VỀ TÍNH FREDHOLM CỦA TOÁN TỬ VI PHÂN TUYẾN TÍNH ĐỐI SỐ CHẬM
PHẠM THỊ TUẤN MỸ
Trang nhan đề
Mục lục
Mở đầu
Chương1: Tiêu chuẩn Fredholm của toán tử vi phân tuyến tính đối số chậm.
Chương2: Phương trình không thuần nhất và ứng dụng.
Tài liệu tham khảo
26 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1920 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận án Về tính Fredholm của toán tử vi phân tuyến tính đối số chậm, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
CHUdNGI
- ~ ?, ?
TIEU CHUAN FREDHOLM CUA TOAN TO'
VI PHAN TUYEN TINH eol SO CH~M.
Trong chudng nay ta se chung minh dieu ki~ncanva duve
tfnh Fredholmcua cac loan tv vi phElntuyen Unh d6i 56 chc;\mlac
dvng trongkh6nggiancac ham khavi lien tvc tren A.
, -" A ?
~1-CAC E>INHNGHIA VA KHAI NleM cd BAN
1- Ky hi~uC - kh6nggiancac hamlientvc bi chi;intren A.
x : A ~ An vdi chu§n IIxlic= supllx(.)11
Ky hi~uC1 la kh6ng gian cac ham x E C sac cho x EC vdi
chuan IIxlic. = IIxlic +lI~t
Co la kh6nggiancac ham lien tvc x : [-h,0] ~ Rn (h > 0) .
Cho E, F la 2 kh6nggian Banach.
L - loan tv tuyen Unh : E ~ F co mien xac dinh D(L) c E va
miengia tri A(L) c LF
Toan tv L duQc gQi la dong neu tu Xn~ x, Lxn'~ Y suy ra x
E D(L) va Lx =y.
Toan tvL duQcgQila giai chu§n lac neu R(L) =R(L). [8]
Toan tv tuyenUnhdongL duQcgQila n - chu§nlac neuL la
giaichu§n lac va dim(kerL)< 00
L duQCgQi la d- chuan lac neu L la' giai chuan lac va
dim(cokerL)< 00
Toan tv tuyentfnhdongL duQcgQila FredholmneuL vuala n-
chuantaGvua la d- chuan taGtUGL giai chuan taG,nhan cua L la
kh6nggian hG'uh(~lnchieu kh6nggian thudngF/ A(L) la kh6nggian
hG'u hc;ln chieu. '
3
Trang khong gian C1 xet loan tU vi phan tuyen tfnh doi so
ch$m d9ng
0
(Lx)(t) =~(t)+ J dsG(t,s)x(t +s)
-:;11
(II> 0)
2-Cae gia thiet cd ban
Gia sv ma tr$n ham vuong cap n G(t,s) thoa man cac dieu
ki$n sau :
1)G(t, -h) =0, G(t, s) =G(t, 0), vdi mQis ;?:o
2) G(t, s) co bien phan hO'uh9n thee s E [-h, 0] deu vt E R
0
tCtclasup v (G(t,s))~M <00
s=-II
3) G(t, 0) lien tl,lc deu thee t, G(t, s) lien tl,lcdeu trung blnh
theo t (voi s - co dinh), Wc la'
0
rim sup fIIG(t+ill,s - G(t,s)llcis=0
N-->O I --II
Voi gia thiettren,toantv A co d9ng :
0
(Ax)(t) =J dsG(t,s)x(t+s)
-II
co tfnhchat gioi h9nt9i vo cvc 'J Wc tont9iAdLi<JCxac dinh
nhLlsau :
(Ax) =
klim(SrkAS_rkx)(t) ,x EC deu tren moi khoang hO'uh9n,~co
trangdo 'tk ~ CIJ
(8, x)(t) =,x(t+ 't)
0
va (SrAS-rx)(t) =JdsG(t +-r,s)x(t+s)
-II
Do do ta co t$p H(A) ={A }va A co d9ng :
- 0 - -
(A x )(t) = fcisG(t,s)x(t +s) voi G(t,s)thoamancac dieu ki$n
-II
tLldngtLj nhLlG(t, s) .
4
ClIngvdiloantli L. Xetloantli L dc;lng:
(Lx)(t) ==x(t) +(Ax)(t) ,A EH(A) hay L EH(L)
Xet phuongtrlnhthuannhat:
x(t) +(Ax)(t)=0 (1)
DEi biet [9] neu XOE Co thl ton t<;1iduy nhat nghi~m x(t) eua
phuongtrlnhthuannhattrem(0,+00)saocho:
x(t)=xo(t), - h ~ t ~ 0
Ky hi~uU(t, s) la loan tli ehuy~ndieh theo quy d<;1oeua
phuongtrlnhthuannhat,Wela loantli U(t,1:).D(itXOE Cotuongung
vdiham(U(t,1:)xo)(s)=x(t+s),- h ~s ~O.
x(t) =x(t, xo) la nghi~meuaphuongtrlnhthuannhattr~n
khoang[ 't,-Kb)thoamandiE3Uki~n:
x(t)=xo(t- 't) vdi '[ - h ~t ~'t
ToantUU(t,'t),t ~1:bieh(inva co trnhchat:
U(t,s)U(s,'t)=U(t,'t), 1:~ S ~t
Kyhi~uE+(A)lat$pcaehamWComanghj~mtuongu'ngeua
phuongtrlnhthuannhatbj ch(in khi t ~O.
Trongcaenghi~mcuaphuongtrlnhthuannhat,xacdinhvdi
t~0taxetcaenghi~mxacdinhtrenR,bich(inkhit~O.
Ky hi~uE_(A)la t$p cae hamXOE Co, ma no la thu h~p
nghi~mcuaphuongtrlnhthuannhattren[-h,0].NhO'ngnghi~mnay
xacdinhtrenR va bjch(inkhit~O.
Tuongtlj dinhnghTacaet$p:
E+(1:)=E+(8tA8-t) va E_(1:)= E - (8 t AS -t ) doi vdi phuong
trlnh x(t) +(SrAS-rx)(t) =0
, 5
, -' _? ,~-'
§2-TINH CHAT NGHII;M CUA PHlJdNG TRINH THUAN NHAT
1- Xet phlidngtrinhthuannhat
x(t) + (Ax)(t) = 0 (1)
vai G thoa.mangia thietcd ban d §1
Ky hi$u x(t, s, xo) la nghi$mcua phlidng trinh (1) thoa dieu
ki$n ban dau x(t,s, xo)=xo(t-s)khis-h :s;t :s;s
khi do hamx(t,S, xo)thoaman liac IliQngsau :
Ilx(t+o-,,~,xoll,,-:S;e{/(t-s)llxo(o-)!L,t~s
poi lIy(o-)1I=max Ily(o-)IIRn0- -"5,0-5,0
(2)
a =supV[G(t,s)]
t
(Ky hi$ugia trjmaxtheocrdliQC Slt dl,mgsau nay)
80 de 1 :
Gia suoton t<;1.iday ham kha vi lien tl,lc {Xk(t)}thoa man dieu
ki$n:
a) Moi hamXk(t)thoamanphlidngtrinh.
Xk (t) + (AXk )(t) =0 tren[ak, bk]
b) Ton tQiday so (tk),ak<tk<bksao cho
Ilxdt)ll>60. max Ilxdt)11
Ok <;,t5,bk
0 <EO <1, EOkh6ngphl,lthuQcVaOk va
limItkI=lim(bk - a k ) = lim (t k - ak ) = 00k~oo k-~oo k~oo
KhidovaiA E H(A) nao do, phlidngtrinhgiai hQn
y(t) +(Ay)(t) = 0 (3)
co nghi$m7:- 0 bj ch~ntren R.
Chung minh:
X
'
td
"'
h " xk(/+lk)
e ay am Yk (I) = II II ,ak - Ik ~ 1 ~ bk - Ikxk(lk)
Do dieu ki~na), b) cua bo de, hamYk(t)thoaphlldngtrlnh:
Ydt)+ (StkAS-tkyd(t) =0
tren doc;ln[ak- tk,bk- tk]va
1
max IIYk(t)II~-
"k -tk stsbk,-tk li 0
;IIYk (0)11= 1
Tv do suy ra ding tren moi khoang hO'uhc;lnday ham {Yk(t)}.
(b~hdau tU mQtchi s6 k nao d6) bi ch~ndeu va lien tl,lCdong deu.
Theo dinh Iy Arzele, ta co the gia sv chrnhday {Yk(t)}hQitl,ldeu den
ham Yo deu tren tUng khoang hO'uhc;ln.Ngoai ra GOnggia sv vdi
AEH(A) nao do taco : .
(Ax)(t) =Iim(St AS t x)(t)k-)«> k k '\
deu tren tUng khoang hO'uhc;ln.
Vi hQ toan tv StkAS_tk la c - lien tl,lCdeu nen ta dong nhat
dling thuG :
t t
Yk (t) = Yk (0) - J (Stk AS-tk Yo )(s)ds +J [StkAS_tJ(Yo - Yk )(s)ds
0 0
Ta suy ra Yothoamanphlldngtrinh:
t -
Yo(t) =Yo(0) - J (Ayo )(s)ds
0
Dieu do nghTala Yokha vi lien tl,lCva co nghi~mkhac kh6ng,
bi ch~ntren R cua phlldngtrinhgidi h(~in(3)
.;.
~.
7
2-Uoc hiQcnghi~mbi ch~ncua phlidngtrinh thuannhat
trenbantn,lct ~ 0
Ky hi~u E+(T) = EAS t AS -t) la t~pcac ham W Co, la nhG'ng
ham ban dau cua nghi~mbi ch~n khi t ~0 cua phLidng trinh :
x(t) +(SrAS_-rx)(t)= 0 (4)
Bc5de 2 :
Gia su tatca phLidngtrinhthuannhat:
y(t)-1-(Ay)(t) =0 ,A ell(A) (3)
chi co nghi~m kh6ng trong C1. Khi do ton t9i r >O,N>0 saD
cho:
IIU(t,r)xollco~Ne-r(t-r)IIU(s,r)xolico (5)
Xo EOE+('"C) ,t~s ~'"C~O
Chl.l'ngminh :
Trudchetchungminhdingvdi'mQiXoEOE+(O)thoamand&ng
thUGsau : .
IimIIU(t,O)xoll=o,xo eE+(0)t--+<1O (6)
Ta chung minh bang phan chung: gia su ton t9i Xo EOE+(O),
ton tO.k
Vi nghi~mx(t,O,xo)bi ch~n:
supllx(t,O,xo )11< 00
t;o,O
nentheobe de 1 vdiA EOH(A),nao do, phu'dngtrinh giOih9n
(5) co nghi~m bi ch~n khac kh6ng. Dieu nay mEW thu~n vdi gia
thiel, v~yd&ng thu'C(6) dLi<;1cchung minh. .
Vi dieuki~ncua be)de kh6ngthaydeikhita chuyentu loan
tvA sang StkAS_tk'T EOR nen W (6) suy ra : \
limllU(t,r)xollc=O,xoEE+(r) vdimoi't codjnhthuQcR. (8)1->00 0
Bay giO ta chung minh tont~i So>0; sao cho voi m,Q1
XoE E+('t)thoa manbatdltngthuG:
1
Ilx(t+s+O"",xo)llus;"2llx(t+O"",xo)!Iu ' s~so;t~,~o (9)
Giasu ngLi<;1CI~i,khidotont~icacday('tk), (Sk),(tk),(Xk),
Xk E E+('tk), Ilxkllc.=l,sk~ oo,(k~ 00) saocho: .
1
Ilx(tk+Sk+0""k,XdILT~21Ix(tk+0""k,Xk)ILT.' tk~'k~O (10)
Cho t'k~tkva Ilx(t'k+O""k,Xk)llu=~~xllx(t+O""k'Xk)t
(tont~igia trj 't'k nhLiv~ysuy raW (8))
£)
v
t ---;-llx(tk +0"" k,Xk)!Iu<;l lIo =Inn
k-~ooIIx( t' k+0"" k,xk)1L
Co2 kha nEmgxay ra : ao=0 hayao>0
a) ao=0 thlW :
Ilx(t'k+0",rk ,xk)1!u s;eQ(t't-tt'IIX(tk+0",'k ,xk)t
suyra: t'k - tk ~ 00 khik ~ 00. Dayham
x(t +tI k ,r k ,X k)
Yk(t) =Ilx(t\+O""k,Xk)IL
bi ch~n deu tren -(t'k - tk)~t ~ 00 va hamgidi h~ncua no la
nghi$mkhackh6ngbj ch~ncua phLidngtrlnh(3)vdiA E H(A) na-o
do, dieunaymauthuanvdigiathietcuabode.
b) ao>0, kh6ng giam Unhtong quat co the coi ao la gidi h~n
cua mQtday tLidngung. Trong trLiangh<;1pdo day:
()
x(t+tk+Sk"k'Xk)
Yk t =
ak
ak =IIx(tk+Sk+0",rk'xk)1!u
9
bi ch~ndeu tren [-SkI+ 00). Th~tv~y,voi k kha Ion, qt,lavao
dinhnghTaso aova batdAngthuc(10),taco :
maxIIYk(t)11=a~1maxllx(t+tk +Sk" k 'Xk )11=-.\.,:5,f<~ f"-.',
= a~1maxllx(t + tk' Tk'Xk )11~ a~1maxllx(t + (J" k'Xk )11/,,0 /,,/, tY
~a~1 IIX(t'k+(J, Tk'Xk)t ~2a~'a~'llx(tk+(J"pxk)t ~4a~'
f
Do do ham gioi hc;lncua day (Yk)bi ch~ntren A, ~ 0 va la
nghi$mcua phuongtrinh (3). E>ieunay I~imau thuanvoi gia thiE3't.
Vf}.yd~ngthuc (9) dLiQCchungminh.Tu (9)suy ra (6).
3- T~p hQp nghi~mbi chijn khi t ~0 cua cae phu'dngtr1nh
gidi h~nIii kh6ng gian huu h~nchh~u
Ky hi$uE_(A) la tf}.pcae hamXoE Co, tLidngung voi nghi$m,
xacdinhtrenR va bich~nkhit ~0cuaphuongtrinhgioih~n:
x(t) +(Ax)(t) =0 ,A E H(A) (11)
86 de 3 :
Gia su tatca phuongtrinhthuannhat(3)chico nghi~mkhong
trangC1,khido caetf}.ptuyentinhE_(Ao)voi mQi.Ao EH(A) la huu
hc;lnchieu.
Chungminh:
Truochetchungminhrangmoinghi~mx(t)cuaphuongtrinh
(11)bjch~nkhit~0thaamandieuki~n:
limllx(t)11=0/->--., (12)
Thf}.tv~y,gia su x(t) la nghi~mcua (11) xac dinh,trenR va
theftman:
maxllx(t)1I=1-,supllx(t)1I<co
-11:5,1:5,0 f:5,O
Neu nhuvoi m(>tday(tk)naodo (tk-+ 00 khi k -+ 00.) thoabat
d~ngthuc inf{IIx(tk)11:k=1,2, }>0 thi day ham{Yk(t)=x(t+tkHbi ch~nI
deutren(- 00, -tk), h(>i tv deutrentungkhaanghuuh~ndenyo(t)
10
(Yo :;t:.0 bi ch~n).Neu A la loan tu giai hGlncua daycon cua day
{StkAS-tk} thi ro rang A E H(A) va yo(t)la nghi~mcua phlidng trlnh :
Yo(I) +(Ayo )(/) = 0
mau thUElnnay chung minhdltngthuc (12).
Ky hi~uYf (-00,0) la kh6nggiancae hamlien tl,lCbi ch~n:
x : (-00,0)~ Ro.
Khi do, taco the chung minhrang:
Doi vai t~pcae nghi~m cua phtJdng trinh (11) dling thuc (12)
GOngthoamandeu theox E Yf(-oo,O).(1Ixl/w(-oo,O):::; 1)
E)~tF={x=x(t): xE Yf(-oo ,0) , ~(t)+(Aox)(t) =0 ,!lxll~(-oo,0)~ 1}
Chung minh t~pF la t~pcompacttrangYf(-oo,O).
Th~tv~y,vi ~(t)+Aox=onen 11~(t)II:::;IIAollllx"w(_oo,O)
Do do t~pF lien tl,lCdong deu nen F compacttrangYf(-oo,0).
M~tkhac,t~pcaenghi~mcuaphlidngtrinh(11)bi ch~ntren~-oo,a)
tc;iOnen kh6ng gian con kin trangYf(-00 ,0)cho nen theodirih Iy Ritz
suy ra t~pnghi~mcua phlidng trinh(11) bi ch~ntren (-'00,0) la hO'u
hc;inchieu.
Chu y : Trangdieuki~ncuabo de 3, t~pcaehghi~mbich~Q
khit:::;a cuaphlidngtrinhxuatphat(1)GOngla hO'uhc;inchieu.
4-Huuhc;lnchieucua khonggianthu'dngCoIE+(A)
Tli liac IliQC (6) suy ra rang, t~p tuyen trnh E+('t)=E+(StAS_t)
lEidong trang Co, Wc no la kh6ng gian con. Khi do kh6ng gian
thlidng Col E+('t)la khong gian Banach. Ky hi~uE+(O)la phanbu
dc;iiso doi vai kh6nggiancon E+(O)trangkh6nggianCo.
86 de 4 :
Gia sv phuongtrinhthuannhat(3)chi co nghi$mkh6ngtrong .
C1.Khi do kh6nggian Co/E+(O)la hOuh0
sac cho :
IIU(t,O)xollc~ Ne-r(S-t>IIU(s,O)xolie0 0
Chung minh:
ChoA E H(A), ton t<;liday (hk),hk--+ookhi k --+00sac cho:
,xo EE+(O) ,s~t~O (13)
,
Iim(S" AS "x)(t) =(Ax)(t) deu tren m6i khoang hOu hQ,n.GOi m">,,,' .
- la chieu cua kh6ng gian con cua nghi$m bi ch~n khi t :::; 0 cua
phu'ongtrinh: .
x(t) +(Ax)(t) =O.
Chungminh ding dimE+(O):::; m.
Th{fltv{fly, cho XO1,"" '" XOm1E E+(O) dQc l{flp tuyen tfnh, con
,;L~,;{(XO1"""",XOm1)la kh6nggian con sinh ra tUcac,phan tv do. Khi
do, theedinh nghTacua kh6nggian E+(O)va E+(O). "
dimU(t,O)9!=dim9!=m11mQit ~o
M~t khac, lien hanh IV lu{flntu'ongtV'vi$c chung minh"bo de
2, sv dl,mg tfnh hOu hc;inchieu cua kh6ng gian £E,ta se thiet l{flp
du0, N>O
kh6ng phl,l thuQc XoE 9!.
ChQn Xj(k) E £E, I = 1, ,m1sac cho ham:
y/k) =U(Izk,O)X/k)
IIU(Izk ,O)Xi (k)11 ,(i =1, ,1111)
(14)
thoa mancac batdl1ngthUG:
12
i~lfllY2 (k) +a1Y1(k)11~ ~
~~Jy3(k) +a1Y,/k)+a2y 2(k)II ~~
................
in"
II
(k)+a (k)+ +a (k)
ll
>1
a a a Ym1 1Y1 ... ml-lYml-l --I, 2,---rnl~1 2
(15)
Dayham:
zY')(t)= x(lzk+t,O,X~k»
IIU(lIII ,0, )X1'I)II
(i =1,2, ,m.),/(=1,2,....
I
thoamandieuki~n: Z~k)(t)=y}k)(t)khi-hs t s 0va do(12)bi
ch~ndeutrenmoikhoanghiJuhf;tn,vadoditngthUG:
(k)
- (k)
Zi (t)+(S"kAS_"kZi )(t)=O
lientvcdongdeutrenmoikhmlnghiJuhf;tn.Dodoco thE§coi
day{zYc)(t)}hQitv deutrenmoikhoanghiJuhf;tndenZj(t)
(i=1,..,m1)
HamZj(t)la nghi~mcuaphlidngtrinh(11)vadolioc"li<Jng:
Ilx(l+a,O,x;(k)ILsNe-Y(S-I)lIx(s+a,O,xYl,.,(s~t~O)
sethoamancacbatditngthUGsau:
IIZi(t+O")t ~Ne-y(S-t)lIzi(s+O")t ,s ~t (16)
Ngoaira, do cac batditngthl1c(15), cac ham Zj(t)dQc l<%ip
tuyenUnhtren[-h,0] nen chung dQc'~ptuyenUnhtrenkhoang
(- 00, 0].TLi(16)suyra hamZj(t)bi ch~ntren(- 00,0], cho nen
m1s mdochungdQc'~ptuyenUnh.Tv dosuyradimE+(O)s mva
u'ocIli<Jng(13).Bodedli<Jchungminh.
Nh~nxet : Thaytrongdieuki~ncuabo de4 loantll A bpi
loan tll A( 1:)= St AS. t ( 1:> 0).Ta nh~ndli<JCkef qua: khonggian
thlidngCo/E+(1:)hiJuhf;tnchieuva voi1:2> 1:1~ 0 thoamanbatditng
thUGsau :
dim CO/E+(-t1)s dim Co/EA "(2)s m
13
Th~tv~y,U(11,12)EA11)c EA12)va anhXc;lthlidngtlidng l1ng,:
0(12,11); Co/E+(11)~ CO/E+(12)la ddn cau.
5- Uoc lu<;ingnghi~mkhongbi chcjncua phudngtrinh
thw)nnhat
,
Tli nh~nxetsaube>de4, guyratontGli1+ saochovoi1 ~ 1:+
cae khonggianconCo/E+(1:)co cOngmOtso chieu.Gia sa E+(1:+)la
phanbOthiingcuakhonggianE+(1:+):
Co=E+( 1+)EB E+(1+)
Di;lt E+(-r)=U( 1, 1:+)E+(1+), 1:> 1:+
khi d6 Co=E+(1:+)EB E+(1:)vdi 1:> 1:+.
Bieudiennaycua Co sinh ra hQcae loan tu chieuP+(-r) len
khonggianconE+(1).
TheodinhnghTacua khonggiancon E+(t),loan tu P+(1:)thoa
mandiingthu'c:
U(a', a) P+(1)= P+(-r')U(1',1:) , 1:+~t ~1:'
80 de5 :
Giasutatcaphlidngtrlnhthuannhat:
yet)+(Ay)(t)=0 ,A E H(A) (3)
chico nghi~mkhongtrongC1.Khidotontc;liN>0, r >0 sao
cho:
IIU(t,r)xoll::;Ne-r(s-t>IIU(s,r)xoll 'Xo E E+(r) ,r+::;r ::;t ::;s (17)
Chungminh: Tlidnghi nhlibe>de4, taco :
IIU(t,r+)yoll::;Ne-r(s-t>IIU(s,r+)yoil'Yo E E+(r+) ,s c.t ~r+ (18)
14
Voi mQi Xo E E+(-r), (t ~t+).Do dilng thuG E+(t)=U(t,t+)E+(t+).
Tim duQcYOEE+(t+)sao cho xo=U(t,t+)Yo.
Luuy tfnhchat: U(t,t+)=U(t,t)U(t,t+), (t~t ~t+).
Tu (18)suyra(17),be>deduQcchungminh.
6- U'ocIu'Qngnghi~mphu'dngtrinh thuan nhat tren khoang t:::;;O
Donh$nxetsaube>de3,caekh6nggiancanE.('t)cuakh6ng
gianEolahCi'uh<;lnchieu.ThemVEtOdo,dodinh1'1duynhatvephra
phai,taco :
dim E.(t) :::;;dim E.(t') :::;;mo , ( t' :::;;t:::;;0), mo la mQt sonaodo.
Tu batdilngthu'cnaysuy ratontC;lit. <0saocho,Voit<t.co
dimE.('t)=dim E.(t.). .
Voi 'tda chQn,moinghi~mbjch~nx(t)trent :::; 0 cua phudng
trjnh(1)du'QcxacdinhduynhatboihambandauduQcchotren
doC;ln[ t- - h, 'r.]. Do do co dilng thuc :
U(-r,l')E_(l') = E_(l) , ('r' :::;;t :::;l.)
Ky hi~uF(t.) la phanbuthilngcuakh6nggianE.(t.).
(19)
Ky hi~uP.(l_)la loantuchieulenkh6nggianE.(t.)duQcsinh
ranha :
Co=E-(l-) EB E-(l)
£)~t P-(t) =U(t,t-)P. (l.) U(t.,t) , ( t < t- )
d dayU(t,t-): E.(t.)-+E.(t) la anhXC;lnguQccuaanh'XC;l,
U('t.,'t) : E.('t)-+E_('t-). N6 ton tC;lido (19). R6 rang P.(t)('t<'t.)
laloantuchieu. .
Xac dinhkh6nggianF(t) boidilngthuG:
E'(t) =(I - P.(t))Co.
15
Toan tuU('t,'t')lac dl,lngtU E_('t')va F('t') tLidngung VaGE('t)
vaE-('t).DieunaysuyratadltngthuG:
U('t,'t')P_('t')= P-('t)U('t,'t')
80 de6 :
Gia su tatca phlidngtrlnhthuannhat(3) chI co.nghi~m
kh6ngtrongC1,Khidotontc;lir >0 , N >0 saDcho:
IIU(t,r)xollco~Ne-r(t-s)IIU(s,r)xollco
IIU(t,r)xollcu~Ne-Y(H)IIU(s,r)xollco
Chu'ng minh :
,r~s~t~ 0 ,xoE E-(r) ~20)
,r~s~t~O ,xoEE_(r) (21)
De chungminh(20), trLioc het ta chung minh ton tc;liSo> 0
saDcho thoa man: .
IIU(r+s,r)xo"c,,~~ ,xoEE-(r) ,IIxollco=l ,s~so ,r~r+,\'o~O
(22)
Gia SUonglieJc Ic;li (22) kh6ng dung, khi do ton tc;liday ham'
(Xk), Xk E F('tk), Ilxkll=l, ton tc;liday so ('tk),(Sk).(Sk--+00 khi k --+00) va
Sk + 'tkS 0 saDcho:
1
IIU(rk+sk,rk)x,.lIxo>2
(23)
GQi tk E ['tk,0] saDcho:
ak=IIU(tk,rk)xk,IIc=maxllU(t ,rk)xkll
0 Tk5t50 Co
Co 2 khanangxayra:
a) Day ,( Itk I) bi ch~n
b) Day ( Itk I) kh6ng bi ch~n
Xet trliong heJpa) :
,
VI 'tk s -Sk , Sk --+00 nen day (Yk)nghi~mcua phLidngtrlnh(1)
16"
Yk(I) =a;1x(/, rk ,Xk) ,!lxll=1 ,k=1,2,.....
bi ch~fJdeu va lien tt)c dong deu tren moi khoEmghO'uh~;m
Qua(-00,0]batdau tu mQtchi so k nao d6. C6 the coi chrnhday(Yk)
hQitl,lden Yodeu tren tung khoEmghO'uh9n, con day (tk)hoi tl,l
den to ::::;O.
Vi IIYk(/k+o-)!Iu=a;lllx(/k+o-,rk,xk)1!u=1
nen ham yo(t)la nghi~mkhac khangQuaphuongtrlnh(1), bi
ch~nkhi t::::;O.
Do d6 ham xo(o-)=Yo(r- +0-) ,(-h:::;0-:::;0) khac khang va
thuQCvao E-('L). M~t khac, ham Xk(cr)= x('t-+ cr,'tk,Xk), (Xk E F('tk))
voi k kha IOn thuQc khang gian con F('t_). 8ieu nay mauthuan dieu
ki~nIlxk - xollco~ 0 ,k ~ 00 , v~y 109itruong h<;1pa).
b) Gia su tk~ -00.Gia su day (ak)bi ch~n,c6 the'coi
day (-'tk- Sk)c6 gioi h9n (hO'uh9n hayva h9n)bo~O.
. x( 1+rk +SI.,rk,Xk)
0 ay ham: YIi(I) =Ilx(r k +S k +0-, r k ,Xk )110.
Do (23)thoabatd~ngthUG:
max IIYk(/+o-)11 :::;2maxllx(/+0-,rk,xk)11 :::;2supak <00
-Sk:S:t:S:-(Tk+Sk) CT Tk:S:t:S:O CT
Do d6 c6 the coi chrnhday (Yk)hQitt).den Yo deu tren tUng
khoanghO'uh9n Qua(-oo,bo).
Neu bo hO'uh9n thl ham zo(t)= Yo(t- bo) la nghi~mcua
phuongtrlnh(1) bi ch~ntren (-00,0]. Tien hanh cac buoc tuongtt!,
Iy lu~ntuong tLjnhu trongtruongh<;1pa), ta dU<;1Cdieu mau thuan
voi hamzo(cr)=z('t-+ cr), (-h ::::; cr::::;0) thuQcF('t_).
Neu bo va h9n (bo = 00)thl Yo la nghi~mbi ch~n Qua mQt
phuongtrlnhgioi h9n dc;mg(3) nao d6. Mau thuanvoi dieu ki~nQua
bo de. .
17
Gis.su cuoi clIng (ak)kh6ngbi ch~n.Kh6nggis.mtlnhte>ng
quat,co thecoi
Hma"=r:fJ
,,~oo
(24)
Xetdayham yk(t)=a;lx(t+tk,Tk,Xk)
nothos.mandieuki$n:
max lIy"(t +o-)llcrS 1 ,IIYdo-)t =1
Tk -tk 5,t<;,-tk
. (25)
TO'batdiing th(k (2), (24)suy ra Hm(t"-1",,)=00
k~oo .
TO'do va tU (25) (chu y : tk~ 00, k ~ 00) tanh~nduQcham
gidi h9n cua day (Yk)xac dinh va bi ch~ntren R chfnh la nghi$m
cua mQtphudngtrlnhd9ng(5)naGdo, h;timEwthuanvai dieuki$n
cua be>de.
Nhu v~yta chung minhdu'QCbat d~ngthuG(22).Tv (22) suy
ra(2O),(21)chu'ngminhtudngtlJ, 8e>de (6)du'Qchungminhxong.
7- Uoc hlQngchu§n cuacaeloan tll chieuP_('t),P+('1:)
80 de 7:
Gis.su cacdieuki$ncuabe>de2 duQcthos.man.Khido :
supIIp-(1")11<00 , supllp+(1")11<00
T5,T- T~T+
(26)
Chung minh:
Ta chung minh supIIP_(r}11<00 .
T<;'T-
Cho XoE CosaGcho P.(s)xo-j:.0, P.(s)xo-j:.Xc.
Khi do tv (2) vai 't<t <'tota co :
V(t )[ P_(r)xo (I-P_(r»xO] < a(t-T)P_(r)xo + (I-P_,(r»xo
,r IIP_(r)xoll+II(I-P-(1"»xoll_e IIP_(r)xoll II(I-P_(r»xoll
Dlja VaGdo tU(20)va (21)taco :
18
P- (T)XO + (/ - P- (T»XO >e-a(t-,){U(t ) P- (T)XO U(t ) (/ - P- (T»XO II} >
IIp-(T)Xoll 11(/-P-(T»Xoll - ,T IIp-(T)Xoll ,T 11(/-P_(T»Xoll -
> -a(t-,) {I r(t-,) 7\.T -r(t-,) }_e -e -HeN
Tu' d ' 0" 4111N 4111Na v I 1 < 1.- , t=T +-r r
'. P_(T)Xo (/ -P_(T»Xo
Ta ca . "11 I-'
+-
11- 11"~5">0P- (T)Xo (/ - P- (T»Xo
vdi 80kh6ngphl) thu9C1.Tli (27)vabatd~ngthUG:
(27)
11:11+11;11I!max{lIxlI, lIyll} s zllx+yll
(X,y :I:0)
"'Ii T <T- - 4111N
r
ta nh$ndLi<1C: max{IIP_(T)xoll,II(/-p-(T»xoll}S50-1zllxoll (28)
Neu TE [T-- 4111N ,T_] thl Slj bi chi;incua P-(1)suy ra tli tfnh
r
lientl)c.
TLiongW, SU'dl)ng(5),(bode 2) va (17),(bode 5) ta chung
minhdLi<1C: sUpIlP+(T)1I<00 .
'~'+
80 de 7 dL1<1Cchu'ngminhxang.
8- Nhungbatd~ngthuc cd ban
Trangml)C,naytatongkefcac LidcILiQngdoi vdinghi~mcua
phL1ongtrlnhthuannhat(1).
Trang IIU(t,T)xollS Ne-r(t-s)IIU(t,T)xollco (6)
Di;it1 =S, Xo= P+(S)Yo,Yo E Co,taco:
IIU(t,s)P+(s)yolls Ne-r<t-s)IIU(s,s)P+(s)yollco (t~S~T+)
hay
IIU(t,s)P+(s)yollS Ne-r(t-s)llp+(s)yollc0 (t~S~T+) . (29)
19
Vi U(s,'t)E+(-t)=E+(s), S 2't 2 't+nen tli (17)
IIU(t,r)xoll~Ne-y(S-t)IIU(s,r)xoll (17)
suy ra : IIU(t,r)(I - P+(s»Yoll ~ Ne-y(s-t)III ~P+(s)Yollco (30)
Tli (26), (29),(30)ta nh~'lndU~ccac bat ditngthtlcco ban
sau:
IIU(t,s)P+(s)Yolic~N1e-y(t-S)IIYollc0 0 (t~s~r+) (31)
IIU(t,s)(I- P+(s»Yolic ~Nte-y(.H)IIYolic0 0 (s~t~r+) (32)
TUongtv'nhuv$ytu'(20),(21)va (26)taco :
IIU(t,s)P-(s)Yollc ~ N1e-y(S-t)IIyoIIc0 0 (t~s~r_) (33)
IIU(t,s)(I-P-(s)Yolico ~Nte-y(t-S)IIYollco . (s ~t ~r ) (34)
.:.>:::: ft" ,ft
§3- BIEU DIEN NGHIt;:MCUA PHUdNG TRINH KHONG
THUAN NHAT
Xet phu'ongtrlnhkh6ngthuannhat :
x(t)+(Ax)(t)=f(t) , f EC (35)
Dinh nghTaham as nhU sau :
l
l-&-ta- Idzi -&~a-~O
ac(a-)=
0 khi -h ~a-~-&
O<&<h
I,(a-) =f(r +a-) (-.It~a-~0)
Ky hi$u:
sao clto I, E Co (r E R)
Df;it: (acf,)(a-)=ac(a-)/,(a-)
Slj phl,J thuQc cua ham U(t,'t)xovaa bien crE[-h,O]dLi~cviet
du'didc;lng[U(t,'t)xo](cr).Tli dinh nghTacua ham U(t,1:)xota suy ra cac
ditng thu'csau :
20
{[U(t+O-'1")XO](O)kId L~t+o-
[U(t,1")xo](o-)=
xo(t+o--1") klti 1"-ltst+o-S1"st (36) ,
d 0
va-[U(t, 1")xo](O)=- fdsG(t,s)[U(t,1")xo](s) , t ~1"
dt -II
(37)
Cho xo,YoE Co,ta li;tp2 ham:
,-
z; (t) =[U(t,1"-)P- (1"-)xo](0)- f[U(t,1" )P- (1")a&f, ](O)d1"+
I (38)t
f [U(t,1")(l-P_(1" »a&f,](O)d1" , t S 1"-
-0()
t
Z; (t) =[U(t, 1"+)P+(1"+)Yo](0)- f[U(t, 1")P+(1")a&f, ](O)d1"-
'+ (39)
+0()
f [U(t,1")(1 -P+(1"»a&f,](O)d1" , t ~1"+
t
Vi cac hamdtJaidau Uchphanphl,JthuQclien tl,Jc\tao 1: va
thoa mancac tJac ItJQng(31)- (34) chonen cac hamZ;(t) va
Z;(t) voi 8 E (0,h)se xac dinh,lientl,Jcva bi chi;indeuttJdngung .
tren cac khoang(-0011:-)va (1:+,+00).
86de8:
Cachamz; (t)vaZ;(t)thoamancacphtJdngtrlnhsau:
dZ;(t)+(AZ;)(t)=f(t)+rp&(t) , t s"-dt
+,
dZ&(t) +(AZ+)(t) =f(t)+rp&(t) , t ~1"+dt &
(40)
(41)
\
0 0
vai rp,,(t)=JdsG{t,s)[Ja,,(O")f(t+O")dO"]
,-I. s
Chungminh:
Layd<;iOhamhamZ;(t) khi t<1:- taco:
dZ- (t) d
~ =[P_(t)a&f,](O)+[(l- P_(t»a&f,](O)+-d [U(t, 1"-)P~(1"_)xo](O)-t ' t
'- d t d
- f-[U(t,1" )P_(1" )a&f,](O)d1"+f -[U(t,1" )(l-P_(1" )a&f,] (0)d1"
t dt -0()dt . "
21
Su dl)ngbatdltngthuc(37)vadltngthucsau:
[P_(t)aEft](O)+ [(I - P-(t))aJt](O)=f(t)taco :
dZ- ( ) 0
~tt =f(t)- fdsG(t,s)[U(t,-z-)P_(-z-_)xo](S)+-II
0 ~ t
+fdsG(t,s){f [U(t,-z-)P-(-z-)aSfT](s)d-z-- f[U(t, -z-)(I- P- (-z-»aSfTJ(s)d-z-}
-II t ' -00
Dotfnhchat(36)cuahamU(t,1:)xodltngthuccuoiclingco th~
viet19idlloid9ng(40).
TlldngtLjco th~chungminh(41).V$Y be>de 8 dLiQcchu'ng
minhxong.
Tli (40),(41)suy ra ranghQcac ham {Z;(t) : O<&<It}va
{Z;(t) : 0<&<It}lien tl)c dong deu tlldng ung tren cae khoang
(-00 ,'L) va(1:+,+00).Ngoaira,tont9icaegioih9nsau:
T-
Z~(CT)=limZ; (,- +CT)=[P- ('- )Xo]{CT)+Hmf[U( '-' -z-)(I- P-(-z-»asj~J(o-)d,s~o s~o,
-00 .
-I"'-
Z;«T) =IimZ;('r+ +<T)=(P_(r+)Yo]«T)-lim f[U(r+,r)(I -P+(r»a£/r](ci)dr '£-)0 £-)0
T.
HrnqJs(t) =0
s~o
chonendosLjchQnILja1:-va1:+tont9igioi h9nsau :
Z-(t) =HrnZ;(t)
s~o
Z+(t) =HrnZ;(t)s~o , -z-+~t<+oo
(42)
(43)
, -oo<t<-z--
NhOnggioih9nnaythoamanphlldngtrlnhkhongthuannhat
(35) tlldngung tren khoang(-00,'t-)va ('t+,+oo).R6 rang, bat ky
nghi$mbi ch~ntren(-00,'t-)(('t+,+oo))cuaphlldngtrinh(35)deu co
the bieudien dlloi d9ng Z-(t)(Z+(t))voi hambandautlldngun,g
XOE CO (Yo E Co).
~ ft ~ ,.,.:! ,., - ft'
§4- £>IEUKII;N CAN VA £>U£>ETOAN TO'VI PHAN TUYEN
TINH £>01SO CHAM LA FREDHOLM
Giasucaedieuki$n§1vanthoaman.
22
£>inhIV 1 :
Cac m$nhde sau day la tl1ongdl1ong:
AI Toantv L la n-chuanHic.
-
81 PhuongtrlnhthuannhatLx =0 , \I L E HI (A) (44)
chi co nghi$mkh6ngtrongC1.
CI :3so M>O,N>Osao cho :
IlxllclS;M(IILxllc +maxllx(t)ll) ,\Ix E Cl
Ifl~N
(45)
Chung minh:
Ta se chung minhAI ~ 8/. Xet kh6nggiancan:
Eo ={ X Eel, x(t) = 0 khi ItI S N }
Do nhancua L hliu hq.nchieu,cho nen co th~chQnN kha Ian
sao cho Eo kh6nggiaovai KerL. VI anh cua LEocua kh6nggiancan
EodongtrongC, nen :3d>Osac cho thoaman l1ac111Qng[8].
IILxllc~dllxllc' ,\Ix E Eo (46)
Cho LE/f(L) vaday(1k) (Irkl~ex) khi k~ex)) sao cho
-
Srk LS-rk x ~ Lx , \Ix Ecl
cogiatrihliu hq.n(suppx-compact).Ham (S-Tkx)(t) ==x(t - r k)
thuQcEovai k khaIonchonentli (46)taco :
IISTkLS-TAXllc=IILS-rkXllc ~dIlS-TkXllcl =dllxllc1
chok ~ ex)tadl1Qc: IlLxii ~dllxllcl
c
(47)
Gia sv x tuyY thuQcc1. Lay hama(t)
0 s a(t)s 1
[
1 kId ItIs1
act) =
0 khi Itl;:::2
khavi lientl,lCsac cho
23
Khido tu(47)suy ra : IIL(akx)11Z dllakxllcl t
c ;.
(48) ,
",'",
Trang do (akx)(I) = a(~)X(I) "L
cho k ~ 00 I tU(48)ta co :
Lxii zdllxllcJ
c
, 'dXECl
Tu daysuyram~nhde B.
Bay gia chu'ngminhtUB/ ~ C/,
Gia su batdang thuG(45) kh6ng dung, khi do ton t~iNk~ 00,
Xli ECI ,lIxllc1=1 saoc/to Iim(IILxlillc+maxllxk(t)II)=O
li~oo Itl:O:;Nk.
(49)
Gia su tkERsao cho IIXk(lk)II~!.R6 rang Ilkl~Nk.£Hit:2 .
Uk(t)=Xk(t+tk),Kh6ng giamtinhtong quat co the coi day (Uk)
cLIngvdi d~oham cua no hQitlJ den UOEC1deu tren tung khoang
hO'uh~;lnva lIuo (0)11~!,2
M~tkhac ta co :
(S'kLS-tk ud(l) ==Uk (I) +(Stk AS-tk ud(l) (50)
Kh6ng giam tinh tong quat, ta co the coi chinh day
(S'kAS_tkUk)(t) hQitlJ den (Ax)(t) deu tren tung khoanghO'uh~nk~i
k ~ 00. Do (49), lay giai hc;ln2 ve khik ~ 00 I ta dU<;1C:
CLUo)(t):=Uo(t)+(AUo)(t)=O mau thuan vdi gift thiet.
Cuoi cLIngta chung minhtUC/ ~ A/.
TrUdc het chung minhKerL hO'uh~nchieu. Do b6 de Ritz, ta
chi can chung minh m~tcau don vi cua kh6ng gian con KerL la
compact.Th~tv~y,neuday (Xk)c KerL va IIXkllcl=1 thiday(Xk)bi
ch~ndeuva lientl,lCdongdeu.Do do, kh6nggiamtinhtongquat,
co thecoi chinhday(Xk(t))hQitlJ den xo(t) E C deu tren tUng
khoanghO'uhc;lntrongC.
24
Taco :XoE C1 vaxo E KerL.
Th$tv$y, lay gioi h~;ln2 ve ditngthuG: Xk (t) +(Axk)(t) =0 ta
I
du'<;5C
Xo(t) +(Axo )(t) =0
Wc XoE c1 va XoE KerL.
Bay giOchung minhanh LC1cua tOElntv L dongtrongC1.
Gia SU' ngu'<;5cIc;li, thl :3 day (fk) E Lc1 saD cho
11.f~llc-70 Idli I( ~ 00 nhLing:
inftllxllct:Lx =.t~}=0
LayXk E C1 SaD cho LXk =fk , Ilxkllcl=1
Kh6nggiamtlnhtongquat,cothegiasv chfnhday(Xk)hQitv
denXotrentUngkhoanghO'uhc;lnvaXoE c1.
Do(45),Ilxk-Xollct ~O klli k~oo.
M~tkhac,vi :
L(Xk- xo)=fk va IIIkllc ~ 0 klli k ~ 00
nen tU (51) ta c6 : .
Ilxk-xollct21. Mau thuan do, chung minh anh cua LC1 dong.
Binh Iy dLi<;5Cchu'ngminhxong.
(51)
E>inhIy 2 :
Neu loantv L la n-chuanlac thlL la Fredholm.
Chung minh:
Theo dinh Iy 1, mQiphLidngtrlnh thuan nhat dc;lng(44) hay
dc;lng(3) chi co nghi~mkh6ngtrongC1. Do do, thoa man dieu ki~n
cua cac bo de 2 - 7, nh$ndLi<;5Ccac LiocILiQngtrongm,Vc8 va thiet
I$p dLi<;5Ccac hamtrongbo de 8.
Nghi~mT(t) cua phLidngtrlnh(35)dLiQCxac dinh bdi ditng
thu'c(42)dLiQckeodaimQtcachduynhattrenkhoangt 2 'to Be
nghi~mT(t) bi ch~ntrenR thldieuki~ncan va du la voi mQt
nghi~mnaodoZ+(t),dLiQCxacdinhbdiditngthuG(43)phaithoa
dieuki~nsau : '
T(t++cr)=Z+(tk+cr)
Kh6ng kho khan,thaydLiQcrang:
(52)
25
r+
Z- (r + +a) =HmflU(r+'r)(I - P-(r»aEf. ](a)dr +E~O
-00
r+
+IU( r+,r - )P- (r- )xo Iea-)+Jim f[U(r+,r)acf. ](a)drE~O
r-
Chonen(52)tuongduongvoidltngthuc:
r+
IP+(r+)Yo](a) - IU( r+'r - )P- (r - )xo](a) =Jim flU( r+'r)aEf. ](a)dr +E~O'-
00 ~
+lim{fIU(r+,r)(I - P+(r»ar.fr J(a)dr+ fIU(r+,r)(l- P_(r»aEf.](a)dr) ==tp(a)E~O
~ -00
(53)
Tli (53) suy ra rang, phuong trinh kh6ng thuan nhat (35) co
nghi~mbj ch~ntren toan tn,lcso R khi va chI khi ham <p(cr)thuQc
tong E+('t+)+ U('t+,'t)E_('t_)cua cac kh6ng gian con E+('t+)va
U('t+,'t_)E_('t_). .
Tli do ta co :
dimC/LC1 = dimCo/ (E+('t+)+ U('t+,'t_)E_('t_»
V~y L la d- chuan tacoDo do, L la toan tv Fredholm.
E>inhIV 3 :
Neutoantv L lad- chuantacoLucdophuongtrinh:
Lx=f , VLEH(L) , fEC
co it nhatmQtnghi~mtrongC1.
Chung minh:
Vi LC1 la kh6ng gian con dong va dim C/LC1 <00'cho nen
phanbutn,icgiao(LC1)L c C* la kh6nggianconhOuhGlnchieuva
Lc1co phanbuhOuh<;lnEo : C = Eo EBLC1. I
Gia sv g1,g2, ..., gmE C, <P1,<P2, , <PmE
phantv dQcI~ptuyentinhsac cho : .
<Pi (gj) = OijVa C = Lc1 EBZ(g1,g2, ..., gm)
Vi toan tv L la d- chuantac nen phuongtrinh:
(LC1)L la nhOng ;
III
Lx =f - L/P j(f)gj
j=1
(54)
26
conghi~mxthoamanbatdilngthUG:
IIxllc1~N.llfllc (55) I
Trong do N1kh6ngphl,lthu9Cf E C.
Lay day {'tk}( ITkl~ 00 klti k ~ 00) saocho:
STkLS-TkX ~ Lx vdix EC1co giacompact.
Ky hi~uXklEinghi~mcua phuongtrinh(54) thee.man bat
dilng thUG(55)vdi f(t)=go(t-'tk),trongdo goE C co gia compact.
TLido suyratont<;lihamXoEc1thoamanphlidngtrlnh
-
Lxo =go va lidc IliQngIIxollc1~N.lIgolic
Baygio,giasu f E C la hamtuyV. Khido phlidngtrlnh:
LXk =akf vdi (akf)(t) =a(~)f(t)
, k
co nghi~mXktrongc1. Gidi hc;lncuaday{Xk}thu9Cc1va,Ia
nghi~m cua phlidng trlnh Lx =f .
DinhIy3 dliQCchungminhxong.
TLidinhIV1- 3,suyradinhIVcdbansau :
E>inhIV 4 :
De loantUL la Fredholmthldieu ki~ncanva'dula tont<;1i
loantungliQcbichi[ln:
- -1
L : C ~ C1 ,VLEH(L)
Chungminh:
1- Thuc%1n
, I
NeuL la FredholmthlloantuL la n-chuanlac. Dodo theo
-
dinh IV 1 thl phlidng trlnh : Lx =0 ,VL E H(L) chI co nghi~m
kh6ng.
Mi[ltkhac VIL GOngla d- chuan lacnentheodinh IV 3, phlidng- -
trlnh: Lx=f ,VLEH(L) ,fEC
27
co It nhatmQtnghi~mtrongC1.Nhu v~yton t~iloan tunguQc
bichi;}n
- -1
L : C ~ c1 .
2- DEw
NguQc I~i:
-
Neu L co loan tungu<;1Cbi chi;}nthl theo dinh Iy1 loantu L la
n- chuan tElC(m~nhde A va B trongdinh Iy 1 la tudngdudn,g). '
Con tfnhFredholmcua loan tu L duQcsuy tv djnh Iy 2.
Dinh Iy 4 duQcchu'ngminhxong.
28I