TÍNH CHẤT ĐIỆN VÀ QUANG CỦA TẠP CHẤT VÀ EXCITON TRONG DÂY GIẾNG LƯỢNG TỬ
Cao Huy Thiện
Trang nhan đề
Mục lục
Mở đầu
Chương_1: Hiệu ứng điện trường trên dây giếng lượng tử.
Chương_2: Exciton dưới tác động của điện trường ngoài.
Chương_3: Sự chắn động học trong các dây giếng lượng tử kích thích quang học. Mô hình một dải con.
Chương_4: Hiệu ứng chắn động học - Mô hình nhiều dải con.
Kết luận
Phụ lục
Tài liệu tham khảo
27 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1655 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận án Tính chất điện và quang của tạp chất và exciton trong dây giếng lượng tử, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Chuong1
HIED UNG BIEN TRlJONG TREN DAy. .
K ?
GIENGLVdNG TV.
....
MOttrongcacbairoandO'Ilgilmtrongv~t1ybandanvad~cbi~trongcac
diu trucbandangiamOtchieula svcom~tcuat~pch~tionboa,noth~
hi~nmOtvaitroqUailtrQngtrongcachetalanhi~tdOth~pciingnhu~o
ramOtsvdicchchuy~nm~ trongph6quanghQc.Nhieumcgiadilxem
xetcactr~g thaivatinhDangluqnglienketcua~pch~trongQWW
[13,15,17,29,62,68,70].LeevaSpector[62]lfuldAtitieDdiltinhDang
luqnglienketcuamOt~pch~tlo~hydrogend~ttrentn;tccuamOtday
hinhtrlfv6iraGthevoh~. HQdilchUngtoduQ'crangDangluqnglienket
cuatr~gthaicabanduQ'ckhuechd~leDsov6itfUanghQ'p2,3chi~ukhi
thunhobankinhcuaday.Tronggi6ih~ mOtchieu,Dangluqnglienket
tieDdenvoh~. Saildo,Bryant[17]dilhoanthi~nmohinhtinhroanbang
vi~cxem:xetdayv6iraGthehihlh~ vau.mth~yketquatuO'Ilgphlmv6i
ketquacuaLeevaSpector,nghialav6icacdayr~tmanh,cacdi~nri'ro
rangoaibi~uhi~nnhucacdi~nri'r3chi~utrongsl;!tacdOngcuaraGthe.
Ciingv6ibairoannay,Osorio,DeganivaHipolito[70]dil thl;!Chi~ncho
daychi!nh~tv6i tinhch~tb~tdfu1ghuangcuaraGthehUllh~ cuaday.
14
Tuynhien,v6iraothenaykhongchophepchungtatachbientrongvi~c
gilriphuangtrlnhSchrodinger,chinhvlly dod6nenkhigilribIDroannay
bangphuangphapbienthien,hams6ngthirkhongchuadt;rngnghi~mcua
phuangtrlnhSchrodingerchodi~ntUtrongdAy.
TrongnhUngDamgandAyban,me)truemghqpduQ'cmare)ngtrong
lanhVlJcnaylasvc6m~tcuatrUemgngoai.DieunayduQ'cxemxetdolIng
d\lngcuachungtrongcacd\lfigC\lbandAn,d~tbi~tdome)tvaihi~ntuQ'Iig
l~thuemgnhuhi~ulIngHallluQ'IlgtU,dichchuy~nStark,cachi~ulIng
phatquangc-ijachung...Svanhhuangcuadi~ntruemgngoaitrencacdi~n
tU,~pchcfttrongcacQWW [69,76]clingnhucacQW [4,24,25,46,81]
duQ'ctinhroanchoDanglUQ'Ilglienk€t, de)dichchuy~nDanglUQ'Ilgva
h~sophanctfc.SukumavaNavanthakrishnan[76]dii tinhroande)dich
chuy~nDangluqngvah~sophftncvccuame)tdi~ntUtrongme)tQWW
vuongraothevoh~. NarayanivaSukuma[69]diinghiencoobIDroan
vOisVc6m~tcua~pchcftlo~ihydrogentrongQWW chi!nh~tvo h~
vOidi~ntrUemghuangthfulgg6cvOitl1;lCQWW.Bangphuangphapbien
thien,hQdiiurnthefynangluQ'IlglienketgiamtheoDchthu6'cQWW va
svtangcuacuemgde)di~ntrUemg.Ngoaifa,ketquatrong[69]concho
thcfyh~sophftnctfctangrheaDchthu6'cQWW.
Trongchuangnay,chungtoisesird\lngphuangphapTva-Hartreedo
BastardvaMarzin[7]duarad~khacph\lcITang~mame)tsocongtrlnh
trU6'cdaydiig~pphlritrongvi~cgilriphuangtrlnhSchrodingerd~xacdinh
DanglUQ'Ilglienketcua~pchcftrongcacQWW c6tinhbeftdoi XlIng[70]
vOitheraoV (x,y) khongth~tachduQ'c.ChungWi sird\lngphuangphap
nayd~nghiencooanhhuangcuadi~ntrUemgtren.cacm6hlnhQWW c6
15
ca:-utrUchinhhQckhacMali, Cl;!th~la dayluqngtUbem~tvadayluqng
tUchi!nh~traothehUllh::m,
1.1 PhuongphapT1!a-Hartree
Xua:-tphattitphuangtrlnhSchrodingerchodaygiengluqngtUvmthegiam
OO6tV(x, y) :
{
n?
[
82 82
] }- 2m~'8x2+ 8y2 +V(x,y) w(x,y) = EW(X,y).
(1.1)
ChungtahIll yrang,mQtcachhinhthucphuangtrlnh(1.1)coth~xem
001.1'phuangtrlnhmo18.2 di~ntUtU'angtacthongquathev (x,y) thay
chotheCoulomb,vataclingbietrangcacnghi~mcoth~tachcuaphuang
trioonaycod::mgW(x,y) =a(x)x(y) duQ'cxayd1fI1gtitnghi~mcuacac
phuangtrlnhRartree:
{
fi2 82
}- 2m*8x2+ J V(x,Y)X2(y)dy a(x) =Exa(x),
(1,2)
{
fi2 82
- 2m'8y2+ f V(x,y)a?(x)dX}X(y) =€yX(Y), (1.3)
vmtririeng
E= Ex+Ey- J V(x,y)a2(x)x2(y)dxdy. (1.4)
56h::mgcu6iclingtrongphuangtrlnh(1.4)duQ'cduavaod~tranhvi~c
t1nh2 IAntUO'rlgtacV(x, y).
16
Trongtruemghqptakh6ngth~conghi~mchinhxaccuacacphuang
trlnhHartreetren,taphaisird1]ngphuangphapbi~nthienvakhidochUng
tacvcti~uhoaDanglUQ'IlgloanphfuEchukh6ngphaiDanghtQ'Ilgm~t
h~tExva Ey.
IT6c luQ'IlgTt;ra-Hartreeco th~so sanhvrocacti~pc~ khacnhuphep
chi~uphuo'Ilgtrlnh(1.1)trenm~tt~pco sacuachuy~nd~ngtheohu6ng
y [6]madu,cgQiIa nghi~mchinhxac :
'"
. \II(x,y) = L D:n(x)Xn(Y),n (1.5)
adfiy,Xn(Y) Ia cacnghi~mcuaphuangtrlnhSchrodingerm~tchieunao
do.TrongthlJcti~n,VItaphaidltt6ngtrongphuangmnh(1.5)Denphuang
phapnayd~thi~uquakhith~tuangmc2chi~uV (x,y) coth~tachthanh
2 s6h~g U(y) + W(x, y),vaith~giamnh6tW(x, y) nh6hannhieuso
vai U(y). Khi do,cachamXn(Y)thichhqpdu,cchQnnhula cacham
riengcuaphuangtrlnhchuy~nd~ngm~tchieuvai th~nangU(y). Trong
truemghqpdO'Ilgiannhat,khi chidungm~ts6h~g trongphuO'Ilgtrinh
(1.5)nghiala w(x,y) = D:l(X)Xl(Y)tmtasethudu,ch~phuangtrlnh:
{
fi2 82
- 2m' ax2+f W(x,Y)X~(y)dY}0:1(X) =£,0:1(x), (1.6)
{
fi2 82
}- 2m*8y2+U(y) Xl(Y) =EyXl(Y),
(1.7)
E=Ex +Ey . (1.8)
17
Tathayrangphuongtrlnh(1.6)tuongtvvmphuongtrlnh(1.2)vmW(x,y)
thaychoV(x, y) vaXl(y) thaychoX(y).Tuynhien,trongg~ dUngnay
kh6ngcosVphanhoicuanghi~mal (x) trenphuongtrlnh(1,7).Noi each
khac,t~pcuahamthirtrongtruemghgpnayh~ ch€ bong~ dungTva-
Hartree.Dehow thi~nvand~naytaphailaynhi~uboncaes6h~gtrong
phuongtrlnh(1,5).
?
1.2 Anh hulmgcuadi~ntruOngleu caemucDangIUQ'llg
trongday luQ'Ilgtit bem~t...
Vm phuongphapTva-Hartree,BastardvaMarzin[7]dii tfnhduQ'Ccac
mucnangluQ'Ilgcuadi~ntirtrongd~yluQ'Ilgtirb~m~t.Trongdo~ nay,
chungt6idiisirdl;lngphuongphapnaydetfnh:inhhuemgcuadi~ntruemg
ngoailencacmucnangluQ'Ilgcuadi~ntirtrongd~yluQ'Ilgtirb~m~tvatlr
dochungWixacdinhh~s6ph~cvccuadi~ntir.
Lx
VI +,1V VI VI +,1V
! L,
VI
Hlnh1.1:TIetdi~nngangcuam'itdaygiengluqngtUb~m~t
18
X6t dayh!Q'Ilgti:rb~m~t(hlnh1.1[7])d~trongmQtdi~ntnrangngoai
d~usongsongvOih1;1ey gommQtgiengluQ'Ilgti:r[0,Ly].Theohu6ngtieD
euagienglUQ'Ilgti:r(hu6ngy) tabien d~g dlnhraobangeachkhAeben
ngoaivling [-Lx/2, Lx/2] 2 v~ehtheVI + ~V [40].
VOieautnienay,raotheV(x,y)cod~g:
V(x,y) =ViB[y(y- Ly)]+~VB(y- Ly)B(x2- L;/4) , (1.9)
b dayB(x) If hamHeaviside,Vi la theraoeuagiengluQ'Ilgti:rva~V la
thengoaigauvaoraothegiuagiengluQ'Ilgtirvan~n.
HamiltonianeuamQtdi~ntirtrongdayduOimedQngeuadi~ntnrang
ngoaisongsongvOih1;1ey cod~g :
li2V2
H = - - +V(x,y)+eF(y- Yo),2m* (1.10)
v6i m* la khoiluQ'Ilghi~udvngeuadi~ntirvaF la euangdQeuadi~n
truang.Yo . F=Olagiat:ritrungblnheuay trongtr~gthaikh6ng
codi~ntruang.Luu yrang,Yo --+Ly/2 khi Lx --+00. Khi co m~teua
di~ntruangngoai,caetr~gthaidi~nti:rsonglaucothetont~neueuang
dQdi~ntnrangF kh6ngqua16'11.Taco thecocaetr~gthaigialienket
neudi~ukien
Ii2ql
eFq;1« 2m*' (1.11)
duQ'ethoa,b doqi I (i = 1,2)laehi~udaid~etrungeuadQgiamtheo
19
exponentialtronghu6'ngy cuahamsongdi~ntlrkhikh6ngcodi~ntTUang
[4].
Chungt6ichQnd~g sauchohamsongcuatr~gthaicobanvatr~g
thaikichthichdatiti~n:
Wn(X,y) = NnWno(x,y)<Pn(x,y) ,n = 1,2 (1.12)
Nn 1ahangso chufuJ.hoa. HamWnO(x,y) la nghi~mcuaphuongtrlnh
Schrodingerkh~ngcodi~ntTUangngoai:
...
{
n?
[
82 82
] }- 2m* 8x2+ 8y2 +V(x,y) Wno(x,y) =EnoWno(x,y).
(1.13)
'¥nOduQ'c!trynhutfchcacnghi~mcuacacphuongtrlnhTva-Hartree:
{
1i2 82
}
--~ +~VPl,yB(x2- L;/4) !n(x)=77n,x!n(x),2m*8x (1.14)
{
1i2 82 .
}. - 2m*8y2+V1B[y(y- Ly)]+~VPn,xB(y- Ly) gl(y) =El,ygl(y),
(1.15)
bday
Pn,x = fB(x2- L;/4)!(x) dx,
Pl,y = f B(y- Ly)gi(y)dy, (1.16)
Eno = 77n,x+El,y - 6.VPn,xPl,y, .
.
20
D~g tuemgminhcua fn (x) vagl(y) duQ'chonhusau:
{
sin (n'Tr - k2 h )ekl,neX+~) x <- L. /22 . ,n 2 , - x
fn(x) = s~n(k2,nX+n;) f...' -Lx/2 <x <Lx/2
s2n(n1l"+ k2 h )e-kl,neX- 2 ) X >L /22 ,n 2 , - x
(1.17)
{
sina:eqlY , y <0
gl(Y) = s~n(k1Y+0:) , 0 <Y <Ly
s2n(k1Ly+0:)e-q2ey-Ly), x >Ly
(1.18)
...
Ciday k1,n,k2,n,k1, q1va q2duQ'cxac d~ bangvi~cgiai lien tieph~
phuongtrlnhkin :
2 2 2m*
k1,n+ k2,n = 7..6. V P1,y,
1r Lx
k1,n = k2,nCOtg(n2+ k2,n2) ,
2 2 2m*
k1+ ql = 7 Vi ,
222m *
q1+q2 = 7(Vl + ..6.VPn,x),
k1 k1
k1Ly = 1r- arctg( -) - arctg( -) ,
q2 q1
(1.19)
Svkha~bi~tgiuanghi~mTva-Hartreevanghi~mchinhxacnhohon
1meV chotr?llgthaicabankhikh6ngcodi~ntIUemgngoai[7].cac s6
li~uthvcnghi~mnh~ duQ'cbCiiGn~us[40]sov6iketquatfnhtoantlr
phuongphapTva-Hartreecoth~xemnhudQphAntantrongvi~cdocac
duli~uthvcnghi~m[7].
D~nghiencooaM huangcuadi~ntIUemgtencacmucnangluqngcua
21
dAyhrQ'Ilgtirb~m~t,chungWidasird\lngthemm~tphuemgphapquen
thu~ckhac,v6ihIDbi€n thienlien ti€p madaduQ'cBrum[16]sird\illg
d~nghienCUllarmhuemgcuadi~ntruanglennangluQ'Ilglienk€t exciton
trongQW vagAD.dAyleunangluQ'Ilglienk€t donortrongQWWchi!nh~
voh~do Narayani[69].cacnanghrQ'Ilglienk€t excitonvanangluQ'Ilg
lienk€t donordadl1Q'cxacdinhbangphuemgphapbi€n thientrongluc
codinhcacthamsobi€n thiennh~ duQ'ctru6cd6tlrgAD.dUngbi€nthien
khac.
Doi v6id~ngcuahamsongbi€n thien1>n(x,y), chungtoichQnham
thir:
1>n(X,y) =exp[-~n(Y- Yo)], (1.20)
madaduQ'csird\lngchoQW bOinhi~umcgia[4,13,16,24].~nla tham
sobi€n thienvaphai006hemqid~duytrlm~thamsonggiamtrongrao
th€ [4],di~uki~nnaysuyratlrdi~uki~n(1.11).Vi~ctinhroantr!trung
blnhcuaHamiltonianEn la rAtdai,chungWichi duara b dAyk€t qua
cuoicling:
En(~n)
fi2
- 2m*~~+ 'TJn,x+ €l,y - ~V {
p J1 +P (h+h)
. n,x J 1,y~
- J1(h +13)
}
- eF d
I J 21J d~n[IJ],
(1.21)
v6i
l=h+h+h, (1.22)
22
trongdo
l-L:1:/2 2h = -00 !n(X) dx,
lL:1:/2 212 = !n(X)dx,-L:1:/2
h
OO 2
13 = !n(X)dx,
. L:1:/2
h
oo 2
.. J1 = gl(y)exp{-2{3(Y-Yo)}dy,Ly
J = I-: gi(y)exp{-2{3(y- YO)}dy . (1.23)
CluingWi dathl;tehi~npheptfnhbienthiend6iv6i {3ndexaed!nhcae
muenang1uqngeuadi~ntir
En =En({3n)min, (1.24)
vah~s6phfulel;teeuad~~ntirduQ'ed!nhnghlanhusail :
e
ap = - F {('l11Iyl'l11)Fj60- ('l11Iyl'l11)F=O}.
(1.25)
Tacothesuyfa tITdinhnghlathunguyeneuah~s6phfulcl;teIa [L3]nhu
daduQ'esirdl;lngtrong[76].caetaegillkhae[69]dasirdl;lngthunguyen
[Faraday.L2]ehoh~s6phfulel;te.
De tlnhtminbangs6,chungt6ixettruanghQ'peuadAy1uqngtirb~
m~tGa(ln)As - GaAs [40]v6icaethams6daduQ'esirdl;lng1a: m*=
0
0.06mo,Ly =50A, ~=0.15eVva~V =0.8eV.
23
CacketquabangsochonangluQIlgcuatrcplgthaicabanvaklchthlch
thunhatEl va E2 nhu la hamcuacuemgdQdi~ntruemgduQ'cbieuhi~n
a a
tronghlnh1.2chohill truemghqpLx =300A vaLx=600A. Vill giatri
cuacuemgdQdi~ntnremgchotronghlnh1.2,di~uki~nchoboophUC1l1g
trlnh(1.11)duQ'cthoa.Goc tfnhnanglUQIlga dAyduQ'chQn13.nang
luQIlgtrcplgthaicabancuaQW c6l~pvabang69.1meV.Theoketqua
machungt6ithuduQ'ctmcacmucnangluQIlgcuadi~nti:rgifunkhicuemg
dQdi~ntruemgtang.Tronghlnh1.3,chungWived6thih~sophAncvc
O:prheaLx. O:ptangnhykhiLx tang.Ngoairadesosanh,chungt6icling
...
xemxettruanghqpdi~ntfUemghu6ngtheophuC1l1gcua~c x. Nhuco
thethaytru6'c,chungWidathuduQ'cO:ptrongtruemghqpnayphl;!thuQc
m~ vaostJthayd6icuaLx.
24
,-..
;>
~'-"
~
20
-.------.-----.-.-.------.-.------- -.15 L
10
5
.".""".. """""" """ .~..
-------------------------- ----
0
-5
0 50 7525 100
F (kV/cm)
filnh 1.2:Haimuenangluqngthtlpnhtltnhuhamcuaeuemgd~di~ntrlremg.F. Nang
0 0
luqngtn;mgthaicoban: duemgli~nehoLx =300A, duemg~ehehoLx =600A.
0
Nangluqngkiehthfehdautien: duemg~eh-ehtlmehoLx =300A, duemgehtlmehoo'
Lx = 600A.
25
2.0
80
...
"..".."......"..".."..
,/'"..
/"
....,,".."..,"..,,"..,".."..."."..,."'",.
.".'"."..".,..'"
601.8
,.--..
~
'0......
'-"
~
1.6 40
1.4 20
1.2 0
200 300 400 500 600
LxU)
HiOO1.3:H~s6phfulqIc QpOOuhamcuaLx, cuangd~di~ntn!angF =50kV/crn:
duangli~nchodi~ntnIangsongsongt:l11cy (thangtrcH)vaduangg~chchodi~ntnIang
songsongti-u,cx (thangphai).
26
1.3 T~pchattrongdaygiengluQ1lgtitdumlac dQngcua
di~ntruOng
Trongdo?llnay,chungt6iclingsirdl;1ngphuongphapTlJa-Hartreedexem
xet3.nhuangcuadi~ntrubngngoail~nnanglugngli~nketvah~s6pball
clJccua~pchatlo~hydrogentrongQWW chitnh~tvmraothehihlh~';"
Chung ta hay xem xet rnQtQWW chu nh~tv6i 1:nfcz, d~ttrongmQt
di~ntruemgngoai thAngg6c vm tfl;1cd§.y.T~pchatxem nhu mQtdi~nncb
diemd~tmy ytrongQWW.Trongkhu6nkh6cllagandungkh6iluqng
~ .
hi~udl;1ng,HamiltoniancuamQtdi~ntitbaaquanh~pchatdugcchonhu
sau:
h2\72 e2
H =- +V(x,y)+eF(xcosB+ysinB)- -
, 1
'
2m* E r - ro
(1.26)
G6ccuah~tQadQdugcchQna tfuncuaQWW,r = (x,y,z) varoo=
(xo,Yo,0) tuongUngla tQadQcuadi~ntlrva~pchat.Trongphuongtrlnh
(1.26),m* la kh6i lugnghi~udl;lngcuadi~ntlr,E13.hangs6di~nm6ifinh
cuaQWW va,.]Jla cubngdQdi~ntrubngcohu6'ngt~on~nrilQtg6c()vm
trl;lcx cuaQWW.RaotheV(x, y) cod?llgsau:
. .
.
[
a2 a2 b2
]V(x,y) = Va B(x2- 4) +B(4 - x2)(}(y2- 4) ,
(1.27)
B(x) 13.hamHeaviside,a vab lacackichthu6'cuaQWW.
Nghi~mchinhxaccuaphuongtrlnhSchrodingertuongUngvmHamil-
tonian(1.26)kh6ngthetlmdugc.Vi v~y,chungt6isirdl;lllgphuongphap
27
bienthiendenh~nghi~mgandungcuabaitmln.Delamhamsongtr~g
thaiCCfban,chUngt6ichQnhamd~gdangiansau:
w(x,y,z) = Nwo(x,y)<jJ(x,y,z) . (1.28)
Hamw0(x,y) langhi~mcuaphuangtrlnhSchrodingerkhikh6ngcodi~n
tfUem.gngoaivas6h~g Coulomb:
{
11,2
[
82 82
] }- 2m*19x2+()y2 +V(x,y) wo(x,y)=Eowo(x,y).
(1.29)
MQteachhlnhthuc,cothexemphuangtrlnh(1.29)m6tah~2 di~nti:r
tuangmeth6ngquatheV(x, y).Vi v~y,wo(x,y) cothelaynhunchcua
caenghi~mcuah~phuangtrlnhTga-Hartreesau:
{
11,2 82
[
a2 a2
] }- 2m*8x2+Va B(x2- 4) +B(4 - x2)py !(x) =Ex!(X) ,
(1.30)
{
11,2 82
[
b2
] }- 2m*8y2+ Va Pl,xB(y2- 4) + P2,x g(y)=Eyg(y),
(1.31)
v6itri rieng
Eo = Ex+Ey- Va[P2,x+Pl,xPy], (1.32)
?
d
'
Cf 0:
28
b2
Py = !B(y2- 4)g2(y)dy,
a2
P1,x = !B(4" - x2)f2(x)dx,
a2
P2,x = !B(x2- 4")f2(x) dx.
(1.33)
H~2 phuongtrlnh(1.30)va (1.31)dientll 2 bai loangi~ngth~mOt
chienmade)caDraoth~naylienk~tv6ixacsuat lmh~tronggi~ngth~.
conl~i.HamsonggiamOO6tf (x) va9(y) coth~chQnOOusan:
...
{
cos(k1~)eql(X+~) x <-~2 ' - 2
f(x) = COS(klX) , -~ <x <~
cos(k1~)e-ql(X-I) x >~2 ' - 2
(1.34)
9(y) duqclaytrongd~g tttongt1!v6i f (x), trongdok1duqciliay bOi
k2,ql bOiq2vaa bOib. cac thams6k1,k2,ql vaq2duqcxacdinhtU
cach~thac(1.30),(1.31),(1.33)vacacdieuki~nbien.N~uchungta~t
P1,x= 1vaP2,x= Py - 0,chungtasenh~ duqcnghi~mdiiduqcsir
dlfngbOiOsorio[70]OOudiinoia tren.Chungt6ichQnhamthirc/;(x,y,z)
chohamsongdumd~g :
c/;{x,y,z) = exp[-.\If - TOI]exp[-jJ(xcosB+ysinB)], (1.35)
nhunhieumcgillkhac[4,16,24]..:\la thams6bi~nthiend~ctrungcho
tttonglacCoulomb,jJ la thams6bi~nthiend~ctnmgcholinhhuOngcua
di~ntruemg.Khi dotadedangtinhduqcgiatritrungblnhcuanangluqng
tttongangvmHamiltonian(1.26)E (jJ, .:\):
29
= Ed Ey+{>.2+jj2 - 2>.jj[COSII~:+ sin II~:]}
[
N2
(
N3
)
N2 - N5
]- Va P2x +PyNI + PIx 1- NI - NI
e2N4 . . Ng
---+eF-
E N1 NI '
E({3,A)
trongd6
NI =100 dx roo-00 . #.LOO
/a/2 /
00
N2 = dx
-a/2 -00
1
00 /b/2N3 = dx-00 -b/2
-
(1.36)
dyj2(X)g2(y)e-2(3(XCOS()+YSin())v(x- XO)2+ (y - YO)2
xKI(2AV(X - XO)2+ (y - YOp, . (1.37)
dyj2(X)g2(y)e-2(3(XCOS()+YSin())v(x- xoF + (y - YO)2
XKI(2AV(X - XO)2+ (y - YO)2, (1.38)
dyj2(X )g2(y) e-2(3(xcos()+ysin())V(x - XO)2+(y- YoP
XKI(2AV(X - XO)2+ (y - YO)2, (1.39)
N4 =/00 dx/00. -00 -00
/a/2 1b/2Ns = dx-a/2 b/2
dyj2(X )g2(y) e-2(3(xcos()+ysin())
xKo(2AV(X- xO}2+ (y - YOp, (l.40)
dyj2(x )g2(y)e-2(3(xcos()+ysin())V(x - xO)2+ (y - YO)2
XKI(2AV(X - XO)2+ (y - YO)2, (1.41)
30
N6 = foo dxf
oo
-00 -00
dyf2(X)g2(y)(X - xo)e-213(xcosO+ysinO)
xKo(2AV(X- XO)2 +(y - YO)2 , (1.42)
N7 = I-:dxi: dyf2(X )g2(y) (y - yo)e-213(xcosO+ysinO)
xKo(2AJ(X - XO)2+ (y - YO)2, (1.43)
fOO ~rooN8 = -00 dx J-oo dyf2(X)g2(y) e-213(xcosO+ysinO)V(x - XO)2+ (y - YO)2
X (X cos B + y sin B)
xK1(2AV(X- xO)2 +(y- YO)2, (1.44)
K 0(x) va K 1(x) lfu luQ'tla hamBesselbiend~g b~e0 vab~e1.
Chungtaphlrithvehi~nphepbienthientheo/3vaAd~xaedinhnang
luQ'I1gtr~gthaieabant~peh~tEimp= E(/3,A)min.NangluQ'I1glienket
~peh~tEbduQ'edinhnghlalahi~ugiuanangluQ'I1gtr~gthaieabandi~n
tlrEe -. E(/3rA=O)min(thieu~6h~g Coulombtrong(1.26))vanang
luQ'I1gtr~gthaieabaneua~peh~tEimp.
Eb =Ee - Eimp. (1.45)
H~s6phfuleveeuat~pehfitduQ'edinhnghla[76]:
e
ap=- F {(wlxcosB+ysinBlw)p#o- (wlxcosB+ysinBIW)p=o}.
(1.46)
31
D~thuduqccacketquabangso,chungt{)idfisirdl;lngcacthamso
sanchoQW\V GaAs : Va=O.4eV,m* =0.067mova€ =12.53.
Trongcaehlnh1.4va1.5,nangluqnglienketEb (lllnh1.4)vah~so
phanclJCap(hlnh1.5)cuarn()t~pch~trongrn9tQWWvmd()caorao
thehfiuh~ dfiduqcvevaso sanhvmcaeketquacuaQWW v{)h~.
ChungWi th~yrangraothehiiuh~ dfi lamgiamnangluqnglienket
rn9teachdangk~,d~ebi~ta cackfchthuaedAy006(tlEb ~ 5meVa
0
a =50A). Vm vi~ctangkichthuacQWW,h~sophanelJeclingtamg
nhudfiduqc<;jladqi.RaothehUllh~ndfikhuechd~ih~sophanclJCcua
~pch~tlenrn()tcachdangk~.
Tronghlnh1.6chungWi trlnhbayh~sophanclJcapnhurn()tham
0 0
cuagoc()chotruanghQ'pQWW cokfchthuaca =100A, b =50A,
Xo=Yo=0vaF =200kV/em.H~sophanclJcgiamkhitang()bm
VI trongtwanghQ'pnayd()giamnhotla 100nh~tdQctheotrl;lcy maa
0
dokfchthuacQWWla 50A va()=900.R6 rangrangd()caoraothe
hUllh~ dfikhuechd~slJph1;1thu()ecuah~sophancvcvaohuOOgdi~n
truang.
caehlnh1.7va1.8trlnhbaynangluqnglienketEbvah~sophan
0
eve.ap theoV!tri t~peh~tYoehoa =b =100A, () =90°,XQ= 0 va
F ~ 100kV/cm.O;red~euaduangeongnangluqnglienkettronghlnh
1.7duqedmdikhicorn~teuadi~ntruang.Vm QWW coraothev{)h~,
svdmdi euaeved~la it honsovmQWW coraothehUllh~, di~unay
coth~hi~uduqenhusan: med()ngcanITasvdi ehuy~neuadi~ntirv~
meptraiQWW coraothehiluh~ kernhO'IlQWWcoraothev{)h~. Sv
di ehuy~neuadi~ntirv~phfatraiQWW (nguqe hi~udi~ntruang)cling
32
gi\ynensvtangeuah~s6phi\nevekhi t~peh~tdi ehuy~nv~pillaphai
QWW OOUdiiduQ'ebi~uhi~ntronghlnh1.8.
Tiepthea,chUngt{)ixemxetanhhuemgeuatieldi~nkh{)ngvu{)ngeho
QWW v6i di~nneheuatieldi~nngangkh{)ngd6i. H'mh1.9bi~uhi~n
nangluqnglienketEb IDeokiehthuaea euaQWW ehoa X b=canstva
Xo=Yo=O.Khi kh{)ngco di~ntruOng,Eb it thayd6i ehocaeQWW co
kiehthuaegfubangOOau.Svthayd6iladangk~khikiehthuaeeuam~t
e~ la gfu g~pd{)ikiehthuaeeuae~ eonI~i.V6i s1;teom~teuadi~n
truOng,nohu.ydi t1nhd6iXUngvaehochungtam~tqUaIlsatdangehu
y: trongkhisveoeuakiehthuae ~ IDeohuangdi~ntruOng(~e y)
~oram~thayd6i000trongEbtill svmar~ngkiehthuaeIDeohuangdo
l~iHullgiltmOOanhnangluqnglienketocaethayd6inayxltyraladoxu
huangei\nbanggiitaeaeb6ehinhvaoEbgi\ybmhi~uUnggiamOO6tva
hu6'ngeuadi~ntrUOng.D6iv6ieaeQWW eokichthuaelan,eved~eua
nangluqnglienketacaee~ bangOOaubiOOoedi.H~s6phi\nevetrong
hlnh1.10chUngtom~tdangdi~utuongtv.Tuynhien,takh{)ngqUaIlsat
th~yeved~trongduOngeongh~s6phi\nevengayeltehoQWW eokieh
thuae000.Com~tsvtangOOanheuah~s6phi\nevedosvmar~ngkieh
thuaeQWW rheahu6'ngdi~ntrUOngvagiltmeh~ dosveokiehthuae
QWW IDeohuangnay.
Ket lu~n : Trongehuongnay,bangphuongphapTva-Hartree,chUng
t{)idii giltiquyetvfu d~eotinhphuongphaplu~ ehovi~egiaiphuong
trlnhSchrodingert ongh~QWW co raothebfitd6ixUng,elfth~la hID
m{)hlnhQWW b~m~tvaehitOO~t.Chungt{)idiixemxets1;tl nhhuemg
euadi~ntrUOngleucaemuenangluqngtrongdi\ygiengh1qngtirb~m~t
33
vaxacdiM h~s6phancl;Tcuadi~nt:irtrongdayluqngt:irb~m~t.D6iv6i
cacQWW chitnh~t,chungt6inghiencli'unangluqnglienketvah~s6
phancl;TCcuam(>tt~pcha:ttrongsl;Tcom~tcuadi~ntruang.Chungt6ifun
tha:ychungph\!thu(>cm~ VaGthegiamnh6t,vi tricua~pcha:t,hu6ng
cuadi~ntruangvatietdi~nkh6ngvu6ng.Chodennaychuacoba:tleY
m(>tth6ngbaanaGv~cacs6li~uthl;Tcnghi~mtrongvi~cdoh~s6phan
cl;Tcuat~pcha:ttrongQWW.Vi~cdoh~s6phancl;Tcselam(>tcosaxem
xetdangdi~ud(>nghQccuacach~tfutrongQWW.
.-I
30
15
" "" "-
....."-'-
.....
..............'-
.......
.......
.......
.......
.......
........
..... "- "-
........"-" " .....
........
........
25
20;-0.
;>
I!)
8'-'
.Q
~
10
5
50 100 150 200 250 300
aU)
Hlnh1.4:NangluqnglienketEbnhuhamcuakfchthuaca cuaQWW chitnh~tvm
0 .
kfchthuacb=150A, t~pch~tb Xo=Yo=0vacUOngdQdi~ntrUOngF =lOOkV/crn,
() =450.DuOngli~nchodo thehiiuh~ Vo=O.4eV, duOng~chchodo thevOh~.
34
~~£..'"
b.....
'-"
~
1.25
A
1.00
0.75 1-
0.50'-
0.25'-
./
./
./
./
./
./
./
/'
./
./
./
./
./
./
/'
/'
/'
./
./
./
.....
.....
......---------
0
50 150 250 300200100
aCl)
Hlnh 1.5:H~86phfulcVcO:pnhuham.cl1aDch thu6'ca, cactham86gi6ngnhuh1nh1.4.
35
0.15
0.03
--.......
"""'......
......."
.......
"""'.......
"""'.......
"""........
"""".......
-
~12,-
,--....
"8t:..
~..,
b
......
'--"
'd'
0.09
0.06
0
0 2.25. 45 67.5 90
8(degrees)
0
Hinh 1.6:H~s6phfulcl;tcapnhuhamcilag6cegiuadi~ntrUOngvatrI,lcx choa = 100A,
0
b=50A, x.o=Yo=0,vaF =200kV/cm.DuOnglien: raothehiIuh~ (Vo=O.4eV),
duOngC;lch: raothev6h~.
36
""""
>-
CI)s'-'.0
~
/-- - -........
/ ......
/ "-
/ "-
/ : "-"-
"-
"-
"-
"-
"-
"-
"-
"-
"-"-"-
......
30
25
15
° 25 50
20 ,-
10
5
-50 -25
YoU)
lfmh1.7:Nangluqn.glienketEbnhuhamcuavi tri ~pchatYo,choXo= 0,a = b=
0
100A, F . 100kV/cmvae=90°.DuOngli~n:raothehiiuh~(Yo=OAeV),duOng
g~ch: raothev()h~
37
~"\=
>:..
;it;
b
'-"
~c.
0.22
0.18
50
Hinh 1.8:H~soph:lncl;Ccapnhuhamcua~trftl:lPch~tYo,cacthamsogiongnhutrong
hinh1.7.
0.14
0.10
0.06
- -
,.../"./
./
../
--./".---..---
---_..---
0.02
-50 -25 0 25
YoU)
38
100 200 300
30
15.5
---------/-- -- 15
~.5 ---. 14.5
,.........
>-
iU
8
'-"
p:j'
15
/
/
i,
~ - - - - - - -:.-:-:-.:::.;-:-:.:-:-:..,.,...,~.~.~
...........
7.5
0 r
0 100 200 300 400
aU)
I-fmh1.9:NangluqnglienketEbnhuhamtheekichthUGCacuaQWWchunh~traathe
a
hihlh~ Vo- O.4eVchaa x b=canstvaXo=Yo=O.Duemglien: a x b=100A
a a a
xlOOA vaF =0; duemgg~ch-chaIn: a X b =100A xlOOA. F = 100kV/cmva
a a a
e = 900;duemg~ch: a x b= 200A x200A vaF = 0;duemgchaIn:a X b= 200A
a
x200A vaF =100kV/cmvae= 90°.I-fmhbentrang: khuechd~cuaduemg~ch.
39
200 300 400
6.0 0.04
1.5
\
,
\
\
,
\
\
\
\
\
\
\
\
\
\
\
'\
'\.
'\.
'\.
"'.......
'.......
""""""' -
0.02
4.sot
~
"8
~
;!;
b
.....
'-'"
~c..
0
3.0
0
0 100 200 300 400
aU)
Hlnh1.10:H~sophaneveCtpnhuhamtheoklehthuaea euaQWWchitnh~tdiothe
hituh~ Va=OAeV ehoa x b=canstvaXo=Yo=0,F =100kV/cmvae=90°.
0 0 0 0
DuOnglien: a x b= 100A x100A, duOng~eh: a x b=200A x200A. H'Inhben
trong:khueehd~ieuaduOnglien.
40