Luận án Về tính Fredholm của toán tử vi phân tuyến tính đối số chậm

VỀ TÍNH FREDHOLM CỦA TOÁN TỬ VI PHÂN TUYẾN TÍNH ĐỐI SỐ CHẬM PHẠM THỊ TUẤN MỸ Trang nhan đề Mục lục Mở đầu Chương1: Tiêu chuẩn Fredholm của toán tử vi phân tuyến tính đối số chậm. Chương2: Phương trình không thuần nhất và ứng dụng. Tài liệu tham khảo

pdf26 trang | Chia sẻ: maiphuongtl | Lượt xem: 1931 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận án Về tính Fredholm của toán tử vi phân tuyến tính đối số chậm, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
CHUdNGI - ~ ?, ? TIEU CHUAN FREDHOLM CUA TOAN TO' VI PHAN TUYEN TINH eol SO CH~M. Trong chudng nay ta se chung minh dieu ki~ncanva duve tfnh Fredholmcua cac loan tv vi phElntuyen Unh d6i 56 chc;\mlac dvng trongkh6nggiancac ham khavi lien tvc tren A. , -" A ? ~1-CAC E>INHNGHIA VA KHAI NleM cd BAN 1- Ky hi~uC - kh6nggiancac hamlientvc bi chi;intren A. x : A ~ An vdi chu§n IIxlic= supllx(.)11 Ky hi~uC1 la kh6ng gian cac ham x E C sac cho x EC vdi chuan IIxlic. = IIxlic +lI~t Co la kh6nggiancac ham lien tvc x : [-h,0] ~ Rn (h > 0) . Cho E, F la 2 kh6nggian Banach. L - loan tv tuyen Unh : E ~ F co mien xac dinh D(L) c E va miengia tri A(L) c LF Toan tv L duQc gQi la dong neu tu Xn~ x, Lxn'~ Y suy ra x E D(L) va Lx =y. Toan tvL duQcgQila giai chu§n lac neu R(L) =R(L). [8] Toan tv tuyenUnhdongL duQcgQila n - chu§nlac neuL la giaichu§n lac va dim(kerL)< 00 L duQCgQi la d- chuan lac neu L la' giai chuan lac va dim(cokerL)< 00 Toan tv tuyentfnhdongL duQcgQila FredholmneuL vuala n- chuantaGvua la d- chuan taGtUGL giai chuan taG,nhan cua L la kh6nggian hG'uh(~lnchieu kh6nggian thudngF/ A(L) la kh6nggian hG'u hc;ln chieu. ' 3 Trang khong gian C1 xet loan tU vi phan tuyen tfnh doi so ch$m d9ng 0 (Lx)(t) =~(t)+ J dsG(t,s)x(t +s) -:;11 (II> 0) 2-Cae gia thiet cd ban Gia sv ma tr$n ham vuong cap n G(t,s) thoa man cac dieu ki$n sau : 1)G(t, -h) =0, G(t, s) =G(t, 0), vdi mQis ;?:o 2) G(t, s) co bien phan hO'uh9n thee s E [-h, 0] deu vt E R 0 tCtclasup v (G(t,s))~M <00 s=-II 3) G(t, 0) lien tl,lc deu thee t, G(t, s) lien tl,lcdeu trung blnh theo t (voi s - co dinh), Wc la' 0 rim sup fIIG(t+ill,s - G(t,s)llcis=0 N-->O I --II Voi gia thiettren,toantv A co d9ng : 0 (Ax)(t) =J dsG(t,s)x(t+s) -II co tfnhchat gioi h9nt9i vo cvc 'J Wc tont9iAdLi<JCxac dinh nhLlsau : (Ax) = klim(SrkAS_rkx)(t) ,x EC deu tren moi khoang hO'uh9n,~co trangdo 'tk ~ CIJ (8, x)(t) =,x(t+ 't) 0 va (SrAS-rx)(t) =JdsG(t +-r,s)x(t+s) -II Do do ta co t$p H(A) ={A }va A co d9ng : - 0 - - (A x )(t) = fcisG(t,s)x(t +s) voi G(t,s)thoamancac dieu ki$n -II tLldngtLj nhLlG(t, s) . 4 ClIngvdiloantli L. Xetloantli L dc;lng: (Lx)(t) ==x(t) +(Ax)(t) ,A EH(A) hay L EH(L) Xet phuongtrlnhthuannhat: x(t) +(Ax)(t)=0 (1) DEi biet [9] neu XOE Co thl ton t<;1iduy nhat nghi~m x(t) eua phuongtrlnhthuannhattrem(0,+00)saocho: x(t)=xo(t), - h ~ t ~ 0 Ky hi~uU(t, s) la loan tli ehuy~ndieh theo quy d<;1oeua phuongtrlnhthuannhat,Wela loantli U(t,1:).D(itXOE Cotuongung vdiham(U(t,1:)xo)(s)=x(t+s),- h ~s ~O. x(t) =x(t, xo) la nghi~meuaphuongtrlnhthuannhattr~n khoang[ 't,-Kb)thoamandiE3Uki~n: x(t)=xo(t- 't) vdi '[ - h ~t ~'t ToantUU(t,'t),t ~1:bieh(inva co trnhchat: U(t,s)U(s,'t)=U(t,'t), 1:~ S ~t Kyhi~uE+(A)lat$pcaehamWComanghj~mtuongu'ngeua phuongtrlnhthuannhatbj ch(in khi t ~O. Trongcaenghi~mcuaphuongtrlnhthuannhat,xacdinhvdi t~0taxetcaenghi~mxacdinhtrenR,bich(inkhit~O. Ky hi~uE_(A)la t$p cae hamXOE Co, ma no la thu h~p nghi~mcuaphuongtrlnhthuannhattren[-h,0].NhO'ngnghi~mnay xacdinhtrenR va bjch(inkhit~O. Tuongtlj dinhnghTacaet$p: E+(1:)=E+(8tA8-t) va E_(1:)= E - (8 t AS -t ) doi vdi phuong trlnh x(t) +(SrAS-rx)(t) =0 , 5 , -' _? ,~-' §2-TINH CHAT NGHII;M CUA PHlJdNG TRINH THUAN NHAT 1- Xet phlidngtrinhthuannhat x(t) + (Ax)(t) = 0 (1) vai G thoa.mangia thietcd ban d §1 Ky hi$u x(t, s, xo) la nghi$mcua phlidng trinh (1) thoa dieu ki$n ban dau x(t,s, xo)=xo(t-s)khis-h :s;t :s;s khi do hamx(t,S, xo)thoaman liac IliQngsau : Ilx(t+o-,,~,xoll,,-:S;e{/(t-s)llxo(o-)!L,t~s poi lIy(o-)1I=max Ily(o-)IIRn0- -"5,0-5,0 (2) a =supV[G(t,s)] t (Ky hi$ugia trjmaxtheocrdliQC Slt dl,mgsau nay) 80 de 1 : Gia suoton t<;1.iday ham kha vi lien tl,lc {Xk(t)}thoa man dieu ki$n: a) Moi hamXk(t)thoamanphlidngtrinh. Xk (t) + (AXk )(t) =0 tren[ak, bk] b) Ton tQiday so (tk),ak<tk<bksao cho Ilxdt)ll>60. max Ilxdt)11 Ok <;,t5,bk 0 <EO <1, EOkh6ngphl,lthuQcVaOk va limItkI=lim(bk - a k ) = lim (t k - ak ) = 00k~oo k-~oo k~oo KhidovaiA E H(A) nao do, phlidngtrinhgiai hQn y(t) +(Ay)(t) = 0 (3) co nghi$m7:- 0 bj ch~ntren R. Chung minh: X ' td "' h " xk(/+lk) e ay am Yk (I) = II II ,ak - Ik ~ 1 ~ bk - Ikxk(lk) Do dieu ki~na), b) cua bo de, hamYk(t)thoaphlldngtrlnh: Ydt)+ (StkAS-tkyd(t) =0 tren doc;ln[ak- tk,bk- tk]va 1 max IIYk(t)II~- "k -tk stsbk,-tk li 0 ;IIYk (0)11= 1 Tv do suy ra ding tren moi khoang hO'uhc;lnday ham {Yk(t)}. (b~hdau tU mQtchi s6 k nao d6) bi ch~ndeu va lien tl,lCdong deu. Theo dinh Iy Arzele, ta co the gia sv chrnhday {Yk(t)}hQitl,ldeu den ham Yo deu tren tUng khoang hO'uhc;ln.Ngoai ra GOnggia sv vdi AEH(A) nao do taco : . (Ax)(t) =Iim(St AS t x)(t)k-)«> k k '\ deu tren tUng khoang hO'uhc;ln. Vi hQ toan tv StkAS_tk la c - lien tl,lCdeu nen ta dong nhat dling thuG : t t Yk (t) = Yk (0) - J (Stk AS-tk Yo )(s)ds +J [StkAS_tJ(Yo - Yk )(s)ds 0 0 Ta suy ra Yothoamanphlldngtrinh: t - Yo(t) =Yo(0) - J (Ayo )(s)ds 0 Dieu do nghTala Yokha vi lien tl,lCva co nghi~mkhac kh6ng, bi ch~ntren R cua phlldngtrinhgidi h(~in(3) .;. ~. 7 2-Uoc hiQcnghi~mbi ch~ncua phlidngtrinh thuannhat trenbantn,lct ~ 0 Ky hi~u E+(T) = EAS t AS -t) la t~pcac ham W Co, la nhG'ng ham ban dau cua nghi~mbi ch~n khi t ~0 cua phLidng trinh : x(t) +(SrAS_-rx)(t)= 0 (4) Bc5de 2 : Gia su tatca phLidngtrinhthuannhat: y(t)-1-(Ay)(t) =0 ,A ell(A) (3) chi co nghi~m kh6ng trong C1. Khi do ton t9i r >O,N>0 saD cho: IIU(t,r)xollco~Ne-r(t-r)IIU(s,r)xolico (5) Xo EOE+('"C) ,t~s ~'"C~O Chl.l'ngminh : Trudchetchungminhdingvdi'mQiXoEOE+(O)thoamand&ng thUGsau : . IimIIU(t,O)xoll=o,xo eE+(0)t--+<1O (6) Ta chung minh bang phan chung: gia su ton t9i Xo EOE+(O), ton tO.k Vi nghi~mx(t,O,xo)bi ch~n: supllx(t,O,xo )11< 00 t;o,O nentheobe de 1 vdiA EOH(A),nao do, phu'dngtrinh giOih9n (5) co nghi~m bi ch~n khac kh6ng. Dieu nay mEW thu~n vdi gia thiel, v~yd&ng thu'C(6) dLi<;1cchung minh. . Vi dieuki~ncua be)de kh6ngthaydeikhita chuyentu loan tvA sang StkAS_tk'T EOR nen W (6) suy ra : \ limllU(t,r)xollc=O,xoEE+(r) vdimoi't codjnhthuQcR. (8)1->00 0 Bay giO ta chung minh tont~i So>0; sao cho voi m,Q1 XoE E+('t)thoa manbatdltngthuG: 1 Ilx(t+s+O"",xo)llus;"2llx(t+O"",xo)!Iu ' s~so;t~,~o (9) Giasu ngLi<;1CI~i,khidotont~icacday('tk), (Sk),(tk),(Xk), Xk E E+('tk), Ilxkllc.=l,sk~ oo,(k~ 00) saocho: . 1 Ilx(tk+Sk+0""k,XdILT~21Ix(tk+0""k,Xk)ILT.' tk~'k~O (10) Cho t'k~tkva Ilx(t'k+O""k,Xk)llu=~~xllx(t+O""k'Xk)t (tont~igia trj 't'k nhLiv~ysuy raW (8)) £) v t ---;-llx(tk +0"" k,Xk)!Iu<;l lIo =Inn k-~ooIIx( t' k+0"" k,xk)1L Co2 kha nEmgxay ra : ao=0 hayao>0 a) ao=0 thlW : Ilx(t'k+0",rk ,xk)1!u s;eQ(t't-tt'IIX(tk+0",'k ,xk)t suyra: t'k - tk ~ 00 khik ~ 00. Dayham x(t +tI k ,r k ,X k) Yk(t) =Ilx(t\+O""k,Xk)IL bi ch~n deu tren -(t'k - tk)~t ~ 00 va hamgidi h~ncua no la nghi$mkhackh6ngbj ch~ncua phLidngtrlnh(3)vdiA E H(A) na-o do, dieunaymauthuanvdigiathietcuabode. b) ao>0, kh6ng giam Unhtong quat co the coi ao la gidi h~n cua mQtday tLidngung. Trong trLiangh<;1pdo day: () x(t+tk+Sk"k'Xk) Yk t = ak ak =IIx(tk+Sk+0",rk'xk)1!u 9 bi ch~ndeu tren [-SkI+ 00). Th~tv~y,voi k kha Ion, qt,lavao dinhnghTaso aova batdAngthuc(10),taco : maxIIYk(t)11=a~1maxllx(t+tk +Sk" k 'Xk )11=-.\.,:5,f<~ f"-.', = a~1maxllx(t + tk' Tk'Xk )11~ a~1maxllx(t + (J" k'Xk )11/,,0 /,,/, tY ~a~1 IIX(t'k+(J, Tk'Xk)t ~2a~'a~'llx(tk+(J"pxk)t ~4a~' f Do do ham gioi hc;lncua day (Yk)bi ch~ntren A, ~ 0 va la nghi$mcua phuongtrinh (3). E>ieunay I~imau thuanvoi gia thiE3't. Vf}.yd~ngthuc (9) dLiQCchungminh.Tu (9)suy ra (6). 3- T~p hQp nghi~mbi chijn khi t ~0 cua cae phu'dngtr1nh gidi h~nIii kh6ng gian huu h~nchh~u Ky hi$uE_(A) la tf}.pcae hamXoE Co, tLidngung voi nghi$m, xacdinhtrenR va bich~nkhit ~0cuaphuongtrinhgioih~n: x(t) +(Ax)(t) =0 ,A E H(A) (11) 86 de 3 : Gia su tatca phuongtrinhthuannhat(3)chico nghi~mkhong trangC1,khido caetf}.ptuyentinhE_(Ao)voi mQi.Ao EH(A) la huu hc;lnchieu. Chungminh: Truochetchungminhrangmoinghi~mx(t)cuaphuongtrinh (11)bjch~nkhit~0thaamandieuki~n: limllx(t)11=0/->--., (12) Thf}.tv~y,gia su x(t) la nghi~mcua (11) xac dinh,trenR va theftman: maxllx(t)1I=1-,supllx(t)1I<co -11:5,1:5,0 f:5,O Neu nhuvoi m(>tday(tk)naodo (tk-+ 00 khi k -+ 00.) thoabat d~ngthuc inf{IIx(tk)11:k=1,2, }>0 thi day ham{Yk(t)=x(t+tkHbi ch~nI deutren(- 00, -tk), h(>i tv deutrentungkhaanghuuh~ndenyo(t) 10 (Yo :;t:.0 bi ch~n).Neu A la loan tu giai hGlncua daycon cua day {StkAS-tk} thi ro rang A E H(A) va yo(t)la nghi~mcua phlidng trlnh : Yo(I) +(Ayo )(/) = 0 mau thUElnnay chung minhdltngthuc (12). Ky hi~uYf (-00,0) la kh6nggiancae hamlien tl,lCbi ch~n: x : (-00,0)~ Ro. Khi do, taco the chung minhrang: Doi vai t~pcae nghi~m cua phtJdng trinh (11) dling thuc (12) GOngthoamandeu theox E Yf(-oo,O).(1Ixl/w(-oo,O):::; 1) E)~tF={x=x(t): xE Yf(-oo ,0) , ~(t)+(Aox)(t) =0 ,!lxll~(-oo,0)~ 1} Chung minh t~pF la t~pcompacttrangYf(-oo,O). Th~tv~y,vi ~(t)+Aox=onen 11~(t)II:::;IIAollllx"w(_oo,O) Do do t~pF lien tl,lCdong deu nen F compacttrangYf(-oo,0). M~tkhac,t~pcaenghi~mcuaphlidngtrinh(11)bi ch~ntren~-oo,a) tc;iOnen kh6ng gian con kin trangYf(-00 ,0)cho nen theodirih Iy Ritz suy ra t~pnghi~mcua phlidng trinh(11) bi ch~ntren (-'00,0) la hO'u hc;inchieu. Chu y : Trangdieuki~ncuabo de 3, t~pcaehghi~mbich~Q khit:::;a cuaphlidngtrinhxuatphat(1)GOngla hO'uhc;inchieu. 4-Huuhc;lnchieucua khonggianthu'dngCoIE+(A) Tli liac IliQC (6) suy ra rang, t~p tuyen trnh E+('t)=E+(StAS_t) lEidong trang Co, Wc no la kh6ng gian con. Khi do kh6ng gian thlidng Col E+('t)la khong gian Banach. Ky hi~uE+(O)la phanbu dc;iiso doi vai kh6nggiancon E+(O)trangkh6nggianCo. 86 de 4 : Gia sv phuongtrinhthuannhat(3)chi co nghi$mkh6ngtrong . C1.Khi do kh6nggian Co/E+(O)la hOuh0 sac cho : IIU(t,O)xollc~ Ne-r(S-t>IIU(s,O)xolie0 0 Chung minh: ChoA E H(A), ton t<;liday (hk),hk--+ookhi k --+00sac cho: ,xo EE+(O) ,s~t~O (13) , Iim(S" AS "x)(t) =(Ax)(t) deu tren m6i khoang hOu hQ,n.GOi m">,,,' . - la chieu cua kh6ng gian con cua nghi$m bi ch~n khi t :::; 0 cua phu'ongtrinh: . x(t) +(Ax)(t) =O. Chungminh ding dimE+(O):::; m. Th{fltv{fly, cho XO1,"" '" XOm1E E+(O) dQc l{flp tuyen tfnh, con ,;L~,;{(XO1"""",XOm1)la kh6nggian con sinh ra tUcac,phan tv do. Khi do, theedinh nghTacua kh6nggian E+(O)va E+(O). " dimU(t,O)9!=dim9!=m11mQit ~o M~t khac, lien hanh IV lu{flntu'ongtV'vi$c chung minh"bo de 2, sv dl,mg tfnh hOu hc;inchieu cua kh6ng gian £E,ta se thiet l{flp du0, N>O kh6ng phl,l thuQc XoE 9!. ChQn Xj(k) E £E, I = 1, ,m1sac cho ham: y/k) =U(Izk,O)X/k) IIU(Izk ,O)Xi (k)11 ,(i =1, ,1111) (14) thoa mancac batdl1ngthUG: 12 i~lfllY2 (k) +a1Y1(k)11~ ~ ~~Jy3(k) +a1Y,/k)+a2y 2(k)II ~~ ................ in" II (k)+a (k)+ +a (k) ll >1 a a a Ym1 1Y1 ... ml-lYml-l --I, 2,---rnl~1 2 (15) Dayham: zY')(t)= x(lzk+t,O,X~k» IIU(lIII ,0, )X1'I)II (i =1,2, ,m.),/(=1,2,.... I thoamandieuki~n: Z~k)(t)=y}k)(t)khi-hs t s 0va do(12)bi ch~ndeutrenmoikhoanghiJuhf;tn,vadoditngthUG: (k) - (k) Zi (t)+(S"kAS_"kZi )(t)=O lientvcdongdeutrenmoikhmlnghiJuhf;tn.Dodoco thE§coi day{zYc)(t)}hQitv deutrenmoikhoanghiJuhf;tndenZj(t) (i=1,..,m1) HamZj(t)la nghi~mcuaphlidngtrinh(11)vadolioc"li<Jng: Ilx(l+a,O,x;(k)ILsNe-Y(S-I)lIx(s+a,O,xYl,.,(s~t~O) sethoamancacbatditngthUGsau: IIZi(t+O")t ~Ne-y(S-t)lIzi(s+O")t ,s ~t (16) Ngoaira, do cac batditngthl1c(15), cac ham Zj(t)dQc l<%ip tuyenUnhtren[-h,0] nen chung dQc'~ptuyenUnhtrenkhoang (- 00, 0].TLi(16)suyra hamZj(t)bi ch~ntren(- 00,0], cho nen m1s mdochungdQc'~ptuyenUnh.Tv dosuyradimE+(O)s mva u'ocIli<Jng(13).Bodedli<Jchungminh. Nh~nxet : Thaytrongdieuki~ncuabo de4 loantll A bpi loan tll A( 1:)= St AS. t ( 1:> 0).Ta nh~ndli<JCkef qua: khonggian thlidngCo/E+(1:)hiJuhf;tnchieuva voi1:2> 1:1~ 0 thoamanbatditng thUGsau : dim CO/E+(-t1)s dim Co/EA "(2)s m 13 Th~tv~y,U(11,12)EA11)c EA12)va anhXc;lthlidngtlidng l1ng,: 0(12,11); Co/E+(11)~ CO/E+(12)la ddn cau. 5- Uoc lu<;ingnghi~mkhongbi chcjncua phudngtrinh thw)nnhat , Tli nh~nxetsaube>de4, guyratontGli1+ saochovoi1 ~ 1:+ cae khonggianconCo/E+(1:)co cOngmOtso chieu.Gia sa E+(1:+)la phanbOthiingcuakhonggianE+(1:+): Co=E+( 1+)EB E+(1+) Di;lt E+(-r)=U( 1, 1:+)E+(1+), 1:> 1:+ khi d6 Co=E+(1:+)EB E+(1:)vdi 1:> 1:+. Bieudiennaycua Co sinh ra hQcae loan tu chieuP+(-r) len khonggianconE+(1). TheodinhnghTacua khonggiancon E+(t),loan tu P+(1:)thoa mandiingthu'c: U(a', a) P+(1)= P+(-r')U(1',1:) , 1:+~t ~1:' 80 de5 : Giasutatcaphlidngtrlnhthuannhat: yet)+(Ay)(t)=0 ,A E H(A) (3) chico nghi~mkhongtrongC1.Khidotontc;liN>0, r >0 sao cho: IIU(t,r)xoll::;Ne-r(s-t>IIU(s,r)xoll 'Xo E E+(r) ,r+::;r ::;t ::;s (17) Chungminh: Tlidnghi nhlibe>de4, taco : IIU(t,r+)yoll::;Ne-r(s-t>IIU(s,r+)yoil'Yo E E+(r+) ,s c.t ~r+ (18) 14 Voi mQi Xo E E+(-r), (t ~t+).Do dilng thuG E+(t)=U(t,t+)E+(t+). Tim duQcYOEE+(t+)sao cho xo=U(t,t+)Yo. Luuy tfnhchat: U(t,t+)=U(t,t)U(t,t+), (t~t ~t+). Tu (18)suyra(17),be>deduQcchungminh. 6- U'ocIu'Qngnghi~mphu'dngtrinh thuan nhat tren khoang t:::;;O Donh$nxetsaube>de3,caekh6nggiancanE.('t)cuakh6ng gianEolahCi'uh<;lnchieu.ThemVEtOdo,dodinh1'1duynhatvephra phai,taco : dim E.(t) :::;;dim E.(t') :::;;mo , ( t' :::;;t:::;;0), mo la mQt sonaodo. Tu batdilngthu'cnaysuy ratontC;lit. <0saocho,Voit<t.co dimE.('t)=dim E.(t.). . Voi 'tda chQn,moinghi~mbjch~nx(t)trent :::; 0 cua phudng trjnh(1)du'QcxacdinhduynhatboihambandauduQcchotren doC;ln[ t- - h, 'r.]. Do do co dilng thuc : U(-r,l')E_(l') = E_(l) , ('r' :::;;t :::;l.) Ky hi~uF(t.) la phanbuthilngcuakh6nggianE.(t.). (19) Ky hi~uP.(l_)la loantuchieulenkh6nggianE.(t.)duQcsinh ranha : Co=E-(l-) EB E-(l) £)~t P-(t) =U(t,t-)P. (l.) U(t.,t) , ( t < t- ) d dayU(t,t-): E.(t.)-+E.(t) la anhXC;lnguQccuaanh'XC;l, U('t.,'t) : E.('t)-+E_('t-). N6 ton tC;lido (19). R6 rang P.(t)('t<'t.) laloantuchieu. . Xac dinhkh6nggianF(t) boidilngthuG: E'(t) =(I - P.(t))Co. 15 Toan tuU('t,'t')lac dl,lngtU E_('t')va F('t') tLidngung VaGE('t) vaE-('t).DieunaysuyratadltngthuG: U('t,'t')P_('t')= P-('t)U('t,'t') 80 de6 : Gia su tatca phlidngtrlnhthuannhat(3) chI co.nghi~m kh6ngtrongC1,Khidotontc;lir >0 , N >0 saDcho: IIU(t,r)xollco~Ne-r(t-s)IIU(s,r)xollco IIU(t,r)xollcu~Ne-Y(H)IIU(s,r)xollco Chu'ng minh : ,r~s~t~ 0 ,xoE E-(r) ~20) ,r~s~t~O ,xoEE_(r) (21) De chungminh(20), trLioc het ta chung minh ton tc;liSo> 0 saDcho thoa man: . IIU(r+s,r)xo"c,,~~ ,xoEE-(r) ,IIxollco=l ,s~so ,r~r+,\'o~O (22) Gia SUonglieJc Ic;li (22) kh6ng dung, khi do ton tc;liday ham' (Xk), Xk E F('tk), Ilxkll=l, ton tc;liday so ('tk),(Sk).(Sk--+00 khi k --+00) va Sk + 'tkS 0 saDcho: 1 IIU(rk+sk,rk)x,.lIxo>2 (23) GQi tk E ['tk,0] saDcho: ak=IIU(tk,rk)xk,IIc=maxllU(t ,rk)xkll 0 Tk5t50 Co Co 2 khanangxayra: a) Day ,( Itk I) bi ch~n b) Day ( Itk I) kh6ng bi ch~n Xet trliong heJpa) : , VI 'tk s -Sk , Sk --+00 nen day (Yk)nghi~mcua phLidngtrlnh(1) 16" Yk(I) =a;1x(/, rk ,Xk) ,!lxll=1 ,k=1,2,..... bi ch~fJdeu va lien tt)c dong deu tren moi khoEmghO'uh~;m Qua(-00,0]batdau tu mQtchi so k nao d6. C6 the coi chrnhday(Yk) hQitl,lden Yodeu tren tung khoEmghO'uh9n, con day (tk)hoi tl,l den to ::::;O. Vi IIYk(/k+o-)!Iu=a;lllx(/k+o-,rk,xk)1!u=1 nen ham yo(t)la nghi~mkhac khangQuaphuongtrlnh(1), bi ch~nkhi t::::;O. Do d6 ham xo(o-)=Yo(r- +0-) ,(-h:::;0-:::;0) khac khang va thuQCvao E-('L). M~t khac, ham Xk(cr)= x('t-+ cr,'tk,Xk), (Xk E F('tk)) voi k kha IOn thuQc khang gian con F('t_). 8ieu nay mauthuan dieu ki~nIlxk - xollco~ 0 ,k ~ 00 , v~y 109itruong h<;1pa). b) Gia su tk~ -00.Gia su day (ak)bi ch~n,c6 the'coi day (-'tk- Sk)c6 gioi h9n (hO'uh9n hayva h9n)bo~O. . x( 1+rk +SI.,rk,Xk) 0 ay ham: YIi(I) =Ilx(r k +S k +0-, r k ,Xk )110. Do (23)thoabatd~ngthUG: max IIYk(/+o-)11 :::;2maxllx(/+0-,rk,xk)11 :::;2supak <00 -Sk:S:t:S:-(Tk+Sk) CT Tk:S:t:S:O CT Do d6 c6 the coi chrnhday (Yk)hQitt).den Yo deu tren tUng khoanghO'uh9n Qua(-oo,bo). Neu bo hO'uh9n thl ham zo(t)= Yo(t- bo) la nghi~mcua phuongtrlnh(1) bi ch~ntren (-00,0]. Tien hanh cac buoc tuongtt!, Iy lu~ntuong tLjnhu trongtruongh<;1pa), ta dU<;1Cdieu mau thuan voi hamzo(cr)=z('t-+ cr), (-h ::::; cr::::;0) thuQcF('t_). Neu bo va h9n (bo = 00)thl Yo la nghi~mbi ch~n Qua mQt phuongtrlnhgioi h9n dc;mg(3) nao d6. Mau thuanvoi dieu ki~nQua bo de. . 17 Gis.su cuoi clIng (ak)kh6ngbi ch~n.Kh6nggis.mtlnhte>ng quat,co thecoi Hma"=r:fJ ,,~oo (24) Xetdayham yk(t)=a;lx(t+tk,Tk,Xk) nothos.mandieuki$n: max lIy"(t +o-)llcrS 1 ,IIYdo-)t =1 Tk -tk 5,t<;,-tk . (25) TO'batdiing th(k (2), (24)suy ra Hm(t"-1",,)=00 k~oo . TO'do va tU (25) (chu y : tk~ 00, k ~ 00) tanh~nduQcham gidi h9n cua day (Yk)xac dinh va bi ch~ntren R chfnh la nghi$m cua mQtphudngtrlnhd9ng(5)naGdo, h;timEwthuanvai dieuki$n cua be>de. Nhu v~yta chung minhdu'QCbat d~ngthuG(22).Tv (22) suy ra(2O),(21)chu'ngminhtudngtlJ, 8e>de (6)du'Qchungminhxong. 7- Uoc hlQngchu§n cuacaeloan tll chieuP_('t),P+('1:) 80 de 7: Gis.su cacdieuki$ncuabe>de2 duQcthos.man.Khido : supIIp-(1")11<00 , supllp+(1")11<00 T5,T- T~T+ (26) Chung minh: Ta chung minh supIIP_(r}11<00 . T<;'T- Cho XoE CosaGcho P.(s)xo-j:.0, P.(s)xo-j:.Xc. Khi do tv (2) vai 't<t <'tota co : V(t )[ P_(r)xo (I-P_(r»xO] < a(t-T)P_(r)xo + (I-P_,(r»xo ,r IIP_(r)xoll+II(I-P-(1"»xoll_e IIP_(r)xoll II(I-P_(r»xoll Dlja VaGdo tU(20)va (21)taco : 18 P- (T)XO + (/ - P- (T»XO >e-a(t-,){U(t ) P- (T)XO U(t ) (/ - P- (T»XO II} > IIp-(T)Xoll 11(/-P-(T»Xoll - ,T IIp-(T)Xoll ,T 11(/-P_(T»Xoll - > -a(t-,) {I r(t-,) 7\.T -r(t-,) }_e -e -HeN Tu' d ' 0" 4111N 4111Na v I 1 < 1.- , t=T +-r r '. P_(T)Xo (/ -P_(T»Xo Ta ca . "11 I-' +- 11- 11"~5">0P- (T)Xo (/ - P- (T»Xo vdi 80kh6ngphl) thu9C1.Tli (27)vabatd~ngthUG: (27) 11:11+11;11I!max{lIxlI, lIyll} s zllx+yll (X,y :I:0) "'Ii T <T- - 4111N r ta nh$ndLi<1C: max{IIP_(T)xoll,II(/-p-(T»xoll}S50-1zllxoll (28) Neu TE [T-- 4111N ,T_] thl Slj bi chi;incua P-(1)suy ra tli tfnh r lientl)c. TLiongW, SU'dl)ng(5),(bode 2) va (17),(bode 5) ta chung minhdLi<1C: sUpIlP+(T)1I<00 . '~'+ 80 de 7 dL1<1Cchu'ngminhxang. 8- Nhungbatd~ngthuc cd ban Trangml)C,naytatongkefcac LidcILiQngdoi vdinghi~mcua phL1ongtrlnhthuannhat(1). Trang IIU(t,T)xollS Ne-r(t-s)IIU(t,T)xollco (6) Di;it1 =S, Xo= P+(S)Yo,Yo E Co,taco: IIU(t,s)P+(s)yolls Ne-r<t-s)IIU(s,s)P+(s)yollco (t~S~T+) hay IIU(t,s)P+(s)yollS Ne-r(t-s)llp+(s)yollc0 (t~S~T+) . (29) 19 Vi U(s,'t)E+(-t)=E+(s), S 2't 2 't+nen tli (17) IIU(t,r)xoll~Ne-y(S-t)IIU(s,r)xoll (17) suy ra : IIU(t,r)(I - P+(s»Yoll ~ Ne-y(s-t)III ~P+(s)Yollco (30) Tli (26), (29),(30)ta nh~'lndU~ccac bat ditngthtlcco ban sau: IIU(t,s)P+(s)Yolic~N1e-y(t-S)IIYollc0 0 (t~s~r+) (31) IIU(t,s)(I- P+(s»Yolic ~Nte-y(.H)IIYolic0 0 (s~t~r+) (32) TUongtv'nhuv$ytu'(20),(21)va (26)taco : IIU(t,s)P-(s)Yollc ~ N1e-y(S-t)IIyoIIc0 0 (t~s~r_) (33) IIU(t,s)(I-P-(s)Yolico ~Nte-y(t-S)IIYollco . (s ~t ~r ) (34) .:.>:::: ft" ,ft §3- BIEU DIEN NGHIt;:MCUA PHUdNG TRINH KHONG THUAN NHAT Xet phu'ongtrlnhkh6ngthuannhat : x(t)+(Ax)(t)=f(t) , f EC (35) Dinh nghTaham as nhU sau : l l-&-ta- Idzi -&~a-~O ac(a-)= 0 khi -h ~a-~-& O<&<h I,(a-) =f(r +a-) (-.It~a-~0) Ky hi$u: sao clto I, E Co (r E R) Df;it: (acf,)(a-)=ac(a-)/,(a-) Slj phl,J thuQc cua ham U(t,'t)xovaa bien crE[-h,O]dLi~cviet du'didc;lng[U(t,'t)xo](cr).Tli dinh nghTacua ham U(t,1:)xota suy ra cac ditng thu'csau : 20 {[U(t+O-'1")XO](O)kId L~t+o- [U(t,1")xo](o-)= xo(t+o--1") klti 1"-ltst+o-S1"st (36) , d 0 va-[U(t, 1")xo](O)=- fdsG(t,s)[U(t,1")xo](s) , t ~1" dt -II (37) Cho xo,YoE Co,ta li;tp2 ham: ,- z; (t) =[U(t,1"-)P- (1"-)xo](0)- f[U(t,1" )P- (1")a&f, ](O)d1"+ I (38)t f [U(t,1")(l-P_(1" »a&f,](O)d1" , t S 1"- -0() t Z; (t) =[U(t, 1"+)P+(1"+)Yo](0)- f[U(t, 1")P+(1")a&f, ](O)d1"- '+ (39) +0() f [U(t,1")(1 -P+(1"»a&f,](O)d1" , t ~1"+ t Vi cac hamdtJaidau Uchphanphl,JthuQclien tl,Jc\tao 1: va thoa mancac tJac ItJQng(31)- (34) chonen cac hamZ;(t) va Z;(t) voi 8 E (0,h)se xac dinh,lientl,Jcva bi chi;indeuttJdngung . tren cac khoang(-0011:-)va (1:+,+00). 86de8: Cachamz; (t)vaZ;(t)thoamancacphtJdngtrlnhsau: dZ;(t)+(AZ;)(t)=f(t)+rp&(t) , t s"-dt +, dZ&(t) +(AZ+)(t) =f(t)+rp&(t) , t ~1"+dt & (40) (41) \ 0 0 vai rp,,(t)=JdsG{t,s)[Ja,,(O")f(t+O")dO"] ,-I. s Chungminh: Layd<;iOhamhamZ;(t) khi t<1:- taco: dZ- (t) d ~ =[P_(t)a&f,](O)+[(l- P_(t»a&f,](O)+-d [U(t, 1"-)P~(1"_)xo](O)-t ' t '- d t d - f-[U(t,1" )P_(1" )a&f,](O)d1"+f -[U(t,1" )(l-P_(1" )a&f,] (0)d1" t dt -0()dt . " 21 Su dl)ngbatdltngthuc(37)vadltngthucsau: [P_(t)aEft](O)+ [(I - P-(t))aJt](O)=f(t)taco : dZ- ( ) 0 ~tt =f(t)- fdsG(t,s)[U(t,-z-)P_(-z-_)xo](S)+-II 0 ~ t +fdsG(t,s){f [U(t,-z-)P-(-z-)aSfT](s)d-z-- f[U(t, -z-)(I- P- (-z-»aSfTJ(s)d-z-} -II t ' -00 Dotfnhchat(36)cuahamU(t,1:)xodltngthuccuoiclingco th~ viet19idlloid9ng(40). TlldngtLjco th~chungminh(41).V$Y be>de 8 dLiQcchu'ng minhxong. Tli (40),(41)suy ra ranghQcac ham {Z;(t) : O<&<It}va {Z;(t) : 0<&<It}lien tl)c dong deu tlldng ung tren cae khoang (-00 ,'L) va(1:+,+00).Ngoaira,tont9icaegioih9nsau: T- Z~(CT)=limZ; (,- +CT)=[P- ('- )Xo]{CT)+Hmf[U( '-' -z-)(I- P-(-z-»asj~J(o-)d,s~o s~o, -00 . -I"'- Z;«T) =IimZ;('r+ +<T)=(P_(r+)Yo]«T)-lim f[U(r+,r)(I -P+(r»a£/r](ci)dr '£-)0 £-)0 T. HrnqJs(t) =0 s~o chonendosLjchQnILja1:-va1:+tont9igioi h9nsau : Z-(t) =HrnZ;(t) s~o Z+(t) =HrnZ;(t)s~o , -z-+~t<+oo (42) (43) , -oo<t<-z-- NhOnggioih9nnaythoamanphlldngtrlnhkhongthuannhat (35) tlldngung tren khoang(-00,'t-)va ('t+,+oo).R6 rang, bat ky nghi$mbi ch~ntren(-00,'t-)(('t+,+oo))cuaphlldngtrinh(35)deu co the bieudien dlloi d9ng Z-(t)(Z+(t))voi hambandautlldngun,g XOE CO (Yo E Co). ~ ft ~ ,.,.:! ,., - ft' §4- £>IEUKII;N CAN VA £>U£>ETOAN TO'VI PHAN TUYEN TINH £>01SO CHAM LA FREDHOLM Giasucaedieuki$n§1vanthoaman. 22 £>inhIV 1 : Cac m$nhde sau day la tl1ongdl1ong: AI Toantv L la n-chuanHic. - 81 PhuongtrlnhthuannhatLx =0 , \I L E HI (A) (44) chi co nghi$mkh6ngtrongC1. CI :3so M>O,N>Osao cho : IlxllclS;M(IILxllc +maxllx(t)ll) ,\Ix E Cl Ifl~N (45) Chung minh: Ta se chung minhAI ~ 8/. Xet kh6nggiancan: Eo ={ X Eel, x(t) = 0 khi ItI S N } Do nhancua L hliu hq.nchieu,cho nen co th~chQnN kha Ian sao cho Eo kh6nggiaovai KerL. VI anh cua LEocua kh6nggiancan EodongtrongC, nen :3d>Osac cho thoaman l1ac111Qng[8]. IILxllc~dllxllc' ,\Ix E Eo (46) Cho LE/f(L) vaday(1k) (Irkl~ex) khi k~ex)) sao cho - Srk LS-rk x ~ Lx , \Ix Ecl cogiatrihliu hq.n(suppx-compact).Ham (S-Tkx)(t) ==x(t - r k) thuQcEovai k khaIonchonentli (46)taco : IISTkLS-TAXllc=IILS-rkXllc ~dIlS-TkXllcl =dllxllc1 chok ~ ex)tadl1Qc: IlLxii ~dllxllcl c (47) Gia sv x tuyY thuQcc1. Lay hama(t) 0 s a(t)s 1 [ 1 kId ItIs1 act) = 0 khi Itl;:::2 khavi lientl,lCsac cho 23 Khido tu(47)suy ra : IIL(akx)11Z dllakxllcl t c ;. (48) , ",'", Trang do (akx)(I) = a(~)X(I) "L cho k ~ 00 I tU(48)ta co : Lxii zdllxllcJ c , 'dXECl Tu daysuyram~nhde B. Bay gia chu'ngminhtUB/ ~ C/, Gia su batdang thuG(45) kh6ng dung, khi do ton t~iNk~ 00, Xli ECI ,lIxllc1=1 saoc/to Iim(IILxlillc+maxllxk(t)II)=O li~oo Itl:O:;Nk. (49) Gia su tkERsao cho IIXk(lk)II~!.R6 rang Ilkl~Nk.£Hit:2 . Uk(t)=Xk(t+tk),Kh6ng giamtinhtong quat co the coi day (Uk) cLIngvdi d~oham cua no hQitlJ den UOEC1deu tren tung khoang hO'uh~;lnva lIuo (0)11~!,2 M~tkhac ta co : (S'kLS-tk ud(l) ==Uk (I) +(Stk AS-tk ud(l) (50) Kh6ng giam tinh tong quat, ta co the coi chinh day (S'kAS_tkUk)(t) hQitlJ den (Ax)(t) deu tren tung khoanghO'uh~nk~i k ~ 00. Do (49), lay giai hc;ln2 ve khik ~ 00 I ta dU<;1C: CLUo)(t):=Uo(t)+(AUo)(t)=O mau thuan vdi gift thiet. Cuoi cLIngta chung minhtUC/ ~ A/. TrUdc het chung minhKerL hO'uh~nchieu. Do b6 de Ritz, ta chi can chung minh m~tcau don vi cua kh6ng gian con KerL la compact.Th~tv~y,neuday (Xk)c KerL va IIXkllcl=1 thiday(Xk)bi ch~ndeuva lientl,lCdongdeu.Do do, kh6nggiamtinhtongquat, co thecoi chinhday(Xk(t))hQitlJ den xo(t) E C deu tren tUng khoanghO'uhc;lntrongC. 24 Taco :XoE C1 vaxo E KerL. Th$tv$y, lay gioi h~;ln2 ve ditngthuG: Xk (t) +(Axk)(t) =0 ta I du'<;5C Xo(t) +(Axo )(t) =0 Wc XoE c1 va XoE KerL. Bay giOchung minhanh LC1cua tOElntv L dongtrongC1. Gia SU' ngu'<;5cIc;li, thl :3 day (fk) E Lc1 saD cho 11.f~llc-70 Idli I( ~ 00 nhLing: inftllxllct:Lx =.t~}=0 LayXk E C1 SaD cho LXk =fk , Ilxkllcl=1 Kh6nggiamtlnhtongquat,cothegiasv chfnhday(Xk)hQitv denXotrentUngkhoanghO'uhc;lnvaXoE c1. Do(45),Ilxk-Xollct ~O klli k~oo. M~tkhac,vi : L(Xk- xo)=fk va IIIkllc ~ 0 klli k ~ 00 nen tU (51) ta c6 : . Ilxk-xollct21. Mau thuan do, chung minh anh cua LC1 dong. Binh Iy dLi<;5Cchu'ngminhxong. (51) E>inhIy 2 : Neu loantv L la n-chuanlac thlL la Fredholm. Chung minh: Theo dinh Iy 1, mQiphLidngtrlnh thuan nhat dc;lng(44) hay dc;lng(3) chi co nghi~mkh6ngtrongC1. Do do, thoa man dieu ki~n cua cac bo de 2 - 7, nh$ndLi<;5Ccac LiocILiQngtrongm,Vc8 va thiet I$p dLi<;5Ccac hamtrongbo de 8. Nghi~mT(t) cua phLidngtrlnh(35)dLiQCxac dinh bdi ditng thu'c(42)dLiQckeodaimQtcachduynhattrenkhoangt 2 'to Be nghi~mT(t) bi ch~ntrenR thldieuki~ncan va du la voi mQt nghi~mnaodoZ+(t),dLiQCxacdinhbdiditngthuG(43)phaithoa dieuki~nsau : ' T(t++cr)=Z+(tk+cr) Kh6ng kho khan,thaydLiQcrang: (52) 25 r+ Z- (r + +a) =HmflU(r+'r)(I - P-(r»aEf. ](a)dr +E~O -00 r+ +IU( r+,r - )P- (r- )xo Iea-)+Jim f[U(r+,r)acf. ](a)drE~O r- Chonen(52)tuongduongvoidltngthuc: r+ IP+(r+)Yo](a) - IU( r+'r - )P- (r - )xo](a) =Jim flU( r+'r)aEf. ](a)dr +E~O'- 00 ~ +lim{fIU(r+,r)(I - P+(r»ar.fr J(a)dr+ fIU(r+,r)(l- P_(r»aEf.](a)dr) ==tp(a)E~O ~ -00 (53) Tli (53) suy ra rang, phuong trinh kh6ng thuan nhat (35) co nghi~mbj ch~ntren toan tn,lcso R khi va chI khi ham <p(cr)thuQc tong E+('t+)+ U('t+,'t)E_('t_)cua cac kh6ng gian con E+('t+)va U('t+,'t_)E_('t_). . Tli do ta co : dimC/LC1 = dimCo/ (E+('t+)+ U('t+,'t_)E_('t_» V~y L la d- chuan tacoDo do, L la toan tv Fredholm. E>inhIV 3 : Neutoantv L lad- chuantacoLucdophuongtrinh: Lx=f , VLEH(L) , fEC co it nhatmQtnghi~mtrongC1. Chung minh: Vi LC1 la kh6ng gian con dong va dim C/LC1 <00'cho nen phanbutn,icgiao(LC1)L c C* la kh6nggianconhOuhGlnchieuva Lc1co phanbuhOuh<;lnEo : C = Eo EBLC1. I Gia sv g1,g2, ..., gmE C, <P1,<P2, , <PmE phantv dQcI~ptuyentinhsac cho : . <Pi (gj) = OijVa C = Lc1 EBZ(g1,g2, ..., gm) Vi toan tv L la d- chuantac nen phuongtrinh: (LC1)L la nhOng ; III Lx =f - L/P j(f)gj j=1 (54) 26 conghi~mxthoamanbatdilngthUG: IIxllc1~N.llfllc (55) I Trong do N1kh6ngphl,lthu9Cf E C. Lay day {'tk}( ITkl~ 00 klti k ~ 00) saocho: STkLS-TkX ~ Lx vdix EC1co giacompact. Ky hi~uXklEinghi~mcua phuongtrinh(54) thee.man bat dilng thUG(55)vdi f(t)=go(t-'tk),trongdo goE C co gia compact. TLido suyratont<;lihamXoEc1thoamanphlidngtrlnh - Lxo =go va lidc IliQngIIxollc1~N.lIgolic Baygio,giasu f E C la hamtuyV. Khido phlidngtrlnh: LXk =akf vdi (akf)(t) =a(~)f(t) , k co nghi~mXktrongc1. Gidi hc;lncuaday{Xk}thu9Cc1va,Ia nghi~m cua phlidng trlnh Lx =f . DinhIy3 dliQCchungminhxong. TLidinhIV1- 3,suyradinhIVcdbansau : E>inhIV 4 : De loantUL la Fredholmthldieu ki~ncanva'dula tont<;1i loantungliQcbichi[ln: - -1 L : C ~ C1 ,VLEH(L) Chungminh: 1- Thuc%1n , I NeuL la FredholmthlloantuL la n-chuanlac. Dodo theo - dinh IV 1 thl phlidng trlnh : Lx =0 ,VL E H(L) chI co nghi~m kh6ng. Mi[ltkhac VIL GOngla d- chuan lacnentheodinh IV 3, phlidng- - trlnh: Lx=f ,VLEH(L) ,fEC 27 co It nhatmQtnghi~mtrongC1.Nhu v~yton t~iloan tunguQc bichi;}n - -1 L : C ~ c1 . 2- DEw NguQc I~i: - Neu L co loan tungu<;1Cbi chi;}nthl theo dinh Iy1 loantu L la n- chuan tElC(m~nhde A va B trongdinh Iy 1 la tudngdudn,g). ' Con tfnhFredholmcua loan tu L duQcsuy tv djnh Iy 2. Dinh Iy 4 duQcchu'ngminhxong. 28I

Các file đính kèm theo tài liệu này:

  • pdf3.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf2.pdf
  • pdf4.pdf
  • pdf5.pdf