopo)},
trongdo Co=mill{IJjl/ RL E 9['},
Po=max{Pn/ 1::::; n ::::;no}.
co'dinh0 <~<~o.
f!ll;la hQt1tca cac t~pR~,j(~)khacr6ngchobdi (2.5)khi R~,jthayd6i
tre1).,g{' va All du'<;1cdinh nghlabdi (2.6).Theo b6 d~2.2 thi All Ia t~pcon
compackhacr6ngcuaI x C.DoythuhvptrenAllIa mQtlatcfitlient\lCcuaF
nentheodinhly MichaelcomQtlatcfitlientl,lcgcuahamF saocho:
get,x)=yet,x) vdi m6i (t, x) E All
Ta l1yx E <2/Vtuyvad~tIx={tE 1/ (t,x(t)E All}thitheob6d~2.2:
m(I \ Ix)<28 I IJ . (2.25)
fdp(t,x(t),g(t,x(t»)dt::::;fdp(t,x(t),y(t,x(t»)dt+
I I
Taco
+ ~dp(t,x(t),g(t,x(t»)- df(t,X(t),y(t,x(t»~dt
I\Ix
8 8
<- +M2m(I\ Ix)<- +28M21I!<8
2 2
.. theo(2.21va2.25)
Nhu'v~y(2.7)dil du'<;1Cchungminhxong..----------------------------------------------------------------------------------------------------
-20-
vOim6itEl, taco:
t
l[g(S,X(S»- f(s,x(s»]dSII~ flg(S,X(S»- y(S,X(S»11ds+
t
+ lIf[y(S,x(s»-f(s,x(s»]ds
D
< ~lg(s,x(S»- y(S,X(S»11ds+ ()
I\I 2x
() ()
< 2Mm(I\ Ix)+- <4EMIII+- <()
2 2
theo(2.23va2.22).
Suyra (2.8)clingduQcchungminhKong.
B6 d~2.4duQcchungminhhoantoan.
B6d~2.5
ChoF thoa(H),! E 9Fva B> 0 thzco 5 =5jB) > 0 saDcho v<Jix E SF
btitkY:
I
sup
II
f[x'(S)- !(s,x(s»]dsll < 5suy TaX E BSF(Pfi B)
leI C
(2.26)
Chungminh:
Giii sa phat biSu tren khongdung thl co f E SF , E > 0 va mQtday
{xn}C SF\ BSF(Pt, E) thoa
sup
'I
S[X1n(S)-f(S,Xn(S»]ds
ll
< l}n EN
tel 0 n
Do SFla compac,COmQtdayconcua {xn}hQitlJ d~uWi mQtdiSmx E Pi,
VI v~yvdi n du lOn,ta co XnE BsF(Pt, E),mall thu~ngiii thie't.B6 d~duQc
chungminh.
..
.-------------------------------------------------------------------------------------------------------
- 21-
B6d~2.6
ChoF thoa(R). Chof E SFva Ii> 0, e> 0 thicomQthamg E SFsaGcho
Pg c::San BSF (Pfi Ii).
Chungminh.
Lffy f E SF,E >0,8>O.Tli b6d~2.5suyraco8>0 d~(2.26)xayravoi
x E SF.Khi do,theob6d~2.4thlcog E .9F(tudngungvOif, 8,8)saDchovoi
m6ix E <2/Vtaco:
fdF(t,X(t),g(t,x(t)))dt<8
I
(2.27)
va
t
sup
II
J[g(S,X(S))- f(s,x(s))]dsll<8
tel 41
(2.28)
Voi m6ix E Pgtuyy,dox'(t)=get,x(t)),tEl nenke'th<;1p(2.28)va(2.26)
tasuydu<;1cx E BSF(Pf,E).Con (2.27)suyra x E So.V~yx E Sen BSF(Pf, E).
. Doxtuyy nenPgc Sen BSF(Pf,E).B6d~duQcchungminh.
Bay gia chungta chuy~nsangchungminhdinhly 2.1,clingla ke'tqua
chinhcuaph~n ay.
.DinhIf 2.1
ChoF thoa(H),f E.9},Ii> 0thiSex!F n BsF(PftIi)~0, vadij.chi?t,hai
loanCauchy(2.2)conghi?m.
Chungminh:
~ 1Bat 8 =- n E N. n ,
n
Tli b6 d~2.6,voi 81> 0 da choco g1 E .9}: Pg!C BSF(Pf, E).Do Pg! Ia
compacnenco0 <111<81saDchoBs (Pg ,111)c Bs (Pf,E) (2.29)F! F
. Tudngtl,l'co g2E .9}: Pg2c So!n BsF(Pg!' 11)'So!md theob6 d~2.3.
B6hg thai Pg2Ia compacnen l~ico 0 < 112< 82saDcho Bs (Pg2,112)cF
So! n BSF(Pg!,111)'Tie'pt\lCthvchi~nta dU<;1cmQtday thong tangcac t~p
---------------------------------------------------------------------------------------------------------
-22-
compackhac r6ng BSF(Pgn' Tln)cua SF voi gn E 9F va 0 <Tln <en, thoa
Bs (Pg , Tln+l)CSa nBs (Pg , Tln),n ENF n+! n F n
La"yx E SFIa mQtdi~mthuQCvaom6i t~pBs (Pg , Tln)thlx E BsF (Pf, 8). F n
theo(2.27).Hqnnlla,dox E Sanvoim6in ENnen
fdF(t,x(t),x'(t))dt=0
I
Yl v~y,nhomt$nhde2.1(i),suyra x'(t) E ExtF(t,x(t))h.k.n,tucIa bai
loanCauchy(2.3)conghit$m.
4. Md rQng
Tuynhien,k€t quavesvt6nt<:iivatrum~tchobailoanCauchyd<:ingqtc
bien(2.2)moiduQcchungminhduoigiathi€t hamF la lient1,lc.Cac lacgia
damdrQngk€t quachinhvuatimduQcchotrttonghQpt6ngquathan: F thoa
. mangiathi€t Caratheodory.
TanoihamdatriF (dachotrongph~nmdd~u)thoa(H')n€u
(H'1)vfJimtiitEl, hamdatrix --+F(t,x) ia lientlJctrenX, vavfJimtii
x EX, hamdatri t --+F(t,x) ia dodllf/Ctren1.
(H'2)tfjpA =F(l xX) zacompactrongE
(H'3)0h(A,0)
ChoF thoa(H') va SF,SextF,Sava GVVduQcdinhnghIanhud ph~ntrUoc.
T~pSFIacompac,khacr6ngtrongkhonggianCE(I),suyraSFvOimetrichQi1\1
deula khonggiandu.
Lat c~tf cuaF duQcgQiIa latc~tCaratheodorycuaF n€u vOim6itEl,
hamx -+f(t,x)Ia lien1\1ctrenX, vavoim6ix E X, hamt -+f(t,x)Ia doduQc
Bochnertren1.Voi F thoa(H'),d~t
9'F ={f:I xX -+E / f Ialatc~tCaratheodorycuaF}
Theocacdinhly cuaScorzaDragonivaMichael,t~p9'F la khacr6ng.
.Lu'uY dingF thoa(H')thlcactinhcha"t(i)(ii)(iv)(v)trongmt$nhde2.1
deuduQcthoa.Hannlla,khithayhQSFthanhS'Ftuangungthltaco duQCta"t
cacack€t quatrongb6de2.3-+2.6voi ly lu~nchungminhtuangtV.Rieng
ph~nchungminhb6"de2.4sad1,lngdinhly ScorzaDragonid~thuhypcua
hamF vaf trent~pJ x X Ia lient1,lc,voi t~pJ c I thoamQts6dieukit$n;sau
dosad1,lngmQtdinhly mdrQnglient1,lcuahamdatrid~comQthamdatq
-----------------------------------------------------------------------------------
-23-
. compac,lien t1;IcF : I x X ~ '$tE)va leitGifttu'dngling f. K€t hc;fPvdi b6 d€
2.4va m~nhd€ 2.1,ta thudu'c;fCke'tquac~ntim.Tli'cac ke'tquanay,19lu~n
tie'ptheotudngtl!taclingthudu<Jcke'tquasau:
DinhIy2.2
ChoF thoG;(R') thibili toanCauchy(2.2)conghifm.
HayxetthemmQtmdfQngd6ivoihamF.Tan6ihamF thoa(K) ne'u:
.(Kj) F Ia lientlJCtrenI xX
(K2) TijpA =F(I xX) Ia gifJinl)i,tacIa h(A,0)<M, vacoml)thlingso"
L >0saochoa(F(I x Y)) 5{La(Y)vfJim{JiY eX
(Kj) 0<T <min{riM,l/L}
Cacb6d€ 2.3~ 2.6v~ncondungne'uthaygiathie't(H)bdi(K).Tli'd6su
d1;Ingdinh192.1c6th~chungminhdinh19sau:
Dinh Iy 2.3:
ChoF thoa(K) thibili toanCauchy(2.2)conghifm.
Cu6iclingtaxetthemmQtke'tquaungd1;Ing
.Voi XoE Xova tEl, d~t :
(filp(xo,t)=(x(t)/ x..I ~ E litnghifmcua(2.1)}
c£f1extF(Xo>t)=(x(t)/ x..I ~ E litnghifmcua(2.2)}
DinhIy 2.4
ChoF thoa(R'). Ntu coa thoa0 a) cXo WYim6i
XoEX thibititoangiatrtbien:'
{
X(t)EExtF(t,x)
x(a)=x(O)
(2.30)
coitnhfftmQtnghifm.
.Chungminh:Lty f E !}J'F
Trudehe'ttachungminhbai toansauc6 nghi~m:
{
x'=j(t,x)"
x(O)=x(a)
(2.31)
---------------------------- ---------------
-24-
Tit dinhIy ScorzaDragoni,c6 mQtday {In}cact~pcompackhacr6ng
Inc I, InC In+bnE N, vam(I \ In)--+0 khin --+00,saorhothuhypcuaf Ien
InX X lientl,lC.Vdi m6in E N, Iffy<Pn: I x X --+E Ia mQthamLipschitzdia
phuongc6giatritrongcoA saorho
. 1
sup l<Pn(t,x)- f(t,x)1< -
(t,x)elnxX n
TheoCellina,vdi m6i8>0 c6 mQtnoE N saoeho~n (Xo,a) c BE(Xo,8),
\in .;?: no' Tti d6 xay dvng day con {<Pnk}eua {<Pn}sao rho
nxI, (Xo,a)c B(Xo,lIk), kEN. TheodinhIy Kakutani& Fan,vdi m6ikEN,1nk
hamdatri u --+P4 (~nk (u,a), Ilk) n Xo e6mQtdi~me6dinhUk.Suyra vdi
m6i kEN, e6mQtnghi~mXkcuabai loan x' = rpm(t,x); xiO) =Uk sao eho
IIXk(O)-Xk(a)II< ~.Doday{xdc SFIa compae,e6mQtdayconhQit\1d@uWi
x naod6 E SF. R6 rangx(O)=x(a) E Xo.Honnuax Ia mQtnghi~mcua(2.31),
. VIvdi m6it E I, tac6 :
t
X(t)-X(O)-!f(s,X(S))dsll ::;;CK+!llf(s,X(S))-<Pnk(S,Xk(S)~1ds
(2.32)
trongd6 Ck=sup Ilx(t)-Xk(t)II+ Ilx(O)-Xk(O)II,
tel
VavfSphaicua(2.32)--+0 khi k --+00.
TifSpthea,sird\1ngcacb6 d@(2.6),(2.3)va Iy Iu~ncuadinhIy 2.1,taxay
dvng mQt day giam cac t~p con compackhae r6ng Bsp (Pgn+l' TJn+1)
c Selln Bsp(Pgn' TJn),n E N. Vdi m6i n E N, Iffy XnIa mQtnghi~meuabai
loan x' = git, x); x(O)=x(a). Do {xu}compacnenmQtdayconhQit\1d@u
tdi x nao d6 E SF'R6 rangx(O)=x(a),va x E SextF do x n~mtrongm6i t~p
Sa 'n
n E N. V~yx Ia mQtIoi giaieuabailoangiatrievebien(2.30).DiM Iy du<;Jc
chungminh.
Chziy:
'DinhIy khongcondungnuanfSuthaygiathifSt(H'l) bdi"F Ia niralient\1C
trenlIenI xX".
..
----------------------- ---------
-25 -
... -- ?
Phan II. MQT TINH CHAT D.L).CTRUNG CUA
NGHI~M BM ToAN CVC BIEN
M\lc dichchinhcuaph~nnayla tlmmQtd~ctru'ng2,(x)chonghi~mcua
baitmlnqic bien:
x' E ExtcoF(t,x); x(O)=xo,
d dayF lahamdatriU.s.C.,cogiatqcompac.
(2.33)
Chox lamQtloi gi~Hcuabaitoan:
x' E coF(t,x) " x(O)=Xo. (2.34)
Ta da:bitt dingnSuF la Lipschitzthl t~pnghi~mcua(2.23)la trUm~t
trongt~pnghi~mcua(2.34).TasedinhnghIa" tu'ongthichmetric"cuax qua
mQtsO'2,(x) kh6ngam,va se chi ra r~ngcacnghi~mcua (2.33)chinhla
nghi~mcua(2.34)matu'ongthichcuanob~ngzero.Tir do chuy€nbai toan
timnghi~mqic bienvemQtbaitoankhactu'ongdu'ong.
v ChoI =[0, T] ,D =I xB(xo,r) ,T,r>0vac6dinh1~P <00.
..Choala mQtdQdokh6ngcompactrenLP(I,RN).
Ta li~tkecacgiatruStsail:
(Hi) F.. D ~RN za9:""Bdodllf/CvUicacgiatridong.
(H2)VUi tEl h.k.n,vUim(Jix, //F(t,x)/ :5:let),11day1(.)E LP va
T
f let)dt<r.
0
v
(H3) VO'itEl h.k.n,anhx{lx ~ F(t,x)la U.s.C.
ChoF: D ~ RNla mQthamdatrioVoi m6iE >0,dinhnghIaanhX(;lFe:
Fe (t,x): =F (t,x(t)+EB)+EB,
B lahinhc~udonvimdtrongRN.
KStquaxa'pxl saillac6ngC\lIcythu~tcmnhcuaph~nay.
..
-----
-26-
M~nhd~2.2:
ChoF: D ~ R!'ia m()tanhXfldatrj thoa(Hi) va(H2),thiwJi m6iE> 0,
hailoan:
{
XI(tJ.EFc(t,X(t)),tEl
x(o)=Xo
conghifm. (2.35)
HCInnila,
(i) V6'im6inghifmxcuahailoan:
{
XI(tJ E coF(t, X(t)), tEl
x(0)=xa
(2.36)
vam6i E > 0, co m()tnghifmXecua(2.35)saochoxJT) =x(T)va
//Xe-X//< E.
(ii) Ntux thoa(2.36)nhLtngx'(t)~ExtcoF(t,x(t))v6'imQit trongm()thIP
d()dodllClng1hzcothi xdydl/ngm()tday{xn},n~1, XnE SFlIncotfnh
chd'tia khongco day con nao cua no h()i tlj mflnht6'ix trong
W1.p(I, R!').
Chungminh:
Chia I thanhM khoangconIj =[jT/M , (j+I)T/M], j =O,...,M-I , saocho
fl(t)d(t)<E.L~y~(.)Ia hitc~tdodu'<;1ctuanhX(;lt ~ F(t,x(jT/M))trenIj. D~t:J .
t
x(O)=xo,x(t)=xo+ f£(s)ds, tElj'
0
thlx lien t\lctuy~td6i vax'(t) E F(t,x(jT/M)), t E Ij h.k.n.
TacoI x(t)-x(jT/M) I < fl(t)d(t)<E , nen x'(t) E FE(t,x(t))h.k.n.J
Bai loan(2.35)conghi~m.
i) GiastYxIa m<)tnghi~mcua(2.36).
Anhx(;l:
/
N+l N+l
t ~ {(Ai'U) E [O,It+lxF(t,X(t))N+l :~:)'i=1,x'(t)=LAiUi}
i=l i=l
co giatri dongva dodu'<;1Ctheo(HI). Vi v~yco d.c hamdodu'<;1cA/.),
u/.) saocho: ..
N+l
x'(t)= "A.(t)U.(t),~ 1 1
i=l
voi tEl h.k.n
-- ------ ---- ---
-27 -
Chia I thanhhuuh:;mcackhoangIj=[tj-l,tj],(to==0) sao cho voi m6i j:
2 Jl(t)d(t)<E.
)
Voi m6ij, gQi (E~).- IamQtphanho~chdodu</ccuaIj saocho:1-1,...N+1
fu.(t)dt=fA.(t)u.dtr 1 1.
Ei I.j J
(2.37)
~act~pnayt6nt~itheoh~quacuadinhly 16iLjapunov.
.'Binhnghla:
N+l
ug(t)=LLXEi. (t)uJt),
j i=l )
x (t)=x + ~u (s)dsE o.b E
Bftu tientahIDyr.~ng,voimQij :xE(tj)=x(tj). .
Th~tv~y:XE(0) =xeD) , vagiasan€u XE(tj-1)=X(tj-l) thitu (2.37):
N+l { \
Xg (tj)- x(tj)=f(Ug(t)-x'(t)dt)=L f\XEi (t) - Ai(t)Pi (t)dt=0
I. i=l I. )
) )
Yi v~y, n€u tE Ij :
N+ltj
I
~
Ixg(t)-x(t~~~f XE\(t)-Ai(t~IUi(t)ldt< 2fl(t)dt<81=1t. 1 I.~ )
Hon nua,dox'E(t)E F(t,x(t))nensuyra :
x'E(t)E F(t,x(t)- xE(t)+xE(t))c FE(t,xE(t))
V~ytadachangminhiI.
ii) La'yx langhi~mcua(!;.,'56)saochox'it) fiE xtcoF(t,xlt)),
VtEE, m(E)>O.
Bi~udi~n
N+1 N+I
x'(t)=LA/t)Vi(t), AiE[o,11LA/f)=1 vaViEF(.,x(.)).
i=l i=l
Khongma'tinht6ngquat,giasar~ngco 11>0saocho:
IVi(t)- x'(t)J~17,VtEE,Vi =1, ,N +1 (2.38)
-----------
-28 -
Xay dV'ngday {xn}tuongtV'nhutren : voi m6i n21,chia I thanhhUllh(;ln
ImmingmakhonggiaonhauI~ saocho2I~l(t)dt<Yn.J
Voi m6in,j thl (E~(n)L IamQtphanho(;lchdo du<;5Ccua I~saochol-l,...N+l
(2.37)khong~6i(voiE~(n)thayvl Ej ) .Tadinhnghla:
N+l
Vn(t)=I IXEi(n)(t)Vi(t)
j i=l }
t
Xn(t)=xo+ fUn (s)ds
0
NhaKaydV'ngIIXn-xii <Yn, bonnuanha(2.38),
N+l ~p
Ilx'n-x'll:2 fl~~XEj(n)(tXUi(t)- x'(~)1dt =
N+l
I I fluj (t)- x'(t~Pdt 2 m(E)t,P>0
j i=l EnEJ(n)
DoclU<;5ngtrenrorangkhongphl;!thuQcvaon,nenmQidayconcua{xn}
d~u,khongth6hQitl;!m(;lnhv~x.
,Tachungrninhdu<;5cii/.
Bay gio ta dinhnghIamQts6 kh,Hni~mse du<;5cstYdl;!ngtrongtoanbQ
ph~ntie'ptheo.
X6tcacbaitoansauvoiF Ia hamdatritu D vaoRN:
{
X' (t)eF(t,x(t))
x(O)=Xo
{
X'(t)eco F(t, x(t))
x(O)=Xo
{
xl(t)e Ext co F(t,x(t))
x(O)=Xo
tel
tel
(2.39)
tel
tel
(2.34)
tel
tel
(2.33)
Ta leYhi~uSF,ScoP,SextcoPl~nlu<;5tla cact~ph<;5pnghi~m,Rp(T),RcoF(T)
va Rextcop(T)Ia cac t~pd(;ltdU<;5ct(;lithai di6mT cuacacbai toantuongling
(2.39,2.34, 2.33).(Nh~cl(;li : Rp(T) ={x(T) / x Ia nghi~mcua(2.39)}.
Ta dinhnghIa" tuongthiGh" cuax E SpIa s6 :
----------------- -- - -------
-29-
cf; (x) := UmaLP({u'/ UESF n WI,p,Ilu- xii0
Tudngtv, taco cacdinhnghIasauvdi x E ScoF:
.2:oF(X):= UmaLP({u'/UEScoFnWI'P,/lu-xll0
21;,(x) := !~a£p({u'/UESF, nWI'P,llu-xll<E}}
trongdoa Ia mQtdQdokhongcompac.
'CacdinhnghIanayconghIakhicacbailoantudngling(2.39,2.34,2.33)
conghi~m.
M~nhd~2.3
ChoF..D ~ ~ lam(Jtanhxt;lthoa( Hi ), (H2),(H3)vax E ScoFthi..
J1(x) ~ ~F(X) ~ Jt(x) (2.40)
Han nT1antu F( t, ~ ) laLipschitzthi..
J1(x) = ~F(X) = Jt(x) (2.41)
Chungminh:
Bit d&ngthucd~uIa hiennhien.
D€' chungminhbit d&ngthucthu2 , liy x E ScoFva £ >0 chotrudc,xet hai
t~psau:
K& ={u' / uEScOF,/iu- x II <E }
H&={u'/uEsF"llu-xll<E}
Theom~nhd~ 2.2,KE duqcchuatrongbaadongyeutheoLPcuaHE, ta
co:
~~F(X)=lim a(K&) ~ lim a(clwHJ = lim a(HJ = 21;,(x)
&~O + &~O + &~O +
ChoF( t,.) laLipschitz,liy k(.)E LPsaDcho:
H( F(t,u), F(t,v)) ~ k( t) I u - v I, tEl h.k.n., \iu,v.
'B~t G& = { u'/ uESF , II u - v II < E }
Va p ~ R k(t) 1el.k(""(1+k(S))ds+1+k(t)}t
..
= {u'/u'(t)EF(t,u(t)+6B)+iB,u(to)=xo,llu-xll<E}
C {u'/u'(t)EF(t,u(t)+E(l+k(t)))B,u(to)=xo,lIu-xll<E}
Thl Hs
-- ------------------------------
-30-
C Ge +&pBp
(theob6deGronwall)
VI V?y, theodinhnghiacuaa, tasur du'<;5C:
.2;(x)= lima (HJ ~ lim [a(GJ+a(&pBp)] = l':(x)e~o+ e~o+
M~nhdedffdu'<;5Cchungminh.
SaudaytaxetthemmQtvi d\l dgminhhQachoke'tquacuam~nhde:ne'uF
khongphaiLipschitzthltakhongco(2.41).
Vi d\l3.1
ChoF Ia viphandu'OicuaI x I ,
{
-I
F(x).= [~l,l]
ne'ux <0
ne'ux=0
ne'ux >0
F Ia U.s.C.T?p cac nghi~mcua x' E F(x) ,.x(O) =0 la compactrong
W1,p( 0,1;R ) , VI V?y hamtu'dngtmch ~~F la d6ngnha'"tb~ng0 tren ScoF.
Nhu'ngm~tkhac,vi phancuanghi~mx ==0khongla Cvcbien,nentheodinhly
(2.5) C1ph~nsauthl cft(x) >0, tucIa ~F(X) < Jt(x).
Khaosatthemcacham"tu'dngthich",taconcoke'tquasail:
M~nhd~2.4
ChoF thoa(Hi) - (H3) thicacanhX(l ~" 2:, va~ fa mla lien t{tC
A ' s ' R+trenta coFvaG .
Be}d~2.7
ChoF..D -)oJ?Vfamtjthamdatrjthoa(Hi) -( H3),vacho~E RcoF(T).
Cacphat bilu (1a) va (1b) , (2a)va(2b)saudayfanhtr;ltU:ClngdU:Clngnhau..
(1a) V(ji m6i x E WI,P( I, J?V ), m6i day ( Xn}n2:1trang ScoFsaD cho
xiT) -)0 ~vaXn-)0 wXGangfa htji t{tmr;mhtrong WI,P(I,J?V) tai x.
(lb) ~~~(~) = 0
--------------- --- - ------------
- 31-
(2a) Cho 8n J 0 . Vai m6iXE W1,P(/, JtV ), vai m6iday ( Xn}n~lsaDcho
XnESPe ' xnrT)~;; va xn~wx ciing fa hQi t1;lmc;mhtrong W1,P(/, JtV )n ,
taix.
(2b) .£1;,(q) = 0
Ntu F(t,.) fa,Lipschitzthi ta con co (1) va (2) cung tuangduangvai
~P(~)=O
Chungminh:
Truoc tien, hill y ding ~~F(;;)=0 tu'ongdu'ongvoi tinhchit : m6i day
{xn}I2IC ScoFhQit1,1y€u Wi x trongWI,P(I, RN ) cling hQit1,1mg.nh.Th~tv~y :
Cho~~F(x)=0 va xn~ X, {Xn}C ScoF'
Tu a({X'nIn~l})=a({X'n In~k })~a({u'IUEScoF,llu-xll<&})
, voi k du lOn,day {Xn}n~11acompactu'ongd6i mg.nhtrongWI,P( I, RN ). L~p
lu~nnaydungvoi mQidayconcua {xn}nenroanbQdayhQitv toi x.
Ngu'Qc19.i,n€u m6iday {xn}EScoFhQitv y€u Wi x d6uco mQtdayconhQitl;!
mg.nhtrongWI,P(I, RN ), du'CJngkinh ( rheadQdo kh6ngcompact) cua t~p
{u;;UE ScoF'Ilu- xii<s}dffnWi0khic~ O.Suyfa ~~F(x)=O.
Tachungminh(la) (lb) :
la::::>lbl L{yx E ScoFsaochox(T)=~.Theonh~nxettrenthl
.2P (x)=0,nen.2P (;;)=0coP coP
lb::::>lal Tu Xn~wx,theomQtdpmlyhQitvcuaCellinavaAubin,x E ScoF
vax(T)=~.
Chungminh(2a)(2b)b~ngeachly lu~ntu'ongtl;(.
N€u F(t, .)1aLipschitzthltUmt$nhd6 (2.3)taco du'Qc
(1)~(2)~~(;;)=o.
Tachuy~nsangchungminhk€t quachinhcuaphffnnay:
DinhIy2.5
Cho F :D ~ gvJa meltham da trj thoa (Hi) - (H3). Ltfy x E ScoFthi
.2JF(x)=0 khi va chl khi x E SextcoF'
Chungminh: -------------------------------------------------------------------
- 32-
~/ La'yx E ScoF,ghl sa x ~ SextcoF'Theom~nhde (2.2), co mQtday
{xn}n ~ 1,XnESPlin'XnhQit1,1deuWi x, nhu'ngkhongco dayconnaGcuano
hQit1,1m<;inhtoi x trongW1,p(I,RN).Theochungminhcuab6 de (2.7)thl 2:F
ph:Hdu'dng, matithu~ngia thie't.Suyra XE SextcoF.
La'yXE SextcoF,va {Xn}n ~ 1Ia mQtdaytrongSFc ' £n~0,hQit1,1, n
ye'utrongW1,P(I,RN)toix.Tathuanh~ndingXnclinghQit1,1m<;inhtoi x. (Theo
mQtk€t quacuaRzezuchowski).Do {xn}du'Qcla'ytuyy, tuchungminhcuab6
de(2.7)suyra 2~(x)=o.
Nhijnxet:
<;:::::./
Dinhly naychIradingvi~ctImnghi~mcuabaitoanqtcbien(2.33)cling
gi6ngnhu'vi~ctImcacgiatqminimize(t<;iib~c0)cuahamu.S.C.2:F trent~p
compactScoF. Ta connoi dinghamtu'dngthich2:F la d:ftctru'ngchocac
nghi~mqtc bien.TrencdsadatrInhbay,ngu'ditaconKaydl;tngdinhnghIa
tu'dngthichcuacacph~nta thuQcVaGt~pd'<ltdu'QC,d@tirdoxetcactinhcha't
. t~pnghi~mcuabaitoanqtcbien.