ỨNG DỤNG NGUYÊN LÝ MÁY HỌC VÀO HỆ THỐNG VIỄN THÔNG
HÀ THỊ THANH THANH
Trang nhan đề
Mục lục
Chương_1: Tổng quan và xuất xứ của đề tài.
Chương 2: Cơ sở lý luận của đề tài.
Chương_3: Thuật toán.
Chương 4: Mô phỏng: trường hợp thực tế.
Chương 5: Đánh giá kết luận.
Tài liệu tham khảo
53 trang |
Chia sẻ: maiphuongtl | Lượt xem: 2015 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận án Ứng dụng nguyên lý máy học vào hệ thống viễn thông, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
=-x ne'uX bi phanlo~iduong,tilc la :
Trang23
WjXt + W2X2 +... +WnXn>0
Lu~tdi6uchinhtrQngs61alu~t giamgradient:
Wt+1=Wt+ A. v1
Voi A-.lah~s6chobi€t phudngditheogradientnhanh
haych~ill.
Caebuoccui thu~toan:
Input: T~pS caevectorinputva caeoutput11longmu6n(0
hay 1)
Output:!~p trQngs6 Ws=(Wo,WI, W2,...,Wn) phan lop
dungS
Step1:
Kh(5it~ongftunhiencaeWi,i =O...n
£)~t=A-
ChQn gia tri thichh<Jpchoh~ngs6 A-
Stev2 : .
Tlnl t~p F tatca caevectorinputbi phanlo~isaibdi
caeWihi~nhanh .
Step3:
NeuF =0 th1xuttracaeWivadung
Step-4:
Tinhcaevectort6ngcaevectorinputbiphanlo~isai:
1=:Llxl
XEF
Voi Ixi=xneuxbiphanlo~iaID,tilela:
W1X1+W2X2+... +WnXn<0
Voi Ixl=-xneuxbiphanlo~idue;ng, tilela :
WIXI + W2X2+... +WllXll>0
Sl~:
£)i~uchlnhtrQng
W =W +;."j
Quay l~tiStep2
WoI WI
I
W2 F
0.5 0.6 x2 , x3
10 11 12
-2 -1 -1
Trang24
0.3 I 0.4 0.5
0.4 0.4
x3 -1 0 1-1
0.5
0.6
Vi dl;]h~ul1: -O.6xo+O.4Xl+0.4X2hQcdli<1cham ke'tqua I
AND
XOR (1,1)l 0
(0,0)J
.
(1,1)
}
1
(0,0)
2.1.5.2Thu~tt6anIantruy~nngu'Q'ctrongm~ngANN 3
lopvoihamchuy~nlogistic:
Input: t~pm~uScacvectorinputvaoutputlllongmu6n
tl(eingling
output:t~pcactrQngs6sacchota-tcacacvectorinputn1~u
saukhi quanwngse ra outputg~nvoi outputmongn1u6n
theetieuchu~nt6ngblnhphliongtrungblnhsai s6 la'be
nhat.
-GQiA,B,C l~nlli<1tla s6AN tliongling(j lopInput,
HidenvaOutput
- GQi Xi , hi , Oil~nlli9t la tin hi~ura (j AN thli i cua
lopInput,HidenvaOutput
1 1 1
I 1t+dliong
1 0
0 1
I 0-1------am
0
Trang25
- GQi WIHi la trQnglien ke'tgiua AN thli i Qualop
Inputvoi AN thlij cualop Hiden;
WHO~ila trQnglien ke'tgiuaAN thli i Qualop Hiden
voi AN thlij Qualop Output
SteJ2l: .
-'Kl~(jit(;10cactrQngs6voi giatri ng§:unhien
- GanXo=.},ho=1
SteM:
-ChQnillQtc~p inputx,y
-Gan trikichhO(;1tXi,i=1...Arho cacAN (j lopInput
- Lan truy€n kich ho(;1tcho cac AN (j lop Hiden va
Output'Vatinhtinhi~urab~ngrangthlic.
, A A. ,
2.1.2TRI TU~ NHAN T~O vaMAY HOC
(ARTIFICIAL INTELLIGENCE andMACHINE LEARNING)
tAl ~ ML ( AI Tie'ntoimayhoc.)
S\i tie'ntoinay duQcmatala nhunghlnhthlicchuye'u
du,Jcbit€uthi va ap d\lngdt€ xay dtfngcacnguyent~cttf
dQnghoaxuly cuacach~chuyengia.
, ? ~
Noi chung,ve mQtm~tnaodoco thedtfa vaovi~c
xaydlfngcaccaysuyd§:n,voicacky thu~tconQidungco
tht€giainghlavi~chQccdban.Cacnghiencuuquailtrqng
du,1cduara dfi chungminhAI co tht€ tie'ntoi mayhQc
nhungtucjngd6i kho su d\lng(tuyv~y;mQtkhi dfi thanh
rangthico tht€duatoi nhunggia trikhato Ion).Nguoita
thu'ongsiTd\lngstf tie'nbQ Quaphudngphapquyn(;1pva
CctCky thu~tnit trichcungvoivi~choal§:ncacphantichdu
li~uvaky thu~1.
Trang26
AI phat tri~nchIradingchungtacfinbie'n(16icaeky
hi~uv<Jinhi~uthongtinchinhxac honla vi~cchIsadvng
caecons6dongian. C6 th€ n6i1110teachkhatla thongtin
du<.1cdoi hotbot vi~cap d\lngcactie'nbOcuakhoahQc
hi~nd(;li.
Nlul VtlVAI tielltoimayhoclagi??
C6 5d~cHnhth~hi~nva-nd~AI tiellto;11layh(Jc:
Khi caed~ctinhnayth€ hi~n,tuc la, ta-tcadoi hoi
du<,1cthtfchi~ntheo1110td(;lng1110tanabd6cuaAI , va se
baag<1111ta-tcacacki~uAI dangt6iltc;ti, chunglase quan
talll tdi 1110tVald~ctinhdfineualIen. .
FJdu lien, treiinguQcVOl mo ta "may thong 111inh"
(Battand Feigenbam)AI tITch6i Kay dtfnghOpdenthong
11linh.Ching hc;tn,RogerSchanlschi ra r~ngmaythai co ,.
hi~nd(;lidfi duQCKaydtfngkhongh~su dvngky thu~tAI,
111~Cdli chungdfi thai ra-tt6t.Va nguoi ta dfi chung111inh
ding do thayd6i thuOctinhBenAI dfi thanhtong d6i VOl
ll1aythai co, luc d6 maythai co dfi la dc;tngriengcua111ay
hQc.
Thz:thai , AI c6 y dinhtnlnhsudvngnhfi'ngtri thucao.
MOtdi~urarangduarala danhd~fugidithucchirabi€u thi
iri thuc~ongb6 , 11latri thatva cachsu dvngduQcphan
bi~tkhatnhau.Ching hc;tn,AI thichvi~csinhra cacngon
ngfi'11lc;tnhuLispvaProlog.VidVduQclieUchinhla mOt
h~kinhnghi~m(ES).MQlh~kinhnghi~mkhongc6gl qua
d~cbi~tnhlingloc;ticuaquye'tdinhphil duQCsapxe'ptheo
1110tdc;tngtong,b6 va ghira cacnguyentat d€ huongtOt
quye'tdinh,khongn6iv~st;fphattri€n theothutt;f11lachung
duQcgQi.Bi~unaysinhreiKungdOtva doth6i duara giai
phapgiaiquye't.Giaiphapgiaiquye'tchinhla tc;tOramOtco
che-hQc.TrongmOtca che-ki€u AI, tri thucphil la mOt
tr~ngthaira rang,va duQctongb51119tcachrt rang.Tri
thli'cthutvc duQcbi€u di~ntrongm9tngonngfi'chuang
Trang27
trlnhnhonhu'co th€. Songd6i voi cd chehqcthl va'nd€
ou'Qcgiaiquyetn1€mdeohdn,m~cdudlfalIenn€n tangAI
nhu'ng0 cdchehqctfilli do du'Qct<;indvngnhu'mQtva'nd€
xu ly tlfc19ngvaneunhu'AI tranhsudvngtill 0 cdcheh9c
di~unayl~idu'Qckhuyenkhich.
Thaba , matithu~nvoi nhlinggllna nhlinglopngu'oi
d~ulienda:thlfchi~n,n19th~th6ngmangaytrongvi~cthu
nghi~n1h~unhu'da:mangm9tso'khdllgIIJ cactri thlic.Sail
do,tri thlicnayphaid~nd~tslfhi€u bi~tcuangu'oisud~ng
toi cacva'nd~mQclieu,Bi€u naydu'Qcdu'arabai va'nd~
quantrQngtrongnhlingcdsa tri thlicd1jatrellAI. Tri thlic
la lo~idlili~u:Chungtakhongnoicds0dli li~uVIcds0ciia
taoa:ou'Qcongb6vaca:du'Qchi€u bai chinhnglingngu'oi
su'dQngcuachung.MOth~AI du'Qch6trf/d€ thlJchi~ncac
nhi~111V\ltr()llgd{likhi su dQngcactri thlicn€n tang,do
chinhla cdchehQc.
Tha tu:, theod~ngcftnchongu'oisudvng hi€u , mQt
h~AI phainoi ligonngli ngu'oisu.dvngcuano thaycho
vi~cnoi "ngonngucuaAI ",IDatheocachnayda:thong
du'<;iccha'pnh<;in.B~cHnhnaypilaubi~tAI voi nhungbO
1110nkhoahQckhacmaslfg~nbo dftulien la t~obi~tngu
riengd€ giupchongu'oisu dvngthan1gia vao thongtin, '
khoahqccuano,Chingh~n, th6ngke cacmientahi~n .
tu'Qngtlfnhienhu'ongd~nvad~tchonon1lHthU~tngu n10t
khoiingnglinghla, voicdchehqcligonnguriengnaythay
thechovi~cbi€u di~ntri thlictrongngonngucuangu'oisu
dQngnhu'AI c6lam.
Thananl,AI du'Qcgall voi mo ta,phantich,do luong,
sosanhdOngthai giai nghlaquailh~thlfchi~nill9t cachtt!
dOngva'dungngonngucuangu'oisudvng.
Cd chehQcco th€ dungbi~tnguriengva In~cdukh6i
luQngtri thlicra'tdOS9nhungv~nco th€ t<;loduQcthuvi~n
gild IlghlathichhQpvadftyduo
Trang28
Khi AI tie'ntoi mayhQc,cac nghienCUllv~AI Dang
leu () mUGcao hdn,d6ngthai cling giai quye'tduQcnhi~u
va'nd~quail trQnghdn,nhunglogic cd ban th1cling tudng
tlj. Di;lcbi~tkhi nghienCUlltoi may hQcthlky thu~tguy
n~pvasuydi~ndi;lcbi~tduQcnha'nm~nh. ..
AI tie'ntoi mayhQcchI chochungtabie'tsl1c~nthie't
phai bie'nd6i nhi~ulo~ithongtin phuct(;lp hdnva choke't
quaehinhxachdn;khongchIdungl(;lid nhfi'ngcons6dtJn.':
gianfilaphaiduaranhfi'ng iainghlav~caclo~ithongtin
duQcdoi hoi bdj vi~cungd\lngnhi~ubQmankhoahQc
hi~nd~i.Di~unaydfind<1ttoi va'nd~c~nthie'tphaihi6u
tha'udaokhaini~mquyn~p,ruttrichvat6ngquatboa.VI
v~ysandaychungtasemotacackhaini~mnay.
2.1~3.1Qavil(lpVasav~i~/l . . . ..
Deduction(suydi~n) duQcxu ly bdi mQtphep.quy
n~p khi magin l~icacnQidung cila dii'li~uda:lull trn .
(inferswhilepreservingthetruth) . .
Nguyent<1cn6itie'ngla : gifi'l~icai dung.Vi d\l,gia
thie'tr~ngcoOlQtly thuye'tnoivoi tar~ngta'tca1£1xanhla
la non,khidokp.igi;lp la xanhcoth6suydi~nr~ngdola la
non.
Induction(phepquyn(;lp ) duQcxii'ly bdi vi~cginl~i
caesai (whichone whilepreservingthefalsity)cilacacdn
li~udi;lcbi~t.Quyt<1cnayduQcph,ltminhbdiMichalsas.
Ch£ngh(;ln,khi gi;lpla xanh, taco th6noi r~ng. tagi;lpd6
v~tUlanxanh.(C6HnhqUell r~ngchungla nhfi'ngcai lei).
Hoc}ctaco th6chor~ngta gi;lpcacd6 v~t cannonb~ng
vj~esii'd\lngly thuye'tlIen .
Gia Sl(clingly thuye'tLIennoi vdi ta r~ngba'tcu 1£1
xanhla kh6ngdo,nhuv~ytakh6ngthtinoir~ngtagi;lpcac
d6v~tdobdivi "green"tue "kh6ngdo"...red=false.
2.1.3.2Ouv/lapehuve/ltri thue:
Trang29
Quyn~p chuyentri thuc.
Nhi~uteicgia lien ke"tvi~chQcsoydi~nVOlchuyentri
thuc (co ,caccong.C\l dangbQc)va hQcquy n~p VOlvi~c
ngheotri thuc.No nit 1'6r~ng "Pure induction"la tri thuc
ngheo.Tri thucngheothliongbatngu6ntll dITli~utho.Dfi'
li~u tho cling thliongkhong phan anh dlicjC.ban cha'tstf
vi~c.M(>til10ta 1'6rangcuavi~cnit trichse giupchungta
il10ta khahejnphepquyn~p va chI ra val trbcua tri thuc,
day la n~ntang.cdsd dypde cuavi~cxU'ly quyn~p loan
"
the.
2.1.3.2.1Whatis abduction?
V~m~tky thu~t,rutotrichla xU'ly VOlky hi~uamchI,
tuclaxuly il1abie"tr~ng:A->B , il1(>tkhidffd~c~pde"nA
th1tabie"tr~ngB sedung.
\ E>~chungtadliara suydfin b~ngvi d\l sail : Trongvi
dl).naynllJcdichcuachungtala hQcd~il10tanQidungcua
vi~ctt!tu Kill(x,x ). Giii sur~ngchungtadffdlicjchQcsao
chovi~cttftudbihoistfc~nthie"tco lll(>tvil khi dliQcbi~u
thibdinguyenlac:
KILL (x,x) : - Deprssed(x),Buy(x,y),WeapoIl(Y)
Gia sutabie"tMarynglioicamke"tsettftU'. Gia sU'taoff
conhfi'ngkie"nthucsailv~cota:
Deprssed( MARY) .
BUY (MARY, OB11).
SLEEPING- PILLS (OB11).
PRICE (SLEEPING- PIUS,20).
BUY (MARY, OB12).
BOOK (0812).
d dayOB11va OR12lfi nhfi'ngh~ngs6 chungtase
khongcoth~chung,il1inhKILL (MARY, MARY) bdiVIchi
tadffkhongcovil khi.Cox\~Pietrzykowski(1986)bi~uthi
ill(>thu~tngfi'il1aphcli tltdQngnhinvao "vil khi" trong
Trang30
nlOtvi tri nhl(la d d6WEAPON (Y) bi buybooN6 batkip
viI khifiladO'isO'd~uliendaduQcth5amanBuy(x,y).N6
la-yviI khi WEAPON ( SLEEPING -PILLS) hay viI khi
WEAPON(BOOK.)pht;lthuOcvanvi~cc6viI khinaotrudc.
Khi filakh6nghi€u bie't,r6rangdingba-tcucaigi duQCfila
cling duQcxem la viI khi . Chung t6i: (DURDL va
LODRATOFF)h6trQmOtSvth~tr~ng- vi~c lily viI khi
nlOt cach khac di cling c6 th€ duQcdc}tten, b6 sung
nguyenlac fila cac dO'itUQugda duQcthoamanBUY (x,y)
duc,1ch6 trQnl~nhd~,kh6nggi£1thie'tr~ngchungchila "viI
? . '
khi". d daytac6th€ lily nguyenlac nhusailday:
KILL (x,x) :- DEPRERSED (x ), BUY (x,y );
sleeping- pillsl(y)
hoc}c
KILL (x,x) :-DEPRESSEB(x),BUY (x,y),
BOOK (y).
Tilt c£1nhungdi~unay chi ra r~ngm6i true;ngrift
tu(1ngph£1nhi~uke'ho<;lch,rut trichc6 th€ duafa, tiltc£1
trongchunggiaiquye'tvilnd~thvchi~nc);1ungmil1hbuybo
TrangAddis nhi~uma t£1chinhxacda duQc chonhung
di€u neuireDdd d€ duara Svphanbi~t gifi'arut trichva
guy n<;lp .
Rtit trichla phepco hQclogic ma mOthic nao d6 c6
th€ lily l<;likhi bi huhong.Bdi VIco nhi~udO'isO'nhuv~yc6
th€ lily l<;liBhangta chQnd6i sO'nao thichhQpnhilt (di~u
nayc6 th€ duQcgQila cachgi£1iquye'tpht;lchai) lam thanh
ph~nfila chungta c6 th€ gQid day "chQnva chunglllinh
vi~cnit trichguyn<;lpdbi hoi Sv di~ukhi€n tilt ca chung,
ru:ttrich,tuela chQnva chungminhn6.Trongnhi~utrue;ng
hc,5P,eo th€ rut trichkhcinhi~usancho no hoan loan phli
h<;;pc1€ve 111()tdue;ngconggiuacaerut trichdon,dangthe;i
th€ hi~nduc,1ecaebuoeehQn.
2.1.3.3Trithll'cI1lanhruttrich vaquynap:
Trang31
H~u hetmqingu'oid~uc6 y dinhgQi"pureinduction"cai
111acluingduQcgQila nit trich.Rut trichc6 th€ la tri thuc
ngheo,th~mchi chodli la di~unay khongph£1iluau dung, "
thevaod6,ngaynhlita d~fightph\lch6i tll vi~cphabuy
cacnguyent~cb6sung,ba'tky nguyent~ct~mthliongnao
coth€ giaiquyStva'nd~nhu'lab6sung:
KILL( x,x):- PRICE ( SLEEPING- PILLS, ?-O)
co ccjstj tri thuc,nhu'mOtvi dl,lngocnghSchd()cbi~t(tll
quandi€111cuatri thuclogicngheo,tri thucph£1ihinhthanh
d()ctinhtotnha'tnaod6). .
Luu y ding: chungta mo 1£1qui lUIP nhzthI) ha cua rut
trich,cht)nvachung11lilth.f)i~ucuoiclingla phanloaitri
thtI"e111~nhbtjiVIchungminhc~nd€ gi£1ithichvi~cchQnrut
trichbdi dat6nt~itri thuc.Trongcach~quin~ptotnha't,
caebu'dcchungminhdliQcquy~nvao nhau.Ntu saudo
trongtrztongh(lptotnhattatcdcac,thallhphOllcuahI)ha
ph~lthul)cvao'cac thitllhpha'nkia, ma dii 1l(l('li;ticho
chungtatcdtri thllcm(lnh.
2.1.3.4BallluQn :
Phanlo~init trichdu'Qcxemnhu'la tri thucngheo.
MOtphantichchi liSt cuacacphepthtfchi~nt~ora b~ngy
kiin nayda tranQchomOtstfIOnxOngiuahamy.vatri
thliengheo,trongtruonghQptotnha'tmacuatri thucchua
nhi~uthongtinsacchophepquin~pxua'thi~nphl,lthuOc
vaC)tri thlie.TImranhungmatotla ttfn6ra'tnhi~utri thlic
nl~nh.Nhu'chungtadatha'y,lo~ibohamybi€u thjla lo~i
cuatri tu~nhant~o.Khongng~cnhienr~ngtri thlicm~nh
quin~pdftntdistfthllanh~ntrongmoitrliongAI.
Trang32
2.1.4T6ng quat va rieng biet Khai quatv€
phu'dngI2MPBattorn-upandTo]2-down.
Cac t~P kh6ngglaDcuaTommitchellduytrl tr<,1ngtheEsinh
ella ngu'oidieu hanh. HQ cho tr<.lngthai sinhchinhxac d€
lllieu ta du'(,;esu d1;lngbai ngu'oidieuhanhd<,1tdu'Qcthil t1)'
t6i u'uva'giai quye'tva-ade thOtcachco hi~uqua.Cho mOt
t~pcaevi dlJ du'dngva am, "t~pkh6nggian" la .t~pc6ng
thilc lTIaca hat10<,1ivi d1;lamva du'dngn6i ireDu~uc6 th€
mien tatrongd6. (Nh~nbie'tta-tca cac vi 'd1;ldu'dng,va
kh6ngnh~nbie'tcacvi d1;lam).
Khi t~pkh6ng glaDcua ngu'oidieu hanh du'QcKay
cl~(ngcac vi d~ldtidllgdll(lesit d~lllgbottom-up;tilc la tim
lll(Hc6ngthilcllla nhieuhdncacvi d1;lba-tky saochomotvi
cllJ Ia ll10thi~ntu'Qngtilc thai cuac6ngthuc.(Tuy nhien,
kh6ngphil cac vi dlJ alll phil la mOthi~ntu'Qngtilc thai
cua n6, nhu'ngdieu nay kh6ng phil la quan di€lll chac
chdn). Ngu'Qc l<.li, cae vi dl;l anI thtiiJltg du'(lesit dl;lllg
pluldllgphap Top-dowll.Bai VI chungdu'Qcsu d1;lngd~c
bi~tll10tc6ngthilcllla la baatrumleucacvi d1;lam(cling
the'tateacacvi dlJ du'dngphil la mOtbie'nc6tucthaicua
n6)
Bieu nayphil thuye'tph1;lcmQingu'oidingvi~csinh
(tli'cacvi dlJ du'dng)va riengbi~t (tll cacvi dlJam) la 2
lll~t cuaclingtie'ntrlnhdu'Qcbie'tdu'aitenGenerali.zation
b(?jiVI nhtl'ngc6ngvi~ca~ulien aftkh6ng du ti~nlQi d€
nh~nbie'tmilequailtrQngcuacac vi d1;lamvas1;1'canKung
gitl'acacvi dlJamvadu'dng(Nicolas,1988),C6 nhungtie'n
b0 khachdn c6 vli bat versionkhongglaD,1;f~chacski'
(Michalskiandstep,1983,Michalski,1984)tong vi~cIi
lieu chu:1ncuanhungai tie'ntoi sinhtITcacvi dlJ (Thu~t
toannayth1;1'cbi~nbottom-upgeneralization).Cac thu~t
Trang33
loannayc6cacvi d\lcungvoi nhauva d6ngthai~")imramOt
hamnh~nbie'tcacvi dQduQcb6 chumthanhnh611lvabuy
bi) ta"tca cac vi d\l rai rC;lCriengre. Slj phat trien tie'ntoi
ciia nhungnh6mvi d\l nay sinhra nhi€u chuc nangnh~n
dC;lng.NguQclC;li,ta"tca hQ ID3 khuyen khich tu Quilan
(1983)ba:td~utll mOtt~pllla chuata"tca vi d\l va tie'ntoi
ap d\lngcac lllieu lama ca:tchungVaGcac t~pcan,dQc
theogia trtcuamieutit.Ch~nghC;ln, lieUchungtaba:td~u
b~ng t~p chua nhungnguai VOlta'tca inau m~t va hlnh
thanhnhi€u t~pcan theomall cua illa:t, m6i t~pchuamOt
111aU.Nhung thu~tloan nay lien bO d~c-bi~t,chungduQc
thtfchi~ntheochu£nkhaiquat top-down.
Top-downhaybottop-up, n6i chunglu6n la InOtlien
trlnhqui nC;lp.Th~tla sai l~mlieU c6 nhungl~ml~ntung'
ph~nva suydi~n.Be thljchi~nmOteachchinhxac, chung
tanueuta phudngphaptudnghj v€ t6ngquatvachitiel. .
MOt cachkhai quat(Bottom-up ),'la rutra nhungd~c
tinhchunglon, t6ntC;ligiuacacvi dl.l.Nhungd~ctinhchung
nay thuangxua'thi~ntrongh~ubet cac vi d\l.Khi chungta
chqnphudngphapbottom-up,thlva'nd€ la rutra nhungd~c
Hnhde l~mr5 slfphan bi~tgiuamOtVal vi dl.l.M6i vi d\l. .
dllQcky hi~u bdicac d~cHnhmakh6ngduQcchIfa bdi
nhungvi dl.lkhac.
2.1.5Ghli nghlacd sa cua vi~choc trong caevung
ly thuye'tmanh.
Giai nghIa'vi~chQcmOtcachnghiemng~tnha't(EBL-
explanation-baselearning)
2.1.5.1Ghii nghiaEBG mQteachtruegiae:
EBG choly thuyethoanthi~ncualllOtvungInatC;lid6
vi~chQcchQnvi tri va vi dl.lhuya'nluy~ncuanOidung
dl(()ChQc .
Trang34
Be)iVIla h~th6ngly thuyethoanthi~n, EBG bietmo
tanOidunghQc.MQcdichcuatientrlnhhQcHihQcmQtva'n
d€ 1110i, "khah6n" motanQidungnay.B€ d'.1t JuQcilllJC
dich EBG da:lamnhu'sail : Su-dQngtri thuccuavungly
thuyet,no chungminhr~ngvi~chua'nluy~ncacvi dQduQc
ho'.1t dOngtrongviIngcuanQidunghQc. B~ngchungcua
c1i€unayduQcduarabdi vi~csU-dQngmQtlieuchufinho'.1t
dQngmavi~ck€ v€ stfmientalahoanloancachbi~t. Cac
baivitt v~vi~cthall1giacuaquatrlnhchungminhdu'Qcxet
laxa'thay. Chli yquan trQngcuatieuchufinnayvuQtleu
tr~nta'tcahi~uquacua vi~cxU-Iy. Stfc~t botvi~cch~ng
ll1inhdliQCsinh vao ll1Qtca'utruc giai nghiaIlia chuacac
thanhph~ncuam~nhd€ g6cda:duQcSU-dQng'Nh~cac
nh~nhiettrongDE JONG va MOONEY (1986). Bi~unay
thall1giavaostfc~nthietcftnd'.1ttoi trongquatrlnhchung
ll1inh.M0t t~P hQpcuacacvi dQtronghua'nluy~nchung
l11inhquacacgiainghiaca'utruc.Kecquacuavi~cthQtIiIi
nay la va'nd~1110i,VOlnhi~umotaho'.1t dOngcuacac n0i
dung.
D€ changll1inhEBG, ta SU-dQngVersion Prolog VOl
cac vi dQcuaSAFE -TO - STACK lam t~pvi dQduQcdlia
ra tu' Mitchell,Keller va Kedak_Cabelli SAFE- TO -
STACK chI ra cac vi dt).hQcVOlnhi€u qui t~cco nhi~u
hi~uquah6n'quyt~cxepch6ng,khi cho1110tIlia tel, mQtIy
thuyetcuaStack,va 1110tvi dQcuamQthQpthanhphffl),, '
BOX 1 , c1u<,1cxep tren bang thanhphftn,ENDTABLE!.
Trong chinhvi dQra'td~cbi~tnay no Kay ra mOtst;1'c~n
bietv~gia trim~cnhiencua10'.1iTABLE.
Lo'.1idftulien cua thongtin co quanh~toi hOpd~cbi~t
BOX 1va bangd~cbi~tENDTABLE1.
01 ON (BOX1 , ENDTABLEl).
02 COLOR (BOXl ,'RED).
03'COLOR'( ENDTABLEI , BLUE).
Trang35
04 VOLUME (BOX1,10).
05 DENSITY (BOX1,1).
06 FRAGILE (ENDTABLE1).
07 OWNER (ENDTABLE1,CLYDE).
08 OWNER (BOX1 , BONNIE ).
09 ISA (ENDTABLE1, TABLE).
LOC;lithuhaicuathongtinla m6iquanh~toin€n tang
tri thucv€ caev~t x€p chang, clingcon du(jcgQila ly
thuyttVUllg(do111ailltheory).
CIO SAFE -TO STAC~(x,y):-NOTFRAGILE (y)
CII SAFE -TO STACK (x,y) : - LiGHTER (x,y).
Cl2 WEIGHT(x,w) :-VOLUME (x,v),DENSITY(X,D
),W IS V * d.
C13WEIGHT (TABLE, 50):-
C14LiGI-ITER(x,y):-WEIGHT(x,w1), WEIGHT(y,w2
), LESS( w1,w2) . .
CIS LESS (x,y) : - x<y.
LOC;lithuba cua thongtin bi~udi~nlamQt slj thoa
UlancuaBOXI vaoENDTABLE1 .Chungtamu6n chung
ulinh r~ngchinhbdi mQttho tlJctrongPROLOG se cho
u~Qtdiu hoi toi chuangirIng thongdich PrologNO dQc
C16 : -SAFE-TO-STACK(BOX1,ENTABLE1)
. Vi~c chung minh ti€p tlJC du(jc chI ra bdihlnh 8-
1cung ca'p bdi chuangtdnhthong dich Prologhoanhao
nha't.
giclinghia EBG rut lui mQcdichchungquac(u trucva sinh
ra toanbQt~pcuaU1QCdichchung.T~pcu6iclingcuaUllJC
dichconla di€u ki~nmoiclIovi~cdC;ltdu(jcmlJcdichchung
Quyt~chQcla ;
SAFE -TO -STACK (oBjl , oBj2);
Trang36
Volume( oBjl , vI ) , DENSITY (oBji , dl) ,
LESS - THAN (VI xdi ,50 ),
ISA (oBj2, TABLE)'
adayVI va dl1acacbie'nva 50thuduQctll CI3 .
2~1.5.2EBL va S~ttinh che'
M~nh
cua If .thuye't
Voi slfqUail1ycuacac1ythuye'thonghoanthi~n, tll
tlldngtrQngtam1athlfchi~ncacchungminhkhonghoan
thi~nbatcac pheploancohQC.
M1).cdichcuaphu'dngphapnayla:
Chom(Ht~pcacmieuta,cacvi dl,l,va cacnOidung
111acacvi dl,lthuOcvan,haytImra phuongphapco hi~u
quanha'td~"nhijnbitt" cacvi dl,l.Phuongphaptra10idlfa
van1ythuye'tthongtin:No uoc1uQrigs6cacthongtinlien
quailVOl1110inlieula vachQnthongtinhull ichnha't.B~ng
vi~capdl,lngcacmieutathanhGong,mOtdiy quye'tdinh
dll<,5CKaydlfngsanchocoth~nh~nbie'tcacvi dl,l.
Vi du 1:
Ghi sa tab~tdfiub~nghatnOidung (A va B) ,
Bu'Qc111ieutabatbamieuta(kichco,dantOc,gindlnh)va
co th~1a'ygiatri (nho,Ion)chomieutakichco,(Phap,Buc,
Y) chothanls6dantOc,va(cogia'dlnh,dOcthan)chotham
s6giadlnh.Gia sudingnOidungduQcduarabatcacvi dy
trongbang8~1va'nd~dd4Y 1atlmra mOtcayquye'tdinh
tot uu d~nh~nra nOidungA tll nOidungB.
VidQ2: '
'Gia sl}'dingtaco 10vi dl,lduQcmieutabatnghia
cuabonnneuta.vacacgiatricuano,chiratrongbang8-2.
N€n tangtri thuGduQcbi~udi~nbatHnhcha'tcuacacmieu
tit.Chungco th~gfingi6ngValXl, vi dl,lmOtJl.'1jeuta v€ 'j
Trang37
trQnglu'Qng.f)i~u nay se du'Qcbi~udi~nvoi rang thli'c:
{light<medium- weight<heavy}
MOtvai weu tadIng co th~du<jcffutruegi6ngX2va
X3.
N~ntangtri thucquanh~toi X2 co th~duQcrhobdi
s~'phanlo~icuaph~nchunghlnh 8-10'
Chungco th~xay ra tru'ongb<jpkhangco~tri thuc
riengco th€ rho mOtmieutit,nhuv~yX4 la IT1Otweu ta
nhi'>be. .
Tri thucnay du'Qcbi~udi~nbdi mieu ta v~tangcac
gia tri nhu'mOtdiy phi cffutruc ( mall vang,mall do,mau
h~tde)
TABLE 8-2
2.1.5.3Xdy dungRi
Mieu tel1:D€ chungtama telmOtchu6inay n~-.4nbietR
nhtiladuQcmieutelbdi: .
R=(Xi - Vi ) & & (XK =VK)
Xl X2 X3 X4
el light boy baby ted
e2 light girl baby blond
e3' light bqy child chestnut
e4 medium women teenager. chestnut
es medium boy child ted
eG heavy girl child blond
e7 heavy man teenager ted
es heavy women teenager chestnut
e9 heavy man adult blond
elO heavy women adult chestnut
Trang38
(j dayXj la ngu'oimientavaVj la nhil'ng iatrjcualllieuta
nayho~ctachbi~tvoi nhil'nggia trj co th~trongvi dt;l,theo
san4 chttcDangnh~nbie'tkhacnhau:
X2 =daD6ng
X4 =daD6ngV daDbaVcontrai
X3 =[c~ubecon thanhthie'unieri]
(Xl =daD6ng) &( X3 =[c~ubecJn thanh
thie'uflieD])
Mieu ta 2: MOtt~pcandu'Qcnh~nbie'tbeJimOtchuenang
nh~nbie'tla t~pcancuacacvi dvmangu'oimientachI ra
cling gia trj nhu' chUG Dang nh~n bie't.
Trang39
Conngu'oi
/~
Phcii ill!;lOh
/~.. /~
Phciiye'u
Dan ong diu be Danba cobe
Thanhthie'unien Danong Danba
Congcii
Hlnh 2.1.5.3 "511phanlo~i" cuaph~nchunggiuacae
"'" ?
linen ta
Ch~ngh~nchileDangnh~nbie"tRl:X2 X2=daD6ngV daD
ba V c~u be: nh~n bie"t cae t~p con {el,e3, e4
,eS,e7.eS.e9,elO}.Chile DangR2:(Xl=heavyV light) & (X4-
redv chestnut)nh~nbie"t{el,e3.e7,eS,elO}.T'.lora mQtchilc
Dangnh~nbie"td€ nh~nbie"tva lo~ibo ej:G(ei/ej).
Khi b~td~u,G (el/e) la t~ptrang.Ne"umientaXi co
cling gia tri trongei V&trongej, r6i Xi da:kh6ngxay ra
trongG(ei/ej).Ne"umientaXi la phaonbi~ttrongeiva ej,d~t
Vj la gia tri cuaXi trongej,thlb6 sungll1Qtphep ngatV(Xi
-+V) vaoG(eJej).
Trang40
Nhu lllQtvi dl;!,e1va'e2khacnhaubai X2 va X4.Tronge2,
X2=girlva X4~=blond.N6 keo theorAngG(e1/e7)=(X2 -:f-
girl) V (X4 -:f- bIQnd).Tu'ongttfc6th€ tha'yrAngG~e1/e4)-(X1
-:f- lllediull1) V (X2 -/=Woman) V (X3 -:f-teenager) V (X4 -:f-
chestnut) .
So sanhlllQtvi dl;!va mQtt~p:Chungtabaygioc6th€
Hnhchucnangnh~nbiC'tchungnha'td€ ma nh~nra vi d~lej
va lo<;libo t~pcac vi dl){ej}.Chungta ghi G(e/e.D.Bay
chlnhla t~p Ri tadffn6i a tren.
Cho n16iektrong{ej}.Tinh G (e/ek).KC'th<;1pta'tc,l"G
chu'aG(e/{ej}):
Ri =G (e/{ej})=&ekG (e/ek) ek-E{ej}
Vi d~l,G (e1/{e2,e4})=G(e1/e2) G(e1/e4)=(C::2 -:f- girl)V
(X4 -:f- blond))&
((Xl -:f- llledium) V (X2 -:f- Woman) V (X3 -:f-
teenager)V (X4-:f-chestnut))mala d~trongd~ngchu~n
2.1.5.4Phattri€n caeehuenangnhanbie't:
Stfphat tri€n du<;1cthtfchi~nbaivi~csli'dl;!ngthong
tin sohQcva nentangtri thuc.Ky .hi~uphanlo~icaitiC'n
toi thi€u socacdi€m ngat ...cai tiC'nmQtcachdongiancac
11lieutava cacdi€lll ngat bai cacdo~nkhimien1£1la mQt
duangthing.
2.1.6GHEP CAD TRUC:
2.1.6.1Mo taviee till kie'll ea'utrue:
Hai d~ngtilll kiC'mca'utruc nC'uchungvu<;1tqua ten cho
caehangsovacacbiC'nmangayl~ptuexacnh~n.thong.
thuang,d<}tE1vaElla haicongthuc.th1E1timCalltrueE2
nC'ut6nt~illlQteongthucC va2thaythe51& S2saoeho:
CDSl.C =E1va S2.C- E2
0 ThaytheSl va52khongbaagiod~tmQtbienbang
1110tcongthuchaymQtham..
? .
d daychuy apdl;!ngvi~cthaythechomQtcongthue.
Trang41
Phai hi~ur~ngvi~cHmki€m ca"utruc(structmatching
- SM) e6 th~kh6 khankh~ngdinhmOtk€t lu~n.M~cd~u
v~y, trongtruongh<;Jpt6tnha"t,mOtnguoic6 th~sudl,lng
thongtin dtn tll'cacvi c1l,lkhacd~bitt cachchungminhslf
c~nthi€t d~ap dl,lngmo ta nay (d€ bi&tchi tiLt xin xe111
Vrain). Th~111chi n€u SM hu hong(ma c6 th~thu'ongxay
fa), hi~uqua cua vi~ccO'g~ngd~tVaGSM c6 th€ vlin la
hay. Chung ta n6i r~nghai congthl1'cdadu<;JcSmatchkhi
moi congthucc6 th~thichh<;Jpvai cac thi nghi~mda du'<;Jc
sl( dl,lngd~d~tchungVaGSM. N€u SM thanhcong, tb1 , "
S111atchingdu<;Jc1116ta d~d~t chungVaGSM. N6i khac di
, .
S111atchingchuacack€t quac6 th~t6tnha"tronghuangHm
ki€Ul caccongthl1'c.
2.1.6.2MQt vi du don ghlncua vi~c 8M thanhcongo
D~chungtaxethaivi dl,lsaudayEl bi~uthiA rtong len H
va E2 bi~uthiC va D nhuchIra trongh1nh8-11. Caevi dl,l
co th~du<;Jc111ieutabdinhli'ngcongthucsauday.
. El '=SQUERE (A) & SMALL(A) & UPON (A,B) &
ClRCLE(B) & BlO(B) &
UNDER(A,B) &ORCLE(B) & BlO(H) & UNDER(B,A)
E2 = TRIANOLE(C) & SMALL(C) & LEET
SIDE(C,D) & SQUARE(D) & SMALL(D) & RIOHT-
SIDE(D,C) .
D~chung'ta gia thi€t r~ng thli b~ctrongh1nh8~12
duQccling ca"pchoh~th6ng. Phan lo~tinaybi~l1thi ngfi'
nghlatri thuccuachungtav~th€giai nh6be"mavai vi~c
hqc dangthtfchi~n trongSM cuaEl va E2thudu'<;Jctll
chungtai congthlictu'ongdu'ongE'l va E'2,nhuv~yE'l -
tl((jngduongvai El va E'2tu'ongdu'ongE2trongth€ giai
nh()be (tucla la"yVaGsO'd€111ngfinghlacuan6).Khi vi~c
Sl(11du'c}cthlfchi~nE'l va E'2duQCchia thanh2 ph~n:
Meala versioncuaEl vaE2vai bi€n du<;Jcg()itrongph~n
thancuacongthlicSmatched.K.hiSM thanhcongph~n
Trang42
thancuaE'l va E'2 duQ'cllla ta ,Thanhphc1nk.h1c, duQc
gQiIa bindings(cuacacbi€n ), chot{tcacacdieuki<%ncfin
thi€t chophfinthancuamaiEi' duQcmatathuongxuyen
VOlEj tti(1ngling.
Vi<%cxu Iy b~tdfiunhusanday.Gia sudingchungta
OU'(}Cbi€t r~ngcacmientacuaphc1nFORM Ia nhi€u h{p
danhonslfphanIo~iTOUCH. ChungtaVI v~yb~td~uc6
gangphoih<.1pSQUARE va CIRCLE cuaEI voi SQUARE
vaTRIANGLE cuaE2.Chungtad~tA trongEI vaD trong
E2b(jibi€n gia?x,vachungtaluugillbQnho cuabi€n nay.
Bi€u naydantoik€t quasan: (chu,yr~ngdan:isach cua
bi€n n~nltrongd{ungo~c)
E'l = SQUARE(x),& SMALL(x)&UPON(x,B)
&CIRCLE(B) & BIG (B) & UNDER(B,x) & (x =A) J.
Hlnh2.1.6.2.a .
130
C~D"D Ella phc1nbentraiE2la phc1nbenphai
Trang43
Touch
/
Side-byside
/~
~
Upside-down
/~
Left~side Right-side Under Upon
FOrm
/
'" Convex
/~
Polygon Ellipsoid
/~ /~
Square Teiangle ... Circle ...
mnh 2.1.6.2.bPhanlo~iCaCquaDh~chungtrongcac
mieuhi.
,
E'l =SQUARE(x)& SMALL(x) & RIGNT- SII?E(x.C)&
TRIANGLE(C) & SMALL(C) &LEFT -SIDE(C,x) &
l(x=D)}
Blide ke tiep stYd\1ngphan lo~i bdi vi~eph6i hQp
CIRCLE euaEl vdi TRIANGLE euaE2.Taviet:
E'l -SQARE(x) & SMALL(x) & UPON (x,y) &
CONVEX(y) & BIG(y) & UNDER(y,x) & [(x=A) & (y=B)]
E' 2=SQUARE(x) & SMALL(x) & RIGHT-SIDE(x,y)
& CONVEX(y) & SMALL (y) &LEET-SIDE(y,x} & [(x=D)
& (y-C)]
Vi dl;}naychi r~ng111Qtkhi SM da:duQethl;tehi~nbudesinh
tl;tn6 da:trdnent~111thliong.-Chunggill trongvi~esinh tftt
Trang44
~abuQc~lingtOtcongthucSrnatchedvarottfftcavaovffn
d~chung.Noi eachkhac,ky thu~tSM chophepchungta
gictn1cacquyHicchungn6i tie"ng(Michalski)chi tOt"quy
Hic di~uki~n dung", IDa trd thanhcac .cong thuc
Sn1atched.Tfftca loi keosucrnC;lnhvaotrongquyt~edi~u
ki~ndung.
Ta'tcacacnguyent~ckhacla soydieDngheo.Chung
taphaithuanh~ndingchungrninhthongthuongneud tren
vlln () dUal dC;lngnghien CUll .
Bdi VIBIG va SMALL dftkhongthuQcvaophanloC;li
chungtrongvi dl)cuachungta,chungseduQcdunglC;liva
bdiVIxvay luauconhunggiatrtkhacnhau,seduQcchu9
trc)ngvi~csinhcu6icling,IDa:
Eg =SQUARE(x) & SMALL(x) & TOUCN(x,y) &
CONVEX (y)& TOUCH (y,x)& [(x:f:y)].Trongvi dl;Jnay,
ngttoitaCallithffydingrnQtnguoicoth€ sadl;Jng19thuye"t
giang
v x,y [TOUCN(x,y)TOUCN[(y,x)]trongthu
tlfo~chungrninhchung
2.1.6.3SitdungIf thuye'tdciciHtie'nchung.
No th~tdedang,duQcchor~ngvi~csadl)ng19thuye"t
co th€ dllnde"nhi€u kh6khan,bdiVI~Qtkhidftthlfcslfdi
vaochungminh19thuye"tIDan6i tie"pnhurnQtngu6ng6c
totouQcgiai quye"t,khongduQcgiai quye"tvffnd€.Trong
truonghQp~M, rnQtai do dftduQchuangdllnbdi Slfc<ln
thie"td€ d~tcacvi dl)vaolTIQtdC;lngtudngtlf , va thuong
nit kh6d~chunhrninhrnQtCatgl dochodedang.Chungta
khongth~chungminhrnQtcachlnhthucdi€rn nay,nhting, "
vi dl)sanday,IffytuVrain(1987)coth€ duarakhAngdinh
cuachungta.Khi b~td<luhatvi dl) IDadftkhongxacnh~n,.
chungta chi ra r~ngchungkhongbaagio co rnQtsinh
chung,!lrnra bdi sa dl)ng,19thuy€t lien k€t voi cacdi€u
xacnh~n.Vi dl):
Trang45
El =MAMMALAt-T(A) & BRED -ANIMAL(A)
E2 =TAME(B) & VIVIPAROUS(B)llla cacly thuy€t
sanda:duQclien k€t :
R1: Vx[MAMMALAN(x) & BRED-ANIMAL(x)
=>TAME(x)]
R2: Vx [TAME(x) & VIVIP A ROUS(x) =>
MAMMALiAN(x)
R3:Vx [TAME(x) =>HARMLESS(x)] (j dayv laloan
thedinhluQngx. Stflien k€t logicva =>hamylogic.
BUGCd~uliencuaSM la t~mthuang(j day,chungta ' '
d~t h~ngsobCiilllQtbi€n x va giii'acacvi dlf tu'dngdudng.
E'l = MARAMALAN(x) & BRED-ANINiAL(x) &
[(x=A)]
E'2=TAME(x) & VIVIPAROUS(x) [(x=B)J;.
Bc)iVI, cacxacnh~nkh6ngco ph~nchungKayfa,fa xet
d~ulien (Thutt!naykh6ngphanbi~tVachIchophepmQt
tronghhii'ngvi dlJduQccho)..Xacnh~nE'1MAMMALAN.
Chungtath:1yt~ng,chungtacothebuybe)xacnh~ntll E2,
khisud9ngguyt~cR2. Chungtanh~n:
E" 1=MAMMALiAN * (x) & BRED-ANIMAL(x) &
[(x=A)]
E" 2 = TAME(x) & VIVIP A RODS(x) &
MAMMALiAN. ** (x) [x=B)]
The MAMMALAN cuaE'l da:duQctdnhbay,Bay chinh1a
ly do de E" 1duQCdaublllQtd:1u*, mQtE"2 duQcrut ratn
vi~c Sl( d9ng cac 1y thuy€t, llla duQcdaubd:1uboi2 Hin
d:1u*.
: Ph~nk€ ti€p BRED-ANIMAL kh6ngduQCdaubd:1u
kh6ngcoguyt~cnaocotheduQCapd9ngchoE"2 de~alll
ro cacbienthicilaBRED-ANIMAL trongdo.M~cd~uv~y,
chungtadanhd:1uvi~capd9ngguyt~cRI toiE'\ sad9ng
vi~cxacnh~nlien quan,BRED-ANIMAL. Khi kiemtra
hi~uquacuaap d9ngnay,chungta th:1yr~ngno sinhra
Trang46
vi~cxac nh~n lien quan,BRED-ANIMAL.Khi ki~mt1'a
hi~uqua cua ap dt;tngnay,chungta tha'y1'~ngno sinh1'a
congthu~nguyentaT AME(x) va do la mQtslfKay1'acuax
t1'ongE"2 d~dothnnhfi'nghi~ntuQngKay1'anay.VI v~yta
phaiclPd\lngRl choE"l. Taco: . .
E"l =MAMMALiAN * (x)& BRED -ANIMAL*(x)
& TAME** (x) & [(x-A)]
E"2 = TAME*(x) & VIVIPA ROUS(x) &
MAMMALiAN**(x) & [x=B)]
Bay giGta chi thong d6i chie'uVIVIPAROUS t1'ong
E"2khongco quylac co th€ duQcapdt;tngchoE"1d~khie'n
no du(,1cbi~uthi 1'51'~ng.Nguyenlac duynha'tco th~duQC
ap dt;tngt1'ongE'2quanh~toi VIVIPAROUS 1aR} Nhung
nophil gioithi~ucongthli'cnguyentuMAMMALiAN(x)
1110ta duQCc16ichie'ubc1iVIvi dt;tcua no, da:duQCbat dftu.
Khongco quylac khacco th~duQcap dt;tngVI v~yta
xac nh~nVIVIPAROUS c1~nha't1'~ngno da:bi giai quye't
vdi vi~cchua:
E""l =MAMMALiAN*(x) &.BRED~ANIMAL*(x)&
TAME** (x)& [(x=A)] I
E""2 = TAME*(x) & VIVIPAROUS*(x) &
MAMMALAN**(x) & [x=B)]
TKt ca nhfi'ngc1i~uco th~Kay1'ada:duQCgiaiquye't
vdi 111QtSM hoanthi~nkhongco th~,.vI Smatchingho~t
dQngdungc1day. .
Bay giGbuocsinh1atfim thuong:MQt di~mdung
khongt6ngquatda:Kay1'a,chuasinh: G - TAME(x) &
MAMMALiAN(x). Vi dt;tnaychiKay1'acachchungminh
voh~ncoth~Kay1'a,Cacvangl~pcoth~d~dangbip):1a, ,
buy phongcach ddngian bc1iVI chungda:khonb cai tie'n '
tr~ngthaiSmatchingcuacac vi dt;t.T6ngquathdn,mQt
nguoicoth~sudt;tng1ythuye"t- chungmintk5'thu~td~cai
tie'nll1UCtudngtlf duQckhampha1'at1'ongdamcacvi dt,l.
Trang47
Nhu'nl(Hh~th6ng(j dudi stf phanbuy trongnh6mcua
chungta (VRAIN,1987).~6 khanglien ke'tmOtIdp Iy
thuye'teachnganvacaethu~tloansinhnhungthe'VaGd6la
lay vaGlllQteachdutkhoatlo~icuacacchungminhd~Qc
yell cftubdi nlayhQc. Nhu mOtvi d1)khacthuong(ma
khonghoanthi~n), nosekhangchophepai sud1)ngcung
ly thuye'thaiIftntrongmOtvi~cruttrich.
2.1.6.4:Ke'tluan
NQidungneuireDdaybi€u thicacphudngphap
hQcchuye'ud~t tdibdiquyn~p,suydi~nho~ccacynghla
tlf<ingttf. Stfsuydi~ntie'ntdiclingcapmOtd~ngh<Jpcua
caclo~ikhacnhaud€ gi,Iinghladingc6th€ chuacacvung
c6 lllQtly thuye'tlll~nhvahoanthi~n(EBG)mOtIy thuye't
nl~nhnhungchuahoanthi~n,va mOtIy thuye'tphftnm~m
nlachu'adu'Qchungminhhoanthi~nc6 th€ duQcve leu.
M1)cdich cuachungtala chIra tat-cacaclo~icuatri thuc
n~ntangdaduQchQct~pc6th€ dudcgiainghla vafilata
d€ c6 th€ hi€u duQc.
Nhi~unghienCUllcftnlamco th€ cho mOtmata
trtionghQpd€ c6 th€ hi€u.
2.1.6.5Noi rongtri thueearnnhankhi bi tdenghen:
Tat canhfi'ngdi~uk€ ireDdadtiQCki€m traireDvi~c
ap d1)ngVaGcuQcs6ngvdinhfi'ngthayd6ivi~cthanhcang
ph1)thuQcVaGnhfi'ngdi€lll san:
. ID~t~olllQtsO'(ML) mayhQc,phftnm~mltiutrfi'da
du\icap d~lngVaG11nhvtfcthu6clllen,thuongthtfchi~nt6t
hUn. ES xay dtfngbdi vi~ctrahoi ID3clingda duQcap
d1)ngbdicangtybaahi€m vanhuv~ydatie-tki~mmOtsO'
Idnti~n(Michie,1988).
INDUCE ,dasinhra ES dftutrendattfdOngd~t duQc
caequyHicnladacokinhnghi~m.
Trang48
Ghepceiutrucda duQcap dl.JngVaGvi~cdi~ukhi€n v~n
chuy€nhangkhong.(Cannatvavarin,1983),vachungtase
noinhi~uv~no(jcu6icuake'tlu~nnay.
Teitcacacphuongphap suyd~ndaduQcap dl.Jngd€
giaiquye'tcacveind~khacnhau.T(~timucnay,S1ftie'ntoi
sectjckl hUllfehchostjtinhche'cuaES dangt6nt~i nhli
chungtase nneuta no,gio dayvoi nlOtES dangt6nt~i,
cho1110tt~pcacquyt~csap bi€u thin~ntangtri thuccua
kinhnghi~m,cacquyt~cseichophepcaitie'nES quatudng
laybeithliongvoikinhnghi~m. l{.inhnghi~mstYdl.JngES.
Ne'ukinhnghi~lllcheipthu~nES thlmOtvai quy lu~tsinh
cuacacnguyent~cdangt6nt~iva dliQCc6 thii'.Ne'ukinh
nghi~mho~t dOngkhacVOlES thlcacnguyent~chi~uqua
nloi co th€ duQC hQc (Raitchell, Mahadevain,va
Steiberg,1985).Ne'ukinhnghi~m111aUthu~nVOlES , cac
quyt~c1110isedliQcb6sungd€ hoanthi~ntri.thuccuaES .
Teitcadi~unaychirar~ngML(mayhQc) dagiupcho
stj camnh~nhaycac quyt~cnlOta, nhugi6pgiai quye't
trang phcin tri thuc cam nh~n bi t~c nghen
, (Feiguchanl,1981).M~cdciuv~y,trongtudnglai xa,ch6ng
tasenh~n .
thucduQcphcinquailtrQngcuavi~capdlJngML toi ES.
2.1.6.6N6i Y
Cac h~th6ngdangt6nt~ico y dinhgiu l~iphcin' .
nghienCUllva phattri€n cua cac congty phattri€n chung
thaythe'vi~cchuy€n d€ ap dlJngcac I1nhv1fcnhunguoita
lllu6nco mOttrangnhungly dachi.nhchovi~cthucnaybdi
vi~c ap d\lng rOngrai cac 11nhvtJ'ccftnphftn m~mduQc
c6ngb6. Hi~ntC;likh6ngco cach d€ chungminh mOtES
ngoC;litru mOtVal lOC;livi.dlJ tudngttJ'chonhfi'ngsinhvien
da tungtra1.
Trang49
Chungtakh~ngdinhdingky thu~tmayhQc(ML) la
c6ngClJ to'tnhfttco th€ hi~nthaiphattri€n nhudff lieu.
Bi€u naycoth€ lamsongsongtronghaicach: ..
Ky thu~t nlayhQchi~nthaigiupta d~tcactri thuGdanh
riengchovftnd€ dim nh~ntri thUGcuaES va b~ngvi~c
clingcftpmQtvaichungminhtn!cti€p . .
2.1.6.7Vdn d~earnnh(intri thuedaehie! :
CacML chinhbanthannocftnduQcky hi~ubaimQt
sO'cacthuQctinhnhuthayd6i chungtunhungthamsO'ban
dftud\fatrencac tri thUGn€n tang.Vi~c luu y cacchuang
trlnhnlay hqcclingduQcdanhchonhi~mVlJth\l'chi~ndua
racacchuangtrlnh, ch~ngh~nd€ xoacacmientacuacac
thayd6iduQcth\fchi~ntrongcasatri thUGd~cbi~ttr~ng, '.
thaicilacack€t quaduafa.Tuangt\f nlieutan€ntang tri
thuGcuachuangtrlnhML d~cbi~ttrongn16itruangmacac
guyt3:cES conghIa.
2.1.6.7.1Hie" lqe motES: Gia su r~ngchtingta co
nlQtES xayd\fngtrongmQtcachphanlo~i(HurmanES -
HES ) vanlQtchuangtrlnhML make'tquaduara la nlQt
chu(jngt~lnhth\fchi~ncacnhi~mVlJ, ho~cit nhfttthamgia
vaocacnhi~nlVlJ , tuangt\ftoi HES.Bay la vi~cxayd\fng
ES nlQtcacht\fdQng(MLES). Khi phantichguyt3:cHES ,
nglioitaco th€ phantichs\fsail~chh~thO'ngML saocho
no sinhra guyt3:ctuang,.t\fnhuco th€, toi rllQtphan.tich
duoiday.N€u nhucoclingguyt3:c,thlslfphan tich moi
e1::'iduQcsinhramQtcacht\fdQngsed~ntoislfthamgiavao
tri thuc, rlla slf thO'ngke cacsai l~chse tralai di&udo.
Bi€u naythamgiavaoh~tri thucvacohi~uIlfcvoinhung
nguyent3:cn€u tri thuGt\fnodffcohi~ul\fc , ma.phantich
l~i nhunglopky thu~tcohi~ul\fc. Chungtaclingco th€
corl1Qtvaikinhnghi~nl.
Trang51
11.2BAN eRAT LY LU~N vA PHUONG PHAp DE
,.!'
XUAT
Nhu'ph~nly lu~nv~lllayhQcdalieu (j tren,ly ~huye'tv~
Dlayhqcr:1'tsanvarOng.Tuynhienkhi lingdl,lngvaothltc
te'coth€ chIc~nap dl,lngmOtph~ntrongnhi~unguyenUtc.
Ph~napdl,lngcuata(j dayla apdl,lngthu~tloantachlop
trongcacdoi tu'Qng.Trongthltcte'voi cacmftunh~nd(;lng
c6 truy~n,nhi~mVl,ltrungtamla phanlo(;lichomOtmfiu,
nhi~mVl,lc6tinhnguyent~ch:1'pdftnnh:1'tla hayquye"tdinh
xelll lllftu d6thuOclopgl.??
MOtcachchu~nh6a, taphelidu'Qclingca'pb~ngvi~chu:1'n
luy~nv~cact~phQpmftu,tITCla, b~ngt~pcacmftutase
bitt lopcacthanhviennhu'dadu'atrongh1nh2.2,MOtlop
thanhvienph,HhQcmOthutl,lCmac6th€ sudl,lng-d€phan
lo(;lichinhxact:1'tcelcacmftutrongt~phu:1'nluy~n.K€ tie'p
pheliki€lll traxemJopthanhvienc6th€ ducjcxe'pvaolop
c6lllftuvoicling111Qtt~PhQpd6i1ucjngkhong.??
Hlnh 2.2
a.BO{l1lhuiill luYfll:
~
b.DO{l1lkii111Ira:
Hu:1'n Thii tl,lC
luyn tp cho
'"
Phan lo(;liVH;C
11laU {X} -+ hOc 11101-+
"
lop phudngva
lien h phapphan
thanhvien loC;li.
\Trang52
Phu'ejngphap ta chQn lva (j day Ia phuong phap
TOP_DOWNVIcacthanhviend~ulacacvi .
dQ,'in1,~hlco mQtvi dQduongduynha't,do chinhIa ke't
qua.VI caclopd6itu'Qngcuatala rOnglon,quachQnlQc,
phanlo~i1116iv dQba'tky phaidu'Qchua'nluy~nvasando
co th€ chQndu'Qclop thichhQp.Tronglop tu'onglingcac
ph~ntli l~iv§:nla ambdiVIvi dQchIdungvai mOtniong
hQptu'onglingduynha't. .
SandayxinneumOttru'onghQpCQth€ cuavi~clingdQng
nguyenly hQctvdOngvaclingph~nnaGphananhbancha't
ly lu~nduQclingdQng.
.I' .I' " .I' ,\? .I' ?:::.
II.2.1CAC GIAO VIEN CO THE SAISOT NGAU
"
NHIE N
CONG THUC HOC BEU BEU DNFVOI LOIPHAN
? " " " " "
CUA THANH VIEN KHONG HOAN THIJ::N
~~~ <~~~
Chu d~: Gioi thi~uthu~t loanhQckhisadQugmOtlorphan
tu'ongdu'ongvamOt10iphanthanhvienkh6nghoan
thi~nVOlmlicsaisotcoth€ cha"pnh~nduQc
1.BAT VAN BE: .
Celc thanh -+ .Phan loi -+ Tac dOng
.,, ? ;!
hQp tuonglingVIeD cua tong
lop chu'a li. toi tung
dtiQcbie't. lop d6i
tuQng.
Trang53
Xet velnd~d~ytho maytinhnh~nbi~tdOngtiT
trongdiu ti~ngAnh.MQtcachdongiangiaoVieDbi~udi~n
cac Calinl§:u,chi ra mOtvai dOngtu (+,positive)va chi ra .
11l(Hvai tu khongphai dOngtu (-, negative).Co th~neu
nhungVI dlJ magiaoVieDkhongbie'tchilcCalitraloi nhung
vi~chQcvelndliQCti~nhanhtrongnhung truonghQc11la
cacsaisotdungtrongmUG.coth€ chelpnh~nduQc.
. ?' ,,' K ;:;.
II GIAIQUYE.TVANDE:
Xet t~P bi~nXl XutrongGongthuGDNF voi bi~n
N nguyenduongch!ngh~n n=20
Xl X4+X2XI - X3 - X9XSX12X3+ Xs ....
sO'cacthu~tngutrongGongthuGdanhduQcky hi~un1
trongVI dlJ naym=4.Chli yrAngcomQtthll~tloancohi~u
quad~tIlll sO'nhonheltciia cac thu~t ngucuaGongthuG
DNF d~ud~u
: Khonggianm~ucuavi d\lla t~pcacaevectornsO'0
v~1,ky hi~ula {0,1}ll. CongthuGDNF d~ud~uh duQc,coi
la ky hi~ut~p cacvectorv thoa11lanGongthuGh, tavi~t
hey)=0, ngu<;Jcl~i vi~th(v) =O. Ta xelll khong gian 11l~U
nhu'1110tluc;!11liltCaD.Voi cacpheploan "or" va "and"
pheploanluoi 11liltCaD;ph~ntu dlnhla vectorg6hlteltca
cacsO'1,ph~ntudayla teltcasO'O.Vector10011kg hi~u
thu~t ngu XIX4XS.Ne'uh la GongthuGDNF va v la 111Qt
vectortrongkhonggian111~u,v thoa111anh ne'uvachln~u
111Qtvaithu~tnguwcuah,w<v
Cac vectorn6idoi (descendants)cuamOtvectorv la
teltcacacvectorw trongkh6nggian111~u saDtho w<v voi
beltky hAngsO'khongamd,d-descendantscuav la tatca
cacn6id5iwcuav111acoth€ chuavb(jivi~cthays6110n
Trang54
nh1tbangso o. Vi d\l xet thu~tngfi'X2X3X4bi€u di~nla
all L T~p nO'id5i b~c1 (0111,0011,0101,0110),chua
thu~t ngfi'chinhbanthannova 3childrencuano.
T~P nO'id5ib~c2 la t~p nO'id5ib~c1vat~pchaucua
0III g6nl(0001,0010va0100)(grandchidren).
0011
IUO
0101
QOOO
Khi sd dQ.ngcaeCallhoi thanhvieDkhonghoan thien:
MOt thii t\lCconquantn;>ngtrongthu~tloanDNF cua
Anghi1l1(1988).Lay mOtvi d\l dudngcuanOidungh va su
dl;lngcac Callhoi thanhvien d~nit gQnv thanhsO',Vi d\l
du(jngnhonhatcuaha.Thu~tloan b~td~ub~ngc6ngthuc
n)ng va su d\lngcac cauhoi tudngdudngd~sinhra vi d\l
ngli<,icdudng1l1Oi.Ket quacuam6ivi~cnlt gQnla chomOt
Trang55
thu~t ngf(lllOi cuahad€ b6 sungtoi gia thi~thi~nthai.Sau
III bu'ocxU'ly thudu'Qct~p gia thi~t liongdliongVOlh.
Thu~t loanmOlcuachungtadtfatrencungtli tlidng,
nhu'ngphii sudvngmOts6loi phan thanhvienchuahoan
thi~n.Kh6 khannaysinhIii : QuatrlnhxU'ly co mOts6vi
dVdudnghi~nthaiv cuah,t~oliencacdiu h6i thanhph~n
cholllai lllOtchildrenv. It nha"tt6nt~imQtthanhvienhoi
du(,1ctraloi "Yes" chovectory va v co th€ dliQcthayth~
bdiy vavi~cxli ly duQcl~pl~i.M~cd~uv~y,k~tquavi~c
xU'ly dfintoi lllOtvi d\l duongv cuah, saochothanhvien
cauhoichoUttca childrenv dliQctra10i"No;'hay"I don't
know".N~ucoitnha"tmOtchildcuav tra10i"I don'tknow"
tIll v coth€ haykh6ngcoth€ la vi dVdliongnh6nha"tcuah.
Chungta duara mOtphuongphaprut gQndliQcsU'
d\lngchocacloi phanthanhvienkh6nghoanthi~n.Mvc
(1i~hla'HtylllOtvi dvduongkhdjd~uv cuah varutgQnno
toi 111Qtvi dVdlidng"thanthich"va "kh6ngquaxa" Valvi
d\ldu,(1nghonha"tcuah.
Bang vi~cb6 sungta"tca ph~ntU'n61doi g~ngili
cuavectornay nhli cac thu~tngu toi gia thi~thi~nthai
chungta se d~tduQcllllic "thanthich"khi b6 sungthu~t
ngumOlcuahvaVIv~y,dangthtfchi~ncacxU'ly huangtoi
h.
Tu tudngcuavi~cxuly nit gQntheophlie1ngphap nloi
la s11dvngcaccauh6i thanhviend€ tImki~mkh6ngchi
nhi1'ngchildrencuav mabaag6mH(tcanhungph~niU'n6i
doi "d11g~n"cuaVoVOlY <v llla tra10i"Yes", n~unhliy
dl(\1ct1rlltha"ythlvi~ctImki~lllti~pt\lCbangcachthayth~
ychov.N~ukh6ngcoy naotIllltha"ysaukhidfihoita"tca
Trang56
nhungphan tll nO'id5i "Bu than thi~n"cua v thl y gill
nguyengi:i trioChli y dinp nhungvi~cnO'id5i duQctIm ' "
kitSnltheohangngangbitt:dau la childrencua v, r6i titSp
theograndchildren...ThamsO'd>l lieUleu dOsaucuavi~c
tInlkitSm.
1.Reduce(v,d):
2. Let D be theproperd-descendantsof v
3. For eachYE D in breathfirstorder
4. If nlenlbershipquery(y)="Yes" then
5. Returnreduce(y, d)
6. Endif
7. Endfor
8. Returnv
9. End.
Ta bittdaub~ngmOtc~pquailsatddngian.NtSuwla
n10tvi d\l dudngcuah va d la mOtsO'nguyendudng,d~t
D+(w,d)ky hi~umi~nnO'id5ithti'd cuaw baagamcacvi
d~~du(jngcuah,d~t S(w,d)la "success"nghlala S(w,d)=
1 ntSuco w co vi d\l dudngnhanhfttcuah, trongdam,nO'i
doidcllanovaSew,d)- 0 trongnhungtruonghQpnguQc
lai.
San oay xin lieU leu hai dinh ly cua Mingli andLeslie
Valiant:
Dfnhly 1:
Giii sicw la 111l)tvid(ldl/dngcuah, vad la lnl)tnguyen
dltdngsuochoS(w,d)- O.Thi D+(w,d)>2d+l.2
Cluc'ng,ninh:
Trang57
VI w la.mOtvi dt)du'ongcilah, c6mOtvai vi dt)du'ongw'
cilah, sanchow'<w.Bdi VI giadinhw'khongthuOctrong
nh6111nO'id6id cilaw, c6 1110tvai t~pbit d-l vi tri chua1
trongw va0trongw'.M6i mOtvectorw'du'Qchuatrongw
vat~pit nh1t1nhu'ngkhongnhi€u hondcilanhungbitnay
d~t k€t quab~ng0 la mOtthutt!nO'id6i d cilaw sancho
chungchinhla mOtvi dt)du'ongcilah (bdiVIw'<w").Nhu'
v~ytac6chinh'xac2d+l_2vectokhacbi~tvoiw", d6chinh
la k€t quac~nchungminh.
DfnhIf 2: .
Gill sitw vaw' fa cacvid"(ldlldllgclla h va w>w',thi
vdil1l6isitllguyelldltdllgd,D+(w,d)>D+(w',d). .
CIUC'llg l1lillh:
D~t Z la vectokhongn~mtrongw va w' sanchoz c6
1t~ivi tri 111at~ido w chuasO'1va w' chuasO'O.ChQn11101
ve,ctoy sanchoy la vectonO'id6ic1pd cilaW vad6ng
thaila vi dt)du'ongcilah,tath1yz vay chinhla nO'id6ic1p
dClIaw vala mOtvi dt)du'ongcilah,trongd6z vay la tach
bi~tVIv~yD - (w.d)> D - (w'.d).
Ta th1yr~ngz phaichuait nh1tmOtsO'1t~iv(tri iva
vectow" baag6mw bdit~P cacbitmat~ivi trikhuasO'0
la 1110tnO'id6ib~cdcilaw (dod>l1a mOtvi dt)du'ongcila
h (w" >w') vadi€u naykhacvoi t1tcacacvectongu'Qcl~i
cilaZ (vIZc6mOtsO'1t~ivi trithu i.). Di€u naykenthen
D+(w,d)>D+(w'+d).
Ti€p thentasebantoidinhly chinhcilaReduce.D€
co th€ apdt)ngdinhly thanhGongtagQiReducetrongmOt
bl(OCch~ydongian, ta gia dinhr~ng11101vai thanhvien
hoi dftdu'Qcthtfchi~nquabu'ocdaot~ocilacacgiaovien
coloi phankhonghoaothi~nnhactoid tren.(Dieunaygia
Trang58
. /
thi€t dingk€t quatraloi dadu'<jcchotru'oc).M~cdli v~y,
clingkhongngo(;litru tru'ongh<jptachinh~ndu'<jcdiu tra
loi kh6ngnla"yriengbi~tla :"1don'tknow'.
Billh lj 3:
Choh* la COllgthuch{Jcdiu diu DNF. Gill sit taco
111/)t(/ allhvie11trollgtfjph* vuixacsuittgq,pla p, vanll)t
vaicauhoidiidupcxaclfjpkelquatrll 1mtrollgtfjptrii1m
cita cac thallh viell khollghoall thifll. Dq,td la 111l)tso"
llguyelldu(Jllgcuah, vadq,tg(d)=2d-l_2.Gidsit D-v.d=r
vap >g(d).Gill sitReducedupcg{Ji"vfJidolsi;"v,a,dq,tyky
hifll vectdkel qua.Co No III so"llho llhal trollg"caesac
xllatxiiyra citacacvi d(ldltdllgeuah* trollgtfjphppcac
1161doibfjcdcuaysaotho, sacxuallaS(y,d)=0dupebao
b{JcblJi biell giui peed)+pg(d)-l+pI" " " " " "
Changlninh:
Ta chungminhb~ngquyn(;lp trent~pcac gia tri tang
cua D-(v,d)khi b~td~ubangg(d).Chli Y r~ngdinhly 1
daTIlbaodingm6inlQttrliongh<jpgQicuaReduceBeco
mQtgiatrinhahoncuaD - (v,d)voigiatrinhanha"tla g(d),
Reducephaitral(;limQtvc"ctoy saochoS(p,d)=1.
" Gia su r~ngtrongmuccaonha"tcuavi~cgQiReduce,
D +(v.d)=g(d).D€ thudu'<jcvcc toy saochoS(y,d)=0,
Reducephaikh6ngdli<jcgQid~quy.N6i cachkh4c,giatri
khoi d~u dtigQiReducechom6in6i d6ib~cd cuav, va
n16idiu traloi nh~ndli<jcse la "no"ho~c"I don'tknow".
Trangtrliongh<jpd~cbi~t, ta"tca cacdiu hai chovi dl;!
dliongcuah*piulidli<jctni loi "I don'tknow".
Vi c6g(d)la vi dl;!du'ongcuah* trongdamn6id6ib~c
d cuav, vaboi vi m6ithanhph~ndfidu'<jcdu'aracauhai
trudc,th~nlchinodadu'<jctraloi "I don'tknow"voixac
Trang58
. I
thi€t r~ngk€t quatn1loida:du'<Jcchotru'dc).M~cdli v~y,
cilngkhongngo~itru tru'ongh<Jptachinh~ndu'<Jccautn1
loi khongma"yriengbi~tla :"1don'tknow'.
Dinh Ij 3:
Choh* la conKthuchQcdiu diu DNF. Gia sit taco
111l)tthanhvientrongtljph* vaixacsuatggpla p, va.1111)t
vaicauhili diidzt{JcxacIljpkefquaIra 1mtrongtljptra1m
cua cac Ihanh vienthong hoanthifn. Dgt d la 1111)1sf/
llguyendU(Jllgcuah, vadgtg(d)=2d-l_2.Giii sit D-v.d=r
vap >g(d).Gia sitReducedzt{Jcg(Ji.vfJidolsflv,d,dgtykj
hi~lIvectdkefqua.Co No la so'nhonhiittrong.cacsac
xlliitxayra cuacacvi dl!dlldngcuah* trollgtljph{Jpcac
nol doi bijcd cuay suocho, sacxuatlaS(y,d)=0 dzt{Jcbao
b(Jcblli bien giai pg(dJ+pg(dJ-l+pI"
Cluing,ninh:
Ta chungminhb~ngquyn~p trent~pcacgiatri tang
cua D-(v,d)khi b~td~ub~ngg(d).Chli Y r~ngdinhIy 1
diinl baodingm6imQttru'ongh<JpgQicuaReduceseco
mQtgiatrinhohcJncuaD - (v,d)voigiatrinhonha"tla g(d),
ReducephaitraI~imQtve.ctcJy saochoS(p,d)=1.
Gia su r~ngtrongmuccaonhatcuavi~cgQiReduce,
D + (v.d) =g(d). B€ thu du'<Jcvec tcJy sao cho S(y,d) =0,
Reducephaikhongdu'<JcgQid~quy.Noi eachkh4c,giatri
kh(jid~u d€ gQiReducechom6in6i d5ib~cd cuav, va
n16icautraloi nh~ndu'<Jcsela "no"ho~c"1don'tknow".
Trongtru'onghQpd~cbi~t, tatca caccanhoi chovi ell)
du'cJngcuah*phaidu'<Jctraloi "I don'tknow".
VI cog(d)la vi ell)dticJngcuah* trongdamn6id5ib~c
d cuav, va bdiVIm6ithanhph~ndfidu'<JCdu'aracauhoi
tru'dc,th~nlchinoda:du'<Jctraloi "1don'tknow"vdixac
Trang59
sueitHi pg(d). Nhuv~y trongtruonghQpxacsua'trdv~vec
toy bangv,saochoS(y,d)=0, duQcbaabQcbdi pg(d},di~u
naydathie'tl~p nenn~ntangdin bancuadinhly.
Say giGta gia thie'trang voi vec to v beitky saocho
g(d) < D + (v,d) < I-I, nhu dinh ly neu fa. Gia Sll rang
ReduceduQcgQivoi dois6 v vad.voi D~(v,d)=r. C6hai. .
truonghQpho~cphepgQi d~quy duQcthlfc hoi~n'voi
Reduceho~ckh6ng.
Ne'ukh6ngcophepgQid~quythlteitcan6id6ib~cd
cuav duQcdbihoi.Va teitcacactruonghcjpnayducjctra
101"No"ho~c"I don'tknow".C6 r cacvi dvduongcua.h*
trongdamcacph~ntITduQcdbihoivachungphaiduQctra
)oi " I don'tknow".Bdi VI truocd6cacph~ntll nayda
kh6ngdu<.1cxueithi~nHenxacsueit10di~ncacph~ntll nay
la pr.
M~tkhac,khicacph~ntll d~uliencualopn6id6ib~c
dcuav duQcHmtha"y,CallhoimaduQctraloi "yes"c6vec
t(jduQcgQid~quybdiReducetad~tenv' clingnamtrong
lop d. Luu y dayla lopn6id6ixua"thi~ntheothntv d~u
lien.Cacph~ntll kh6ngphaila n6id6i,cuav' chinhla cac
vi dv duongcuah*. M~cd~uv~y v' la n6i d6icua v,
D+(v',d)< D +(v.d)(Dinhly 2),VIv~yD+(v',d)<I-I. Ne'u
D +(v'.d)<g(d)thld6la gQid~quy, va clinggQid mnc
can.Reducekh6ng c6 th€ tral<;timOtvecto y saocho
S(y,cl)=O.M~tkhacD +(v'.cl)>g(d)vadi~ugiathi€t cll,a, ,
taduQcth6aUlan,xacsua"tcuaphepgQid~quyvoiv' va
dd€ tral<;tivectoysaochoS(y,d)=Ola:
pg(d)+pg(d)-l+...+pr - 1 .
Xac sua"tgQiReducelIen v vad d€ tral<;timOtvecto
y saochoS(y,d)=0la:
pg(d)+pg(d)-l+...+pr~l+pr
Trang60
Bieu nay giupta hoanthanhvi~cchungIninhquy
n~p.
Chuyr~ng VOl0 <p <1,xacxua'tkh6ngchinhxac
la: p2A(cl-l)-2/(l-p).l Binh ly 4 dinhd~nggia trtcuad danl
baar~ngdIonnha'tlaY2. .
Bjllh if 4:
Cho O<p<l.R6i p2A(cl+l)- 2/(I-p) <Y2n€u va chi ne'u
d> log(2+((I+log(I/l-p)))/log(l/p)))- l.
B~c bi~t, ne'uE =(l-p), chQn:
d >[log(l/e) - loglog(l/e)].
CIUl'llg 111illh:
Diemthunha'trongdinhly d~dangduQckiemtra.
BieHl thuhai ta!tiuyr~ngp2(d+l)-2/(I-p)duQctangtrongp
va' gianl trong d. Qua vi~c Hnhloan,d =1duchota'tca
p<0.5vad=2duchota'tcap<0.72.,
Gia SU0.72<p <1,d~tE =(l-p) vagiaSU
D >[log(l/e)+loglog(l/e)].
Chuy r~ng , .
p2A(cl+l)-2=(l-e )2(cl+l)-2<e-e(2A(d+l)-2),
Thoa lllan He'll:
Ee(2A(cl+l)-2~2/e.
DieunayttiejngdtiongVOl
d>log((lie) In(2/e)+2))-1.
Nhtiv~y,ne'uchungtacothSchira:
Log((l/e)log(l/e))>log((l/e)In(2/e)+2)-l.
Thl chungminhsedtiQchoanthi~n.B~ngvi~cDangs6mil
eahatve'vas~pxe'pl~i,taseco:
(2/e)log(1/e)>(1/e)ln(2/e)-2.
Bi€u nayttiejngdtiongVOl:
(2/(ln2)-1)In(l/e)>In2-2e.
VOlgiatfi t6nt~icuae,vi troitangddnva vtphdi
gianTdan,VIv~ytachic~nkiSmtraVOlgiatri e=0~28,thl
Trang61
ve tnti la 1/20vave ph£i.ila 1/26.Ta cothesuyradi€u
ph£1ichungll1inh.
A. ThuattoanhocmonotoneDNF:
Bay gia chungta semieut£1va phantichthu~t loan
hqc.Thu~tloanb~tdftub~nggi£1thietr6ng(falseireDtit
Celcacvector)va thvchi~ntiltcacacCalihai tu'ongdu'ong
vaxuly caevi d\lngu'\5cn10tlftnrhodenkhigiatl1ietu'eIng
dt(c5ngtoichucDangdich.BeJiVInocO'"doan"vaithu~tngu
trongnOidungdich,thu~t loanco th~gioi thi~ucaethu~t
ngukh6ngth~gioi thi~ucacthu~t I1gfi'kh6ngth~hi~nnOi
dungdich.Nhu'mOtvi d\l ngu'Qcv co th~la mOtvi d1}am
cuah,trongtru'anghQph(v)- 0vah(v)=1.Thu~tloanxu
ly saorhov xoatiltcacac thu~tngfi'tn giathiethi~nthai
illa c1u\5cthaamanbeJivectorVo.
M~t khac,vi d1}nguQcy Hi ll10tvi d1}du'eIngcuah.
MOt cachtnjc giac,di€u ma chungta n1u6nlam la gqi
reduceireDv d~chuamOtvectory saorho caexacsuitt
<I/2co mOtvi d1}clueIngnhanhiltcuah trongdamcacn6i
doidrholl10tvaigiatrivilaphaicuad.R6i taphaib6sung
tit ca cacn6i d5i dcua y nhucacthu~tngutoi gia thiet ' '
hi~nthaih va tier tl;1c.Ne'udi€u naydu'Qcthlfchi~nrho
rHaivi d1}duong,chungta rho d~b6 sungmOtthu~tngu
moicuahtoih rhom6ihaivi d\lnguQclueIngvoi di€u ki~n
phaixuIy dftyduo
Vi d\lxetnQidungdichh=Xl+X2tren3bien,nhuchIra
tronghlnh3 va giadinhr~ngvi d\lnguQckheJidfiula 110.
Khi duQcgqi(110,1)la cacdO'isO'cuano.Reduce!hvchi~n
Trang62
cacdiu hoi thanhphftnchochildren010va 100.Giasudiu
hiSidftulien duQctraloi "I don'tknow"va diu thlihai la
"Yes" thlvi~cxu ly duQcnh~cl~iVOl100,vachildren000
duQchc)i.Gia sutraloi trongtruonghQpnayla "No". Gia
thi~t~pXlvamOtdiu hoitudngtvduQcthvchi~n.Baygio
giasuvi d~nguQcla 01L Thl ReduceduQcgQiVOld6isO'
(011.1)va thvchi~ncacCallhoi thanhph~nchochildren
001va010.M~cdftu010la n6idoivala vi dlJdudngthuQc
h,nodtlduQchoiVOlk€t quatra10i"I don'tknow".
Ta coth~kh~ngdinhdingxacsufit'mQiCallhoi thanh
vien010trc1loi"I don'tknow"la P.
111
101 011110
100 001
000
Hlnh3:Dfiu+,- va? ky hi~utudnglingchIradudng,
anlva "I don'tknow"traloi cacCallhoi thanhphftn.Vi dlJ
nguQcdudngdftulienla 110,vector010phil duQcdolhoi.
N~uvi dlJ nguQcthlihaila 011,vectorenophil duQc
hc)il~i.
Ta gia di~hr~ngReduceduQcma ta tra l(;1ihai k€t
qua:Vectory tn1ke'tquatrliocva t~pQ euatfitca cae
vectorduQchoibdiTIlliedhih,tfttcad~quygQiReduceVOl
Trang64
11. Endwhile
: 12.Outputhandhalt
13.End.
UNG D{)NG:
Dng dlJngthu~toanhQcDNF nay nglioi ta co th€ t~o
cac d~cHnh thong minh cua model nhli: Autoanswers,
Autocall,Call back,Robot(Nglioi Inay)...