XÂY DỰNG HỆ TÍNH TOÁN THÔNG MINH XÂY DỰNG VÀ PHÁT TRIỂN CÁC MÔ HÌNH BIỂU DIỄN
TRI THỨC CHO CÁC HỆ GIẢI TOÁN TỰ ĐỘNG
Đỗ Văn Nhơn
Trang nhan đề
Mục lục
Mở đầu
Chương_1: Biểu diễn tri thức và hệ giải toán dựa trên tri thức.
Chương_2: Mạng suy diễn - Tính toán.
Chương_3: Mô hình tri thức các đối tượng tính toán.
Chương_4: Mạng các C-Object.
Chương_5: Các ứng dụng.
Kết luận
Danh mục các bài báo có liên quan đến luận án
Tài liệu tham khảo
Phụ lục
39 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1904 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận án Xây dựng hệ tính toán thông minh xây dựng và phát triển các mô hình biểu diễn tri thức cho các hệ giải toán tự động, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
16
CHUaNG 2
M~NG SUY DIEN- TINH TOAN
2.1DANN~P
MQttrongnhungva'nd€ hi~nnaydangduQcquailtamcua"Tri Tu~Nhan
Tq.o"la nghienCUllcacphuongphapbi€u di~nvaxii'ly tri thuc.Trencos6d6
c6th€ tq.oranhungchuangtrlnh"thongminh" 6 mQtmucdQnaGd6.C6 nhi€u
phuongphapbi€u di~ntri thucdil duQcd€ c~pde'nva dil duQCap dl,lllg.Trang
chuangfiftychungtaxet de'nmQttruanghQpcuabi€u di~nva xii'ly tri thuctheo
ffiq.ngngunghla:"Mq.ngsuydi~nva tinhtoan". Cac ke'tquanghienCUllv€ mo
hlnhnaydilduQCtrlnhbaytrongcacbai baa [57],[63],[65]va [67].
Trongnhi~ullnh vlfc lingd1;lngta thuangg~pnhungva'nd~d~tra duoid~ng
nhusau:Chungtaphai thlfchi~nnhungtinh loan haysuydi~nra nhungye'uto'
dn thie'tnaGd6 tu mOtso'ye'ut6dil duQcbie'ttruoc.D€ giai quye'tva'nd€ nguai
taphai v~nd1;lngmQtso'hi€u bie't(tri thuc)naGd6 v~nhunglien h~giUacac'
ye'uto'dangduQcxemxet.Nhunglien h~chopheptac6 th€ suyra duQcmQtso'
ye'ut6tu giii thie'tdil bie'tmQtso'ye'uto'khac. Duoi day Ia mQtso'vi d1;lminh
hQa.
Vi du2.1:Giasatadangquailtamde'nmQtso'ye'uto'trongmQtamgiac,ch~ng
hq.n: 3cq.nha,b, c;3 g6ctuonglingvoi 3 cq.nh: a, ~,y;3 duangcaDtuong
ling:ha,hb,hc;di~ntichS cuatamgiac;naachuvip cuatamgiac;bankinh
duangtronnQitie'pr cuatamgiac.Giua 12ye'uto'trenc6 caccongthucth€
hi~nnhungm6i quailh~giupchungtac6 th€ giiii quye'tduQcmQtsO'va'nd~
tinhloand~tfa. Trangtamgiac c6 th€ k€ ra mQtsO'quailh~duoidq.ngcong
thucsailday:
. Lienh~giua3g6c: a+~+y=1t (radian). <'
17
. Dinh 1ycosin: a2=b2+C2 - 2.b.c.cosa;b2=a2+C2 - 2.a.c.cos~;
2 2 2
C =a +b - 2.a.b.cosy
a b c ~. ~=~
. Dinh 1ySin: sina =sinfJ; SillY =sinfJ' sina SillY
. Lienh~giuantl'achuviva3q.nh: 2.p=a +b +c
. C6ngthlictinhdi~nrichtheo3 c<;tnh(congthlicHeron):
S =.Jp(p - a)(p- b)(p- c)
. MQts6c6ngthlictinhdi~nrich:
S=a.hal2;S =b.hJ2; S =c.hc/2;S=p.r
D6i voi bai roangiclitamgiacvoi 12ye'ut6ducjcxemxet,ne'uxetcacd~tinh
di~nrichtamgiacvoi 3 ye'ut6duQcchotruocthl s6bai roanC1J.th€ 1ende'n:
c:z =220;do1achuak€ de'nnhungyelldu tinhroancacye'ut6khacnua,va
nhuthe's6bai roantinhrasera'tIOn.Ne'unhulingvoi m6ibai roantacaid~t
mQtthu~tgiai d€ giai quye'tthl khongth€ cha'pnh~nduQc.Tuy nhien co th€
tha'yding m~cdli co quanhi~ubai roanct,lth€ khacnhaunhungd€ giai quye't.
chungtachi c~nap d1J.ngmQts6congthucnaGdotrongs6 cacc6ngthucth€
hi~nnhungquailh~giuacacye'ut6dangducjcxemxet.Ne'uchungtacocach
d€ bi€u di€n va xii'1ycacye'ut6 va cacquailh~giua cac ye'ut6 thl co th€ tim
mQts6thu~tgiai cai d~tduQcd€ giai cacbai toanmQtcachhi~uqua.
Vi du 2.2:MQtv~tth€ co kh6i1uQngmchuy€n dQngth£ngvoi giat6ckhong
thayd6i1aa trongmQtkhoangthaigiantinhtuthaidi€m tl de'nthaidi€m t2.
V~nt6cband~ucuav~tth€ la VI, v~nt6c (] thai di€m cu6i 1aVb va v~nt6c
trungbinh1av. Khoangcachgiuadi€m d~uva di€m cu6i1a~s.Ltfc tacdQng
cuachuy€ndQng1af. DQbie'nthienv~nt6cgiua2 thaidi€m Ia ~v,vadQ
bie'nthienthai gian1a~t.Ngoaira con co mQts6 ye'ut6 khacnuacua
chuy€n dQngv~tth€ co th€ duQcquailtam.Tudngttfnhutrongvi d1J.2.1,d€
18
giainhungbaitmlnv€ ehuy€ndQngfiftychungtaphaisad\lngmQts6e6ng
thlielienh~giuacacy€u t6euaehuy€ndQng,eh£ngh~nnhu':
f =m * a; I1v=a*l1t; I1s =v*I1t;
2*v =VI +Vz; I1v=Vz- VI; I1t=tz-t];
Vi du 2.3:TranghoahQcchungtathu'ongphai sa d\lngcaephanlinghoahQed€
di€u che'caecha'tfiftytli'caecha'tkhac. Lo~i va'nd€ fiftyeiingehota mQt
d~ngtu'dngtl;inhu'trang2 vi d\l tren : Cho tnrocmQts6 eha'thoahQe,haytlm
cachdi€u eh€ ra mQthaymQts6cha'tnaGdo.
Noi toml~i,co nhi€u va'nd€ trangcaelInhvl;ielingd\lngkhaenhaud~tra
du'oid~ngmQt"m~ng"caey€u t6,trongdo cacye'ut6 co nhungm6ilienh~
(hayquailh~)ehopheptaco th€ suyra du'ejemQts6y€u t6 fiftytumQts6ye'ut6
khae.M6 hlnhm~ngsuydi~nva tinhtoanla mQtsl;ikhai quatehomQtd~ngtri
thliedungehovi~ebi€u di~ntri thlieva thi€t k€ caeehu'dngtrlnhgiaitoantlf
dQng,ch£ngh~nnhu'chu'dngtrlnhgiaicaelOpbai toantu'dngtl;inhu'trongcaevi
d\ltren.
:;:;: , , ,,' JI: ?
2.2M~NGSUY DIEN VA CAC VAN DE CO BAN
Trangm\lefiftychungtaxetmQtm~ngsuydi~ng6mmQtt~phQpcaebie'n
eungvoimQt?Pcaequailh~suydi~ngiuacacbi€n. Tranglingdl;lllge1,lth€ m6i
bi€n va giatrieuano thu'onga:nli€n voimQtkhaini~me\lth€ v~slfv~t,m6i
quailh~th€ hi~nmQtsl;itrithliev€ sl;iv~t.
2.2.1 Quanh~valu~tsuydi~n
ChoM ={XI,XZ,...,xm}1a Qtt~phejpcaebi€n co th€ la'ygiatri trongcae
mi€n xacdinhtu'dnglingD].Dz,...,Dm.D6i vdi m6iquanh~R c D]xDzx...xDm
trencae t~phQpDl,Dz,...,Dmta noi r~ngquail h~fifty lien ke'tcaebi€n
x],xz,...,Xm,vaky hi~u1aR(x],xz,...,xm)hayva:ndt la R(Xl.(kyhi~ux dungd€
19
chibQbie'n<XhX2,...,Xm». Ta sexetcaequailh~R(x)xacdinhmQt(haymQt
s6)anhx~:
fR,u,v: Du~ Dv,
trangdoU,vla caebQbie'nvau c x, vc x; Duva Dvla tichcuacacmi~nxac
dinhtu'dngling cuacacbie'ntrangu vatrangv. Quanh~nhu'the'duQcgQila
quanhf suyddn. Co th€ tha'yr~ngquailh~suydi€n R(x) co th€ du'Qcbi€u di€n
bdimQt(haymQts6) anhx~fR,u,voi u u v =x, va ta vie't fR,u,v:u ~ v, hay
vantatIa f: u~ v.
Cachky hi~utrenbaahamy nghlanhula mQtIUtJtsuyddn: tacoth€ xacdinh
haysuyraduQccacbie'nthuQcvkhibie'tduQccacbie'nthuQcu.Trangph~nsail
taxetcacquailh~xacdinhcaclu~tsuydi€n co d~ng:
f:u~v,
trangdoun v =0 (t~pding).Ngoaifa,trongtruonghQpc~nnoira tavie'tu(f)
thaychou, v(t)thaychov. Ta gQimQtquailh~la quanhf d6'ixungco h~ng
(rank)b~ngmQts6nguyendudngk khiquailh~do giupta co th€ tinhduQcK
bie'nba'tky tum-kbie'nkia(ddayx la bQg6mm bie'n<XhX2,"',Xm». 86i voi
::acquailh~khongph:iiIa d6ixungcoh~ngk, khonglamma'tinht6ngquat,ta
::0th€ giasaquailh~xacdinhduynha'tmQtlu~tf voit~pbie'nvaGla u(f)vat~p~
Jie'nra la vet);tagQilo~iquailh~n~ylaquailh~khongd6ixungxacdinhmQt
u~td§:n,haygQivantatla quanhf kh6ngd6'ixung.
~h~nxet: MQtquailh~khongd6ixungh~ngk co th€ duQcvie'tthanhk quailh~
chongd6ixungco h~ng1.Ne'ubi€u di€n mQtquailh~d6i xungco h~ngk
hanhcacquailh~d6ixungcoh~ngla I thls6quailh~coh~ngI b~ng:
C
m-k
C
km =mm m
Du'oidayla mQtvai vi dl,lv~cacquailh~suydi€n.
"
20
Vi du 2.4:quailh<%f giua3 goeA, B, C trongtamgiaeABC ehobdih<%thue:
A+B+C=180 (donvt:dQ)
Quanh<%f giua 3 goetrongmQttamgiae lIen day 1ftmQtquailh<%d6i xungco
h~ng1.Quanh<%ngybaahftm3 lu~tsuydi~n:
A, B =>C
A, C =>B
C, B =>A
Vi du 2.5:quailh<%f giuamh ehuvi p voi caedQdftieila3 e~nha,b, e:
2*p=a+b +e
Vi du 2.6: quail h<%f giua n bittn Xl, X2,..., Xn duQeehoduoi d~ngmQth<%phuong
trlnh tuyttntinh co nghi<%m.Trong truong hQp ngy f 1ftmQtquail h<%co h~ngk
b~ngh~ngeuamatr~nh<%so'eilah<%phuongtrinh.
2.2.2 M~ngsuydi~n
Tli SvtrlnhbftylIentacoth~neulendtnhnghiahlnhthueehom~ngsuydi~n
nhusau:
- Dinh nghia2.1:Ta gQimQtmc;mgsuydiln, vitttt~t1ftMSD, 1ftmQtea'utrue
(M,F) g6m2 t~phQP:
(1) M ={xj,xi,...,xn},1ftt~phQpcaethuQctinhhaycaeyttut61a'ygia tIt trong
caemi~nxaedtnhnftodo.
(2)F ={f1,f2,...,fm},1ftt~phQpcaelu~tsuydi~ncod~ng:
f :u(f)~ v(f)
trongdou(f) vftv(f) 1ftcaet~phQpconkhaer6ngeilaM saGeho
u(f)n v(f)=0.
B6i voi m6i f E F, taky hi<%uM(f) 1ftt~pcae bittnco lien h<%trongquailh<%f,
nghia1ftM(f) =u(f)u v(f).
"
21
Nh~nxetdng mQtm~ng(M,R) voi R la mQtt~pcacquailht%suy di@nclingco
th€ duqcxemnhuffiQtffi~ngsuydi@nbangcachthayt~pR boi t~pF g6mta'tca
caclu~tsuydi@nxac dinhboi cacquailht%suydi@n.
Vi du2.7:
Trangvi d\l2.40 tren,taco M(t) ={A,B,C}.
Trangvid\l2.50tren,taco M(t)={a,b,c,p}.
Trongvi d\l 2.60 tIeD,taco M(t) ={XI,Xz,...,xn}'
Vi du 2.8: M~ngsuy di@nchomQthlnhchii'nh~t.Vit%ctinhtoaDtIeDffiQthlnh
chii'nh~tlienquailde'nffiQts6ye'ut6cuahlnhchii'nh~tnhusail :
bI, bz:haic~nhcuahlnhchii'nh~t;
d : duongcheocuahlnhchITnh~t;
S : dit%ntichcuahlnhchITnh~t;
p :chuvi cuahlnhchii'nh~t;
trongdo m6ibie'nd~uco gia tq thuQct~pcac s6 thvcduong.Giii'acac bie'n ta
dabie'tcocacquailht%tinhtoaDsailday:
V~ mi;itsuylu~n,cac quailht%n:iy d~uco th€ xemla cac quailht%suydi@nd6i
xlingco h~ngla 1.Nhu v~yt~pbie'nva t~pquailht%cuaffi~ngn:iy la :
M ={bI,bz,d, s,p},
R= {fI.fz,f3}.
M~ng(M,R) n:iytuongling vOimqngsuydi@n(M, F) voi F la t~pcaclu~tsuy
di@nsailday:
bI. bz~ S
S,bz~ bI "
fl: S =bI * bz;
fz: p =2 * (bl +bz);
f3: dz z b Z.=bI + Z,.
22
S, bl =>b2
bJ, b2=>P
p, b2=>bl
p, bl =>b2
b), b2=>d
d, b2=>bI
d, bI =>b2
2.2.3 Caeva'nd~edbantrenm~ngsuydi~n
ChoffiQtffi'.lngsuydi€n (M,F)voiM lat~pcacthuQctinh(haycacbie'n)vaF
la t~pcacquailh~suydi€n haycaclu~tsuydi€n. Gia su c6 ffiQtt~pbie'nA eM
dfi duQcxac dinh(tucla t~pg6fficacbie'ndfi bie'ttruoc),va B Ia ffiQtt~pbie'n
bit ky trongM.
. Va-nd~1:C6 th€ xacdinhduQc(haysuyfa) t~pB tut~pA nhocacquailh~
trongF haykh6ng?N6i cachkhac,tac6 th€ tinh duQcgia tri cua cac bie'n
thuQcB voi giii thie'tdfibie'tgia tri cuacacbie'nthuQcA haykh6ng?
. Va-nd~2:Ne'ucoth€ suyraduQcB tuA thlquatrlnhsuydi€n nhuthe'naG?
TrangtruonghQpconhi~ucachsuydi€n khacnhauthlcachsuydi€n naGla
t6tnha-t?
. Va-nd~3: Trong truonghQpkh6ngth€ xac dinh duQcB, thl dn cho them
di~uki~ngi d€ c6th€ xacdinhduQcB.
Bai roanxacdinhB tuA trenffi'.lngsuydi€n (M,F) duQcvie'tduoi d'.lng:
A~B
trongd6 A duQcgQila giii thie't,B duQcgQila ffi\lCtieu(hayt~pbie'ncftnxac
dinh)cuabairoan.TruonghQpt~pB chig6mco ffiQtphftntu b,tavie'tviintiit
bairoantrenla:A ~ b. "
23
Vi<$ctlmWi giiii chobeiiloanleitlmramQtdayquailh<$guydi~nd€ co th€ ap
d1;1ngguyra duQcB tu A. f)i~unffyclingco nghla leitlm ra duQcmQtquatrlnh
Hnhloan hay guydi~nd€ giiii beiiloan. Trang vi<$ctlm Wi giiii cho beiiloan
chungta cffnxet ffiQtday cac quailh<$suy di~nhay cac lu~tguydi~nneiodo
xemco th€ suyra duQccacbie'ntumQtt~pbie'nchotrUDCnhodayquailh<$guy
di~nnffyhaykh6ng.Tit dochungtaco d!nhnghlasauday.
- Dinhnghia2.2:Giii sa(M,F)la mQtm(;lnguydi~nveiA leimQt~pconcua
M. MQtlu?tguydi~nu~ v duQcduQcgQileiapd1;1ngduQctrenA khiucA.
MQt quailh<$guydi~nduQcgQila ap d1;1ngduQctrenA khi no xac d!nhmQt
lu?t guydi~napd\lngcluQctrenA. ChoD = {f\, f2, ..., fd leimQtday cac
quailh<$guydi~n(haylu~tguydi~n)cuaffi(;lngguydi~n(M,F), tanoi dayD
leicipdlringdU:(Jctrent?PA khi veichi khi ta co th€ lffnluQtapd\lngduQccac
quailh<$f" f2,..., fkxua'tphattitgiii thie'tA.
Trang d!nhnghlatren, d?t : Ao =A, Al =Ao U M(fI), . . . , Ak =Ak-I U M(fk), vei
ky hi<$uAk leiD(A). TrangtruonghQpD leimQtday lu?t guydi~ntuyytav§nky.
hi<$uD(A) leit?P bie'nd(;ltduQckhi lffn luQtap d\lngcac quailh<$trongday D
(ne'uduQc).Co th€ n6i dingD(A) leisl,l'mdrQngcuat?PA nhoapd\lngdayquail
h<$D.
~
ThuattmintinhD(A) :
Nhap:M(;lng uydi~n(M,F), A eM,
daycac quailh<$guydi~nD ={ft.f1,...,fm}.
Xua't: D(A).
Thuatloan:
1.A' f- A;
2. for i=l to m do
24
if fj apdt,lilgduQctrenA' then
A' +- A' U M(fj);
3. D(A) +- A'
- Dinhnghia2.3:Ta noir~ngmQtdaycacquailh~suydi~nD ={fl, f2,...,fd
c F IamQt[O'igidi cuab~litminA --+ B ne"unhutaIftnluQtap dl,lilgcacquail
h~fj (i=l,...,k)xua'tphattugiathie"tA thlsesuyraduQccacbie"nthuQcB.
NoicachkhacD lamQtWigiaicuabaitoankhiD(A)::)B.BaitoanA --+B
duQcgQiIa gidi dl1r;fckhi nocomQtWi giai.
Loi giai {fI, f2, ...,fd duQcgQila [iJi gidi t6'tne"ukhongthSbo botmQtsf)
buocHnhtoantrongquatrlnhgiai,tilcla khongthSbobotmQtsf)quailh~
trongloi giai.Loi giaiduQcgQila mQt[O'igidingdnnh6tkhi noco sf)buoc
suydi~ntha'pnha't,tilc la sf)quailh~suydi~napdt;lilgtrangsuydi~nla it
nha't.
, , ?
2.3TIM LaI GIAI
Xetbai toanA --+ B trenm~lllgsuydi~n(M,F).Trangmt,lcfiftychungtase
trlnhbaycachgiai quye"tcacva'nd~cdbansailday:
- KhaosatHnhgiaiduQCcuabaitoansuydi~n.
- TimmQtlOigiiiit6tchobaitoansuydi~nvaphantfchquatrlnhsuydi~n.
2.3.1Tinhgiaidu'Q'cuabaitoaD
Trangmt,lcfiftychungtaneuleu mQtkhaini~mco lienquailde"nHnhgiai
duQcuabaitoan:baadongcuamQt~phQpbie"ntrenmQtm<;lngsuydi~n.
- Dinhnghla2.4:Chom<;lngsuydi~n(M,F),vaA la mQtt~pconcuaM. Co
thStha'ydug co duynha'tmQt~phQpB IOnnha'tc M saochobaitoanA--+B
la giaiduQc,va~phQpB fiftyduQcgQila baadongcuaA trenm<;lng(M,F).
MQtcachtIVcquail,cothSnoibaadongcuaA la st;!'mdrgngt6idacuaA"
25
trenrnZlngsuydi~n(M,F). K1'hi~ubaadongcua A 1aA, taco th€ k.i€m tra
d~dangcactinhcha'tlienquandSnbaadongtrongrn~nhd~du'oiday.
I Menhd~2.1.ChoA vaB 1ahai~pconcuaM. Ta c6:
I
I
I
I
I
I
(1) A -::J A.
~ -
(2) A =A.
(3) AcB=>AcB
- --
(4) AIIB c AIIB
- --
(5) AuB~AuB
D5i vOi tinhgi,Hdu'<Jccuabaitoan,taco th€ d~dangk.i€rnchungrn~nhd~sail:
Menh d~2.2.
(1) Bai toan A -+ B 1aghii du'<Jckhi va chI khi cac bai toanA -+ b 1agiai
du'<Jcvoi mQib E B.
(2) NSu A -+ B va B -+ C 1acac bai toan giai du'<Jcthl bai toan A -+ C cling
giai du'<Jc.Hdn mIa,nSu {fJ, f2,..., fm}va {gJ, gz, ..., gp}1ftn1u'<Jt1aWi
giaicuabaitoanA -+B va bai toanB -+ C thl {fJ, fz, ..., fm,gl, gz,...,gp,
}1am<)tWi giai cuabai toanA -+C.
(3) NSu bai toanA -+ B 1agiai du'QCva B' 1arn<)tt~pcon cuaB thl A -+B'
cling1arn<)Jbai toangiai du'<Jc.HdnmIa,nSu {fJ,fz, ...,fm}1arn<)tWi giai
cuabai toanA -+B thldocling1am<)tWi giai cuabai toanA -+B'.
, Tli khaini~mbaadongdanoid trentaclingco cacdinh11'sail:
Dinh Iv 2.1Tren rn<)trnZlngsuydi~n(M,F), bai toanA -+ B 1agiai du'<Jckhi va
chIkhi B cA.
Tli dinh11'fifty,ta co th€ k.i€m ITatinhgiai du'<Jcuabai toanA -+ B bang
eachtlmbaadongcuat~pA r6i xetxemB co baa hamtrongA haykh6ng.
Menh d~2.3: Chorn..., fd c F, A c M. D~t:
"
26
Ao = A, Al = Ao U M(fl), ..., Ak = Ak-I U M(fk). Ta c6 cacdi~usauday1a
tu'angduang:
(1)DayD apduQctrenA.
(2)Voi ffiQii=l, ...,k taco:
Card(M(fi) \ Ai-I) ~ r(fi) ne'u fi Ia quailht%d6i xung,
M(fi) \ Ai-I C veri) ne'u fj 1aquail ht%kh6ng d6i xung.
(ky hit%uCard(X) chi so'phftntacuat~pX).
Ghi chu: D1.;(avao ffit%nhd~2.3 ta c6 ffiQtthu~tloan d~ki~ffitfa tinhap d\lng
duqc cua ffiQtday quail ht%D tIeD ffiQtt~pbie'nA.
Dinh If 2.2Tren ffiQtffi?ngsuydi€n (M,F), gia sa A, B la hait~pconcuaM. Ta
co cacdi~usauday1awangQuang:
(1) BcA.
(2) C6 ffiQtday quail ht%D ={fI, f2,...,fd c F thoacacdi€u kit%n:
(a)D apd\lngduQctfenA.
(b)D(A) ::)B.
Chungffiinh: Gia sa c6 (1),tuc 1aB cA. Khi d6 bai loan A ~ B 1agiai duQc.
Do d6 c6 ffiQtdayquailht%{fI, f2,..., fd c F saochokhi ta1ftn1uQtapd\lngcac
quailht%fj (i=I,...,k)xua'tphattir gia thie'tA thl se tinhduQccacbie'nthuQcB.
D€ dangtha'yf~ngday {fbf2,...,fd fiftythoa cacdi€u kit%n(2).
Dao l?i, gia sac6 (2).Voi cacdi€u kit%nc6 duQcbdi (2)tatha'y{fj}1aWi
giai cuava'nd~Ai-I ~ Ai, voi ffiQi i =1,2,...,k. Tir ffit%nhd~3.2suyfa bai loan
Ao~ Ak 1agiai duQc.Do d6bai loanA ~ B cling giai duQc,suyfa B c A theo
dinhly 2.1.
Nhanxet :
- dayquailht%{ft.f2,...,fd trongdinh1ytren1affiQtWi giai cuabai loanA ~
B trenffi?ng(M,F).
"
27
- TrangWigiiii {it.f2,...,fd tacoth€ be)botnhungfi naomaM(fDc Di-I(A),
voi Di-I={it.f2,...,ii-d.
Dudidayla thu~troanrhophepxacdinhbaodongcuat~phejpA c M. Trang
thu~troann~ychungtathii'apd\lllgcacquanht%f E F d€ timd~nnhungbiEn
thuQcM co th€ suyra duejctirA; cu6irungseduejcbaodongcuaA.
Thuattmin2.1 timbaodongcuat~pA eM:
Nhap:
Xua't:A
M,;mgtinhroan(M,F),.A eM.
Thuatroan:
1. B *- A;
2. Repeat
B1*- B;
for f E F do
if (f d6ixung and Card(M(f) \ B) ::;;r(f)) or
( f khongd6ixung and M(f) \ B c v(f)) then
begin
"
B ~ B u M(t);
F ~ F \ {f}; II lo~if khoi leinxemxetsau
end;
Until B =Bl;
3.A *- B;
Gillchti : Trendaytad8:neutend?ctru'ngrho tinhgiiiiduejc uabai roantren
ffiQtm?ngsuydi6nvachIrathu~troand€ ki€m ITakhinaobairoanla giiiiduejc.
Ngoaira chungtase conneutencachd€ ki€m dinhgiii thi€t cuabai roand€
trongtru'onghejpbai roanchuadugiiithiEtcoth€ b6sungthemnEuduejc.
"
28
t3.2 LOighHcuabftitmin
(j trentadaneulen cachxacdinhtinhgiaidu'Qcuabai to<ln.Tie'pthea,ta
;etrlnhbaycach!lmraWigiiiichobaitoanA -+B trenm<;lngsuydi~n(M, F).
[ru'oche'ttu nhc1inxet saDdinh ly 2.2 ta co m<%nhd6 saDday:
vH~nhd~2.4:Day quail h<%suy di~nD la mN Wi giai cua bai to<lnA -+ B khi va
chi khiD apdvngdu'QctrenA vaD(A) :J B.
)0 m<%nhd6 tren, d€ t1mmQtloi giai ta co th€ lam nhu'saD:Xua'tphattu gia
hie'tA, ta full' ap dvngcacquailh<%d€ ma rQngd~ntc1ipcac bie'ndu'Qcxac dinh
du'Qcbie't);va qua trlnhn~yt<;lOra mQtSvIan truy6ntinhxac dinh trentc1ipcac
,ie'nchode'nkhi d<;ltde'ntc1ipbie'nB. Du'oiday la thuc1ittoan!lmmQtWi giai cho
,ai toanA -+B trenm<;lng(M,F).
rhuat tmin2.2 TIm mQtWi giai chob?titoanA -+B :
Nhap :M<;lngsuydi~n(M, F),
tc1ip gia thie'tA c M,
tc1ipbie'nc~ntinhB eM.
Xua't: loi giai chobai toan A -+B
Thuat toan :
1. Solution+-empty;II Solutionfadaycaequanh~seapd~ng~
2. if B c A then
begin
Solution_found+-true; II bienSolution_found=true
II khibai to<lnla giai du'Qc
gotobu'oc4;
end
else
29
Solution_foundf- false;
3. Repeat
Aold f- A;
Ch9n ra ffiQt f E F chlia xeffi xet;
while not Solution_foundand (ch9nduQcf) do
begin
if (f c16ixung and 0 <Card (M(f) \ A) ~ r(f)) or
(f khongd6ixung and 0::j:.M(f) \ A c v(f)) then
begin
A f- A u M(f);
Solutionf- Solutionu {f};
end;
if B c A then
Solution_foundf- true;
Ch9nraffiQtf E F chliaxemxet;
end; {while}
Until Solution_foundor (A =Aold);
4. if not Solution_foundthen
Bfii tminkhongcoWi giai;
else
Solutionla ffiQtloi giai;
Ghichu:
1.V~sau,khi c~ntrlnhbayquatrlnhgiai (haybfii gi::li)taco th€ xua'tphattu ..
Wi giai tlmduQcdlioid~ngmQtdaycacquanht%d€ xay d1;I'ngbaigiai.
30
2.Loi giiii (ne'uco)timdu'Qctrongthu~troantIenchu'achacEi mQtWi giiii
t6t.Ta co th@b6 sungthemchothu~troan(j tIenmQtthu~troand@tim
mQtWi giiii t6t titmQtloi giiii da bie'tnhu'ngchu'achac1ftt6t.Thu~troan
sed1,iatrendinh19du'Qctrinhbftytie'ptheoday.
DiDhIf 2.3ChoD={fI,f2,...,fm}1ftmQtWi gi.:licuabftiroanA ~ B. ling voi
m6i i=I,...,m d~tDi = {fI. f2, ..., fd, Do = 0. Ta xay d1,ingmQthQcac day con
SID'SID-I...,S2,SI cuadayD nhu'sau:
Sm=0 ne'uDm-Ia mQtWi giiii,
ne'uDm-Ikhong1ftmQtWi giiii,Sm= {rID}
Si= Si+I ne'uDi-I U Si+I1ftmQtWi giiii,
ne'uDi-I U Si+Ikhong 1ftmQtWi giiii,Si= {fduSi+1
voimQii =ill-I, m-2,...,2,1.
Khi dotaco :
(1) SmC Sm-IC ...C S2 C SI.
(2) Di-I u Si 1ftmQtloi giiiicuabftiroanA ~ B voimQi=m,...,2,1.
(3) Ne'uS'i 1ftmQtdayconth~ts1,icuaSi thiDi-IuS' i khongphiii1ftmQt
Wi giiii cuabftiroanA ~ B voi mQii.
(4) SIlft mQtWi giiii t6tcuabftiroanA -+ B.
~ '
Tit dinh19trentacomQthu~troantimWi giiii t6ttitmQtWi giiii dabie'tsau
day:
Thuat toaD2.3 TIm mQtWi giiii t6ttitmQtWi giiii dabie't.
Nhap:M,;lllgsuydi~n(M,F),
Wi giiii {fI.f2,...,fm}cuabftiroanA~ B.
Xua't: loi giai t5tchobai roan A ~ B
Thuatroan:
1. D +- {fI. f2,...,fm}; "
31
2. for i=rn downto 1 do
if D \ {fdla rnQtloi giai then
D~D\{fd;
3. D la rnQtWi gi£lit6t.
I Trongthu~tmln2.3co sad\lngvi~cki~rntrarnQtdayquailh~co ph£lila Wi
I giaihaykhong.Vi~cki~rnITan~yco th~duQctht!chi~nnhothu~tminsailday:
.Thuattoan ki~mtra 1mgiai chobai toan :
Nhap :M(,mgsuydi€n (M,F),
bai toanA~ B,
,.
daycacquailh~{fJ, f2,...,fm}.
Xua't: thongtinchobie't{fJ,f2,...,fm}coph£lila loi giai
cuabaitoanA->B haykhong.
Thuat toan:
1. for i=l to rn do
if (fj d6i Kung and Card(M(fj) \ A):::;r(fj)) or
( fj khongd6iKung and M(fj) \ A C v(fj)) then
A~Au M(fi);
2. if A 0 B then
{fJ, f2,...,fm}la Wi giai
else
{fJ, f2,...,fm}khongla loi giai;
dtrentadacornQtthu~toant6ngquatd~funloi gi£lit6tchobai toankhida
bie'truckrnQtWi gi£li.Th~tfa, taco th~apd\lngrnQtthu~toankhacd€ tirnrnQt
loi gi£lit6ttUrnQtloi gi£libie'ttrudcvdi mucdQtinhtoanit bon.Theo thu~toan
n~y,ta l~nhtQtxernxetcacquailh~trongt~ploi giaidabie'tva chQnra cac
32
quailht$d€ du'av~lOmQtWi giai moi saGehotrongWi giai moi n§y khongth€
botra bfftky mQtquailht$naG.
Vi du2.9:Bay giOtaxet mQtvi dl,lel,lth€ d€ minhhQaehocaethu~tOaDtren.
Cho tamgiaeABC co qnh a va2 goek@la ~,y du'<jcehotru'oe.
Hayxaedinh(haysuyfa)Seuatamgiae.
D€ HmraWigiaiehobaitOaDtru'oehe'taxetm(;ingsuydi6neuatamgiae.
M(;ingsuydi6nn§y g6m:
1.T~pbie'nM ={a,b, e,a, ~,y,ha,hb,he,S, p, R, r, ...},
trongd6 a,b,ela 3 e(;inh;a, ~,y la 3 goetu'dngling voi 3C(;inh;ha,hb,hela 3
du'ongeao;S la dit$ntichtamgiae;p la mYaehuvi; R la bankinh du'ongtrOll
ngo(;iitie'ptamgiae;rIa bankinhdu'ongtrOllnQitie'ptamgiae,V.v...
2.Cae quailht$suydi€n th€ hit$nboi caee6ngthliesauday:
f1 :
f2 :
f3 :
f4 :
f5:
f6 :
f7 :
f8 :
f9 :
flO :
ill :
f12 :
a +~+y =180
a b---
sina sinfJ
c b---
SillY sinfJ
a c---
sma smy
,.
p=(a+b+e)/2
S =a.ha/ 2
S =b.hb/ 2
S =e.he/ 2
S =a.b.siny/2
S =b.e.sina/ 2
S =c.a.sin~/ 2
S =.Jp(p- a)(p- b)(p- c) "
33
V.V...
I Ml,lclieucuabailoanIa suyraS (di~ntichcuatamgiac).
I
Theod€ bai tacogiii thie'tla:A ={a,p,y},va t~pbie'nc~nxacdinhla B =
{S}.
r Ap dl,lngthu~tloanrimWi giiii (thu~tloan2.2)se du<;1cmQtloi giiii chobai loan
I
Ila dayquailh~suydiSnsail:
I
. {ft.f2,f3,fs,f9}.
I Xua'tphattUt~pbie'nA, l~nlu<;1tapdl,lngcacquailh~trangloi giiii taco t~pcac
I bie'ndu<;1cxacdinhmarQngd~nde'nkhi S duQcxac dinh:
.
{a,p,y} fl) {a, p-,-y,a} f2) {a,p,y,a,b} f3) {a,p,y,a,b,c}
fs) {a,p,y,a,b,c,p} f9) {a,p,y,a,b,c,p,S}.
Co th~nh~ntha'ydng Wi giiii n~ykhongphiii la Wi giiii t6tVIcobuocsuydieD
I thua,ch~ngh(;lnla fs.Thu~tloan2.3se lQcra tU Wi giiii trenmQtWi giiii t6tla
{ft.f2, f9}:
{a,p,y} f'~{a,p,y,a} f2 ~{a,p, I, a, b} f9 ~ {a,p, y, a, b, S}.
TheoWi giiii n~y,taco quatrlnhsuydiSnnhusail :
r 2.3.3DinhIyv~sriphantfchquatrinhgiai
I Xet bai loanA -+ B trenm(;lngsuydieD(M.F). Trangcacml,lctrenda trlnh
baymQtsO'phuongphapd~xac dinhtinhgiiii c1U<;1ceuabai loan,timfa mQtWi
giiii t6tehobai loan.Trongml,len~ytaneulen ffiQteachxfiyd1,1'ngquatrlnhgiiii
tUmQtloi giiii dabie't.B6i voi mQtWi giiii, ra'tco khii DangmQtquailh~naodo
d~ntoi vi~etinhloanmQtsO'bie'nthua,tacla caebie'ntinhfa makhongcosa
"
buoc1: Xac dinh a (apdl,lngf1).
buoc2: '( Xac dinh b (apdl,lngf2).
buGC3: Xac dinh S (apdl,lngf9).
34
d1;1ngchocacbud'ctinh phia sau.Do do, chungtadn xemxet quatrlnhapd1;1ng
cacquailht$trongloi giiii va chitinhroancacbi€n th~t sv cftnthi€t choquatrlnh
giiii theoWi giiii. Dinh ly saudaychotamQtsv phanricht~pcac bi€n duQcxac
dinhtheoloi giiii va tren cd sd do co th~xay dvngqua trlnh suy diSn d~giiii
quy€t bai roan.
Dinh If 2.4Cho {fl. f2, ..., fm}la mQtWi giiii t6tchobai roanA --+ B trenmQt
mc;tngsuydiSn(M, F). D~t:
Ao =A, Ai ={fJ, f2, ..., fd(A), vd'imQi i=l,...,m.
Khi docomQtday {Bo,Br. ...,Bm-r.Bm},thoacacdiSukit$nsauday:
(1) Bm=B.
(2) Bi C Ai , vd'imQi i=O,l,...,m.
(3) Vd'imQii=l,...,m,{fdla Wi giiii cuabairoan Bi-I--+Bi nhung
kh6ngphiiila WigiiiicuabairoanG --+Bi , trongdo G la mQtt~p can
th~tsv myy cuaBi-I.
Chungminh:Taxaydvngday {Bo,Br....,Bm-hBm}bangcachd~t:Bm=B,
valingvd'im6ii <m, d~t:
Bi=(Bi+1 n Ai) u A/ ,
vd'iAi' la t~pcoit p~ftntli'nha'trongAi \ Bi"!"1saochofi+1apdl:mgduQctrent~p
hQp(Bi+1n Ai) u Ai'. Th~tfa,A/ coduQCxacdinhnhusau:
A/ =u(fi+l) \ Bi+1 n€u fi+1kh6ng d6i xung,
van€u fi+1d6ixungthl
Ai' =mQtt~pcang6mmax(O,tDphftnill'cuat~phQp(M(fi+d\Bi+l)n Ai
trongdoti=card(M(fi+I»-r(fi+l)- card( M(fi+d n Bi+1 n AD.
Voi cachxay dvngnftyta co th~ki€m ITaduQcrangday {Bo,Br. ..., Bm-r.Bm}
tboamancacdiSukit$nghitrongdinhly.
Ghichu: "
35
(1)Tit dint ly trentacoquatrlnhsuydi~nvaxacdintcacbie'nd~giiiib~iitoan
A -+B nhusau:
buck 1:tint cacbie'ntrongt~pBI \ Bo (ap dlJngfl).
buck2: tint cacbie'ntrongt~pB2\ BI (apdlJngf2).
V.v...
buckm:tint cacbie'ntrongt~pBm\ Bm-I (apdlJngfm).
(2)Tit chungmint cuadint1ytren,tacoth~ghiramQthu~toand~xayd1,1'ng
daycact~pbie'n{BI', ...,Bm-I"Bm'}roi nhaudn 1~n1uQtduQcxacdint
(hayduQcsuyfa) trongquatrlnhgiiiibaitoan(Bj' =Bi \ Bi-I) g6mcacbuck
chinhnhusau:
. xacdint cact~pAo,AJ, ...,Am.
. xacdint cact~pBm,Bm-],...,BI' Bo.
. xacdint cact~pBI', B2',...,Bm'.
Vi du2.10:Giii sa taco day{fJ,f2,f3}1amQtWi giiii t6tchobai toanA -+B,
trongdo:
A ={a],b], b2},
B ={b3},
fI, f2la cacquq.nht$d6ixungcoh,;mg2, f3la quailht$d6i xungco h~ng1,va
M(fl) ={ai, bI, CJ,dd,
M(f2) ={aJ, CI,bz,d2,e2},
M(f3) ={b],e2,b3}.
Dt;1'atheos1,1'phantkh quatrlnhgiiii trongdint ly trentaco :
Ao=A,
Al ={aJ,bI,b2,CJ,dd,
A2= {a],b],bz,CI,dJ, d2,ez},
A3= {aJ,bJ, bz,CJ,dl, d2,ez,b3},
"
36
B3= B,
B2= {bI.ez},
B I = {bI.ai, CI.bz},
Bo= {aI.bl, bz},
vacact~pbie'ncgnIgnluqttinhtoantrangb~ligiaichobaitoanla :
BI'= {cd,
B2'= {e2},
B3'= {b3}.
Tudotacoquatrlnhsuydi~ntheoWigiaitrennhusau:
:;:::, ,,' " ? ,,'
2.4MANG SUY DIEN CO TRQNG SOVA LO! GIAI TOI u'u
Va'nd~taquailtamtrongphgnngy la vit$cfun mQtWi giai t6tnha't(hayWi
giait6i u'u).Quannit$mv~Wi giai t6tnha'tphl,lthuQcvao vit$ctaquailtamde'n.
ffi\lCtieut6i u'unaod6i voi loi giai.Trongdinhnghia2.3,taquailHimde'nnhung
Wigiai voi so'buGCsuydi~nit nha'tmatagQila Wi giai ngftnnha't.Dotinhthutv
t6tcuat~phqps6,.t\i'nhientacoth€ tha'yding:ne'ubaitoanA ~ B lagiaiduqc
thlse t6nt'.limQtWi giai ngftnnha'tchobai toan.Tuy nhien,trongnhi~utruong
hqpapd\lngC\lth€ nhuht$suydi~ntinhtoanhay ht$suydi~ntrencacphanling
hoahQc,m6i lu~tsuydi~nco mQtthamso'tudngling d'.lidit$nchodQphuct'.lP
cualu~tsuydi~nhaychiphi.Nhungthamso'n~ydongvai traquailtrQngtrong
tinhhit$uquacualoi giai.Vi d\l,ne'usosanh2 c6ngthuctinhtoan
(1) a +b + C=2*p,va
(2)az=b2+CZ-2*b*c*cos(A)
Xac dinhCI (apdt,mg[I),
Xac dinhez (apdt,mg[2),
Xac dinhb3 (apdt,mg[3).
37
d~ehQneongthueehovi~ethlfehi~ntinhroan a thl eongthue(1) t5t hdnVI
trongeongthue(1) tachi sa dl,mgcaepheptinh+,- va*; trong khi a eong thue
(2)taphaitinhgiatrihamh1qngiaevatinhdin b~ehai.Trangph~nn~ytase
xemxetcaem~ngsuydi€n co trQngs5,trongdoungvoim6ilu~tsuydi€n co
ffiQtrQngs5 dl1dngtl1dngung,va loi giai t5i l1use dl1qed~e~p de'nrheanghla
Iat6ngtrQngs5tha'pnha't.Loi giai ngilnnha'tehinhla Wi giai t5i l1utrongtrl1ong
hQptrQngs5euacaclu~td~nd~ula 1.Thu~tgiaiA* la cdsad~tlmramOtloi
giait5il1utrongtrl1onghqpbairoanla giaidl1qc.
2.4.1Dinhnghiavakyhi~u
- Dinh nghla 2.5: Ta gQi mOtmt;lngsuydiln co trQngso'la mOtmo hlnh (A, D,
w)baag6m:
(1)mOt~phqpcaethuOctinhA,
(2)mOtt~phqpcaclu~tsuydi€n D, va
(3)mOthamtrQngs5dl1dngw: D -)- R+
M6i lu~td~nr thuOcD cod~ngr: u~ v,voi uvav lacaet~phqpconkhae
r6ngvaroi nhaueuaA. Ta gQiu la ph~ngia thie'teualu~tr va ky hi~ula
hypothesis(r).T~pv dl1qegQila ph~nke'tlu~ncualu~tr va ky hi~ula
goal(r).T~phqp attr(r) =hypothesis(r)u goal(r) duqegQi Ia t~phqp cac
thuOctinhtronglu~tr. M~ngsuydi€n co trQngs5 sedl1qcvie'ttiltla MSDT.
Ghitho:
. T~phqpD caclu~tsuydi€n co th~vie'tdu'oid~ngmOt~phqpcaequanh~
suydi€n mam6iquanh~suydi€n xacdinhcaclu~tsuydi€n co trQngs5
b~ngnhau.
. TrangmOtMSDT (A,D, w)taco(A,D) lamOtMSD.
38
Vi du 2.11:GQi A la t~ph<Jpg6m3 e<;lnheuamQttamgiae (a, b, va c), 3 goe
trong(A, B, va C), nth ehuvi p, di«%ntichS, 3 du'ongcaD(ha,hb,va he),va
caeye'uto'khaeeuatamgiae:
A ={A,B, C, a,b,e,p, S, ha,hb,he,...}.
Giii'acaethuQetinhtreneuamQttamgiaetaco caelu~tsuydi€n du'<Jexae
dinhboi caequailh«%suydi€n th€ hi«%nboi caeeongthlieli«%tke trongt~p
h<Jpsail day:
D= {
fI: A +B +C = 180;
B: b/sin(B)=e/sin(C);
f2:a/sin(A)=b/sin(B);
f4: a/sin(A)=e/sin(C);
fS: 2*p =a +b + e; f6:S=a*ha/2;
f8:S=c*hcl2;f7: S =b * hb12;
f9:S=sqrt(p*(p-a)*(p-b)*(p-c));
fI1: hb=a*sin(C);
fIO: ha=b*sin(C);
fI2: he=b*sin(A)
}.
Giii sacaepheptoan+,-, * va1du'<Jed~tchotrQngs6la 1,pheptinhdin b~e
2 co trQngs6la mQth~ngso'du'ongc1,va caetfnhtoanham1u'<Jnggiaeco
trQngs6la mQth~ngso'du'ongc2;trongdocl » 1vac2» 1(el vae21On
,.
bon 1nhi~u).Nhu'the'caequailh«%suydi€n co trQngso'tu'onglingnhu'sau:
w(fI) =2;
w(fS)=3;
w(f2) =wen)=w(f4)=2*c2+2;
w(f6) =w(f7) =w(f8) =2;
w(f9)=el +6; w(fIO)=w(n!) =w(fI2) =e2+ 1;
v.v.. .
Khi do taco (A, D, w) Ia mQtm'.ingsuydi€n eo trQngso'.
- Dinhnghia2.6:Giii sa(A,D, w)la mQtMSDT. ChoS={f"...,fdlamQtday
caelu~tsuydi€n va Ala mQtt~ph<Jpde thuQetfnh.B~t .,
39
S leA) =A u goal(fl)
=A
ne'uhypothesis(fl)c A,
ne'unguQc1?i.
Si(A) =Si-I(A) u goal(fi) ne'uhypothesis(fD c S i-I(A),
=Si-I (A) ne'unguQcl?i.
(voi mQi i =2,...,k).
S (A) =Sk(A),
w(S) =t6ngcuacacw(f),voif ch?ytrenS
=w(fl) +w(f2)+ ...+w(fk).
Ta gQiw(S)la trQngs6cuaS.
ChomQtbairoanA ~ B.Daycaclu~tsuydi€n SduQcgQila mQtWigi:iit6i
u'ucuabai roankhi n6thoamancacdi€u ki~nsauday:
(1)S la mQtWi giai cuabai roanA ~ B.
(2)TrQngs6cuaS nhobonho~cbAngtrQngs6cuaba'tky mQtWi giainao
khaccuabai roan.N6i mQtcachkhac la:
w(S)=mill{w(S')IS' la mQtlai giaicuabai roanA ~ B }
Nhanxet:TrangtruanghQphamtrQngs6la hamhAngthimQtWigiait6iu'u
chfnhla mQtlai giai voi s6buocsuydi€n tha'pnha't,tucla lai giainga:nha't.
rungc6th€ tha'yrAnglai giait6iu'ukh6ngnha'thie'tla duynha't.N6imQtcach
.. '
khac,bai roanc6 th€ c6nhi€u Wi giai t6i u'ukhacnhau.Tuy nhien,chungta
thuangchidn rimramQtWigiait6iu'umathai.
2.4.2LOigiiHvadQphuct~pcuaquatrinhfun lOigiai
XetbairoanH ~ G trenmQtMSDT (A,D, w),voiH vaG la caet~pconcua
t~pthuQctfnhA. Bay cungla mQtbai roantren m?ngsuydi€n (A, D). Tli nhii'ng
ke'tquaduQCtrinhbaytrongcacml,lctruoctaco th€ t6mta:tquatrinhrimmQtWi
giaitheophudngphapsuydi€n tie'nquathu~tgiai duoiday:
40
ThuattoaD2.4
Bu'oc1:TIm mQtWi giai.
Khi G chuabaa hamtrongH ta thvchi<$nqua trlnh l~pcho cacbuoc duoi
day:
Buoc1.1:TIm lu~trED co th§ ap d1;lngduQcd§ suyra caethuQCtinhmOi,
tlicla hypothesis(r)baahamtrongH nhunggoal(r)kh6ngbaahamtrong
H.
Buoc 1.2:N€u vi<$ctlmki€m d buoc 1.1tha'tb'.li(kh6ngHmduQclu~tr nhu
mongmu6n)thlk€t thucvoi k€t quala: bai roankh6ngco Wi giai.
Buoc1.3:NguQcl'.lithlb6 sungthemgoal(r)vaoH va ghinh~nr vaodanh
sachcaclu~tdffduQcapd1;lng.
Bu'oc2:RutgQnWi giai.
Gia saS ={rj,..., rp}la mQtWi giai (n€u co) tlmduQctrongbuoc 1.Ta thve
hi<$ncaebuoesauday:
Buoe2.1:G' +- G\H;
Buoe2.2:for k:=pdownto1 do
if (goal(rk)~G')then
Lo'.lirkrakhoi danhsachS
\.
else
G' +-(G' \ goal(rk))u (hypothesis(rk)\ H)
Menh d~ 2.5 Thu~t roan 2.4 eho Wi giai la dung va co dQ phue t'.lP la
O(lAl.lDl.min(lAI,IDI) ).
Trangcaeeaid?t e1;lth§ taco th§ sa d1;lngthemcaequi tcleheuristicsd§ tang
themhi<$uquaehovi<$etImloi gi:H.
2.4.3 TIm 1mgiai t6i du
"
41
Trongm1,lcnilytasexemxetva'nd~timWi giait6iu'uchobftiroanH ~ G
trenmN MSDT (A, D, w). Cachtie"pc~nde giai quye"tva'nd~nily 1ftdl;latren
thu~tgiaiA*.De co theapd1,lngthu~tgiainilychungtacilnco mQtbi€u di~n
thichhQpchokhonggiantr<;lngthaicuabftiroanclingnhu'choyell cffucuabfti
roan.
- }(hong iantrangthaicuabftiroan:XetbftiroanH ~ G tren mQtMSDT (A,
D,w).Voim6ilu~tr mfttacoth€ apd1,lngtrenH desuyranhungthuQctinh
moi(nghIaIa hypothesis(r)baohftmtrongH nhu'ngoal(r)thlkhongbaahftm
trongH) sed~ntoimQtt~pthuQctinhmoiH' =H u goal(r).Ta noirangr Ia
mQtet;mhn6i tit dlnhH de"ndlnhH'. Nhu'the",t~phQpg6mta'tca cact~pcon
(haydlnh)H' cuaA saochoco mQtdayS g6mcac lu~t(hay c<;lnh)thoaman
di~uki~nH' =S(H),clingvoicacc<;lnhtrongcacdaySse chotamQtkhong
giantr<;lngthai cua bfti loanco d<;lngd6 tN. Han nua d6 thi nily co trQngso'
du'Qcdinhnghlabdi: trQngso'cuac<;lnhr (tuc1ftmQtlu~tsuydi~n)1ftw(r).D6
thico trQngso'nily se du'Qcky hi~u1ftGraph(H~G). Tll'cachxay dl;lngd6thi
cuabftiloantaco m~nhd~sailday:
Menh d~2.6:
(1)MQtdayS g6mcac lu~t1ftmQtloi giaicuabfli loanH ~ G khi vftchikhiSift" ,
mQtlQtrinhtrend6 thiGraph(H-+G)n6ititH de"nS(H) vftS(H) ~ G.
(2)DQdfticuamQtlQ trlnhS trend6 thiGraph(H-+G)1ftw(S), trQngso'cuadanh
sachlu~tS trenMSDT (A,D, w).
Tll'm~nhd~nily,vi~ctlmWi giai t6i u'uchobfli roanH-+G tu'angdu'angvoi vi~c
tlmmQtdu'ongdi ng~nnha'trend6thiGraph(H-+G)tll'H de"nmQtdlnhm1,lclieu
H' thoadi~uki~nH' chuaG. D6i voi m6idlnhN trend6thi,di.it
heN)=mill {w(r)Ihypothesis(r)eN}
42
tuchl heN)la trQngs6nhanh[{tcuacaclu~tapd\lngdu'QctrenN. GiatriheN)
nilyco th€ xemla mQtu'oclu'QngcholQtrlnhtuN de"nffiQtdInhm\lctieu.Tli do
chungtaco th€ vie"tthu~tgiaitlmWi giai t6iuuchobai toaDnhu'sail:
Thuat toaD2.5
Bu'6c1:Khdi t(;lOtr(;lngthaixu[{tphat.
Open~ {H}; II danhsachdInhmdbandiluchIcodInhxu[{tphat
Close~ {};II danhsachdInhdong
g(R) ~ 0; II dQdai lQtrlnhde"nH la 0
f(R) ~ h(R);11dQdailQtrlnhu'octinhtUH de"nm1;lctieu la h(R)
found~ false; II bie"nki€m traquatrlnhHmWi giai
Bu'6c2:Th1;l'chi<$nquatrlnhl~p d€ tlmWi giai t6i uu.
While (Open:1={})do
Begin
Bu'oc2.1: ChQnffiQtdInh N trongOpen voi u'octinh du'ongdi f nha
nh[{t.
Bu'oc2.2:Chuy€n N tudanhsachOpensangdanhsachClose.
Bu'oc2.3:if (N la ffiQtm\lctieu)then
,. Begin
Found~ true; Break; II Ke"tthucquatrlnhl~p
End
Bu'oc2.4:else II N kh6ngla ffiQtm1;lctieu
Begin
Duy<$tquacacdinhke"S cuaN (Wc la co clingr n6i N va S) ma S
~Close,lingvoim6iS taxetcactru'onghQpsail:
1. S ~Open:Tinh
g(S)=g(N)+w(r); f(S)=g(S)+h(S); "
43
B6sungS vaoOpen;
2. S E Open:
If g(N) +WeT)<g(S)then
Begin
g(S)+-g(N) +WeT);f(S) +- g(S)+h(S);
C~pnh~tthongtinv~dinhke'tntoccuaS tren19tdnh;
end
End
End II Ke'tthucvongl~pwhile
Bu'oc3:Ki§m ITake'tquavi~ctlmkie'm.
If Found then Ke'tquala tlmduQCWi giai t6i u'uva thie'tl~ploi giai
Else Ke'tqualabaitmlnkhongcoWigiai.
Menh d~2.7 Thu~ttmln2.5 cho loi giai la dungva co d9 phuct~p
O(1A12.IDI2).
Vi du 2.12:Gia sa taco m~ngsuydi€n co trQngsO'(A,D, w) nhusail:
A ={A,B, C,a,b,c,p,S,ha,hb,hc}.
D ={fl: A +B +C =180;
B: b/sin(B)=c/sin(C);
~
f2: a/sin(A)=b/sin(B);
f4: a/sin(A)=c/sin(C);
f5: 2*p =a +b +c; f6:S=a*ha/2;
f8:S=c*hc/2;n: S=b* hb/2;
f9: S =sqrt(p*(p-a)*(p-b)*(p-c));
fl1: hb=a*sin(C);
flO: ha=b*sin(C);
fl2: hc =b*sin(A).
}.
w(fl) =2;
w(f5)=3;
w(f2)=wen)=w(f4)=2*c2 + 2;
w(f6) =wen) =w(f8) =2;
w(f9)=c1+6; w(flO) =w(fl1) =w(fl2)=c2+1. '"
44
Trangdoc1vac2lacach~ngs6dudngvoic1» 1vac2» 1.
Xet bai roanH -+G voiH ={a,b,B}va G ={S}.Tren m~ngsuydi€n (A,
D), n€u apd\lngthu~troan2.4taco th@tlmduQcmQtWi giai 5 ={f2,fl, n,
f5, f9}. Tren m~ngsuydi€n co trQngs6 (A, D, w) Wi giai 5 co trQngs61a
w(S)=4*c2+c1+ 15.Ap d\lngthu~troan2.5d@tlmWi giai trenm~ng(A,
D, w) taco th@tlmduQcmQtWi giiii t6i u'u5' ={f2,fl, flO, f6}vdi trQngs6
law(5')=3*c2+7.
,.. , ,.. '" '" ?,..~
2.5T~PH<)PSINH VA VI~C KIEM DfNH, BO SUNGGIA THIET
Trongml,lcn~ysexemxetv6svthuahaythi€u d6ivdigiathi€t cuabairoan
H -+G trenmQtm~ngsuydi€n (A,D) vatrongtruonghQpc~nthi€t thltlmcach
di6uchinhgia thi€t H. Trudch€t tadn xet xembai roanco giai duQchay
khong.TruonghQpbairoangiaiduQcthlgiathi€t la duoTuynhiencoth@xayra
tlnhtr~ngthuagia thi€t. f)@bi€t duQcbai roanco th~tsv thuagia thi€t hay
khong,tacoth@dvavaothu~troantlmffiQtsvthugQngiathi€t sailday:
Thuattoan: TImmQtsVthugQngiathie'tcuabairoan.
Nhap:M~ngsuydi€n (A,D),
Bai roanH-+ G giaiduQc,
Xua't: t~pgia thi€t ffidiH' c H t6i ti@uIDeothli tv C.
~ '
Thuat roan:
Repeat
H'+-H;
for x E H do
if H - {x}-+G giaiduQcthen H +-H - {x};
Until H =H';
45
Trangthu~to(lntrenne'ut~pgia thie'tmoiH' th~tst;tbaahamtfongH thlbai
roanbi thitagia thie'tva taco th§ bot ra tit gia thie'tH t~phQpcacbie'nkh6ng
thuQcH' , coi nhuIa gia thie'tchothita.
TruonghQpbairoanH ~ G lakh6nggiaiduQcthltanoigiathie'tH thie'u.
Khidocoth§di€u chinhbairoanb~ngnhi€u cachkhacnhaud§ chobairoanla
giaiduQc.Ch~ngh~ntacoth€ sadl:lngmQts6phuongansailday:
phu'dngan 1: TImmQtA' c M \ (A u B) t6i ti§usaGchobaadongcuat~p
hQpA'u A chliaB.
phu'dngan2 :Khi phuongan1kh6ngth§tht;tchi~nduQcthltakh6ngth§chI
di€u chinhgiathie'tel§chobairoanla giaiduQc.Trangtinthu6ngn~y,ta
phaibo botke'tlu~nho~cchuy€n botmQtph~nke'tlu~nsanggiathie'td§
xemxetl~ibairoanrheaphuongan1.
Khai ni~mt~phQpsinhvaphuongphapHmmQtt~phQpsinhtrenmQtm~ngsuy
di~nla co sd chovi~cphattri§n cac thu~troangiai quye'tva'nd€ ki§m dint gia
thie'tcuabairoansuydi~n.HonlllIavi~ckhaosatv€ t~phQpsinhclingIa n1Qt
va'nd€ duQcd~tramQteachtt;tnhientrenm~ngsuydi~nnh~mtimfa mQt~p
hQpt6i thi§ucacthuQctint va caclu~tsuydi~nsinhfa ta'tca caethuQctint
khac.
'I
2.5.1 Khai ni~mt~phQ'psinh
- Dinh nghla2.7:Cho (A,D) la mQtm~ngsuy di~n.MQt t~pthuQctint SeA
duQcgQila mQttqpht;Jpsinhcuam~ngsuydi~nkhi taco baadongcuaS tren
m~nglaA,nghiala S =A.
Vi du2.13:Xetm~ngsuydi~n(A,D) voiA ={a,b, c,A, B, C, R, p, S}g6mcac
bie'ns6tht;tcduongvaD la t~phQpcaclu~tsuy di~ntuonglingcuacacquail
h~suydi~nth§hi~nbdicacc6ngthlicsailday:
'"
46
f1:A+B+C=n f2: a/sin(A)=2*R
f4: c/sin(C)=2*R0: b/sin(B)=2*R
f5: a +b +c =2*p
f7: b2=a2 +C2 - 2*a*c*cos(B)
f6: a2=b2+C2- 2*b*c*cos(A)
f8: C2=b2 + a2- 2*b*a*cos(C)
f9:S=sqrt(p*(p-a)*(p-b)*(p-c»
M(;mgsuydi~nnfiyco mQtt~phqpsinhla T ={a,A, B}vatuT tasuyraduqcD
nhocaclu~tsuydi~nsail:
A, a ::::>R; A, B ::::>C; R, C ::::>c; R, B ::::>b; a, b, c ::::>p; a, b, c, p ::::>S
Tli dinhnghlav~t~phqpsinh(j trentacocactinhchitsail:
(1)Ne'uS IamQtt~phqpsinhtrongmQtm~ngsuydi~nvaSeT thiT cfingla
mQt~phqpsinh.
(2)Ne'uS Ia mQtt~ph<;1psinhtrongm~ngsuydi~n(A, D) vaD' la mQtt~p
hqpmC1rQngcuaD, nghlala D cD', thi taclingcoS la mQtt~ph<;1psinh
cuam?ngsuydi~n(A, D').
Hi6nnhienlam6im~ngsuydi~nd~ucot~ph<;1psinh.Vin d~machungtaseo .
khaosatIii timmQtt~phqpsinh.
2.5.2 TIm t~P hQ'psinh
Trongmt,lcnfi¥se trinhbaycachtimmQt~p hqpsinhkh6ngtfimthuongvoi
s6phfintUcangit cangt6tcuam~ngsuydi~n.Truoche't,taco th6timmQtt~p
hqpsinhb~ngphuongphapthtl'dfinduqcth6hi~nbC1ithu~toansailday:
Thudt tmin2.6:TIm mQtt~phqpsinhStrong m?ngsuydi~n(A,D).
Buoc1:S +- {} II B~tchoSband~ula r6ng
Bu'oc2:Tinh baadongClosure(S)cua~p h<;1pS.
Bu'oc3:Ki6m ITasosanhClosure(S)vaA.
If Closure(S)=A then Ke'tthuc
..
47
Else
Begin
ChQnffiQtphffntiYx E A-S; S +- S u {x};
QuayI?i Bu'ac2;
End
Thu?t tmin nffy se cho ta mQt t?P hejp sinh vOi dQ phuc t?P
O(1A12.IDl.min(lAI,IDI)),dodQphuct?P cuapheploant?PhejplIen cact?Phejp
thuQctinhcuaA la O(IAI)vadQphuct?Peuathu?tloantimbaodongeuamQt
t~phejptrenm?ngsuydi€n (A,D) la O(lAI.IDl.min(lAI,IDI)).
Ta co th€ xay d1;1'ngmQtthu?tloant6thonthu?tloan lIen b~ngeachthie'tI?p
ffiQt"bi€u d6 (hay d6 thi)phanea'p"euamQtm?ngsuy di~n.Kh6ng lam ma't
tinht6ngquattaco th€ giasll'caelu?t suydi~ncophffnke'tlu?n g6mI phffntit
- Dinhnghla2.8:ChomQtm~lllgsuydi€n (A,D) mam6ilu?tsuydi~ncophffn
ke'tlu?n g6m I phffntll'.Ta xay d1;1'ngmQtd6 thidinhhuangGraph(A,D) nhu'
sail:
(1)T?phejpdlnhg6mta'teacaethuQetinhvata'teacaelu?t suydi~n,tuela
AuD.
(2)Ung vai m6i lu?t r : hypothesis(r)-+ goal(r)ta thie'tI?p mQtt?P hejp
~ '
edges(r)g6m ta'teelcae cling dinh huang (x, r) va (r, y) thoa x E
hypothesis(r)va y E goal(r)mQteachtudngling.T?p hejpcaee?nheuad6
thiGraph(A,D) la hejpta'teelcaet?Phejpedges(r)vai r eh?ytrongt?PD.
Trangtru'onghejplIen d6thiGraph(A,D) ta co degin(x):::;1vai mQix E A, thl
taco th€ hi€u ngffmcaedlnhthuQcD va xetmQtd6 thithugQnGraphD(A)
g6m:
(1)T?p hejpdlnhla t?PhejpcaethuQetinhA.
"
48
(2)T~phQpc~nhg6mta"tcacaccling(x,y)thoamandi~uki~n:Co(duy
nha"t)mQtlu~tr saGchogoal(r)=y va x E hypotheis(r).
Vi du 2.14:M~ngsuydi~n(A, D) vaiA ={a,b, c, A, B, C, R, p, S} vaD la t?P
caelu~tsuydi~nsail:
rl: A, a=>R; r2:A, B =>C; r3:R, C =>c;
r4:R, B =>b; r5:a,b,c =>p; r6:a,b,c,p ~ S
se eo d6thiGraph(A,D) co t~phQpdlnh13
Au D ={a,b, c, A, B, C, R, p, S, rl, r2, r3, r4, r5, r6}
vat?PhQpcacclingla
{(A,rl), (a,rl), (rl,R), (A,r2), (B,r2),(r2,C),
(R,r3),(C,r3),(r3,c),(R,r4),(B,r4),(r4,b),
(a,r5),(b,r5),(c,r5),(r5,p), (a,r6),(b,r6),(c,r6),(p,r6),(r6,S)}
Trend6thiGraph(A,D)m6ix EA codungmOtclinghuangtai,vad6thithu
gQnGraphD(A)cot~pdlnhla
A ={a,b, c, A, B, C, R, p, S }
va t~P hQpc~nh13
{(A,R),(a,R),(A,C), (B,C), (R,e),(C,c), (R,b), (B,b),
(a,p),(b,p),(c,p), (a,S),(b,S),(c,S),(p,S)}
~ .
- Dinhnghla2.9:Ta gQimQtd6thidinhhuangddngiankhongcochutrlnhla
mOtbiiu d6phancap(haymOtd6thiphanea'p).Blnhx cuad6thimakhong
co eunghuangtai seduQcgQila dlnhmuc0, va tavie'tlevel(x)=O.D6ivai
caedlnhxkhac,tadinhnghlamOteachquin?pmuccuanovamuccuadlnh
nftyco th€ duQcchobdi
level(x)=max {level(a)I co clingn6i a vai x} + 1
49
Nhu'the't~ph<Jpdlnheuabi6ud6phanea'pdu'<Jesilpxe'pthanheaeroue,voi
mue0 euabi6ud6 la t~ph<Jpta'tea eaedlnhmue0, mue 1 euabi6ud6 la t~p
h<Jpta'teaeaedlnhmue1,V.v...
Vi du 2.15:D6 thi GraphD(A)trongvi d\12.14,du'<Jeve tronghlnh 2.1, la mQt
bi6ud6phanea'pvoi 5 muela:
Level0={a,A, B}, nghla13level(a)=level(A) =level(B) =O.
Levell ={R, C}, nghla 13leveleR)=level(C) =1.
Leveh={e,b},nghlala level(e)=level(b)=2.
Leveh={p},nghlala level(p)=3.
Leve14={S},nghlala level(S)=4.
level4
level3
level2
level1
IDnh 2.1 MQtbi6ud6phanea'pg6m5 roue.
Tu caedinhn&hlatrentae6th6d€ dangchungminhcaemt$nhd€ sailday:
Menh d~2.8:Cho m~ngsuydi€n (A,D). Gia sa d6 thiGraph(A,D) e6d6thi thu
gQnGraphD(A).Khi a'y,ne'uGraphD(A)la mQtd6 thiphanea'pthlt~ph<JpS =
Levelog6mta'teacaedlnhmue0 seehotamQtt~ph<Jpsinheuam~ngsuy
di€n. Honnii'atrongtru'ongh<Jpn~ytacon e6:
(1)S la t~ph<Jpsinhnhanha'trenm~ngsuydi€n.
(2)T~pD 13t~ph<Jplu~tt6i thi6ud6Level0sinhraA. N6i mQteachkhae,
ne'uD' 13mQtt~ph<Jpconth~tsl!euaD thlS kh6ngphaila t~ph<Jpsinh
trenm~ngsuydi€n (A,D'). ..
50
Dinh If 2.5:Cho m~ngsuydi~n(A,D). taco:
(1)SeA Ia mQtt~ph<;1psinhtrenm~ngsuy di~nkhi va chi khi co mQtt~p
Iu~tD' c D saDchoGraph(A,D') Ia mQtd6th!phanca'pva S chilat~p
h<;1pcacdinhmilc0cua06th!ngy.
(2)T6n t~imQtt~pIu~tD' cD saDchoGraph(A,D') Ia mQtd6 th!phanca'p.
Tli o!nhIy tren ta co th€ tim mQtt~phQpsinhtrenm~ngsuydi~n(A, D) b~ng
eachxaydl;fngmQtthu~troantimmQtt~pIu~tD' saDehoGraph(A,D') Ia mQt
06thiphanca'p,va Ia'ycacoinh(jmilc0cuad6th!ngy.Cachlamngyseou'Qc
apdvngtrongvi<$etim mQtsl;fb6 sunggiathie'tehobai roansuydi~nmQtMSD
trongtrliongh<;1pbai roanthie'ugia thie't.Chungta cling co mQtthu~troannhu'
sau:
Ihnat tmin 2.7:TIm mQtt~ph<;1psinhS trongm~ngsuy di~n(A, D) b~ngcach
xay dl;fngmQtm~ngcon (A', D') voi A' =A va coGraph(A',D') Ia mQtbi€u
06phanea'p.
Bu'oe1: A' ~ {}; D' ~ {}; S ~ {};
Bu'oe2:For rED do
If not (attr(r)c A') then
Thl;fehi<$nvi<$e~pnh~tA', D' va S rhea2 tru'ongh<;1pnhu'sau:, '
. Tru'ongh<;1p1:goaI(r) ~A'
S ~ Su (hypothesis(r)-A');
. Tru'ongh<;1p2: goaI(r) E A'
Lo~ir' (ne'uco)trongD' ma goal(r')=goal(r);
Lo~i mQts6 Iu~tsuyfa cae x E hypothesis(r)o€ baa dam
tinhphanea'peuabi€u 06va e~pnh~tS.
A' ~A' uattr(r); D' ~D' u {I};
Blioe 3: S ~ S u (A - A'); A' ~ A <i
51
;Ghichu:
. Nh~mhu'ongtoivi~cxacdinhmQt~ph<Jpsinhvois6phfintitnhovavoidQ
phuct~pthffptaco th~sud~ngthemcacquitifcheuristicb6sungthemcho
quatrmhxaydvngmQtm~ngsuydi€n conmad6thi cuano co d~ngmQt
biSud6phanca'p.
. Tit phu'ongphaptlmmQtt~phQpsinhtrangmQtm~ngsuydi€n dffdu'Qctrlnh
bay(j trentaco thSphattriSnmQtthu~tloantu'ongtv <istlmmQtt~phQp
sinhchU'amQt~ph<JpthuQctinhchotru'oc.
2.5.3 B6 sunggiathie"tchobftitoaDsuydi~n
Trongm~cnfiytasexemxetvi~cb6sunggiathie'tchobai loanH ~ G tren
mQtm~ngsuydi€n (A, D) trongtru'onghQpbai loan kh6ng giai du'<JC.Y tu'dng
chinhd day1atie'nhanhmQtquatrlnhxay dt;r'ngmQtbiSu d6 phancffpvoi t~p
hQp<iinhchU'aG va u'ulien chovi~cd~tcacphfintit cuaH d mU'cO.Thu~tloan
cobandu'oidaychotamQteachd~tlmmQtt~pthuQctinhH' saGchoH n H' =
0 va bai loan (H u H') ~ G 1agiai du'<Jctrenm~ngsuydi€n.
ThuattoaD2.8:Chom~ngsuydi€n (A,D) va bai loanH ~ G kh6nggiai du'QC
(kh6ngcoWigiai).TImH' saGchoH n H' =0 va bailoan (Hu
H') ~ G 1agiai du'<Jc.
Bu'oc1:A'+-H; D'~{}; G+-G\A';
Bu'oc2:while (G 7: {}andD 7: {})do
2.1:Lffy ramQtr tuD vac~pnh~tD.
2.2:if hypothesis(r)n G 7:{}orattr(r)c A' then Bo quar
2.3:else Them r VaGD' va b6 sungattr(r) VaGA'va trangtru'onghQp
goa1(r)E A' thl1o~ira r' titD' (ne'uco) thoagoal(r')=goal(r)va
...
52
lO(;limQts6 lu~tsuy ra cac x E hypothesis(r)d€ bao dam tinh
phanca'pcuabi€u d6.
2.4:G ~ G - A'
Bu'oc3: if G * {}thenKe't thucvoi ke'tlu~n:Va'nd€ b6 sunggia thie'tla
khonggiiii quye'tdu'qc
Bu'oc4: else (Trangtru'onghqpn~yGraph(A',D')co bi€u d6 phanca'p
tu'onglinghI GraphD.A')GQiLalamuc0cuabi€u d6GraphD.A'.f)~t:
H' ~La-H.
Menhd~2.9: Thu~tloan2.8d€ timstfb6 sunggiathie'tchobaisuydi~nla
dungva codQphuct(;lp la O(IAI./DI).
Ghi chu: Ta co th€ sii'dlJng themcac qui lac heuristictrongbuoc2 cua thu~t
loantrennh~mgiiim thi€u s6 thuQctinh(j muc0 va/hayd€ u'ulien chQnItfa
cacthuQctinhdu'qcu'ulien chovit$cdungb6 sunggiii thie'tcuabai loan.
2.6M~NG SUY DIEN-TINH TOAN
Trongph~nn~ychungtaxetde'nmQtmohinhm(;lngsuydi~nlienquade'n .
tinhloan,duqcgQi la m(;lngsuydi~n- tinhloan, ma trangnhi€u ling dlJng no
chotamQtstfbi€u di~nd~ydu va thichh<;Jphoncuatri thucc~nthie'tlien quail
de'ncacva'nd€ ha~cacbai tminc~ngiiii quye't.Cach bi€u di~nnhuv~yse th€
hit$nmQtcachttfnhienca'utruccuatri iliac,va giuptathie'tke'cacthu~tgiiii
loantlJ'dQngmQtcachd~dangvoi nhungloi giiii tu'ongminhphilh<;Jpvoi cach
fighTva lamcuaconnguoitrongcac lingd\lllggiiii loan,d~cbit$tla cacht$th6ng
h6 trq cho vit$chQct~pva giiing d(;lY.Nhungph~nm~mnhu'the'dn co cach
bi€u di~ntri thuctlJ'nhienva thichhqpchovit$cthie'tke'cacmodungiiii loan
choWigiiiiphuhqpvoihQcsinhclingnhucacmodungiiii thich,modunki€m ITa
valuyt$nt~pgiiii loan.
'"
53
2.6.1 M6 hinh
- Dinh m!hia2.10: MQtm~ngsuydi€n-tinh loang6mb6nthanhph~n:
(1)T~ph<;fpA g6mcacthuQctinh.
(2)T~ph<;fpD g6m cac lu~tsuydi~n(hay cac quail hc$suy di~n)lIen cae
thuQCtinh.
(3)T~ph<;fpF g6m cac c6ngthlic tinhloan hay cac thuWc tinh loan tu'dng
lingvoi cac lu~tsuydi€n. 511tu'dnglingn~ythShic$nboi mQtanhx~
f:D--+F
(4)T~ph<;fpR g6m mQtsO'qui Htc hay di~ukic$nrangbuQctrencac thuQc
tinh.
M~ngsuydi~ntinhloan g6m4 t~ph<;fpA, D, F va R nhu'the'se du'<;fcky hic$uboi
bQb6n (A, D, F, R). Theo dinhnghla,tac6 (A, D) hI mQtm~ngsuydi€n va loi
giiiichobailoanH --+G lIenm~illgsuydi€n n~ysexacdinhcacc6ngthlichay
cacthut\lCtinhloancacph~ntii'thuQcGtucacph~n l thuQcH.
Vi du 2.16:Kie'nthlic v~mQttamgiacc6 thSdu'<;fcbiSu di€n boi mQtm~ngsuy--
di~ntinhloan(A, D, F, R) nhu'sau:
A ={A,B, C, a,b, c, R, 5, p, ...}la t~ph<;fpcacye'uto'cuamQttamgiacg6m
3 g6c,3 c~nh,bankinhvongtrollngo~itie'p,dic$ntich,illra chuvi, V.v...,
D={r1:A,B ::::>C; r2:A, C =>B; r3:B, C ::::>A;
r4:A, a=>R; rS:A, R =>a; r6:R, a ::::>A; r7:A, b, c ::::>a; ...}
F ={f1:C =It-A-B; f2: B =It-A-C; D: A =It-B-C;
f4:R =a/(2.sin(A)); f5:a=2.R.sin(A); f6:A =arcsin(a/(2.R));
f7:a=b2+C2- .b.c.cos(A);...}
R={a+b>c; a+c>b; b+c>a;.a> bA >B; a=bA =B;...}
54
2.6.2Giai b~litmintrenm~ngsoydi~n-tinhtmin
TrenmOtmq.ngsuydi~n-tinhloantac6thegiaiquye'tcacb~liloansuydi~n
tinhloanching hq.nb~liloangiai tamgiachaybai loangiai tugiacdvatrenvi<$c
giaibai loan suydi~ntrenmq.ngsuy di~n.Hon nii'a,cac cangthuchaythuwc
tinhloan c6 thedu'<JCgall cho cac trQngs6 the hi<$ndOphuctq.ptinhloan cua
chung.Tu d6tac6 thetlmra du'<JCnhii'ngWi giai chobai loansuydi~ntinhloan
vOichi phi tinhloan tha'pnha'tdva tren vi<$ctlm Wi giai t6i u'utrenmq.ngsuy
di~nc6trQngs6.Ngoai fa, chungtac6 theHmra du'<JCcaccangthuctu'ongminh
quacacbu'ocgiai bai loanva rut gQncaccangthucdu'oidq.ngky hi<$u.Nhu'the'
trenmq.ngsuydi~n-tinhloanmOttamgiactac6 thechIra mOtcachtv dOngcac
c6ngthuctu'ongminhdetinhmQts6ye'ut6ngytumOts6ye'ut6khac(ne'ubai
loanc6 loi giai).Ke'th<Jpdi~ungyvoi vi<$cdo tlmnhii'ngsv lienh<$suydi~n
giii'acacye'ut6naod6mataquailtamsechotamOtphu'ongphapdetv dOng
Hmrathemnhii'nglu~tsuydi~nvanhii'ngcangthuctinhloanlienquailde'ncac
ye'ut6.E)i~ungyc6ynghlanhu'mQtky thu~tkhamphatri thuc.
MOtsVmdrOngcuamq.ngsuydi~ntinhloan la chophepxet themcac quail
h<$khacvoi cacquailh<$suydi~n- tinh lOanaday,ching hq.ncacquailh~hlnh
hQcgiii'a cac d6i J:u'<Jnghlnh hQc diem, doq.n,ria, g6c. Sv md rOngngy se du'<Jc
richh<JptrongmOtca'utruc truu tu'<Jngtheophu'ongphap l~ptrlnhhu'ongd6i
tu'<JngmatagQila mQtd6i tu'<Jngtinh loan.Khai ni~mv~d6i tu'<Jngtinhloanse
du'<Jcxay dvngtrongchuangtie'ptheovan6 du'<JCxemxettrongmOtmahlnhtri
thucdu'<JcgQila ma hlnhtri thuccac d6i tu'<Jngtinhloan.