Luận án Tính chất điện và quang của tạp chất và exciton trong dây giếng lượng tử

TÍNH CHẤT ĐIỆN VÀ QUANG CỦA TẠP CHẤT VÀ EXCITON TRONG DÂY GIẾNG LƯỢNG TỬ Cao Huy Thiện Trang nhan đề Mục lục Mở đầu Chương_1: Hiệu ứng điện trường trên dây giếng lượng tử. Chương_2: Exciton dưới tác động của điện trường ngoài. Chương_3: Sự chắn động học trong các dây giếng lượng tử kích thích quang học. Mô hình một dải con. Chương_4: Hiệu ứng chắn động học - Mô hình nhiều dải con. Kết luận Phụ lục Tài liệu tham khảo

pdf27 trang | Chia sẻ: maiphuongtl | Lượt xem: 1655 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận án Tính chất điện và quang của tạp chất và exciton trong dây giếng lượng tử, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Chuong1 HIED UNG BIEN TRlJONG TREN DAy. . K ? GIENGLVdNG TV. .... MOttrongcacbairoandO'Ilgilmtrongv~t1ybandanvad~cbi~trongcac diu trucbandangiamOtchieula svcom~tcuat~pch~tionboa,noth~ hi~nmOtvaitroqUailtrQngtrongcachetalanhi~tdOth~pciingnhu~o ramOtsvdicchchuy~nm~ trongph6quanghQc.Nhieumcgiadilxem xetcactr~g thaivatinhDangluqnglienketcua~pch~trongQWW [13,15,17,29,62,68,70].LeevaSpector[62]lfuldAtitieDdiltinhDang luqnglienketcuamOt~pch~tlo~hydrogend~ttrentn;tccuamOtday hinhtrlfv6iraGthevoh~. HQdilchUngtoduQ'crangDangluqnglienket cuatr~gthaicabanduQ'ckhuechd~leDsov6itfUanghQ'p2,3chi~ukhi thunhobankinhcuaday.Tronggi6ih~ mOtchieu,Dangluqnglienket tieDdenvoh~. Saildo,Bryant[17]dilhoanthi~nmohinhtinhroanbang vi~cxem:xetdayv6iraGthehihlh~ vau.mth~yketquatuO'Ilgphlmv6i ketquacuaLeevaSpector,nghialav6icacdayr~tmanh,cacdi~nri'ro rangoaibi~uhi~nnhucacdi~nri'r3chi~utrongsl;!tacdOngcuaraGthe. Ciingv6ibairoannay,Osorio,DeganivaHipolito[70]dil thl;!Chi~ncho daychi!nh~tv6i tinhch~tb~tdfu1ghuangcuaraGthehUllh~ cuaday. 14 Tuynhien,v6iraothenaykhongchophepchungtatachbientrongvi~c gilriphuangtrlnhSchrodinger,chinhvlly dod6nenkhigilribIDroannay bangphuangphapbienthien,hams6ngthirkhongchuadt;rngnghi~mcua phuangtrlnhSchrodingerchodi~ntUtrongdAy. TrongnhUngDamgandAyban,me)truemghqpduQ'cmare)ngtrong lanhVlJcnaylasvc6m~tcuatrUemgngoai.DieunayduQ'cxemxetdolIng d\lngcuachungtrongcacd\lfigC\lbandAn,d~tbi~tdome)tvaihi~ntuQ'Iig l~thuemgnhuhi~ulIngHallluQ'IlgtU,dichchuy~nStark,cachi~ulIng phatquangc-ijachung...Svanhhuangcuadi~ntruemgngoaitrencacdi~n tU,~pchcfttrongcacQWW [69,76]clingnhucacQW [4,24,25,46,81] duQ'ctinhroanchoDanglUQ'Ilglienk€t, de)dichchuy~nDanglUQ'Ilgva h~sophanctfc.SukumavaNavanthakrishnan[76]dii tinhroande)dich chuy~nDangluqngvah~sophftncvccuame)tdi~ntUtrongme)tQWW vuongraothevoh~. NarayanivaSukuma[69]diinghiencoobIDroan vOisVc6m~tcua~pchcftlo~ihydrogentrongQWW chi!nh~tvo h~ vOidi~ntrUemghuangthfulgg6cvOitl1;lCQWW.Bangphuangphapbien thien,hQdiiurnthefynangluQ'IlglienketgiamtheoDchthu6'cQWW va svtangcuacuemgde)di~ntrUemg.Ngoaifa,ketquatrong[69]concho thcfyh~sophftnctfctangrheaDchthu6'cQWW. Trongchuangnay,chungtoisesird\lngphuangphapTva-Hartreedo BastardvaMarzin[7]duarad~khacph\lcITang~mame)tsocongtrlnh trU6'cdaydiig~pphlritrongvi~cgilriphuangtrlnhSchrodingerd~xacdinh DanglUQ'Ilglienketcua~pchcftrongcacQWW c6tinhbeftdoi XlIng[70] vOitheraoV (x,y) khongth~tachduQ'c.ChungWi sird\lngphuangphap nayd~nghiencooanhhuangcuadi~ntrUemgtren.cacm6hlnhQWW c6 15 ca:-utrUchinhhQckhacMali, Cl;!th~la dayluqngtUbem~tvadayluqng tUchi!nh~traothehUllh::m, 1.1 PhuongphapT1!a-Hartree Xua:-tphattitphuangtrlnhSchrodingerchodaygiengluqngtUvmthegiam OO6tV(x, y) : { n? [ 82 82 ] }- 2m~'8x2+ 8y2 +V(x,y) w(x,y) = EW(X,y). (1.1) ChungtahIll yrang,mQtcachhinhthucphuangtrlnh(1.1)coth~xem 001.1'phuangtrlnhmo18.2 di~ntUtU'angtacthongquathev (x,y) thay chotheCoulomb,vataclingbietrangcacnghi~mcoth~tachcuaphuang trioonaycod::mgW(x,y) =a(x)x(y) duQ'cxayd1fI1gtitnghi~mcuacac phuangtrlnhRartree: { fi2 82 }- 2m*8x2+ J V(x,Y)X2(y)dy a(x) =Exa(x), (1,2) { fi2 82 - 2m'8y2+ f V(x,y)a?(x)dX}X(y) =€yX(Y), (1.3) vmtririeng E= Ex+Ey- J V(x,y)a2(x)x2(y)dxdy. (1.4) 56h::mgcu6iclingtrongphuangtrlnh(1.4)duQ'cduavaod~tranhvi~c t1nh2 IAntUO'rlgtacV(x, y). 16 Trongtruemghqptakh6ngth~conghi~mchinhxaccuacacphuang trlnhHartreetren,taphaisird1]ngphuangphapbi~nthienvakhidochUng tacvcti~uhoaDanglUQ'IlgloanphfuEchukh6ngphaiDanghtQ'Ilgm~t h~tExva Ey. IT6c luQ'IlgTt;ra-Hartreeco th~so sanhvrocacti~pc~ khacnhuphep chi~uphuo'Ilgtrlnh(1.1)trenm~tt~pco sacuachuy~nd~ngtheohu6ng y [6]madu,cgQiIa nghi~mchinhxac : '" . \II(x,y) = L D:n(x)Xn(Y),n (1.5) adfiy,Xn(Y) Ia cacnghi~mcuaphuangtrlnhSchrodingerm~tchieunao do.TrongthlJcti~n,VItaphaidltt6ngtrongphuangmnh(1.5)Denphuang phapnayd~thi~uquakhith~tuangmc2chi~uV (x,y) coth~tachthanh 2 s6h~g U(y) + W(x, y),vaith~giamnh6tW(x, y) nh6hannhieuso vai U(y). Khi do,cachamXn(Y)thichhqpdu,cchQnnhula cacham riengcuaphuangtrlnhchuy~nd~ngm~tchieuvai th~nangU(y). Trong truemghqpdO'Ilgiannhat,khi chidungm~ts6h~g trongphuO'Ilgtrinh (1.5)nghiala w(x,y) = D:l(X)Xl(Y)tmtasethudu,ch~phuangtrlnh: { fi2 82 - 2m' ax2+f W(x,Y)X~(y)dY}0:1(X) =£,0:1(x), (1.6) { fi2 82 }- 2m*8y2+U(y) Xl(Y) =EyXl(Y), (1.7) E=Ex +Ey . (1.8) 17 Tathayrangphuongtrlnh(1.6)tuongtvvmphuongtrlnh(1.2)vmW(x,y) thaychoV(x, y) vaXl(y) thaychoX(y).Tuynhien,trongg~ dUngnay kh6ngcosVphanhoicuanghi~mal (x) trenphuongtrlnh(1,7).Noi each khac,t~pcuahamthirtrongtruemghgpnayh~ ch€ bong~ dungTva- Hartree.Dehow thi~nvand~naytaphailaynhi~uboncaes6h~gtrong phuongtrlnh(1,5). ? 1.2 Anh hulmgcuadi~ntruOngleu caemucDangIUQ'llg trongday luQ'Ilgtit bem~t... Vm phuongphapTva-Hartree,BastardvaMarzin[7]dii tfnhduQ'Ccac mucnangluQ'Ilgcuadi~ntirtrongd~yluQ'Ilgtirb~m~t.Trongdo~ nay, chungt6idiisirdl;lngphuongphapnaydetfnh:inhhuemgcuadi~ntruemg ngoailencacmucnangluQ'Ilgcuadi~ntirtrongd~yluQ'Ilgtirb~m~tvatlr dochungWixacdinhh~s6ph~cvccuadi~ntir. Lx VI +,1V VI VI +,1V ! L, VI Hlnh1.1:TIetdi~nngangcuam'itdaygiengluqngtUb~m~t 18 X6t dayh!Q'Ilgti:rb~m~t(hlnh1.1[7])d~trongmQtdi~ntnrangngoai d~usongsongvOih1;1ey gommQtgiengluQ'Ilgti:r[0,Ly].Theohu6ngtieD euagienglUQ'Ilgti:r(hu6ngy) tabien d~g dlnhraobangeachkhAeben ngoaivling [-Lx/2, Lx/2] 2 v~ehtheVI + ~V [40]. VOieautnienay,raotheV(x,y)cod~g: V(x,y) =ViB[y(y- Ly)]+~VB(y- Ly)B(x2- L;/4) , (1.9) b dayB(x) If hamHeaviside,Vi la theraoeuagiengluQ'Ilgti:rva~V la thengoaigauvaoraothegiuagiengluQ'Ilgtirvan~n. HamiltonianeuamQtdi~ntirtrongdayduOimedQngeuadi~ntnrang ngoaisongsongvOih1;1ey cod~g : li2V2 H = - - +V(x,y)+eF(y- Yo),2m* (1.10) v6i m* la khoiluQ'Ilghi~udvngeuadi~ntirvaF la euangdQeuadi~n truang.Yo . F=Olagiat:ritrungblnheuay trongtr~gthaikh6ng codi~ntruang.Luu yrang,Yo --+Ly/2 khi Lx --+00. Khi co m~teua di~ntruangngoai,caetr~gthaidi~nti:rsonglaucothetont~neueuang dQdi~ntnrangF kh6ngqua16'11.Taco thecocaetr~gthaigialienket neudi~ukien Ii2ql eFq;1« 2m*' (1.11) duQ'ethoa,b doqi I (i = 1,2)laehi~udaid~etrungeuadQgiamtheo 19 exponentialtronghu6'ngy cuahamsongdi~ntlrkhikh6ngcodi~ntTUang [4]. Chungt6ichQnd~g sauchohamsongcuatr~gthaicobanvatr~g thaikichthichdatiti~n: Wn(X,y) = NnWno(x,y)<Pn(x,y) ,n = 1,2 (1.12) Nn 1ahangso chufuJ.hoa. HamWnO(x,y) la nghi~mcuaphuongtrlnh Schrodingerkh~ngcodi~ntTUangngoai: ... { n? [ 82 82 ] }- 2m* 8x2+ 8y2 +V(x,y) Wno(x,y) =EnoWno(x,y). (1.13) '¥nOduQ'c!trynhutfchcacnghi~mcuacacphuongtrlnhTva-Hartree: { 1i2 82 } --~ +~VPl,yB(x2- L;/4) !n(x)=77n,x!n(x),2m*8x (1.14) { 1i2 82 . }. - 2m*8y2+V1B[y(y- Ly)]+~VPn,xB(y- Ly) gl(y) =El,ygl(y), (1.15) bday Pn,x = fB(x2- L;/4)!(x) dx, Pl,y = f B(y- Ly)gi(y)dy, (1.16) Eno = 77n,x+El,y - 6.VPn,xPl,y, . . 20 D~g tuemgminhcua fn (x) vagl(y) duQ'chonhusau: { sin (n'Tr - k2 h )ekl,neX+~) x <- L. /22 . ,n 2 , - x fn(x) = s~n(k2,nX+n;) f...' -Lx/2 <x <Lx/2 s2n(n1l"+ k2 h )e-kl,neX- 2 ) X >L /22 ,n 2 , - x (1.17) { sina:eqlY , y <0 gl(Y) = s~n(k1Y+0:) , 0 <Y <Ly s2n(k1Ly+0:)e-q2ey-Ly), x >Ly (1.18) ... Ciday k1,n,k2,n,k1, q1va q2duQ'cxac d~ bangvi~cgiai lien tieph~ phuongtrlnhkin : 2 2 2m* k1,n+ k2,n = 7..6. V P1,y, 1r Lx k1,n = k2,nCOtg(n2+ k2,n2) , 2 2 2m* k1+ ql = 7 Vi , 222m * q1+q2 = 7(Vl + ..6.VPn,x), k1 k1 k1Ly = 1r- arctg( -) - arctg( -) , q2 q1 (1.19) Svkha~bi~tgiuanghi~mTva-Hartreevanghi~mchinhxacnhohon 1meV chotr?llgthaicabankhikh6ngcodi~ntIUemgngoai[7].cac s6 li~uthvcnghi~mnh~ duQ'cbCiiGn~us[40]sov6iketquatfnhtoantlr phuongphapTva-Hartreecoth~xemnhudQphAntantrongvi~cdocac duli~uthvcnghi~m[7]. D~nghiencooaM huangcuadi~ntIUemgtencacmucnangluqngcua 21 dAyhrQ'Ilgtirb~m~t,chungWidasird\lngthemm~tphuemgphapquen thu~ckhac,v6ihIDbi€n thienlien ti€p madaduQ'cBrum[16]sird\illg d~nghienCUllarmhuemgcuadi~ntruanglennangluQ'Ilglienk€t exciton trongQW vagAD.dAyleunangluQ'Ilglienk€t donortrongQWWchi!nh~ voh~do Narayani[69].cacnanghrQ'Ilglienk€t excitonvanangluQ'Ilg lienk€t donordadl1Q'cxacdinhbangphuemgphapbi€n thientrongluc codinhcacthamsobi€n thiennh~ duQ'ctru6cd6tlrgAD.dUngbi€nthien khac. Doi v6id~ngcuahamsongbi€n thien1>n(x,y), chungtoichQnham thir: 1>n(X,y) =exp[-~n(Y- Yo)], (1.20) madaduQ'csird\lngchoQW bOinhi~umcgia[4,13,16,24].~nla tham sobi€n thienvaphai006hemqid~duytrlm~thamsonggiamtrongrao th€ [4],di~uki~nnaysuyratlrdi~uki~n(1.11).Vi~ctinhroantr!trung blnhcuaHamiltonianEn la rAtdai,chungWichi duara b dAyk€t qua cuoicling: En(~n) fi2 - 2m*~~+ 'TJn,x+ €l,y - ~V { p J1 +P (h+h) . n,x J 1,y~ - J1(h +13) } - eF d I J 21J d~n[IJ], (1.21) v6i l=h+h+h, (1.22) 22 trongdo l-L:1:/2 2h = -00 !n(X) dx, lL:1:/2 212 = !n(X)dx,-L:1:/2 h OO 2 13 = !n(X)dx, . L:1:/2 h oo 2 .. J1 = gl(y)exp{-2{3(Y-Yo)}dy,Ly J = I-: gi(y)exp{-2{3(y- YO)}dy . (1.23) CluingWi dathl;tehi~npheptfnhbienthiend6iv6i {3ndexaed!nhcae muenang1uqngeuadi~ntir En =En({3n)min, (1.24) vah~s6phfulel;teeuad~~ntirduQ'ed!nhnghlanhusail : e ap = - F {('l11Iyl'l11)Fj60- ('l11Iyl'l11)F=O}. (1.25) Tacothesuyfa tITdinhnghlathunguyeneuah~s6phfulcl;teIa [L3]nhu daduQ'esirdl;lngtrong[76].caetaegillkhae[69]dasirdl;lngthunguyen [Faraday.L2]ehoh~s6phfulel;te. De tlnhtminbangs6,chungt6ixettruanghQ'peuadAy1uqngtirb~ m~tGa(ln)As - GaAs [40]v6icaethams6daduQ'esirdl;lng1a: m*= 0 0.06mo,Ly =50A, ~=0.15eVva~V =0.8eV. 23 CacketquabangsochonangluQIlgcuatrcplgthaicabanvaklchthlch thunhatEl va E2 nhu la hamcuacuemgdQdi~ntruemgduQ'cbieuhi~n a a tronghlnh1.2chohill truemghqpLx =300A vaLx=600A. Vill giatri cuacuemgdQdi~ntnremgchotronghlnh1.2,di~uki~nchoboophUC1l1g trlnh(1.11)duQ'cthoa.Goc tfnhnanglUQIlga dAyduQ'chQn13.nang luQIlgtrcplgthaicabancuaQW c6l~pvabang69.1meV.Theoketqua machungt6ithuduQ'ctmcacmucnangluQIlgcuadi~nti:rgifunkhicuemg dQdi~ntruemgtang.Tronghlnh1.3,chungWived6thih~sophAncvc O:prheaLx. O:ptangnhykhiLx tang.Ngoairadesosanh,chungt6icling ... xemxettruanghqpdi~ntfUemghu6ngtheophuC1l1gcua~c x. Nhuco thethaytru6'c,chungWidathuduQ'cO:ptrongtruemghqpnayphl;!thuQc m~ vaostJthayd6icuaLx. 24 ,-.. ;> ~'-" ~ 20 -.------.-----.-.-.------.-.------- -.15 L 10 5 .".""".. """""" """ .~.. -------------------------- ---- 0 -5 0 50 7525 100 F (kV/cm) filnh 1.2:Haimuenangluqngthtlpnhtltnhuhamcuaeuemgd~di~ntrlremg.F. Nang 0 0 luqngtn;mgthaicoban: duemgli~nehoLx =300A, duemg~ehehoLx =600A. 0 Nangluqngkiehthfehdautien: duemg~eh-ehtlmehoLx =300A, duemgehtlmehoo' Lx = 600A. 25 2.0 80 ... "..".."......".."..".. ,/'".. /" ....,,".."..,"..,,"..,".."..."."..,."'",. .".'"."..".,..'" 601.8 ,.--.. ~ '0...... '-" ~ 1.6 40 1.4 20 1.2 0 200 300 400 500 600 LxU) HiOO1.3:H~s6phfulqIc QpOOuhamcuaLx, cuangd~di~ntn!angF =50kV/crn: duangli~nchodi~ntnIangsongsongt:l11cy (thangtrcH)vaduangg~chchodi~ntnIang songsongti-u,cx (thangphai). 26 1.3 T~pchattrongdaygiengluQ1lgtitdumlac dQngcua di~ntruOng Trongdo?llnay,chungt6iclingsirdl;1ngphuongphapTlJa-Hartreedexem xet3.nhuangcuadi~ntrubngngoail~nnanglugngli~nketvah~s6pball clJccua~pchatlo~hydrogentrongQWW chitnh~tvmraothehihlh~';" Chung ta hay xem xet rnQtQWW chu nh~tv6i 1:nfcz, d~ttrongmQt di~ntruemgngoai thAngg6c vm tfl;1cd§.y.T~pchatxem nhu mQtdi~nncb diemd~tmy ytrongQWW.Trongkhu6nkh6cllagandungkh6iluqng ~ . hi~udl;1ng,HamiltoniancuamQtdi~ntitbaaquanh~pchatdugcchonhu sau: h2\72 e2 H =- +V(x,y)+eF(xcosB+ysinB)- - , 1 ' 2m* E r - ro (1.26) G6ccuah~tQadQdugcchQna tfuncuaQWW,r = (x,y,z) varoo= (xo,Yo,0) tuongUngla tQadQcuadi~ntlrva~pchat.Trongphuongtrlnh (1.26),m* la kh6i lugnghi~udl;lngcuadi~ntlr,E13.hangs6di~nm6ifinh cuaQWW va,.]Jla cubngdQdi~ntrubngcohu6'ngt~on~nrilQtg6c()vm trl;lcx cuaQWW.RaotheV(x, y) cod?llgsau: . . . [ a2 a2 b2 ]V(x,y) = Va B(x2- 4) +B(4 - x2)(}(y2- 4) , (1.27) B(x) 13.hamHeaviside,a vab lacackichthu6'cuaQWW. Nghi~mchinhxaccuaphuongtrlnhSchrodingertuongUngvmHamil- tonian(1.26)kh6ngthetlmdugc.Vi v~y,chungt6isirdl;lllgphuongphap 27 bienthiendenh~nghi~mgandungcuabaitmln.Delamhamsongtr~g thaiCCfban,chUngt6ichQnhamd~gdangiansau: w(x,y,z) = Nwo(x,y)<jJ(x,y,z) . (1.28) Hamw0(x,y) langhi~mcuaphuangtrlnhSchrodingerkhikh6ngcodi~n tfUem.gngoaivas6h~g Coulomb: { 11,2 [ 82 82 ] }- 2m*19x2+()y2 +V(x,y) wo(x,y)=Eowo(x,y). (1.29) MQteachhlnhthuc,cothexemphuangtrlnh(1.29)m6tah~2 di~nti:r tuangmeth6ngquatheV(x, y).Vi v~y,wo(x,y) cothelaynhunchcua caenghi~mcuah~phuangtrlnhTga-Hartreesau: { 11,2 82 [ a2 a2 ] }- 2m*8x2+Va B(x2- 4) +B(4 - x2)py !(x) =Ex!(X) , (1.30) { 11,2 82 [ b2 ] }- 2m*8y2+ Va Pl,xB(y2- 4) + P2,x g(y)=Eyg(y), (1.31) v6itri rieng Eo = Ex+Ey- Va[P2,x+Pl,xPy], (1.32) ? d ' Cf 0: 28 b2 Py = !B(y2- 4)g2(y)dy, a2 P1,x = !B(4" - x2)f2(x)dx, a2 P2,x = !B(x2- 4")f2(x) dx. (1.33) H~2 phuongtrlnh(1.30)va (1.31)dientll 2 bai loangi~ngth~mOt chienmade)caDraoth~naylienk~tv6ixacsuat lmh~tronggi~ngth~. conl~i.HamsonggiamOO6tf (x) va9(y) coth~chQnOOusan: ... { cos(k1~)eql(X+~) x <-~2 ' - 2 f(x) = COS(klX) , -~ <x <~ cos(k1~)e-ql(X-I) x >~2 ' - 2 (1.34) 9(y) duqclaytrongd~g tttongt1!v6i f (x), trongdok1duqciliay bOi k2,ql bOiq2vaa bOib. cac thams6k1,k2,ql vaq2duqcxacdinhtU cach~thac(1.30),(1.31),(1.33)vacacdieuki~nbien.N~uchungta~t P1,x= 1vaP2,x= Py - 0,chungtasenh~ duqcnghi~mdiiduqcsir dlfngbOiOsorio[70]OOudiinoia tren.Chungt6ichQnhamthirc/;(x,y,z) chohamsongdumd~g : c/;{x,y,z) = exp[-.\If - TOI]exp[-jJ(xcosB+ysinB)], (1.35) nhunhieumcgillkhac[4,16,24]..:\la thams6bi~nthiend~ctrungcho tttonglacCoulomb,jJ la thams6bi~nthiend~ctnmgcholinhhuOngcua di~ntruemg.Khi dotadedangtinhduqcgiatritrungblnhcuanangluqng tttongangvmHamiltonian(1.26)E (jJ, .:\): 29 = Ed Ey+{>.2+jj2 - 2>.jj[COSII~:+ sin II~:]} [ N2 ( N3 ) N2 - N5 ]- Va P2x +PyNI + PIx 1- NI - NI e2N4 . . Ng ---+eF- E N1 NI ' E({3,A) trongd6 NI =100 dx roo-00 . #.LOO /a/2 / 00 N2 = dx -a/2 -00 1 00 /b/2N3 = dx-00 -b/2 - (1.36) dyj2(X)g2(y)e-2(3(XCOS()+YSin())v(x- XO)2+ (y - YO)2 xKI(2AV(X - XO)2+ (y - YOp, . (1.37) dyj2(X)g2(y)e-2(3(XCOS()+YSin())v(x- xoF + (y - YO)2 XKI(2AV(X - XO)2+ (y - YO)2, (1.38) dyj2(X )g2(y) e-2(3(xcos()+ysin())V(x - XO)2+(y- YoP XKI(2AV(X - XO)2+ (y - YO)2, (1.39) N4 =/00 dx/00. -00 -00 /a/2 1b/2Ns = dx-a/2 b/2 dyj2(X )g2(y) e-2(3(xcos()+ysin()) xKo(2AV(X- xO}2+ (y - YOp, (l.40) dyj2(x )g2(y)e-2(3(xcos()+ysin())V(x - xO)2+ (y - YO)2 XKI(2AV(X - XO)2+ (y - YO)2, (1.41) 30 N6 = foo dxf oo -00 -00 dyf2(X)g2(y)(X - xo)e-213(xcosO+ysinO) xKo(2AV(X- XO)2 +(y - YO)2 , (1.42) N7 = I-:dxi: dyf2(X )g2(y) (y - yo)e-213(xcosO+ysinO) xKo(2AJ(X - XO)2+ (y - YO)2, (1.43) fOO ~rooN8 = -00 dx J-oo dyf2(X)g2(y) e-213(xcosO+ysinO)V(x - XO)2+ (y - YO)2 X (X cos B + y sin B) xK1(2AV(X- xO)2 +(y- YO)2, (1.44) K 0(x) va K 1(x) lfu luQ'tla hamBesselbiend~g b~e0 vab~e1. Chungtaphlrithvehi~nphepbienthientheo/3vaAd~xaedinhnang luQ'I1gtr~gthaieabant~peh~tEimp= E(/3,A)min.NangluQ'I1glienket ~peh~tEbduQ'edinhnghlalahi~ugiuanangluQ'I1gtr~gthaieabandi~n tlrEe -. E(/3rA=O)min(thieu~6h~g Coulombtrong(1.26))vanang luQ'I1gtr~gthaieabaneua~peh~tEimp. Eb =Ee - Eimp. (1.45) H~s6phfuleveeuat~pehfitduQ'edinhnghla[76]: e ap=- F {(wlxcosB+ysinBlw)p#o- (wlxcosB+ysinBIW)p=o}. (1.46) 31 D~thuduqccacketquabangso,chungt{)idfisirdl;lngcacthamso sanchoQW\V GaAs : Va=O.4eV,m* =0.067mova€ =12.53. Trongcaehlnh1.4va1.5,nangluqnglienketEb (lllnh1.4)vah~so phanclJCap(hlnh1.5)cuarn()t~pch~trongrn9tQWWvmd()caorao thehfiuh~ dfiduqcvevaso sanhvmcaeketquacuaQWW v{)h~. ChungWi th~yrangraothehiiuh~ dfi lamgiamnangluqnglienket rn9teachdangk~,d~ebi~ta cackfchthuaedAy006(tlEb ~ 5meVa 0 a =50A). Vm vi~ctangkichthuacQWW,h~sophanelJeclingtamg nhudfiduqc<;jladqi.RaothehUllh~ndfikhuechd~ih~sophanclJCcua ~pch~tlenrn()tcachdangk~. Tronghlnh1.6chungWi trlnhbayh~sophanclJcapnhurn()tham 0 0 cuagoc()chotruanghQ'pQWW cokfchthuaca =100A, b =50A, Xo=Yo=0vaF =200kV/em.H~sophanclJcgiamkhitang()bm VI trongtwanghQ'pnayd()giamnhotla 100nh~tdQctheotrl;lcy maa 0 dokfchthuacQWWla 50A va()=900.R6 rangrangd()caoraothe hUllh~ dfikhuechd~slJph1;1thu()ecuah~sophancvcvaohuOOgdi~n truang. caehlnh1.7va1.8trlnhbaynangluqnglienketEbvah~sophan 0 eve.ap theoV!tri t~peh~tYoehoa =b =100A, () =90°,XQ= 0 va F ~ 100kV/cm.O;red~euaduangeongnangluqnglienkettronghlnh 1.7duqedmdikhicorn~teuadi~ntruang.Vm QWW coraothev{)h~, svdmdi euaeved~la it honsovmQWW coraothehUllh~, di~unay coth~hi~uduqenhusan: med()ngcanITasvdi ehuy~neuadi~ntirv~ meptraiQWW coraothehiluh~ kernhO'IlQWWcoraothev{)h~. Sv di ehuy~neuadi~ntirv~phfatraiQWW (nguqe hi~udi~ntruang)cling 32 gi\ynensvtangeuah~s6phi\nevekhi t~peh~tdi ehuy~nv~pillaphai QWW OOUdiiduQ'ebi~uhi~ntronghlnh1.8. Tiepthea,chUngt{)ixemxetanhhuemgeuatieldi~nkh{)ngvu{)ngeho QWW v6i di~nneheuatieldi~nngangkh{)ngd6i. H'mh1.9bi~uhi~n nangluqnglienketEb IDeokiehthuaea euaQWW ehoa X b=canstva Xo=Yo=O.Khi kh{)ngco di~ntruOng,Eb it thayd6i ehocaeQWW co kiehthuaegfubangOOau.Svthayd6iladangk~khikiehthuaeeuam~t e~ la gfu g~pd{)ikiehthuaeeuae~ eonI~i.V6i s1;teom~teuadi~n truOng,nohu.ydi t1nhd6iXUngvaehochungtam~tqUaIlsatdangehu y: trongkhisveoeuakiehthuae ~ IDeohuangdi~ntruOng(~e y) ~oram~thayd6i000trongEbtill svmar~ngkiehthuaeIDeohuangdo l~iHullgiltmOOanhnangluqnglienketocaethayd6inayxltyraladoxu huangei\nbanggiitaeaeb6ehinhvaoEbgi\ybmhi~uUnggiamOO6tva hu6'ngeuadi~ntrUOng.D6iv6ieaeQWW eokichthuaelan,eved~eua nangluqnglienketacaee~ bangOOaubiOOoedi.H~s6phi\nevetrong hlnh1.10chUngtom~tdangdi~utuongtv.Tuynhien,takh{)ngqUaIlsat th~yeved~trongduOngeongh~s6phi\nevengayeltehoQWW eokieh thuae000.Com~tsvtangOOanheuah~s6phi\nevedosvmar~ngkieh thuaeQWW rheahu6'ngdi~ntrUOngvagiltmeh~ dosveokiehthuae QWW IDeohuangnay. Ket lu~n : Trongehuongnay,bangphuongphapTva-Hartree,chUng t{)idii giltiquyetvfu d~eotinhphuongphaplu~ ehovi~egiaiphuong trlnhSchrodingert ongh~QWW co raothebfitd6ixUng,elfth~la hID m{)hlnhQWW b~m~tvaehitOO~t.Chungt{)idiixemxets1;tl nhhuemg euadi~ntrUOngleucaemuenangluqngtrongdi\ygiengh1qngtirb~m~t 33 vaxacdiM h~s6phancl;Tcuadi~nt:irtrongdayluqngt:irb~m~t.D6iv6i cacQWW chitnh~t,chungt6inghiencli'unangluqnglienketvah~s6 phancl;TCcuam(>tt~pcha:ttrongsl;Tcom~tcuadi~ntruang.Chungt6ifun tha:ychungph\!thu(>cm~ VaGthegiamnh6t,vi tricua~pcha:t,hu6ng cuadi~ntruangvatietdi~nkh6ngvu6ng.Chodennaychuacoba:tleY m(>tth6ngbaanaGv~cacs6li~uthl;Tcnghi~mtrongvi~cdoh~s6phan cl;Tcuat~pcha:ttrongQWW.Vi~cdoh~s6phancl;Tcselam(>tcosaxem xetdangdi~ud(>nghQccuacach~tfutrongQWW. .-I 30 15 " "" "- ....."-'- ..... ..............'- ....... ....... ....... ....... ....... ........ ..... "- "- ........"-" " ..... ........ ........ 25 20;-0. ;> I!) 8'-' .Q ~ 10 5 50 100 150 200 250 300 aU) Hlnh1.4:NangluqnglienketEbnhuhamcuakfchthuaca cuaQWW chitnh~tvm 0 . kfchthuacb=150A, t~pch~tb Xo=Yo=0vacUOngdQdi~ntrUOngF =lOOkV/crn, () =450.DuOngli~nchodo thehiiuh~ Vo=O.4eV, duOng~chchodo thevOh~. 34 ~~£..'" b..... '-" ~ 1.25 A 1.00 0.75 1- 0.50'- 0.25'- ./ ./ ./ ./ ./ ./ ./ /' ./ ./ ./ ./ ./ ./ /' /' /' ./ ./ ./ ..... ..... ......--------- 0 50 150 250 300200100 aCl) Hlnh 1.5:H~86phfulcVcO:pnhuham.cl1aDch thu6'ca, cactham86gi6ngnhuh1nh1.4. 35 0.15 0.03 --....... """'...... ......." ....... """'....... """'....... """........ """"....... - ~12,- ,--.... "8t:.. ~.., b ...... '--" 'd' 0.09 0.06 0 0 2.25. 45 67.5 90 8(degrees) 0 Hinh 1.6:H~s6phfulcl;tcapnhuhamcilag6cegiuadi~ntrUOngvatrI,lcx choa = 100A, 0 b=50A, x.o=Yo=0,vaF =200kV/cm.DuOnglien: raothehiIuh~ (Vo=O.4eV), duOngC;lch: raothev6h~. 36 """" >- CI)s'-'.0 ~ /-- - -........ / ...... / "- / "- / : "-"- "- "- "- "- "- "- "- "- "-"-"- ...... 30 25 15 ° 25 50 20 ,- 10 5 -50 -25 YoU) lfmh1.7:Nangluqn.glienketEbnhuhamcuavi tri ~pchatYo,choXo= 0,a = b= 0 100A, F . 100kV/cmvae=90°.DuOngli~n:raothehiiuh~(Yo=OAeV),duOng g~ch: raothev()h~ 37 ~"\= >:.. ;it; b '-" ~c. 0.22 0.18 50 Hinh 1.8:H~soph:lncl;Ccapnhuhamcua~trftl:lPch~tYo,cacthamsogiongnhutrong hinh1.7. 0.14 0.10 0.06 - - ,.../"./ ./ ../ --./".---..--- ---_..--- 0.02 -50 -25 0 25 YoU) 38 100 200 300 30 15.5 ---------/-- -- 15 ~.5 ---. 14.5 ,......... >- iU 8 '-" p:j' 15 / / i, ~ - - - - - - -:.-:-:-.:::.;-:-:.:-:-:..,.,...,~.~.~ ........... 7.5 0 r 0 100 200 300 400 aU) I-fmh1.9:NangluqnglienketEbnhuhamtheekichthUGCacuaQWWchunh~traathe a hihlh~ Vo- O.4eVchaa x b=canstvaXo=Yo=O.Duemglien: a x b=100A a a a xlOOA vaF =0; duemgg~ch-chaIn: a X b =100A xlOOA. F = 100kV/cmva a a a e = 900;duemg~ch: a x b= 200A x200A vaF = 0;duemgchaIn:a X b= 200A a x200A vaF =100kV/cmvae= 90°.I-fmhbentrang: khuechd~cuaduemg~ch. 39 200 300 400 6.0 0.04 1.5 \ , \ \ , \ \ \ \ \ \ \ \ \ \ \ '\ '\. '\. '\. "'....... '....... """"""' - 0.02 4.sot ~ "8 ~ ;!; b ..... '-'" ~c.. 0 3.0 0 0 100 200 300 400 aU) Hlnh1.10:H~sophaneveCtpnhuhamtheoklehthuaea euaQWWchitnh~tdiothe hituh~ Va=OAeV ehoa x b=canstvaXo=Yo=0,F =100kV/cmvae=90°. 0 0 0 0 DuOnglien: a x b= 100A x100A, duOng~eh: a x b=200A x200A. H'Inhben trong:khueehd~ieuaduOnglien. 40

Các file đính kèm theo tài liệu này:

  • pdf3.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf2.pdf
  • pdf4.pdf
  • pdf5.pdf
  • pdf6.pdf
  • pdf7.pdf
  • pdf8.pdf
  • pdf9.pdf
Tài liệu liên quan