Luận án Xây dựng hệ tính toán thông minh xây dựng và phát triển các mô hình biểu diễn tri thức cho các hệ giải toán tự động

XÂY DỰNG HỆ TÍNH TOÁN THÔNG MINH XÂY DỰNG VÀ PHÁT TRIỂN CÁC MÔ HÌNH BIỂU DIỄN TRI THỨC CHO CÁC HỆ GIẢI TOÁN TỰ ĐỘNG Đỗ Văn Nhơn Trang nhan đề Mục lục Mở đầu Chương_1: Biểu diễn tri thức và hệ giải toán dựa trên tri thức. Chương_2: Mạng suy diễn - Tính toán. Chương_3: Mô hình tri thức các đối tượng tính toán. Chương_4: Mạng các C-Object. Chương_5: Các ứng dụng. Kết luận Danh mục các bài báo có liên quan đến luận án Tài liệu tham khảo Phụ lục

pdf39 trang | Chia sẻ: maiphuongtl | Lượt xem: 1884 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận án Xây dựng hệ tính toán thông minh xây dựng và phát triển các mô hình biểu diễn tri thức cho các hệ giải toán tự động, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
16 CHUaNG 2 M~NG SUY DIEN- TINH TOAN 2.1DANN~P MQttrongnhungva'nd€ hi~nnaydangduQcquailtamcua"Tri Tu~Nhan Tq.o"la nghienCUllcacphuongphapbi€u di~nvaxii'ly tri thuc.Trencos6d6 c6th€ tq.oranhungchuangtrlnh"thongminh" 6 mQtmucdQnaGd6.C6 nhi€u phuongphapbi€u di~ntri thucdil duQcd€ c~pde'nva dil duQCap dl,lllg.Trang chuangfiftychungtaxet de'nmQttruanghQpcuabi€u di~nva xii'ly tri thuctheo ffiq.ngngunghla:"Mq.ngsuydi~nva tinhtoan". Cac ke'tquanghienCUllv€ mo hlnhnaydilduQCtrlnhbaytrongcacbai baa [57],[63],[65]va [67]. Trongnhi~ullnh vlfc lingd1;lngta thuangg~pnhungva'nd~d~tra duoid~ng nhusau:Chungtaphai thlfchi~nnhungtinh loan haysuydi~nra nhungye'uto' dn thie'tnaGd6 tu mOtso'ye'ut6dil duQcbie'ttruoc.D€ giai quye'tva'nd€ nguai taphai v~nd1;lngmQtso'hi€u bie't(tri thuc)naGd6 v~nhunglien h~giUacac' ye'uto'dangduQcxemxet.Nhunglien h~chopheptac6 th€ suyra duQcmQtso' ye'ut6tu giii thie'tdil bie'tmQtso'ye'uto'khac. Duoi day Ia mQtso'vi d1;lminh hQa. Vi du2.1:Giasatadangquailtamde'nmQtso'ye'uto'trongmQtamgiac,ch~ng hq.n: 3cq.nha,b, c;3 g6ctuonglingvoi 3 cq.nh: a, ~,y;3 duangcaDtuong ling:ha,hb,hc;di~ntichS cuatamgiac;naachuvip cuatamgiac;bankinh duangtronnQitie'pr cuatamgiac.Giua 12ye'uto'trenc6 caccongthucth€ hi~nnhungm6i quailh~giupchungtac6 th€ giiii quye'tduQcmQtsO'va'nd~ tinhloand~tfa. Trangtamgiac c6 th€ k€ ra mQtsO'quailh~duoidq.ngcong thucsailday: . Lienh~giua3g6c: a+~+y=1t (radian). <' 17 . Dinh 1ycosin: a2=b2+C2 - 2.b.c.cosa;b2=a2+C2 - 2.a.c.cos~; 2 2 2 C =a +b - 2.a.b.cosy a b c ~. ~=~ . Dinh 1ySin: sina =sinfJ; SillY =sinfJ' sina SillY . Lienh~giuantl'achuviva3q.nh: 2.p=a +b +c . C6ngthlictinhdi~nrichtheo3 c<;tnh(congthlicHeron): S =.Jp(p - a)(p- b)(p- c) . MQts6c6ngthlictinhdi~nrich: S=a.hal2;S =b.hJ2; S =c.hc/2;S=p.r D6i voi bai roangiclitamgiacvoi 12ye'ut6ducjcxemxet,ne'uxetcacd~tinh di~nrichtamgiacvoi 3 ye'ut6duQcchotruocthl s6bai roanC1J.th€ 1ende'n: c:z =220;do1achuak€ de'nnhungyelldu tinhroancacye'ut6khacnua,va nhuthe's6bai roantinhrasera'tIOn.Ne'unhulingvoi m6ibai roantacaid~t mQtthu~tgiai d€ giai quye'tthl khongth€ cha'pnh~nduQc.Tuy nhien co th€ tha'yding m~cdli co quanhi~ubai roanct,lth€ khacnhaunhungd€ giai quye't. chungtachi c~nap d1J.ngmQts6congthucnaGdotrongs6 cacc6ngthucth€ hi~nnhungquailh~giuacacye'ut6dangducjcxemxet.Ne'uchungtacocach d€ bi€u di€n va xii'1ycacye'ut6 va cacquailh~giua cac ye'ut6 thl co th€ tim mQts6thu~tgiai cai d~tduQcd€ giai cacbai toanmQtcachhi~uqua. Vi du 2.2:MQtv~tth€ co kh6i1uQngmchuy€n dQngth£ngvoi giat6ckhong thayd6i1aa trongmQtkhoangthaigiantinhtuthaidi€m tl de'nthaidi€m t2. V~nt6cband~ucuav~tth€ la VI, v~nt6c (] thai di€m cu6i 1aVb va v~nt6c trungbinh1av. Khoangcachgiuadi€m d~uva di€m cu6i1a~s.Ltfc tacdQng cuachuy€ndQng1af. DQbie'nthienv~nt6cgiua2 thaidi€m Ia ~v,vadQ bie'nthienthai gian1a~t.Ngoaira con co mQts6 ye'ut6 khacnuacua chuy€n dQngv~tth€ co th€ duQcquailtam.Tudngttfnhutrongvi d1J.2.1,d€ 18 giainhungbaitmlnv€ ehuy€ndQngfiftychungtaphaisad\lngmQts6e6ng thlielienh~giuacacy€u t6euaehuy€ndQng,eh£ngh~nnhu': f =m * a; I1v=a*l1t; I1s =v*I1t; 2*v =VI +Vz; I1v=Vz- VI; I1t=tz-t]; Vi du 2.3:TranghoahQcchungtathu'ongphai sa d\lngcaephanlinghoahQed€ di€u che'caecha'tfiftytli'caecha'tkhac. Lo~i va'nd€ fiftyeiingehota mQt d~ngtu'dngtl;inhu'trang2 vi d\l tren : Cho tnrocmQts6 eha'thoahQe,haytlm cachdi€u eh€ ra mQthaymQts6cha'tnaGdo. Noi toml~i,co nhi€u va'nd€ trangcaelInhvl;ielingd\lngkhaenhaud~tra du'oid~ngmQt"m~ng"caey€u t6,trongdo cacye'ut6 co nhungm6ilienh~ (hayquailh~)ehopheptaco th€ suyra du'ejemQts6y€u t6 fiftytumQts6ye'ut6 khae.M6 hlnhm~ngsuydi~nva tinhtoanla mQtsl;ikhai quatehomQtd~ngtri thliedungehovi~ebi€u di~ntri thlieva thi€t k€ caeehu'dngtrlnhgiaitoantlf dQng,ch£ngh~nnhu'chu'dngtrlnhgiaicaelOpbai toantu'dngtl;inhu'trongcaevi d\ltren. :;:;: , , ,,' JI: ? 2.2M~NGSUY DIEN VA CAC VAN DE CO BAN Trangm\lefiftychungtaxetmQtm~ngsuydi~ng6mmQtt~phQpcaebie'n eungvoimQt?Pcaequailh~suydi~ngiuacacbi€n. Tranglingdl;lllge1,lth€ m6i bi€n va giatrieuano thu'onga:nli€n voimQtkhaini~me\lth€ v~slfv~t,m6i quailh~th€ hi~nmQtsl;itrithliev€ sl;iv~t. 2.2.1 Quanh~valu~tsuydi~n ChoM ={XI,XZ,...,xm}1a Qtt~phejpcaebi€n co th€ la'ygiatri trongcae mi€n xacdinhtu'dnglingD].Dz,...,Dm.D6i vdi m6iquanh~R c D]xDzx...xDm trencae t~phQpDl,Dz,...,Dmta noi r~ngquail h~fifty lien ke'tcaebi€n x],xz,...,Xm,vaky hi~u1aR(x],xz,...,xm)hayva:ndt la R(Xl.(kyhi~ux dungd€ 19 chibQbie'n<XhX2,...,Xm». Ta sexetcaequailh~R(x)xacdinhmQt(haymQt s6)anhx~: fR,u,v: Du~ Dv, trangdoU,vla caebQbie'nvau c x, vc x; Duva Dvla tichcuacacmi~nxac dinhtu'dngling cuacacbie'ntrangu vatrangv. Quanh~nhu'the'duQcgQila quanhf suyddn. Co th€ tha'yr~ngquailh~suydi€n R(x) co th€ du'Qcbi€u di€n bdimQt(haymQts6) anhx~fR,u,voi u u v =x, va ta vie't fR,u,v:u ~ v, hay vantatIa f: u~ v. Cachky hi~utrenbaahamy nghlanhula mQtIUtJtsuyddn: tacoth€ xacdinh haysuyraduQccacbie'nthuQcvkhibie'tduQccacbie'nthuQcu.Trangph~nsail taxetcacquailh~xacdinhcaclu~tsuydi€n co d~ng: f:u~v, trangdoun v =0 (t~pding).Ngoaifa,trongtruonghQpc~nnoira tavie'tu(f) thaychou, v(t)thaychov. Ta gQimQtquailh~la quanhf d6'ixungco h~ng (rank)b~ngmQts6nguyendudngk khiquailh~do giupta co th€ tinhduQcK bie'nba'tky tum-kbie'nkia(ddayx la bQg6mm bie'n<XhX2,"',Xm». 86i voi ::acquailh~khongph:iiIa d6ixungcoh~ngk, khonglamma'tinht6ngquat,ta ::0th€ giasaquailh~xacdinhduynha'tmQtlu~tf voit~pbie'nvaGla u(f)vat~p~ Jie'nra la vet);tagQilo~iquailh~n~ylaquailh~khongd6ixungxacdinhmQt u~td§:n,haygQivantatla quanhf kh6ngd6'ixung. ~h~nxet: MQtquailh~khongd6ixungh~ngk co th€ duQcvie'tthanhk quailh~ chongd6ixungco h~ng1.Ne'ubi€u di€n mQtquailh~d6i xungco h~ngk hanhcacquailh~d6ixungcoh~ngla I thls6quailh~coh~ngI b~ng: C m-k C km =mm m Du'oidayla mQtvai vi dl,lv~cacquailh~suydi€n. " 20 Vi du 2.4:quailh<%f giua3 goeA, B, C trongtamgiaeABC ehobdih<%thue: A+B+C=180 (donvt:dQ) Quanh<%f giua 3 goetrongmQttamgiae lIen day 1ftmQtquailh<%d6i xungco h~ng1.Quanh<%ngybaahftm3 lu~tsuydi~n: A, B =>C A, C =>B C, B =>A Vi du 2.5:quailh<%f giuamh ehuvi p voi caedQdftieila3 e~nha,b, e: 2*p=a+b +e Vi du 2.6: quail h<%f giua n bittn Xl, X2,..., Xn duQeehoduoi d~ngmQth<%phuong trlnh tuyttntinh co nghi<%m.Trong truong hQp ngy f 1ftmQtquail h<%co h~ngk b~ngh~ngeuamatr~nh<%so'eilah<%phuongtrinh. 2.2.2 M~ngsuydi~n Tli SvtrlnhbftylIentacoth~neulendtnhnghiahlnhthueehom~ngsuydi~n nhusau: - Dinh nghia2.1:Ta gQimQtmc;mgsuydiln, vitttt~t1ftMSD, 1ftmQtea'utrue (M,F) g6m2 t~phQP: (1) M ={xj,xi,...,xn},1ftt~phQpcaethuQctinhhaycaeyttut61a'ygia tIt trong caemi~nxaedtnhnftodo. (2)F ={f1,f2,...,fm},1ftt~phQpcaelu~tsuydi~ncod~ng: f :u(f)~ v(f) trongdou(f) vftv(f) 1ftcaet~phQpconkhaer6ngeilaM saGeho u(f)n v(f)=0. B6i voi m6i f E F, taky hi<%uM(f) 1ftt~pcae bittnco lien h<%trongquailh<%f, nghia1ftM(f) =u(f)u v(f). " 21 Nh~nxetdng mQtm~ng(M,R) voi R la mQtt~pcacquailht%suy di@nclingco th€ duqcxemnhuffiQtffi~ngsuydi@nbangcachthayt~pR boi t~pF g6mta'tca caclu~tsuydi@nxac dinhboi cacquailht%suydi@n. Vi du2.7: Trangvi d\l2.40 tren,taco M(t) ={A,B,C}. Trangvid\l2.50tren,taco M(t)={a,b,c,p}. Trongvi d\l 2.60 tIeD,taco M(t) ={XI,Xz,...,xn}' Vi du 2.8: M~ngsuy di@nchomQthlnhchii'nh~t.Vit%ctinhtoaDtIeDffiQthlnh chii'nh~tlienquailde'nffiQts6ye'ut6cuahlnhchii'nh~tnhusail : bI, bz:haic~nhcuahlnhchii'nh~t; d : duongcheocuahlnhchITnh~t; S : dit%ntichcuahlnhchITnh~t; p :chuvi cuahlnhchii'nh~t; trongdo m6ibie'nd~uco gia tq thuQct~pcac s6 thvcduong.Giii'acac bie'n ta dabie'tcocacquailht%tinhtoaDsailday: V~ mi;itsuylu~n,cac quailht%n:iy d~uco th€ xemla cac quailht%suydi@nd6i xlingco h~ngla 1.Nhu v~yt~pbie'nva t~pquailht%cuaffi~ngn:iy la : M ={bI,bz,d, s,p}, R= {fI.fz,f3}. M~ng(M,R) n:iytuongling vOimqngsuydi@n(M, F) voi F la t~pcaclu~tsuy di@nsailday: bI. bz~ S S,bz~ bI " fl: S =bI * bz; fz: p =2 * (bl +bz); f3: dz z b Z.=bI + Z,. 22 S, bl =>b2 bJ, b2=>P p, b2=>bl p, bl =>b2 b), b2=>d d, b2=>bI d, bI =>b2 2.2.3 Caeva'nd~edbantrenm~ngsuydi~n ChoffiQtffi'.lngsuydi€n (M,F)voiM lat~pcacthuQctinh(haycacbie'n)vaF la t~pcacquailh~suydi€n haycaclu~tsuydi€n. Gia su c6 ffiQtt~pbie'nA eM dfi duQcxac dinh(tucla t~pg6fficacbie'ndfi bie'ttruoc),va B Ia ffiQtt~pbie'n bit ky trongM. . Va-nd~1:C6 th€ xacdinhduQc(haysuyfa) t~pB tut~pA nhocacquailh~ trongF haykh6ng?N6i cachkhac,tac6 th€ tinh duQcgia tri cua cac bie'n thuQcB voi giii thie'tdfibie'tgia tri cuacacbie'nthuQcA haykh6ng? . Va-nd~2:Ne'ucoth€ suyraduQcB tuA thlquatrlnhsuydi€n nhuthe'naG? TrangtruonghQpconhi~ucachsuydi€n khacnhauthlcachsuydi€n naGla t6tnha-t? . Va-nd~3: Trong truonghQpkh6ngth€ xac dinh duQcB, thl dn cho them di~uki~ngi d€ c6th€ xacdinhduQcB. Bai roanxacdinhB tuA trenffi'.lngsuydi€n (M,F) duQcvie'tduoi d'.lng: A~B trongd6 A duQcgQila giii thie't,B duQcgQila ffi\lCtieu(hayt~pbie'ncftnxac dinh)cuabairoan.TruonghQpt~pB chig6mco ffiQtphftntu b,tavie'tviintiit bairoantrenla:A ~ b. " 23 Vi<$ctlmWi giiii chobeiiloanleitlmramQtdayquailh<$guydi~nd€ co th€ ap d1;1ngguyra duQcB tu A. f)i~unffyclingco nghla leitlm ra duQcmQtquatrlnh Hnhloan hay guydi~nd€ giiii beiiloan. Trang vi<$ctlm Wi giiii cho beiiloan chungta cffnxet ffiQtday cac quailh<$suy di~nhay cac lu~tguydi~nneiodo xemco th€ suyra duQccacbie'ntumQtt~pbie'nchotrUDCnhodayquailh<$guy di~nnffyhaykh6ng.Tit dochungtaco d!nhnghlasauday. - Dinhnghia2.2:Giii sa(M,F)la mQtm(;lnguydi~nveiA leimQt~pconcua M. MQtlu?tguydi~nu~ v duQcduQcgQileiapd1;1ngduQctrenA khiucA. MQt quailh<$guydi~nduQcgQila ap d1;1ngduQctrenA khi no xac d!nhmQt lu?t guydi~napd\lngcluQctrenA. ChoD = {f\, f2, ..., fd leimQtday cac quailh<$guydi~n(haylu~tguydi~n)cuaffi(;lngguydi~n(M,F), tanoi dayD leicipdlringdU:(Jctrent?PA khi veichi khi ta co th€ lffnluQtapd\lngduQccac quailh<$f" f2,..., fkxua'tphattitgiii thie'tA. Trang d!nhnghlatren, d?t : Ao =A, Al =Ao U M(fI), . . . , Ak =Ak-I U M(fk), vei ky hi<$uAk leiD(A). TrangtruonghQpD leimQtday lu?t guydi~ntuyytav§nky. hi<$uD(A) leit?P bie'nd(;ltduQckhi lffn luQtap d\lngcac quailh<$trongday D (ne'uduQc).Co th€ n6i dingD(A) leisl,l'mdrQngcuat?PA nhoapd\lngdayquail h<$D. ~ ThuattmintinhD(A) : Nhap:M(;lng uydi~n(M,F), A eM, daycac quailh<$guydi~nD ={ft.f1,...,fm}. Xua't: D(A). Thuatloan: 1.A' f- A; 2. for i=l to m do 24 if fj apdt,lilgduQctrenA' then A' +- A' U M(fj); 3. D(A) +- A' - Dinhnghia2.3:Ta noir~ngmQtdaycacquailh~suydi~nD ={fl, f2,...,fd c F IamQt[O'igidi cuab~litminA --+ B ne"unhutaIftnluQtap dl,lilgcacquail h~fj (i=l,...,k)xua'tphattugiathie"tA thlsesuyraduQccacbie"nthuQcB. NoicachkhacD lamQtWigiaicuabaitoankhiD(A)::)B.BaitoanA --+B duQcgQiIa gidi dl1r;fckhi nocomQtWi giai. Loi giai {fI, f2, ...,fd duQcgQila [iJi gidi t6'tne"ukhongthSbo botmQtsf) buocHnhtoantrongquatrlnhgiai,tilcla khongthSbobotmQtsf)quailh~ trongloi giai.Loi giaiduQcgQila mQt[O'igidingdnnh6tkhi noco sf)buoc suydi~ntha'pnha't,tilc la sf)quailh~suydi~napdt;lilgtrangsuydi~nla it nha't. , , ? 2.3TIM LaI GIAI Xetbai toanA --+ B trenm~lllgsuydi~n(M,F).Trangmt,lcfiftychungtase trlnhbaycachgiai quye"tcacva'nd~cdbansailday: - KhaosatHnhgiaiduQCcuabaitoansuydi~n. - TimmQtlOigiiiit6tchobaitoansuydi~nvaphantfchquatrlnhsuydi~n. 2.3.1Tinhgiaidu'Q'cuabaitoaD Trangmt,lcfiftychungtaneuleu mQtkhaini~mco lienquailde"nHnhgiai duQcuabaitoan:baadongcuamQt~phQpbie"ntrenmQtm<;lngsuydi~n. - Dinhnghla2.4:Chom<;lngsuydi~n(M,F),vaA la mQtt~pconcuaM. Co thStha'ydug co duynha'tmQt~phQpB IOnnha'tc M saochobaitoanA--+B la giaiduQc,va~phQpB fiftyduQcgQila baadongcuaA trenm<;lng(M,F). MQtcachtIVcquail,cothSnoibaadongcuaA la st;!'mdrgngt6idacuaA" 25 trenrnZlngsuydi~n(M,F). K1'hi~ubaadongcua A 1aA, taco th€ k.i€m tra d~dangcactinhcha'tlienquandSnbaadongtrongrn~nhd~du'oiday. I Menhd~2.1.ChoA vaB 1ahai~pconcuaM. Ta c6: I I I I I I (1) A -::J A. ~ - (2) A =A. (3) AcB=>AcB - -- (4) AIIB c AIIB - -- (5) AuB~AuB D5i vOi tinhgi,Hdu'<Jccuabaitoan,taco th€ d~dangk.i€rnchungrn~nhd~sail: Menh d~2.2. (1) Bai toan A -+ B 1aghii du'<Jckhi va chI khi cac bai toanA -+ b 1agiai du'<Jcvoi mQib E B. (2) NSu A -+ B va B -+ C 1acac bai toan giai du'<Jcthl bai toan A -+ C cling giai du'<Jc.Hdn mIa,nSu {fJ, f2,..., fm}va {gJ, gz, ..., gp}1ftn1u'<Jt1aWi giaicuabaitoanA -+B va bai toanB -+ C thl {fJ, fz, ..., fm,gl, gz,...,gp, }1am<)tWi giai cuabai toanA -+C. (3) NSu bai toanA -+ B 1agiai du'QCva B' 1arn<)tt~pcon cuaB thl A -+B' cling1arn<)Jbai toangiai du'<Jc.HdnmIa,nSu {fJ,fz, ...,fm}1arn<)tWi giai cuabai toanA -+B thldocling1am<)tWi giai cuabai toanA -+B'. , Tli khaini~mbaadongdanoid trentaclingco cacdinh11'sail: Dinh Iv 2.1Tren rn<)trnZlngsuydi~n(M,F), bai toanA -+ B 1agiai du'<Jckhi va chIkhi B cA. Tli dinh11'fifty,ta co th€ k.i€m ITatinhgiai du'<Jcuabai toanA -+ B bang eachtlmbaadongcuat~pA r6i xetxemB co baa hamtrongA haykh6ng. Menh d~2.3: Chorn..., fd c F, A c M. D~t: " 26 Ao = A, Al = Ao U M(fl), ..., Ak = Ak-I U M(fk). Ta c6 cacdi~usauday1a tu'angduang: (1)DayD apduQctrenA. (2)Voi ffiQii=l, ...,k taco: Card(M(fi) \ Ai-I) ~ r(fi) ne'u fi Ia quailht%d6i xung, M(fi) \ Ai-I C veri) ne'u fj 1aquail ht%kh6ng d6i xung. (ky hit%uCard(X) chi so'phftntacuat~pX). Ghi chu: D1.;(avao ffit%nhd~2.3 ta c6 ffiQtthu~tloan d~ki~ffitfa tinhap d\lng duqc cua ffiQtday quail ht%D tIeD ffiQtt~pbie'nA. Dinh If 2.2Tren ffiQtffi?ngsuydi€n (M,F), gia sa A, B la hait~pconcuaM. Ta co cacdi~usauday1awangQuang: (1) BcA. (2) C6 ffiQtday quail ht%D ={fI, f2,...,fd c F thoacacdi€u kit%n: (a)D apd\lngduQctfenA. (b)D(A) ::)B. Chungffiinh: Gia sa c6 (1),tuc 1aB cA. Khi d6 bai loan A ~ B 1agiai duQc. Do d6 c6 ffiQtdayquailht%{fI, f2,..., fd c F saochokhi ta1ftn1uQtapd\lngcac quailht%fj (i=I,...,k)xua'tphattir gia thie'tA thl se tinhduQccacbie'nthuQcB. D€ dangtha'yf~ngday {fbf2,...,fd fiftythoa cacdi€u kit%n(2). Dao l?i, gia sac6 (2).Voi cacdi€u kit%nc6 duQcbdi (2)tatha'y{fj}1aWi giai cuava'nd~Ai-I ~ Ai, voi ffiQi i =1,2,...,k. Tir ffit%nhd~3.2suyfa bai loan Ao~ Ak 1agiai duQc.Do d6bai loanA ~ B cling giai duQc,suyfa B c A theo dinhly 2.1. Nhanxet : - dayquailht%{ft.f2,...,fd trongdinh1ytren1affiQtWi giai cuabai loanA ~ B trenffi?ng(M,F). " 27 - TrangWigiiii {it.f2,...,fd tacoth€ be)botnhungfi naomaM(fDc Di-I(A), voi Di-I={it.f2,...,ii-d. Dudidayla thu~troanrhophepxacdinhbaodongcuat~phejpA c M. Trang thu~troann~ychungtathii'apd\lllgcacquanht%f E F d€ timd~nnhungbiEn thuQcM co th€ suyra duejctirA; cu6irungseduejcbaodongcuaA. Thuattmin2.1 timbaodongcuat~pA eM: Nhap: Xua't:A M,;mgtinhroan(M,F),.A eM. Thuatroan: 1. B *- A; 2. Repeat B1*- B; for f E F do if (f d6ixung and Card(M(f) \ B) ::;;r(f)) or ( f khongd6ixung and M(f) \ B c v(f)) then begin " B ~ B u M(t); F ~ F \ {f}; II lo~if khoi leinxemxetsau end; Until B =Bl; 3.A *- B; Gillchti : Trendaytad8:neutend?ctru'ngrho tinhgiiiiduejc uabai roantren ffiQtm?ngsuydi6nvachIrathu~troand€ ki€m ITakhinaobairoanla giiiiduejc. Ngoaira chungtase conneutencachd€ ki€m dinhgiii thi€t cuabai roand€ trongtru'onghejpbai roanchuadugiiithiEtcoth€ b6sungthemnEuduejc. " 28 t3.2 LOighHcuabftitmin (j trentadaneulen cachxacdinhtinhgiaidu'Qcuabai to<ln.Tie'pthea,ta ;etrlnhbaycach!lmraWigiiiichobaitoanA -+B trenm<;lngsuydi~n(M, F). [ru'oche'ttu nhc1inxet saDdinh ly 2.2 ta co m<%nhd6 saDday: vH~nhd~2.4:Day quail h<%suy di~nD la mN Wi giai cua bai to<lnA -+ B khi va chi khiD apdvngdu'QctrenA vaD(A) :J B. )0 m<%nhd6 tren, d€ t1mmQtloi giai ta co th€ lam nhu'saD:Xua'tphattu gia hie'tA, ta full' ap dvngcacquailh<%d€ ma rQngd~ntc1ipcac bie'ndu'Qcxac dinh du'Qcbie't);va qua trlnhn~yt<;lOra mQtSvIan truy6ntinhxac dinh trentc1ipcac ,ie'nchode'nkhi d<;ltde'ntc1ipbie'nB. Du'oiday la thuc1ittoan!lmmQtWi giai cho ,ai toanA -+B trenm<;lng(M,F). rhuat tmin2.2 TIm mQtWi giai chob?titoanA -+B : Nhap :M<;lngsuydi~n(M, F), tc1ip gia thie'tA c M, tc1ipbie'nc~ntinhB eM. Xua't: loi giai chobai toan A -+B Thuat toan : 1. Solution+-empty;II Solutionfadaycaequanh~seapd~ng~ 2. if B c A then begin Solution_found+-true; II bienSolution_found=true II khibai to<lnla giai du'Qc gotobu'oc4; end else 29 Solution_foundf- false; 3. Repeat Aold f- A; Ch9n ra ffiQt f E F chlia xeffi xet; while not Solution_foundand (ch9nduQcf) do begin if (f c16ixung and 0 <Card (M(f) \ A) ~ r(f)) or (f khongd6ixung and 0::j:.M(f) \ A c v(f)) then begin A f- A u M(f); Solutionf- Solutionu {f}; end; if B c A then Solution_foundf- true; Ch9nraffiQtf E F chliaxemxet; end; {while} Until Solution_foundor (A =Aold); 4. if not Solution_foundthen Bfii tminkhongcoWi giai; else Solutionla ffiQtloi giai; Ghichu: 1.V~sau,khi c~ntrlnhbayquatrlnhgiai (haybfii gi::li)taco th€ xua'tphattu .. Wi giai tlmduQcdlioid~ngmQtdaycacquanht%d€ xay d1;I'ngbaigiai. 30 2.Loi giiii (ne'uco)timdu'Qctrongthu~troantIenchu'achacEi mQtWi giiii t6t.Ta co th@b6 sungthemchothu~troan(j tIenmQtthu~troand@tim mQtWi giiii t6t titmQtloi giiii da bie'tnhu'ngchu'achac1ftt6t.Thu~troan sed1,iatrendinh19du'Qctrinhbftytie'ptheoday. DiDhIf 2.3ChoD={fI,f2,...,fm}1ftmQtWi gi.:licuabftiroanA ~ B. ling voi m6i i=I,...,m d~tDi = {fI. f2, ..., fd, Do = 0. Ta xay d1,ingmQthQcac day con SID'SID-I...,S2,SI cuadayD nhu'sau: Sm=0 ne'uDm-Ia mQtWi giiii, ne'uDm-Ikhong1ftmQtWi giiii,Sm= {rID} Si= Si+I ne'uDi-I U Si+I1ftmQtWi giiii, ne'uDi-I U Si+Ikhong 1ftmQtWi giiii,Si= {fduSi+1 voimQii =ill-I, m-2,...,2,1. Khi dotaco : (1) SmC Sm-IC ...C S2 C SI. (2) Di-I u Si 1ftmQtloi giiiicuabftiroanA ~ B voimQi=m,...,2,1. (3) Ne'uS'i 1ftmQtdayconth~ts1,icuaSi thiDi-IuS' i khongphiii1ftmQt Wi giiii cuabftiroanA ~ B voi mQii. (4) SIlft mQtWi giiii t6tcuabftiroanA -+ B. ~ ' Tit dinh19trentacomQthu~troantimWi giiii t6ttitmQtWi giiii dabie'tsau day: Thuat toaD2.3 TIm mQtWi giiii t6ttitmQtWi giiii dabie't. Nhap:M,;lllgsuydi~n(M,F), Wi giiii {fI.f2,...,fm}cuabftiroanA~ B. Xua't: loi giai t5tchobai roan A ~ B Thuatroan: 1. D +- {fI. f2,...,fm}; " 31 2. for i=rn downto 1 do if D \ {fdla rnQtloi giai then D~D\{fd; 3. D la rnQtWi gi£lit6t. I Trongthu~tmln2.3co sad\lngvi~cki~rntrarnQtdayquailh~co ph£lila Wi I giaihaykhong.Vi~cki~rnITan~yco th~duQctht!chi~nnhothu~tminsailday: .Thuattoan ki~mtra 1mgiai chobai toan : Nhap :M(,mgsuydi€n (M,F), bai toanA~ B, ,. daycacquailh~{fJ, f2,...,fm}. Xua't: thongtinchobie't{fJ,f2,...,fm}coph£lila loi giai cuabaitoanA->B haykhong. Thuat toan: 1. for i=l to rn do if (fj d6i Kung and Card(M(fj) \ A):::;r(fj)) or ( fj khongd6iKung and M(fj) \ A C v(fj)) then A~Au M(fi); 2. if A 0 B then {fJ, f2,...,fm}la Wi giai else {fJ, f2,...,fm}khongla loi giai; dtrentadacornQtthu~toant6ngquatd~funloi gi£lit6tchobai toankhida bie'truckrnQtWi gi£li.Th~tfa, taco th~apd\lngrnQtthu~toankhacd€ tirnrnQt loi gi£lit6ttUrnQtloi gi£libie'ttrudcvdi mucdQtinhtoanit bon.Theo thu~toan n~y,ta l~nhtQtxernxetcacquailh~trongt~ploi giaidabie'tva chQnra cac 32 quailht$d€ du'av~lOmQtWi giai moi saGehotrongWi giai moi n§y khongth€ botra bfftky mQtquailht$naG. Vi du2.9:Bay giOtaxet mQtvi dl,lel,lth€ d€ minhhQaehocaethu~tOaDtren. Cho tamgiaeABC co qnh a va2 goek@la ~,y du'<jcehotru'oe. Hayxaedinh(haysuyfa)Seuatamgiae. D€ HmraWigiaiehobaitOaDtru'oehe'taxetm(;ingsuydi6neuatamgiae. M(;ingsuydi6nn§y g6m: 1.T~pbie'nM ={a,b, e,a, ~,y,ha,hb,he,S, p, R, r, ...}, trongd6 a,b,ela 3 e(;inh;a, ~,y la 3 goetu'dngling voi 3C(;inh;ha,hb,hela 3 du'ongeao;S la dit$ntichtamgiae;p la mYaehuvi; R la bankinh du'ongtrOll ngo(;iitie'ptamgiae;rIa bankinhdu'ongtrOllnQitie'ptamgiae,V.v... 2.Cae quailht$suydi€n th€ hit$nboi caee6ngthliesauday: f1 : f2 : f3 : f4 : f5: f6 : f7 : f8 : f9 : flO : ill : f12 : a +~+y =180 a b--- sina sinfJ c b--- SillY sinfJ a c--- sma smy ,. p=(a+b+e)/2 S =a.ha/ 2 S =b.hb/ 2 S =e.he/ 2 S =a.b.siny/2 S =b.e.sina/ 2 S =c.a.sin~/ 2 S =.Jp(p- a)(p- b)(p- c) " 33 V.V... I Ml,lclieucuabailoanIa suyraS (di~ntichcuatamgiac). I Theod€ bai tacogiii thie'tla:A ={a,p,y},va t~pbie'nc~nxacdinhla B = {S}. r Ap dl,lngthu~tloanrimWi giiii (thu~tloan2.2)se du<;1cmQtloi giiii chobai loan I Ila dayquailh~suydiSnsail: I . {ft.f2,f3,fs,f9}. I Xua'tphattUt~pbie'nA, l~nlu<;1tapdl,lngcacquailh~trangloi giiii taco t~pcac I bie'ndu<;1cxacdinhmarQngd~nde'nkhi S duQcxac dinh: . {a,p,y} fl) {a, p-,-y,a} f2) {a,p,y,a,b} f3) {a,p,y,a,b,c} fs) {a,p,y,a,b,c,p} f9) {a,p,y,a,b,c,p,S}. Co th~nh~ntha'ydng Wi giiii n~ykhongphiii la Wi giiii t6tVIcobuocsuydieD I thua,ch~ngh(;lnla fs.Thu~tloan2.3se lQcra tU Wi giiii trenmQtWi giiii t6tla {ft.f2, f9}: {a,p,y} f'~{a,p,y,a} f2 ~{a,p, I, a, b} f9 ~ {a,p, y, a, b, S}. TheoWi giiii n~y,taco quatrlnhsuydiSnnhusail : r 2.3.3DinhIyv~sriphantfchquatrinhgiai I Xet bai loanA -+ B trenm(;lngsuydieD(M.F). Trangcacml,lctrenda trlnh baymQtsO'phuongphapd~xac dinhtinhgiiii c1U<;1ceuabai loan,timfa mQtWi giiii t6tehobai loan.Trongml,len~ytaneulen ffiQteachxfiyd1,1'ngquatrlnhgiiii tUmQtloi giiii dabie't.B6i voi mQtWi giiii, ra'tco khii DangmQtquailh~naodo d~ntoi vi~etinhloanmQtsO'bie'nthua,tacla caebie'ntinhfa makhongcosa " buoc1: Xac dinh a (apdl,lngf1). buoc2: '( Xac dinh b (apdl,lngf2). buGC3: Xac dinh S (apdl,lngf9). 34 d1;1ngchocacbud'ctinh phia sau.Do do, chungtadn xemxet quatrlnhapd1;1ng cacquailht$trongloi giiii va chitinhroancacbi€n th~t sv cftnthi€t choquatrlnh giiii theoWi giiii. Dinh ly saudaychotamQtsv phanricht~pcac bi€n duQcxac dinhtheoloi giiii va tren cd sd do co th~xay dvngqua trlnh suy diSn d~giiii quy€t bai roan. Dinh If 2.4Cho {fl. f2, ..., fm}la mQtWi giiii t6tchobai roanA --+ B trenmQt mc;tngsuydiSn(M, F). D~t: Ao =A, Ai ={fJ, f2, ..., fd(A), vd'imQi i=l,...,m. Khi docomQtday {Bo,Br. ...,Bm-r.Bm},thoacacdiSukit$nsauday: (1) Bm=B. (2) Bi C Ai , vd'imQi i=O,l,...,m. (3) Vd'imQii=l,...,m,{fdla Wi giiii cuabairoan Bi-I--+Bi nhung kh6ngphiiila WigiiiicuabairoanG --+Bi , trongdo G la mQtt~p can th~tsv myy cuaBi-I. Chungminh:Taxaydvngday {Bo,Br....,Bm-hBm}bangcachd~t:Bm=B, valingvd'im6ii <m, d~t: Bi=(Bi+1 n Ai) u A/ , vd'iAi' la t~pcoit p~ftntli'nha'trongAi \ Bi"!"1saochofi+1apdl:mgduQctrent~p hQp(Bi+1n Ai) u Ai'. Th~tfa,A/ coduQCxacdinhnhusau: A/ =u(fi+l) \ Bi+1 n€u fi+1kh6ng d6i xung, van€u fi+1d6ixungthl Ai' =mQtt~pcang6mmax(O,tDphftnill'cuat~phQp(M(fi+d\Bi+l)n Ai trongdoti=card(M(fi+I»-r(fi+l)- card( M(fi+d n Bi+1 n AD. Voi cachxay dvngnftyta co th~ki€m ITaduQcrangday {Bo,Br. ..., Bm-r.Bm} tboamancacdiSukit$nghitrongdinhly. Ghichu: " 35 (1)Tit dint ly trentacoquatrlnhsuydi~nvaxacdintcacbie'nd~giiiib~iitoan A -+B nhusau: buck 1:tint cacbie'ntrongt~pBI \ Bo (ap dlJngfl). buck2: tint cacbie'ntrongt~pB2\ BI (apdlJngf2). V.v... buckm:tint cacbie'ntrongt~pBm\ Bm-I (apdlJngfm). (2)Tit chungmint cuadint1ytren,tacoth~ghiramQthu~toand~xayd1,1'ng daycact~pbie'n{BI', ...,Bm-I"Bm'}roi nhaudn 1~n1uQtduQcxacdint (hayduQcsuyfa) trongquatrlnhgiiiibaitoan(Bj' =Bi \ Bi-I) g6mcacbuck chinhnhusau: . xacdint cact~pAo,AJ, ...,Am. . xacdint cact~pBm,Bm-],...,BI' Bo. . xacdint cact~pBI', B2',...,Bm'. Vi du2.10:Giii sa taco day{fJ,f2,f3}1amQtWi giiii t6tchobai toanA -+B, trongdo: A ={a],b], b2}, B ={b3}, fI, f2la cacquq.nht$d6ixungcoh,;mg2, f3la quailht$d6i xungco h~ng1,va M(fl) ={ai, bI, CJ,dd, M(f2) ={aJ, CI,bz,d2,e2}, M(f3) ={b],e2,b3}. Dt;1'atheos1,1'phantkh quatrlnhgiiii trongdint ly trentaco : Ao=A, Al ={aJ,bI,b2,CJ,dd, A2= {a],b],bz,CI,dJ, d2,ez}, A3= {aJ,bJ, bz,CJ,dl, d2,ez,b3}, " 36 B3= B, B2= {bI.ez}, B I = {bI.ai, CI.bz}, Bo= {aI.bl, bz}, vacact~pbie'ncgnIgnluqttinhtoantrangb~ligiaichobaitoanla : BI'= {cd, B2'= {e2}, B3'= {b3}. Tudotacoquatrlnhsuydi~ntheoWigiaitrennhusau: :;:::, ,,' " ? ,,' 2.4MANG SUY DIEN CO TRQNG SOVA LO! GIAI TOI u'u Va'nd~taquailtamtrongphgnngy la vit$cfun mQtWi giai t6tnha't(hayWi giait6i u'u).Quannit$mv~Wi giai t6tnha'tphl,lthuQcvao vit$ctaquailtamde'n. ffi\lCtieut6i u'unaod6i voi loi giai.Trongdinhnghia2.3,taquailHimde'nnhung Wigiai voi so'buGCsuydi~nit nha'tmatagQila Wi giai ngftnnha't.Dotinhthutv t6tcuat~phqps6,.t\i'nhientacoth€ tha'yding:ne'ubaitoanA ~ B lagiaiduqc thlse t6nt'.limQtWi giai ngftnnha'tchobai toan.Tuy nhien,trongnhi~utruong hqpapd\lngC\lth€ nhuht$suydi~ntinhtoanhay ht$suydi~ntrencacphanling hoahQc,m6i lu~tsuydi~nco mQtthamso'tudngling d'.lidit$nchodQphuct'.lP cualu~tsuydi~nhaychiphi.Nhungthamso'n~ydongvai traquailtrQngtrong tinhhit$uquacualoi giai.Vi d\l,ne'usosanh2 c6ngthuctinhtoan (1) a +b + C=2*p,va (2)az=b2+CZ-2*b*c*cos(A) Xac dinhCI (apdt,mg[I), Xac dinhez (apdt,mg[2), Xac dinhb3 (apdt,mg[3). 37 d~ehQneongthueehovi~ethlfehi~ntinhroan a thl eongthue(1) t5t hdnVI trongeongthue(1) tachi sa dl,mgcaepheptinh+,- va*; trong khi a eong thue (2)taphaitinhgiatrihamh1qngiaevatinhdin b~ehai.Trangph~nn~ytase xemxetcaem~ngsuydi€n co trQngs5,trongdoungvoim6ilu~tsuydi€n co ffiQtrQngs5 dl1dngtl1dngung,va loi giai t5i l1use dl1qed~e~p de'nrheanghla Iat6ngtrQngs5tha'pnha't.Loi giai ngilnnha'tehinhla Wi giai t5i l1utrongtrl1ong hQptrQngs5euacaclu~td~nd~ula 1.Thu~tgiaiA* la cdsad~tlmramOtloi giait5il1utrongtrl1onghqpbairoanla giaidl1qc. 2.4.1Dinhnghiavakyhi~u - Dinh nghla 2.5: Ta gQi mOtmt;lngsuydiln co trQngso'la mOtmo hlnh (A, D, w)baag6m: (1)mOt~phqpcaethuOctinhA, (2)mOtt~phqpcaclu~tsuydi€n D, va (3)mOthamtrQngs5dl1dngw: D -)- R+ M6i lu~td~nr thuOcD cod~ngr: u~ v,voi uvav lacaet~phqpconkhae r6ngvaroi nhaueuaA. Ta gQiu la ph~ngia thie'teualu~tr va ky hi~ula hypothesis(r).T~pv dl1qegQila ph~nke'tlu~ncualu~tr va ky hi~ula goal(r).T~phqp attr(r) =hypothesis(r)u goal(r) duqegQi Ia t~phqp cac thuOctinhtronglu~tr. M~ngsuydi€n co trQngs5 sedl1qcvie'ttiltla MSDT. Ghitho: . T~phqpD caclu~tsuydi€n co th~vie'tdu'oid~ngmOt~phqpcaequanh~ suydi€n mam6iquanh~suydi€n xacdinhcaclu~tsuydi€n co trQngs5 b~ngnhau. . TrangmOtMSDT (A,D, w)taco(A,D) lamOtMSD. 38 Vi du 2.11:GQi A la t~ph<Jpg6m3 e<;lnheuamQttamgiae (a, b, va c), 3 goe trong(A, B, va C), nth ehuvi p, di«%ntichS, 3 du'ongcaD(ha,hb,va he),va caeye'uto'khaeeuatamgiae: A ={A,B, C, a,b,e,p, S, ha,hb,he,...}. Giii'acaethuQetinhtreneuamQttamgiaetaco caelu~tsuydi€n du'<Jexae dinhboi caequailh«%suydi€n th€ hi«%nboi caeeongthlieli«%tke trongt~p h<Jpsail day: D= { fI: A +B +C = 180; B: b/sin(B)=e/sin(C); f2:a/sin(A)=b/sin(B); f4: a/sin(A)=e/sin(C); fS: 2*p =a +b + e; f6:S=a*ha/2; f8:S=c*hcl2;f7: S =b * hb12; f9:S=sqrt(p*(p-a)*(p-b)*(p-c)); fI1: hb=a*sin(C); fIO: ha=b*sin(C); fI2: he=b*sin(A) }. Giii sacaepheptoan+,-, * va1du'<Jed~tchotrQngs6la 1,pheptinhdin b~e 2 co trQngs6la mQth~ngso'du'ongc1,va caetfnhtoanham1u'<Jnggiaeco trQngs6la mQth~ngso'du'ongc2;trongdocl » 1vac2» 1(el vae21On ,. bon 1nhi~u).Nhu'the'caequailh«%suydi€n co trQngso'tu'onglingnhu'sau: w(fI) =2; w(fS)=3; w(f2) =wen)=w(f4)=2*c2+2; w(f6) =w(f7) =w(f8) =2; w(f9)=el +6; w(fIO)=w(n!) =w(fI2) =e2+ 1; v.v.. . Khi do taco (A, D, w) Ia mQtm'.ingsuydi€n eo trQngso'. - Dinhnghia2.6:Giii sa(A,D, w)la mQtMSDT. ChoS={f"...,fdlamQtday caelu~tsuydi€n va Ala mQtt~ph<Jpde thuQetfnh.B~t ., 39 S leA) =A u goal(fl) =A ne'uhypothesis(fl)c A, ne'unguQc1?i. Si(A) =Si-I(A) u goal(fi) ne'uhypothesis(fD c S i-I(A), =Si-I (A) ne'unguQcl?i. (voi mQi i =2,...,k). S (A) =Sk(A), w(S) =t6ngcuacacw(f),voif ch?ytrenS =w(fl) +w(f2)+ ...+w(fk). Ta gQiw(S)la trQngs6cuaS. ChomQtbairoanA ~ B.Daycaclu~tsuydi€n SduQcgQila mQtWigi:iit6i u'ucuabai roankhi n6thoamancacdi€u ki~nsauday: (1)S la mQtWi giai cuabai roanA ~ B. (2)TrQngs6cuaS nhobonho~cbAngtrQngs6cuaba'tky mQtWi giainao khaccuabai roan.N6i mQtcachkhac la: w(S)=mill{w(S')IS' la mQtlai giaicuabai roanA ~ B } Nhanxet:TrangtruanghQphamtrQngs6la hamhAngthimQtWigiait6iu'u chfnhla mQtlai giai voi s6buocsuydi€n tha'pnha't,tucla lai giainga:nha't. rungc6th€ tha'yrAnglai giait6iu'ukh6ngnha'thie'tla duynha't.N6imQtcach .. ' khac,bai roanc6 th€ c6nhi€u Wi giai t6i u'ukhacnhau.Tuy nhien,chungta thuangchidn rimramQtWigiait6iu'umathai. 2.4.2LOigiiHvadQphuct~pcuaquatrinhfun lOigiai XetbairoanH ~ G trenmQtMSDT (A,D, w),voiH vaG la caet~pconcua t~pthuQctfnhA. Bay cungla mQtbai roantren m?ngsuydi€n (A, D). Tli nhii'ng ke'tquaduQCtrinhbaytrongcacml,lctruoctaco th€ t6mta:tquatrinhrimmQtWi giaitheophudngphapsuydi€n tie'nquathu~tgiai duoiday: 40 ThuattoaD2.4 Bu'oc1:TIm mQtWi giai. Khi G chuabaa hamtrongH ta thvchi<$nqua trlnh l~pcho cacbuoc duoi day: Buoc1.1:TIm lu~trED co th§ ap d1;lngduQcd§ suyra caethuQCtinhmOi, tlicla hypothesis(r)baahamtrongH nhunggoal(r)kh6ngbaahamtrong H. Buoc 1.2:N€u vi<$ctlmki€m d buoc 1.1tha'tb'.li(kh6ngHmduQclu~tr nhu mongmu6n)thlk€t thucvoi k€t quala: bai roankh6ngco Wi giai. Buoc1.3:NguQcl'.lithlb6 sungthemgoal(r)vaoH va ghinh~nr vaodanh sachcaclu~tdffduQcapd1;lng. Bu'oc2:RutgQnWi giai. Gia saS ={rj,..., rp}la mQtWi giai (n€u co) tlmduQctrongbuoc 1.Ta thve hi<$ncaebuoesauday: Buoe2.1:G' +- G\H; Buoe2.2:for k:=pdownto1 do if (goal(rk)~G')then Lo'.lirkrakhoi danhsachS \. else G' +-(G' \ goal(rk))u (hypothesis(rk)\ H) Menh d~ 2.5 Thu~t roan 2.4 eho Wi giai la dung va co dQ phue t'.lP la O(lAl.lDl.min(lAI,IDI) ). Trangcaeeaid?t e1;lth§ taco th§ sa d1;lngthemcaequi tcleheuristicsd§ tang themhi<$uquaehovi<$etImloi gi:H. 2.4.3 TIm 1mgiai t6i du " 41 Trongm1,lcnilytasexemxetva'nd~timWi giait6iu'uchobftiroanH ~ G trenmN MSDT (A, D, w). Cachtie"pc~nde giai quye"tva'nd~nily 1ftdl;latren thu~tgiaiA*.De co theapd1,lngthu~tgiainilychungtacilnco mQtbi€u di~n thichhQpchokhonggiantr<;lngthaicuabftiroanclingnhu'choyell cffucuabfti roan. - }(hong iantrangthaicuabftiroan:XetbftiroanH ~ G tren mQtMSDT (A, D,w).Voim6ilu~tr mfttacoth€ apd1,lngtrenH desuyranhungthuQctinh moi(nghIaIa hypothesis(r)baohftmtrongH nhu'ngoal(r)thlkhongbaahftm trongH) sed~ntoimQtt~pthuQctinhmoiH' =H u goal(r).Ta noirangr Ia mQtet;mhn6i tit dlnhH de"ndlnhH'. Nhu'the",t~phQpg6mta'tca cact~pcon (haydlnh)H' cuaA saochoco mQtdayS g6mcac lu~t(hay c<;lnh)thoaman di~uki~nH' =S(H),clingvoicacc<;lnhtrongcacdaySse chotamQtkhong giantr<;lngthai cua bfti loanco d<;lngd6 tN. Han nua d6 thi nily co trQngso' du'Qcdinhnghlabdi: trQngso'cuac<;lnhr (tuc1ftmQtlu~tsuydi~n)1ftw(r).D6 thico trQngso'nily se du'Qcky hi~u1ftGraph(H~G). Tll'cachxay dl;lngd6thi cuabftiloantaco m~nhd~sailday: Menh d~2.6: (1)MQtdayS g6mcac lu~t1ftmQtloi giaicuabfli loanH ~ G khi vftchikhiSift" , mQtlQtrinhtrend6 thiGraph(H-+G)n6ititH de"nS(H) vftS(H) ~ G. (2)DQdfticuamQtlQ trlnhS trend6 thiGraph(H-+G)1ftw(S), trQngso'cuadanh sachlu~tS trenMSDT (A,D, w). Tll'm~nhd~nily,vi~ctlmWi giai t6i u'uchobfli roanH-+G tu'angdu'angvoi vi~c tlmmQtdu'ongdi ng~nnha'trend6thiGraph(H-+G)tll'H de"nmQtdlnhm1,lclieu H' thoadi~uki~nH' chuaG. D6i voi m6idlnhN trend6thi,di.it heN)=mill {w(r)Ihypothesis(r)eN} 42 tuchl heN)la trQngs6nhanh[{tcuacaclu~tapd\lngdu'QctrenN. GiatriheN) nilyco th€ xemla mQtu'oclu'QngcholQtrlnhtuN de"nffiQtdInhm\lctieu.Tli do chungtaco th€ vie"tthu~tgiaitlmWi giai t6iuuchobai toaDnhu'sail: Thuat toaD2.5 Bu'6c1:Khdi t(;lOtr(;lngthaixu[{tphat. Open~ {H}; II danhsachdInhmdbandiluchIcodInhxu[{tphat Close~ {};II danhsachdInhdong g(R) ~ 0; II dQdai lQtrlnhde"nH la 0 f(R) ~ h(R);11dQdailQtrlnhu'octinhtUH de"nm1;lctieu la h(R) found~ false; II bie"nki€m traquatrlnhHmWi giai Bu'6c2:Th1;l'chi<$nquatrlnhl~p d€ tlmWi giai t6i uu. While (Open:1={})do Begin Bu'oc2.1: ChQnffiQtdInh N trongOpen voi u'octinh du'ongdi f nha nh[{t. Bu'oc2.2:Chuy€n N tudanhsachOpensangdanhsachClose. Bu'oc2.3:if (N la ffiQtm\lctieu)then ,. Begin Found~ true; Break; II Ke"tthucquatrlnhl~p End Bu'oc2.4:else II N kh6ngla ffiQtm1;lctieu Begin Duy<$tquacacdinhke"S cuaN (Wc la co clingr n6i N va S) ma S ~Close,lingvoim6iS taxetcactru'onghQpsail: 1. S ~Open:Tinh g(S)=g(N)+w(r); f(S)=g(S)+h(S); " 43 B6sungS vaoOpen; 2. S E Open: If g(N) +WeT)<g(S)then Begin g(S)+-g(N) +WeT);f(S) +- g(S)+h(S); C~pnh~tthongtinv~dinhke'tntoccuaS tren19tdnh; end End End II Ke'tthucvongl~pwhile Bu'oc3:Ki§m ITake'tquavi~ctlmkie'm. If Found then Ke'tquala tlmduQCWi giai t6i u'uva thie'tl~ploi giai Else Ke'tqualabaitmlnkhongcoWigiai. Menh d~2.7 Thu~ttmln2.5 cho loi giai la dungva co d9 phuct~p O(1A12.IDI2). Vi du 2.12:Gia sa taco m~ngsuydi€n co trQngsO'(A,D, w) nhusail: A ={A,B, C,a,b,c,p,S,ha,hb,hc}. D ={fl: A +B +C =180; B: b/sin(B)=c/sin(C); ~ f2: a/sin(A)=b/sin(B); f4: a/sin(A)=c/sin(C); f5: 2*p =a +b +c; f6:S=a*ha/2; f8:S=c*hc/2;n: S=b* hb/2; f9: S =sqrt(p*(p-a)*(p-b)*(p-c)); fl1: hb=a*sin(C); flO: ha=b*sin(C); fl2: hc =b*sin(A). }. w(fl) =2; w(f5)=3; w(f2)=wen)=w(f4)=2*c2 + 2; w(f6) =wen) =w(f8) =2; w(f9)=c1+6; w(flO) =w(fl1) =w(fl2)=c2+1. '" 44 Trangdoc1vac2lacach~ngs6dudngvoic1» 1vac2» 1. Xet bai roanH -+G voiH ={a,b,B}va G ={S}.Tren m~ngsuydi€n (A, D), n€u apd\lngthu~troan2.4taco th@tlmduQcmQtWi giai 5 ={f2,fl, n, f5, f9}. Tren m~ngsuydi€n co trQngs6 (A, D, w) Wi giai 5 co trQngs61a w(S)=4*c2+c1+ 15.Ap d\lngthu~troan2.5d@tlmWi giai trenm~ng(A, D, w) taco th@tlmduQcmQtWi giiii t6i u'u5' ={f2,fl, flO, f6}vdi trQngs6 law(5')=3*c2+7. ,.. , ,.. '" '" ?,..~ 2.5T~PH<)PSINH VA VI~C KIEM DfNH, BO SUNGGIA THIET Trongml,lcn~ysexemxetv6svthuahaythi€u d6ivdigiathi€t cuabairoan H -+G trenmQtm~ngsuydi€n (A,D) vatrongtruonghQpc~nthi€t thltlmcach di6uchinhgia thi€t H. Trudch€t tadn xet xembai roanco giai duQchay khong.TruonghQpbairoangiaiduQcthlgiathi€t la duoTuynhiencoth@xayra tlnhtr~ngthuagia thi€t. f)@bi€t duQcbai roanco th~tsv thuagia thi€t hay khong,tacoth@dvavaothu~troantlmffiQtsvthugQngiathi€t sailday: Thuattoan: TImmQtsVthugQngiathie'tcuabairoan. Nhap:M~ngsuydi€n (A,D), Bai roanH-+ G giaiduQc, Xua't: t~pgia thi€t ffidiH' c H t6i ti@uIDeothli tv C. ~ ' Thuat roan: Repeat H'+-H; for x E H do if H - {x}-+G giaiduQcthen H +-H - {x}; Until H =H'; 45 Trangthu~to(lntrenne'ut~pgia thie'tmoiH' th~tst;tbaahamtfongH thlbai roanbi thitagia thie'tva taco th§ bot ra tit gia thie'tH t~phQpcacbie'nkh6ng thuQcH' , coi nhuIa gia thie'tchothita. TruonghQpbairoanH ~ G lakh6nggiaiduQcthltanoigiathie'tH thie'u. Khidocoth§di€u chinhbairoanb~ngnhi€u cachkhacnhaud§ chobairoanla giaiduQc.Ch~ngh~ntacoth€ sadl:lngmQts6phuongansailday: phu'dngan 1: TImmQtA' c M \ (A u B) t6i ti§usaGchobaadongcuat~p hQpA'u A chliaB. phu'dngan2 :Khi phuongan1kh6ngth§tht;tchi~nduQcthltakh6ngth§chI di€u chinhgiathie'tel§chobairoanla giaiduQc.Trangtinthu6ngn~y,ta phaibo botke'tlu~nho~cchuy€n botmQtph~nke'tlu~nsanggiathie'td§ xemxetl~ibairoanrheaphuongan1. Khai ni~mt~phQpsinhvaphuongphapHmmQtt~phQpsinhtrenmQtm~ngsuy di~nla co sd chovi~cphattri§n cac thu~troangiai quye'tva'nd€ ki§m dint gia thie'tcuabairoansuydi~n.HonlllIavi~ckhaosatv€ t~phQpsinhclingIa n1Qt va'nd€ duQcd~tramQteachtt;tnhientrenm~ngsuydi~nnh~mtimfa mQt~p hQpt6i thi§ucacthuQctint va caclu~tsuydi~nsinhfa ta'tca caethuQctint khac. 'I 2.5.1 Khai ni~mt~phQ'psinh - Dinh nghla2.7:Cho (A,D) la mQtm~ngsuy di~n.MQt t~pthuQctint SeA duQcgQila mQttqpht;Jpsinhcuam~ngsuydi~nkhi taco baadongcuaS tren m~nglaA,nghiala S =A. Vi du2.13:Xetm~ngsuydi~n(A,D) voiA ={a,b, c,A, B, C, R, p, S}g6mcac bie'ns6tht;tcduongvaD la t~phQpcaclu~tsuy di~ntuonglingcuacacquail h~suydi~nth§hi~nbdicacc6ngthlicsailday: '" 46 f1:A+B+C=n f2: a/sin(A)=2*R f4: c/sin(C)=2*R0: b/sin(B)=2*R f5: a +b +c =2*p f7: b2=a2 +C2 - 2*a*c*cos(B) f6: a2=b2+C2- 2*b*c*cos(A) f8: C2=b2 + a2- 2*b*a*cos(C) f9:S=sqrt(p*(p-a)*(p-b)*(p-c» M(;mgsuydi~nnfiyco mQtt~phqpsinhla T ={a,A, B}vatuT tasuyraduqcD nhocaclu~tsuydi~nsail: A, a ::::>R; A, B ::::>C; R, C ::::>c; R, B ::::>b; a, b, c ::::>p; a, b, c, p ::::>S Tli dinhnghlav~t~phqpsinh(j trentacocactinhchitsail: (1)Ne'uS IamQtt~phqpsinhtrongmQtm~ngsuydi~nvaSeT thiT cfingla mQt~phqpsinh. (2)Ne'uS Ia mQtt~ph<;1psinhtrongm~ngsuydi~n(A, D) vaD' la mQtt~p hqpmC1rQngcuaD, nghlala D cD', thi taclingcoS la mQtt~ph<;1psinh cuam?ngsuydi~n(A, D'). Hi6nnhienlam6im~ngsuydi~nd~ucot~ph<;1psinh.Vin d~machungtaseo . khaosatIii timmQtt~phqpsinh. 2.5.2 TIm t~P hQ'psinh Trongmt,lcnfi¥se trinhbaycachtimmQt~p hqpsinhkh6ngtfimthuongvoi s6phfintUcangit cangt6tcuam~ngsuydi~n.Truoche't,taco th6timmQtt~p hqpsinhb~ngphuongphapthtl'dfinduqcth6hi~nbC1ithu~toansailday: Thudt tmin2.6:TIm mQtt~phqpsinhStrong m?ngsuydi~n(A,D). Buoc1:S +- {} II B~tchoSband~ula r6ng Bu'oc2:Tinh baadongClosure(S)cua~p h<;1pS. Bu'oc3:Ki6m ITasosanhClosure(S)vaA. If Closure(S)=A then Ke'tthuc .. 47 Else Begin ChQnffiQtphffntiYx E A-S; S +- S u {x}; QuayI?i Bu'ac2; End Thu?t tmin nffy se cho ta mQt t?P hejp sinh vOi dQ phuc t?P O(1A12.IDl.min(lAI,IDI)),dodQphuct?P cuapheploant?PhejplIen cact?Phejp thuQctinhcuaA la O(IAI)vadQphuct?Peuathu?tloantimbaodongeuamQt t~phejptrenm?ngsuydi€n (A,D) la O(lAI.IDl.min(lAI,IDI)). Ta co th€ xay d1;1'ngmQtthu?tloant6thonthu?tloan lIen b~ngeachthie'tI?p ffiQt"bi€u d6 (hay d6 thi)phanea'p"euamQtm?ngsuy di~n.Kh6ng lam ma't tinht6ngquattaco th€ giasll'caelu?t suydi~ncophffnke'tlu?n g6mI phffntit - Dinhnghla2.8:ChomQtm~lllgsuydi€n (A,D) mam6ilu?tsuydi~ncophffn ke'tlu?n g6m I phffntll'.Ta xay d1;1'ngmQtd6 thidinhhuangGraph(A,D) nhu' sail: (1)T?phejpdlnhg6mta'teacaethuQetinhvata'teacaelu?t suydi~n,tuela AuD. (2)Ung vai m6i lu?t r : hypothesis(r)-+ goal(r)ta thie'tI?p mQtt?P hejp ~ ' edges(r)g6m ta'teelcae cling dinh huang (x, r) va (r, y) thoa x E hypothesis(r)va y E goal(r)mQteachtudngling.T?p hejpcaee?nheuad6 thiGraph(A,D) la hejpta'teelcaet?Phejpedges(r)vai r eh?ytrongt?PD. Trangtru'onghejplIen d6thiGraph(A,D) ta co degin(x):::;1vai mQix E A, thl taco th€ hi€u ngffmcaedlnhthuQcD va xetmQtd6 thithugQnGraphD(A) g6m: (1)T?p hejpdlnhla t?PhejpcaethuQetinhA. " 48 (2)T~phQpc~nhg6mta"tcacaccling(x,y)thoamandi~uki~n:Co(duy nha"t)mQtlu~tr saGchogoal(r)=y va x E hypotheis(r). Vi du 2.14:M~ngsuydi~n(A, D) vaiA ={a,b, c, A, B, C, R, p, S} vaD la t?P caelu~tsuydi~nsail: rl: A, a=>R; r2:A, B =>C; r3:R, C =>c; r4:R, B =>b; r5:a,b,c =>p; r6:a,b,c,p ~ S se eo d6thiGraph(A,D) co t~phQpdlnh13 Au D ={a,b, c, A, B, C, R, p, S, rl, r2, r3, r4, r5, r6} vat?PhQpcacclingla {(A,rl), (a,rl), (rl,R), (A,r2), (B,r2),(r2,C), (R,r3),(C,r3),(r3,c),(R,r4),(B,r4),(r4,b), (a,r5),(b,r5),(c,r5),(r5,p), (a,r6),(b,r6),(c,r6),(p,r6),(r6,S)} Trend6thiGraph(A,D)m6ix EA codungmOtclinghuangtai,vad6thithu gQnGraphD(A)cot~pdlnhla A ={a,b, c, A, B, C, R, p, S } va t~P hQpc~nh13 {(A,R),(a,R),(A,C), (B,C), (R,e),(C,c), (R,b), (B,b), (a,p),(b,p),(c,p), (a,S),(b,S),(c,S),(p,S)} ~ . - Dinhnghla2.9:Ta gQimQtd6thidinhhuangddngiankhongcochutrlnhla mOtbiiu d6phancap(haymOtd6thiphanea'p).Blnhx cuad6thimakhong co eunghuangtai seduQcgQila dlnhmuc0, va tavie'tlevel(x)=O.D6ivai caedlnhxkhac,tadinhnghlamOteachquin?pmuccuanovamuccuadlnh nftyco th€ duQcchobdi level(x)=max {level(a)I co clingn6i a vai x} + 1 49 Nhu'the't~ph<Jpdlnheuabi6ud6phanea'pdu'<Jesilpxe'pthanheaeroue,voi mue0 euabi6ud6 la t~ph<Jpta'tea eaedlnhmue0, mue 1 euabi6ud6 la t~p h<Jpta'teaeaedlnhmue1,V.v... Vi du 2.15:D6 thi GraphD(A)trongvi d\12.14,du'<Jeve tronghlnh 2.1, la mQt bi6ud6phanea'pvoi 5 muela: Level0={a,A, B}, nghla13level(a)=level(A) =level(B) =O. Levell ={R, C}, nghla 13leveleR)=level(C) =1. Leveh={e,b},nghlala level(e)=level(b)=2. Leveh={p},nghlala level(p)=3. Leve14={S},nghlala level(S)=4. level4 level3 level2 level1 IDnh 2.1 MQtbi6ud6phanea'pg6m5 roue. Tu caedinhn&hlatrentae6th6d€ dangchungminhcaemt$nhd€ sailday: Menh d~2.8:Cho m~ngsuydi€n (A,D). Gia sa d6 thiGraph(A,D) e6d6thi thu gQnGraphD(A).Khi a'y,ne'uGraphD(A)la mQtd6 thiphanea'pthlt~ph<JpS = Levelog6mta'teacaedlnhmue0 seehotamQtt~ph<Jpsinheuam~ngsuy di€n. Honnii'atrongtru'ongh<Jpn~ytacon e6: (1)S la t~ph<Jpsinhnhanha'trenm~ngsuydi€n. (2)T~pD 13t~ph<Jplu~tt6i thi6ud6Level0sinhraA. N6i mQteachkhae, ne'uD' 13mQtt~ph<Jpconth~tsl!euaD thlS kh6ngphaila t~ph<Jpsinh trenm~ngsuydi€n (A,D'). .. 50 Dinh If 2.5:Cho m~ngsuydi~n(A,D). taco: (1)SeA Ia mQtt~ph<;1psinhtrenm~ngsuy di~nkhi va chi khi co mQtt~p Iu~tD' c D saDchoGraph(A,D') Ia mQtd6th!phanca'pva S chilat~p h<;1pcacdinhmilc0cua06th!ngy. (2)T6n t~imQtt~pIu~tD' cD saDchoGraph(A,D') Ia mQtd6 th!phanca'p. Tli o!nhIy tren ta co th€ tim mQtt~phQpsinhtrenm~ngsuydi~n(A, D) b~ng eachxaydl;fngmQtthu~troantimmQtt~pIu~tD' saDehoGraph(A,D') Ia mQt 06thiphanca'p,va Ia'ycacoinh(jmilc0cuad6th!ngy.Cachlamngyseou'Qc apdvngtrongvi<$etim mQtsl;fb6 sunggiathie'tehobai roansuydi~nmQtMSD trongtrliongh<;1pbai roanthie'ugia thie't.Chungta cling co mQtthu~troannhu' sau: Ihnat tmin 2.7:TIm mQtt~ph<;1psinhS trongm~ngsuy di~n(A, D) b~ngcach xay dl;fngmQtm~ngcon (A', D') voi A' =A va coGraph(A',D') Ia mQtbi€u 06phanea'p. Bu'oe1: A' ~ {}; D' ~ {}; S ~ {}; Bu'oe2:For rED do If not (attr(r)c A') then Thl;fehi<$nvi<$e~pnh~tA', D' va S rhea2 tru'ongh<;1pnhu'sau:, ' . Tru'ongh<;1p1:goaI(r) ~A' S ~ Su (hypothesis(r)-A'); . Tru'ongh<;1p2: goaI(r) E A' Lo~ir' (ne'uco)trongD' ma goal(r')=goal(r); Lo~i mQts6 Iu~tsuyfa cae x E hypothesis(r)o€ baa dam tinhphanea'peuabi€u 06va e~pnh~tS. A' ~A' uattr(r); D' ~D' u {I}; Blioe 3: S ~ S u (A - A'); A' ~ A <i 51 ;Ghichu: . Nh~mhu'ongtoivi~cxacdinhmQt~ph<Jpsinhvois6phfintitnhovavoidQ phuct~pthffptaco th~sud~ngthemcacquitifcheuristicb6sungthemcho quatrmhxaydvngmQtm~ngsuydi€n conmad6thi cuano co d~ngmQt biSud6phanca'p. . Tit phu'ongphaptlmmQtt~phQpsinhtrangmQtm~ngsuydi€n dffdu'Qctrlnh bay(j trentaco thSphattriSnmQtthu~tloantu'ongtv <istlmmQtt~phQp sinhchU'amQt~ph<JpthuQctinhchotru'oc. 2.5.3 B6 sunggiathie"tchobftitoaDsuydi~n Trongm~cnfiytasexemxetvi~cb6sunggiathie'tchobai loanH ~ G tren mQtm~ngsuydi€n (A, D) trongtru'onghQpbai loan kh6ng giai du'<JC.Y tu'dng chinhd day1atie'nhanhmQtquatrlnhxay dt;r'ngmQtbiSu d6 phancffpvoi t~p hQp<iinhchU'aG va u'ulien chovi~cd~tcacphfintit cuaH d mU'cO.Thu~tloan cobandu'oidaychotamQteachd~tlmmQtt~pthuQctinhH' saGchoH n H' = 0 va bai loan (H u H') ~ G 1agiai du'<Jctrenm~ngsuydi€n. ThuattoaD2.8:Chom~ngsuydi€n (A,D) va bai loanH ~ G kh6nggiai du'QC (kh6ngcoWigiai).TImH' saGchoH n H' =0 va bailoan (Hu H') ~ G 1agiai du'<Jc. Bu'oc1:A'+-H; D'~{}; G+-G\A'; Bu'oc2:while (G 7: {}andD 7: {})do 2.1:Lffy ramQtr tuD vac~pnh~tD. 2.2:if hypothesis(r)n G 7:{}orattr(r)c A' then Bo quar 2.3:else Them r VaGD' va b6 sungattr(r) VaGA'va trangtru'onghQp goa1(r)E A' thl1o~ira r' titD' (ne'uco) thoagoal(r')=goal(r)va ... 52 lO(;limQts6 lu~tsuy ra cac x E hypothesis(r)d€ bao dam tinh phanca'pcuabi€u d6. 2.4:G ~ G - A' Bu'oc3: if G * {}thenKe't thucvoi ke'tlu~n:Va'nd€ b6 sunggia thie'tla khonggiiii quye'tdu'qc Bu'oc4: else (Trangtru'onghqpn~yGraph(A',D')co bi€u d6 phanca'p tu'onglinghI GraphD.A')GQiLalamuc0cuabi€u d6GraphD.A'.f)~t: H' ~La-H. Menhd~2.9: Thu~tloan2.8d€ timstfb6 sunggiathie'tchobaisuydi~nla dungva codQphuct(;lp la O(IAI./DI). Ghi chu: Ta co th€ sii'dlJng themcac qui lac heuristictrongbuoc2 cua thu~t loantrennh~mgiiim thi€u s6 thuQctinh(j muc0 va/hayd€ u'ulien chQnItfa cacthuQctinhdu'qcu'ulien chovit$cdungb6 sunggiii thie'tcuabai loan. 2.6M~NG SUY DIEN-TINH TOAN Trongph~nn~ychungtaxetde'nmQtmohinhm(;lngsuydi~nlienquade'n . tinhloan,duqcgQi la m(;lngsuydi~n- tinhloan, ma trangnhi€u ling dlJng no chotamQtstfbi€u di~nd~ydu va thichh<;Jphoncuatri thucc~nthie'tlien quail de'ncacva'nd€ ha~cacbai tminc~ngiiii quye't.Cach bi€u di~nnhuv~yse th€ hit$nmQtcachttfnhienca'utruccuatri iliac,va giuptathie'tke'cacthu~tgiiii loantlJ'dQngmQtcachd~dangvoi nhungloi giiii tu'ongminhphilh<;Jpvoi cach fighTva lamcuaconnguoitrongcac lingd\lllggiiii loan,d~cbit$tla cacht$th6ng h6 trq cho vit$chQct~pva giiing d(;lY.Nhungph~nm~mnhu'the'dn co cach bi€u di~ntri thuctlJ'nhienva thichhqpchovit$cthie'tke'cacmodungiiii loan choWigiiiiphuhqpvoihQcsinhclingnhucacmodungiiii thich,modunki€m ITa valuyt$nt~pgiiii loan. '" 53 2.6.1 M6 hinh - Dinh m!hia2.10: MQtm~ngsuydi€n-tinh loang6mb6nthanhph~n: (1)T~ph<;fpA g6mcacthuQctinh. (2)T~ph<;fpD g6m cac lu~tsuydi~n(hay cac quail hc$suy di~n)lIen cae thuQCtinh. (3)T~ph<;fpF g6m cac c6ngthlic tinhloan hay cac thuWc tinh loan tu'dng lingvoi cac lu~tsuydi€n. 511tu'dnglingn~ythShic$nboi mQtanhx~ f:D--+F (4)T~ph<;fpR g6m mQtsO'qui Htc hay di~ukic$nrangbuQctrencac thuQc tinh. M~ngsuydi~ntinhloan g6m4 t~ph<;fpA, D, F va R nhu'the'se du'<;fcky hic$uboi bQb6n (A, D, F, R). Theo dinhnghla,tac6 (A, D) hI mQtm~ngsuydi€n va loi giiiichobailoanH --+G lIenm~illgsuydi€n n~ysexacdinhcacc6ngthlichay cacthut\lCtinhloancacph~ntii'thuQcGtucacph~n l thuQcH. Vi du 2.16:Kie'nthlic v~mQttamgiacc6 thSdu'<;fcbiSu di€n boi mQtm~ngsuy-- di~ntinhloan(A, D, F, R) nhu'sau: A ={A,B, C, a,b, c, R, 5, p, ...}la t~ph<;fpcacye'uto'cuamQttamgiacg6m 3 g6c,3 c~nh,bankinhvongtrollngo~itie'p,dic$ntich,illra chuvi, V.v..., D={r1:A,B ::::>C; r2:A, C =>B; r3:B, C ::::>A; r4:A, a=>R; rS:A, R =>a; r6:R, a ::::>A; r7:A, b, c ::::>a; ...} F ={f1:C =It-A-B; f2: B =It-A-C; D: A =It-B-C; f4:R =a/(2.sin(A)); f5:a=2.R.sin(A); f6:A =arcsin(a/(2.R)); f7:a=b2+C2- .b.c.cos(A);...} R={a+b>c; a+c>b; b+c>a;.a> bA >B; a=bA =B;...} 54 2.6.2Giai b~litmintrenm~ngsoydi~n-tinhtmin TrenmOtmq.ngsuydi~n-tinhloantac6thegiaiquye'tcacb~liloansuydi~n tinhloanching hq.nb~liloangiai tamgiachaybai loangiai tugiacdvatrenvi<$c giaibai loan suydi~ntrenmq.ngsuy di~n.Hon nii'a,cac cangthuchaythuwc tinhloan c6 thedu'<JCgall cho cac trQngs6 the hi<$ndOphuctq.ptinhloan cua chung.Tu d6tac6 thetlmra du'<JCnhii'ngWi giai chobai loansuydi~ntinhloan vOichi phi tinhloan tha'pnha'tdva tren vi<$ctlm Wi giai t6i u'utrenmq.ngsuy di~nc6trQngs6.Ngoai fa, chungtac6 theHmra du'<JCcaccangthuctu'ongminh quacacbu'ocgiai bai loanva rut gQncaccangthucdu'oidq.ngky hi<$u.Nhu'the' trenmq.ngsuydi~n-tinhloanmOttamgiactac6 thechIra mOtcachtv dOngcac c6ngthuctu'ongminhdetinhmQts6ye'ut6ngytumOts6ye'ut6khac(ne'ubai loanc6 loi giai).Ke'th<Jpdi~ungyvoi vi<$cdo tlmnhii'ngsv lienh<$suydi~n giii'acacye'ut6naod6mataquailtamsechotamOtphu'ongphapdetv dOng Hmrathemnhii'nglu~tsuydi~nvanhii'ngcangthuctinhloanlienquailde'ncac ye'ut6.E)i~ungyc6ynghlanhu'mQtky thu~tkhamphatri thuc. MOtsVmdrOngcuamq.ngsuydi~ntinhloan la chophepxet themcac quail h<$khacvoi cacquailh<$suydi~n- tinh lOanaday,ching hq.ncacquailh~hlnh hQcgiii'a cac d6i J:u'<Jnghlnh hQc diem, doq.n,ria, g6c. Sv md rOngngy se du'<Jc richh<JptrongmOtca'utruc truu tu'<Jngtheophu'ongphap l~ptrlnhhu'ongd6i tu'<JngmatagQila mQtd6i tu'<Jngtinh loan.Khai ni~mv~d6i tu'<Jngtinhloanse du'<Jcxay dvngtrongchuangtie'ptheovan6 du'<JCxemxettrongmOtmahlnhtri thucdu'<JcgQila ma hlnhtri thuccac d6i tu'<Jngtinhloan.

Các file đính kèm theo tài liệu này:

  • pdf4.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf10.pdf
  • pdf11.pdf
  • pdf2.pdf
  • pdf3.pdf
  • pdf5.pdf
  • pdf6.pdf
  • pdf7.pdf
  • pdf8.pdf
  • pdf9.pdf
Tài liệu liên quan