ÁP DỤNG KHAI KHOÁNG DỮ LIỆU ĐỀ XUẤT MỘT MÔ HÌNH PHÁT TRIỂN LỢI NHUẬN CỦA MỘT NGÂN HÀNG
NGUYỄN KIẾN QUỐC
Trang nhan đề
Mục lục
Chương 1: Mở đầu.
Chương 2: Lý thuyết tập hợp thô và các ứng dụng trong phân tích dữ liệu.
Chương 3: Các quy luật hoạt động: phương pháp phát triển lợi nhuận của một công ty.
Tài liệu tham khảo
41 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1805 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận văn Áp dụng khai khoáng dữ liệu đề xuất một mô hình phát triển lợi nhuận của một ngân hàng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
10
CHUaNG2:
I
LYTHUYETT!PH(jP THO
vA cAc UNG DT)NGTRONG PHAN TicH DU LI}tU
Trongchudngnayseduaracac9tudngcdban v~19thuye't~phQptho- mQt
phudngphaptinh loan moi d~phantichdIT1i~u.xa'pXl duoiva trencuamQtt~p
"
hQp,cacloantll'cdbancua19thuye't,1acacsl!gioi thi~uband~uvadinhnghIa
hlnhthli'c.Vai li'ngdl,mgcua19thuye'tt~phQpthoduQCtrinhbay tomHitvavai
va'nd~trongtudng1aiclingduQcphacthao.
L9 thuye't~phQptho( Pawlak,1982)[3]duaramQtcachphudngphaptinh
loanmoid~phantichdITli~uvakhaikhoangdITli~u.Saunhi~unamphattri~n,
19thuye'tdad~tduQcdQchinmu6i.TrongnhITngnamg~ndaychungtadachli'ng
kie'nmQtsl!tangtrudngnhanhchongtrong19thuye'tt~phQpthovacacli'ngdl,mg
cuano trenloanthe'gioi.Nhi~uhQithao,hQinghiquO'cte'vacacseminarv~19
thuye't~phQpthotrongcacchudngtrinh.MQtsO'IOncactai li~uco cha't1uQng
cao daduQcphathanhg~ndaytrennhi~ukhiac~nhcuacact~phQptho.Khai
ni~mv~t~phQp1akhaini~mcanbancholoanbQtinhloandudngthaiva 19
thuye'tv~t~phQpduQcGeorgCantord~xua'tvaonam1883r6 rang1acQtmO'c
trongvi~cphattri~ncachsuyfighTtinh,loanhi~nd~i.
MQtt~phQpduQcxacdinhbdicacph~ntll'cua no,nghIa1anoduQcxac
dinhne'umQiphffntll'cuano1axacdinhduynha't.Thi d1,l,t~phQpcua ta'tcacac
sO'chan(Ie)1axacdinhduynha'tvam6imQtsO'nguyencoth~duQcphanbi~tma
khongco sl!nhffm1iln,nhu1ach~nva Ie. Lo~ikhaini~mnay thuangduQcbie't
11
de'nnhula crisp(stfr5rang).Hi~nnhien,aftcacackhaini~mtinhtoanla crisp,
ne'ukh6ng,thinokh6ngth~dungd~chungminhbfftky ly thuye'ttinhtoannao.
\
Nhungrfftnhi~ulInhvtfckhac,tlnhhu6nglakh6ngr5rang.Trongy khoa,
thi dl;1,khaini~mmQtnguBi"m<;tnhk oe( ho~cb~nh)" kh6ngth~dinhnghIa
mQtcachduynhfft.Tuongttf,tronglu~tphapkhaini~m"cotQi"(ho~c"kh6ngco
tQi") kh6ngth~'dinhnghIamQtcachchinhxac.Nhii'nglo<;tikhai ni~mkh6ng
chinhxacnayduQcgQila mB (vague).Cackhaini~mmBkhan6i tie'ng,kh6ng
chi trongy khoaho~clu~tkhoa,nhunghffuhe'tmQinoi,thidl;1,kinhte'vachinh
tri la nhii'ngmi~nd~nchungdi~nhinhkhac,noicackhaini~mmBla thanhphffn
banchfftchocacphuongphapsuyfighTvatranhdE.
Cac khaini~mmBbi~uthibdi mQt "vunggidi h<;tn"(boundaryregion),
nobaag6mtfftcacacthanhphffnmakh6ngth~duQcn6ike'tvdikhaini~mho~c
phffnbucuakhaini~m.Thi dl;1,khaini~mv~mQtconso'chan (1e)la chinhxac,
bdivi mQtcons6thila chanho~cIe, trongkhidokhai ni~mv~caidypthimo
h6bdivi kh6ngth~quye'tdinhmQtcachkhachquailmQithula dyphaykh6ng.
PhuongphapduQcbie'trongvanchuangtrie'thQcnhula phuongphapcoduBng
gidih<;tnchotinhmBvala thuQCv~ nhalogicDucGottlobFrege,nguBidffutien
hinhthanhtu'tudngnayvaonam1984.Theocachdo, cackhaini~mmBhinh
thanhcosdcholy lu(iny thacchungtrongnhi~ulInhvtfclienh~ voinhi~utlnh
hu6ngtrongthtfcte'.
Tinh mBnhi~unamthuhutstfchuycuacacnhalogicva trie'thQC.Gffn
day,cacnhakhoahQcmaytinhclingconhi~unghienCUutronglInhvtfcnay,
12
nhi~ulingdl;!ngmayHnh,noirieng,nhula "tri tu~nhant<:lO",dn sii' dl;!ngcacI
khaini~mmavaphuongphaply l~n din cu trenkhaini~mmo.
Phuongphaply thuye'tthanhcongnhfitv~tinhmala lythuye'tv~t:\ipma
dU<;fcd~nghibdiZadeh.Y tudngcobancualy thuye't:\iph<;fpmaxoayquanh
trenhamthanhvienma,manochophepmQtphftncuacacphftntii'thuQcv~
mQtt:\iph<;fpnghiala no chophepcacphftntii'thuQcvaomQtt:\iph<;fptheomQt
"mucdQ"
Ly thuye't:\iph<;fpthola mQtphuongphap Hnhtoankhaccua Hnhmo.
Trangphuongphapt:\iph<;fpthoHnhmanghlala thie'ucacthongtinv~vaiph~n
tii'cuat:\ipvutrl;!.
Ne'uclingmQtthongtinmalienquailtdi vai ph~ntii',trongph<:lmvi cua
thongtin nay,nhungphftntii'nayla kh6ngthi phanbi~tduf!c.Thi dl;!,ne'uvai
b~nhnhanbi m~cclingmQtdin b~nhcl;!th€ th€ hi~nclingmQtri~uchung,hQla
khongth€ phanbi~tdU<;fcd6ivdi thongtin v~hQ.Hoara dingHnhkhongth€
phanbi~tdu<;fcd~nde'ncac truangh<;fpv~vling gioi h(,ln,nghla la, vai ph~ntii'
khong thS ke'tn6i vdi mQtkhai ni~mhoi;icph~nbli cua khai ni~m nay trong
ph<:lmvi cuathongtincosan.Bdi VIcackhaini~mmacocactru'angh<;fpvling
gidi h<:ln,ghlala cocacph~ntii'makhongthSphanbi~tla noco chinhxacla
ph~ntii'cuakhaini~mhaykhong,Hnhmala lienh~tn!ctie'phoantoan vdiy
tudngcuastfch~c h~n(hoi;ickhongch~ch~n).
Ly thuye't:\iph<;fph<;fpthoco ve rfitthichh<;fpnhula mQtmohlnhHnh
toanchoHnhmavastfkhongch~cch~n.Tinhmala mQtthuQcHnhcua t:\iph<;fp
13
(khai ni<$m)va n6 lien quail hoantoande'nslf hi<$ndi<$ncua vung gioi hC;lncua,
mQtt~phQp.NguQc1C;lislfkhongcha:ccha:n1amQtthuQctinhcuacacphftntii'cua
cac t~phQp.Trong phuongphapt~phQptho ca hai khai ni<$m1alien quail gftn
gili bai VI tinhkhongphanbi<$tduQCgayra bai thie'uthongtinv€ the'gioi ma
chungtaquailtamde'n.
Slfke'thQpcua1ythuye'tt~phQpthovanhi€u 1ythuye'tkhacdfitranenr6
rang.N6i r6 hon1am6ilienh<$giil'a1ythuye'tt~phQpmava1ythuye'tDempster
- Shaferv€ tinhr6 rang.Khaini<$mcuat~phQpthovat~phQpma1akhacnhau
bai VI chungbi€u di€n cackhiaqnh khacnhaucuacuatinhmoh6 (Pawlak&
SLowron 1994),nguQc1C;lislf n6i ke'tvoi 1ythuye'tv€ tinh chungcu 1adin ban
hon (Skowron & Gizyma1aBusse, 1994).Hon nil'a,1ythuye'tt~phQptho lien
quailde'nslf phantichbi<$tso'(Krusinskava AI.,1992),phuongphap1u~n1y
(Skowron& Rauszer,1992),vanhil'ngphuongphapkhac.M6i quailh<$giil'aly
thuye't~phQptho va phantich quye'tdinh duQcgioi thi<$ubai Pawlak&
SLowinski(1994)va SLowinski(1995).Nhi€u ma rQngkhacv€ mo hlnh1y
thuye'tcuat~phQpthodangduQcd€ xua'tvaphathi<$nthem.
Ly thuye'tt~phQpthoc6ra'tnhi€u lingdl;!ng.Phuongphapt~phQpthodfi
1acongCl;!quail tn;mgtronglInh vlfc tri tu<$nhantC;lOva cac lInh vlfc lien quail
de'nnh~nthuc,d~cbi<$ttronglInh vlfc may hQc,truy va'n kie'nthuc,phan tich
quye'tdinh,khamphakie'nthuctUcosadil'1i<$u,h<$th6ngchuyengia,1y1u~nquy
nC;lpva nh~ndC;lngm~ug6mnh~ndC;lngtie'ngn6i va chil'vie'ttay.N6 ra'tquail
trQngchocach<$th6ngra quye'tdinhvakhai khoangdil'1i<$u.LQi the'chinhcua1y
thuye't~phQptho1an6 khongdn ba'tky thongtin sobQva themvaov€ dil'li<$u
- nghla1agi6ngnhukhanangtrongth6ngke, trongphancongcua 1ythuye't
14
Dempster- Shafer,ca'pb~cthanhvienho~cgiatQcuakhanangtrongly thuye't
t~ph<;5pmo.Ly thuye't~ph<;5pthoda thanhcongkhi dapling trongnhi~uva'nd~
v~th1.!cte'trongy khoa,dU<;5ckhoa,xayd1.!ng,nganhang,taichinhvaphantich
thjtruong,...E>~cbic$ttronglInhv1.!cdu<;5ckhoas1.!phantichm6iquailhc$giuaca'u
truchoa hQCva hoC;ltdOngch6ngvi trung cua thu6cdangdu<;5cxuc tie'nra'thic$u
qua.Cac ling dl.mgtrongnganhangbaa g6mdanhgia cac rui ro va nghienCUu
thj truongdang thu du<;5cnhi~uke'tqua t6t va ngay dng gianh dU<;5cs1.!thita
nh~n.
Phuong phap t~ph<;5ptho cling quail trQngtrong nhi~uling dl.mgthuOc
khoahQcxay d1.!ngnhula nghiencUu,chuffndoanmaymocsadl,mgcacda'uhic$u
v~dO6n djnh (tie'ng6n,s1.!rung),vas1.!di~ukhi~ncactie'ntrinh.Caclingdvng
trongngonngu,moitruong,vacosCJdulic$ula caclInhv1.!cquailtrQngkhac.Ra't
nhi~uhilah~nla cacIInhv1.!cmoicuacaclingdvngcuakhainic$mt~pthosen6i
len trongtuonglai gfin.Chungbaag6ms1.!di~ukhi~ntho,cosCJdulic$utho,rut
trichthongtintho,mC;lngthfinkinhthovacaclInhv1.!ckhac.
Cac ling dvng cua t~ph<;5ptho yell du phfin m~mthich h<;5p.Nhi~uhc$
th6ngphfinm~mcho cac workstationva may PC, can cu tren ly thuye'tt~ph<;5p
tho,dangphattri~n.Cac sanphffm n6i tie'ngnha'tbaag6mLERS (Gizymala-
Busse,1992),RoughDAS andRoughClass(SLowinski& Stefanoski, 1992)va
DATALOGIC (Szladow,1993).Vai caidaduQcthuongmC;lihoa.
15
2.1.Y TU<1NGCO BAN
Y tu'dngcua t~phQpthodljatft?nsljthuanh~nding,tniivoi ly thuye'tvS
t~phQpc6diSn,chungWicovaithongtinthemvao( kie'nthuc,dli li~u)vScac
ph~ntti'cuamQtt~phQp.Noi ra hon,thid\)nhu',mQtnhomcacb~nhnhanbi dati
tuclingmQtdin b~nh.Trongb~nhvi~ndangdiSutri cacb~nhnhannaycocac
file dli li~uchua"cacthongtinvSb~nhnhan nhu'lathannhi~t,aplljc mali,ten,
tu6i,diachi,...Ta'tcab~nhnhanbQclQclingtri~uchungla thongthi phiinbi?t
dU(lC(gi6ngnhau)trongph~mvi cuathongtincosanva t~othanhcackh6i,ma
noco thSdu'QchiSunhu'la cacmllunhocua kie'nthucvSb~nhnhan(ho~clo~i
b~nhnhan).Cacmllunhonaydu'QcgQila cactqpcdban (elementarysets)ho~c
cackhai ni~m(concept),vacothSdu'Qcbie'tnhu'lacackhol xaydI1ngcdban
(nguyentti'- atoms)cuakie'nthucchungtavS diSumachungtaquailtamde'n.
Cac khai ni~mco banco thSke'thQpvao cacthai ni?m da h(lp (compound
concepts)nghlala cackhaini~mdu'Qcxacdinhduynha'tronggiOih~ncuakhai
ni~mcoban.Ba'tky sljke'thQpcuacact~phQpcobandu'QcgQila t~pra (crisp),
vaba'tky t~phQpnaokhacthldu'Qchola tho(mo,khongchinhxac).Voi mQi
t~pX chungtacothSlienh~hait~pcrispdu'QcgQilaxiipxi dumvatrencuaX.
xa'pXldu'oicuaX la ke'thQpta'tcacact~phQpcobanmanothuQcvS X, ngu'Qc
l~ixa'pXltrencuaX la hQpcuata'tcacact~pcoban,ma giaokhacr6ngvoiX.
Noi cachkhacxa'pXl du'oicuamQtt~phQpcuata'tcacacph~ntti'mano cha:c
cha:nph\)thuQcvaoX, ngu'Qcl~it~pxa'pXl trencuaX la t~pta'tcacacph~ntti'
manocokhaniingthuQcvaoX.
Slj khacbi~tcua xa'pXl trenvadu'oicuaX la vimggiai h{m.HiSnnhien,
mQtt~pla tho ne'uno khongco vlinggioi h~nr6ng; ngoaifa, t~phQpla ra
16
(crisp).Cac ph~ntli'cuavunggidi h~nthl khongth~phanbi~tdu'<;Jc,sli'dl;mg
kie'nthliccosan,1anothuQcv€ t~ph<;Jpho~cph~nbucuat~ph<;Jp.Slj xa'pXlcua
cac t~ph<;Jp1atoantli'co ban trang19thuye't~ph<;Jptho va du'<;Jcsli'dl;mgnhu'1a
congCl;lchinhd~d6i phovdi dli li~umava dli li~ukhongch~cch~n.
2.2.THI DT)
HaychochungtoiminhhQa9tu'dngbell trenb~ngphu'ongti~n1amQt thi
dl;ldongian.Dli li~uthu'angdu'<;JctrlnhbaytrangmQtbang,caccQtcuanodu'<;Jc
d~ten1athuQctinh,cacdong1acacd6itu'<;Jngvacacth~hi~ncuabang1agiatri
cuacacthuQctinh.Cac bangnhu'the'du'<;Jcbie'tnhu'1acach~th6ngthongtin,cac
banggiatricacthuQctinh,cacbangdli1i~u,ho~c1acacbangthongtin.
Trangcacbangthongtinchungtoi thu'angphanbi~tgiliahai lo~ithuQc
tinh,du'<;Jcd~ten1adi€u ki~nvaquye'tdinh.Nhlingbangnhu'the'du'<;Jcbie'tnhu'
1abangquye'tdinh.Cac dongcuabangquye'tdinh du'<;Jcbie'tnhu'1acac quy1u~t
quye'tdinh "ne'u...thL", ma no cling ca'pcac di€u ki~ndn thie'td~t~olien cac
quye'tdinhdinh
bdicacthuQctinhquye'tdinh.Bang2.11amQthidl;lv€ mQtbangquye'tdinh.
17
Bang2.1:bangquye'tdinh,
Bangchuacacdfi'1i~ulienquailde'n6 duong6ngb~ngsa:tdu<jcki~mtra
,
khanangchiliapsua'tcao.TrongbangC,S va P la cacthuQctinhdiSuki~n,th~
hi~nnQi dungph~ntram than da (Coal), sul-phur(Sulfur), va ph6t-pho
(Phosphorus),riengtungcai,ngu<jcl~ithuQctinhNUt th~hi~nke'tquacuavi~c
ki~mtra.Gia tri cuathuQctinhdiSuki~nla nhusau(C, cao» 3,6%,3,5%~
(C,TB) ~3.6%,(C,tha'p)<3.5%,(S,cao)~0,1%. (S,tha'p)<0.1%, (P,cao)~0.3%,
(P,tha'p)<0.3%.
Va'ndS chinhchungta quailHimla st!chili dt!ng nhuthe'naocuacac
du'ong6ngphl;!thuQcvaot6 h<jpC,S vaP ke'th<jptrong10,ho~cnoicachkhac,
cohaykhong mQtphl;!thuQchamgifi'athuQctinhquye'tdinhNUt vacacthuQc
tinhdiSuki~nC,S va P. Trongngonngfi'ly thuye't~ph<jptho,di~mquailtam
ma'uch6tla t~ptrungvaocalihoikhongbie'tr~ngt~ph<jp{2,4,5}cuata'tciicac
duong6ng khong co ve'tnut sauki~mtra ( ho~cla t~ph<jp{1,3,6}cuacac
Duong6ng C S P Nut
1 Cao Cao Tha'p Co.
2 TB Cao Tha'p Khong
3 TB Cao Tha'p Co
4 Tha'p Tha'p Tha'p Khong
5 TB Tha'p Cao Khong
6 Cao Tha'p Cao Co
18
du'ong6ngcove'tnut),coth€ dinhnghladuynha'tronggioih(;lncuacacgiatri,
thuQctinhdi@uki~nkhong.
Co th€ d~dangnh~ntha'yr~ngdi@udolakhongth€, baiVI6ng2 va3 th€
hi~nrungd~cdi€m tronggiOih(;lncuathuQctinhC, S vaP, nhu'ngcogiatrikhac
nhaucua thuQctinhNut.Do dothongtindu'Qcrhotrongbang2.1la khongd~y
dud€ giaiquye'tva'nd@cuachungta.Chungta,coth€, dusao,rhomQtgiaiphap
bQph~n.ChungfahayquailsatthuQCtinh C cogiatri CaorhomQtdu'ong6ng,
r6i thldu'ong6ngnut,ngu'Qcl(;line'ugia tri cuathuQctinhC la Tha'p,thldu'ong
6ngkhongbi nut.Do do,sad\)ngthuQCtinh C, S vaP chungtacoth€ noir~ng
cacdu'ong6ng1va6 la ch3:ch3:nt6tnghlala tinh ch3:ch3:nph\)thuQcvaot~p
(1,3,6),ngu'Qcl(;licacdu'ong6ng1,2,3 va6 la cokhanangt6tnghlala cokha
nangph\)thuQcvaot~p(1,3,6).Do dot~p(1,6),( 1,2,3,6),va(2,3)la xa'pXldu'oi,
tren,vavunggiOih(;lncuat~p(1,3,6),riengbi~ttungt~pmQt.
£>i@udo co nghlala cha'tlu'Qngcuadu'ong6ngkhongth€ du'Qcxacdinh
chinhxacbai nQidungcuathanda,sul-phurva ph6t-photrong10,nhu'ngcoth€
du'Qcxac dinh mQtcach xa'pxl. Tht!c te'thl, st!xa'pXl xac dinh st!ph\) thuQc
(toanph~nho~cmQtph~n)giuacac thuQctinhdi@uki~nva quye'tdinh,nghlaIa
m6iquailh~r6 ranggiuacacthuQctinhdi@uki~nvaquye'tdinh.Muc dQcuast!
ph\)thuQcgiuacacthuQctinhdi@uki~nvaquye'tdinh coth€ dinhnghlanhu'lat1
1~giua ta'tcacacdongmagiatri cuathuQctinhdi@uki~nxacdinhduynha'tgia
tri cuacacthuQctinhquye'tdinhva ta'tcacacdongtrongbang.Thi d\),mucdQ
cuastfph\)thuQcgiuacacve'tnut vast!ke'thQpcac6ngs3:tla4/6=2/3.Co nghla
la4/6(xa'pXl66%)cac6ngcoth€ phanbi~tdungd3:nla t6ttrencdsast!ke'thQp
? ,cua no.
19
Chungtaco th~clingquailHimde'nvi~cgiamvai thuQctinhdi~uki~n,
\
nghIala cohaykhongvi~cta'tcacacdi~uki~nladn thie'td~t~oracacquye't
dinhmotatrongbang.D~giaiquye'tnochungtasesadl;mgkhaini~mv~mQt
slj thunho (cacthuQctinhdi~uki~n).B~ngslfthunhochungtatimduQcmQt~p
connhonha'tcuacacthuQcHnhdi~uki~nmanococlingca'pdQcuaslfphlJthuQc
giil'acacthuQctinhdi~uki~nvaquye'tdinh.De dangd~Hnhroanr~ngtrong
bang2.1chungtacohaicaithunho,d~tenla (C,S)va(C,P).Giao ta'tcacac
thunhoduQcgQila core.Trongthi dlJ cuachungta,corela thuQcHnhC mano
conghIala trongph~mvi cuadil'li~u,thandala lInhvlfcquailtrQngnha'tgayra
ve'tnutvakhongth~duQclo~itnrkhoislfquailtamcuachungta,nguQcl~i,Sul-
phurvaPh6t-phodongmQtvaitrothuye'uvacoth~duQcthayd6ilin nhaunhu
la lInhvlfcgayrave'tnut.
2.3.TINHKHONG THE PHAN BItT DU<jC
NhudaduQcd~c~ptrongph~ngidithi~u,di~mkhaid~ucua19thuye't~p
hQptholam6iquailh~khongth~phanbi~tduQc,sinhrabaithongtinv~cacd6i
tuQngmataquailtam.M6i quailh~khongth~phanbi~tduQcnglJ9dug dothie'u
kie'nthucmachungtakhongth~phanbi~tduQcvaid6ituQngtrencosathongtin
cosan.Di~udo conghIar~ng,noichung,chungtakhongchI giaiquye'tcacd6i
tuQngriengIe macon phaiquailtamde'nnhomcacd6ituQngkhongth~phan
bi~tduQcnhula cackhaini~mcobanv~kie'nthuc.
Bay giOchungtanoir6 honv~di~uquailtambelltren.Gia sli'chungta
duQcchohai t~phQpxacdinh,khongr6ng,U vaA, U la tqpvii trq vaA la tqp
caethul)ctinh.VOi m6ithuQcHnhathuQcA, chungtalienh~vdit~pVa cuacac
20
giatri cuanoduQcgQilamiencuaa.Ci,ipS=(U,A)seduQcgQilamQth~thO"ng
thongtin. Ba'tcut~pconB naocuaA xacdinhm6iquailh~haingoiIB trenV,
seduQcgQila molquanhf thong thi phlin hift dll(1C,va duQcdinhnghlanhu
sau:
XIBy ne'uvachine'ua(x)=a(y)voimQiathuQcA
trongdoa(x)kyhi~ugiatricuathuQctinhacuaph~ntti'x
(2.1)
HitinnhienthlIB la mQtm6iquanh~tuongduong.T~phQpcuata'tcacaclOp
tuongduongcuaIB,nghlala duQcxacdinhmQtph~nbdiB, seduQcky hi~ubdi
VIIB ho~cdongianla VIB ; mQtlOptuongduongcuaIB nghlala kh6icuaph~n
U/B chuax seduQckyhi~ulaB(x).
Ne'u(x,y)thuQcv6IB chungtase noidingx vay la B-khongthi phlin
hift dll(1c.Cac lOpWongduongcuam6iquailh~ IB (ho~cla cackh6icuaph~n
UIE) thlduQcbie'tnhulaB- cdhim ho~claB-sdclip.NhudaduQcd6c~ptruoc
daytrongphuongphap t~phQptho,khaini~mcoban la cackh6ixay dl;l'ngco
ban (khai ni~m)cuakie'nthucchungtav6 the'giOithl;l'c.D6i voi thi d~,cac
duong6ng1,2 va 3,clingnhula cacduong6ng5 va 6 la khongth~phanbi~t
duQctronggioih<;lncuaS vaP, duong6ng1va6 cling nhula 2,3va5 la khong
th~phanbi~tduQctronggioih<;lncuathuQctinhC.
21
K ?, A
2.4.STjXAP XI CAC T~P H(1P
M6i quailhc$khongthephanbic$tdu<;1csedu<;1csli'dl,mgke'tie'pdedinh
nghlacackhainic$mco banv€ ly thuye'tt~ph<;1ptho.Baygiochungtahaydinh
nghlahai toantli' trent~ph<;1pnhusau.
B*(X)={x E U: B(x)c X}
*
B (X)={XEU: B(x) n X :;t:0} (2.2)
Hai toan tli'nay gall cho m6i t~pcon X cua t~pvu trl;lU hai t~ph<;1p,B*(X) va
B*(X), gQila B-xiip xi du:oivaB-xilp xi trencua x, riengtungcai mQt.T~ph<;1p
BNg(X)=B*(X) - B*(X) (2.3)
Se du<;1cbie'tde'nnhula vimggiUihfJ-nB cuaX
Ne'uvunggioi h~ncuaX la t~pr6ng,nghlala BNg(X) =0, thl t~pX la
ro (crisp) d6i voi B; trongtruongh<;1pngu<;1cl~i,nghlala, ne'uBNB(X):;t:0, t~p
h(khong ra) d6i voi B
Thi dl;lsaudaysechIra lamcachnaodetinhtoanvungxa'pXlduoi,tren
vavunggioih~ncuamQtt~ph<;1p.Hay kyhic$ut~pcacthuQctinhdi€u kic$nC,S,
vaP b~ngB, vaky hic$uXC6={1,3,6},XKh6ng={2,4,5}Ia cact~pcuaduong
6ng bi nutvakhongbi nut,riengbic$t,cact~pB-coban trongthidl;l la cact~p
sauday:{I},{2,3},{4},{5},va {6}.Dodo,chungtaco:
B*(XC6)={I}U {6}={1,6}
B*(XC6)={l}U {2,3}U {6}={I, 2,3,6}
B*(XKh6ng)= {4}U {5}= {4,5}
22
*
B (XKh6ng)={2,3}U {4}U {5}={2,3,4,5}
BNg(XCo) = BNg(Xkh6ng)= {2,3 } (2.4)
C6th~dSdangchIfacactinhcha'tcuatinhxa'p xl.
1. B*XcXcB*X
2. B*(0) = B*(0) = 0; B*(U)=B*(U)=U
3. B* (Xu Y) = B*(X) u B*(Y)
4. B*(X n Y ) = B*(X) n B*(Y)
5. X c Y baahamla B*(X) c B*(Y) vaB*(X) c B*(Y)
6. B*(X u Y ) ;;;;? B*(X) u B*(Y)
7. B* (X n Y) c B*(X) n B*(Y)
8. B*(-X)=- B*(X)
9. B* (-X)=- B*(X)
Trangd6- X lakyhi~uU-X
10.B*B*(X) =B* B*(X) =B*(X)
l1.B* B*(X) =B*B*(X) =B*(X)
Nh<\inxetdingbdiVIthuQctinh6va7,cacxa'pXlkhongth~tinhtoantung
budc,bdiVIxa'pXldudicuahQinhi~ut<\iph<;1pla chua hQicuanhi~uxa'pXl
dudi cuatUngt<\iph<;1pthanhph~n; tudngtlf nhuv<\iy,xa'pXl tfen cuagiao cua
cac t<\iph<;1pchuatranggiao cua xa'pXl tfen cua cac t<\iph<;1pthanhph~n.C6
nghIala, n6i chung,bangdii' li~ukhongth~chiathanhcacph~nnh6hdn
(ho~ccacbangkhongth~dU<;1cgoml<,tivdi nhau),ke'tquac6 dU<;1ctu cac
bangdi'ichia fa ho~cgom l<,tic6 th~khac.
C6th~dinhnghIa4ldpdin bancuat<\iptho,nghIala4 lo<,ticuatinh ma:
23
a) B*(X):;t:0vaB*(X) * U, ne'ux la B-coth€ xacdinhduQcvakhong
chinhxac
b) B*(X)=0vaB*(X)*U,ne'ux laB-khongth€ xacdinhduQc vabell
trong
c) B*(X)*0 va B*(X)=U,ne'ux la B-co th€ xacdinhduQCva tubell
ngoai.
d) B*(X)=0vaB*(X) =U, ne'ux laB- hoantoankhongth€ xacdinh
duQc
Y nghIatn,icgiaccuacacphanlo~inaylanhusau
. Ne'uX la B-coth€ xacdinhduQCvakhongchinhxac, conghIala
chungtacoth€ quye'tdinhvaiph~ntii'cuaU ho~cla thuQcX ho~c-X
sii'dlJngB
. Ne'uX laB-khongth€ xacdinhvabelltrang,conghIala chungtaco
th€ quye'tdinhvaiph~ntii'cuaU thuQcv€ -X, nhungchungtakhong
th€ quye'tdinhchoba'tky ph~ntii'naGcuaU, ho~cno thuQcv€ X
ho~ckhongsii'dlJngB
. Ne'uX la B-khongth€ xacdinhtubellngoai,conghIala chungtaco
th€ quye'tdinhvaiph~ntii'cuaU ho~cla thuQcv€ X, nhungchungta
khongth€ quye'tdinhba'tky ph~ntii'naGcuaU ho~cno thuQcv€ -X
ho~ckhongsii'dlJngB.
. Ne'uX la hoantoanB-khongth€ xacdinhduQc,chungtakhongth€
quye'tdinhba'tky ph~ntii'naGcuaU ho~cla nophlJthuQcVaGX ho~c
- X sii'dlJngB
24
Trong thi dt,lcuachungta B*(XC6)"*U, B*( XC6)"*0 va B*(XKhOng)"*0 ;
do do ca hai XC6 va XKh6ngla khong chinhxac va B-co th€ xac dinh
duQc.
T~phQpthocoth€ clingduQcbi€u thiblingcons6h~s6:
as(X)= IB*(X) I
IB *(X) I
(2.5)
duQcgQila dl)chinhxac cuasl;l'x~pxl, trongdo IXI ky hi~us6phftntil'cuaX.
Hi€n nhien,a :::;aB(X):::;2.NC'uaB(X)=1,X la crispd6ivoiB ( X la ro d6ivoi
B); ngoaira,nC'uaB(X)< I, X la khongchinhxac d6ivoiB. thidt,l,d6ivoiXC6
chungtaco:
a B (XeD)=a B(Xkhong)=2/4 =1/2 (2.6)
2.5.T~PH<JPTHO vA HAM THANH VlEN
T~phQpthocoth€ clingduQcdinhnghlablingcachsil'dt,lngillQthamthanhvien
tho,dinhnghlanhusau:
J1~(x)=IXnB(x) I
IB(x)I
(2.7)
hi€n nhien:
J1~(x) E[0,1] (2.8)
25
Gia tri cua ham thanhvien ,uf(x) la mQtlo<;lixac sufftdi€u ki~n,va co th€ du'QC
hi€u nhu'la muc dQcua stfca quye'tvao stfki~nla x thuQcv€ X (ho~cla 1-
J.!XB(X),la muc dQ cua stfkhong ch1:lcch1:ln.)
Ham thanhvien thoco th€ du'QCsadl,mgd€ dinhnghIatinhxffpxi va vung
gidi h<;lncuamQtt~pnhu'chi fa du'diday:
B*(X) ={XE U: ,uf(x)=I},
B* (X) ={XE U: J.i%(x)>O},
BNB(X) ={XE U :O<,uf(x)<I}, (2.9)
Ham thanhvien tho co nhil'ngthuQctinh sau day (Pawlak & SLowron,
1994):
a) ,uf(x) =1ne'uXE B* (X);
b) ,uf(x)=0 ne'uXE -B* (X);
c) O<,uf(x)<1ne'uXE BNB (X);
d) ne'u(B)={(x,x): x E U },thl ,uf(x) la hamd~ctfu'ngcuaX;
e) ne'ux IBy thl ,uf(x)=,uf(y) xacdinh bdiIB;
f) ,u~-x(x)=1- ,uf(x)vdimQix E U;
g) ,ufuY(x)2 max(,uf(x)"u:(x)) vdi mQix E U;
h) ,ufnY(x)~min(,u:(x), ,uf(x)) vdi mQix E U;
i) ne'uX la t~pcacc~ptungdoi tach foi cuaU, thl ,u~x(X)=L x E X
,uf(x)vdi mQi x E U;
26
ThuQctinhtrenchi ra r~ngsVkhacbi~tgiuahamthanhviencuat~p,
mava tho,N6i rieng,thuQctinhg) vah) chira r~ngcachamthanhvien
thoc6th~ du'<;1cdanhgiachinhthucnhu'Ia svkhaiquath6a hamthanh
vienmadotoantii'maxvamill rhophephQivagiaocuat~ph<;1p,Wang
lingvoi, t~pmala cactru'angh<;1pd?cbi~tcuat~ptho.Nhu'ngchungta
nhol~ir~ng"hamthanhvientho", lacai tu'angphanvoi "hamthanhvien
IDa",thuQcv€ hu'angvi cuatinhxacsua't.Thi d\),hamthanhvienthocua
cacdu'ang6ngrhoXC6la du'<;1cchiradu'oiday
J.1~co(~)=1;
J.1~C()(P2)= 1/2;
J.1~cJ~) = 1/2;
J.1~co (P4) = 0;
J.1~co(ps) = 0;
J.1~(P )=l'co 6 , (2.10)
C6 nghlala ne'u,mQtdu'ang6ng c6 chuanhi€u thandel,sul-phurva it
ph6t-pho,thln6nUt,ngu'<;1cl~ine'uthandel,suI-furva ph6t-phola trung
blnh,nhi€u vait thlxacsua'td~du'ang6ngbinutla Yz
C6 th~d~dangtha'yr~ngt6nt~imQtm6ilienke'tmongmanhgiua
tinhmava tinhkhongcha:cha:n,Nhu'du'<;1cd€ ~ptru'ocdaytinhmalien
quail t~ph<;1p(khai ni~m),ngu'<;1cl~i, tinhkhongcha:ccha:nlien quailde'n
cacph~nttl'cuat~ph<;1p.
27
2.6.STjPHT)THUOCCUA cAe THUOCTINH
\
Tinhxa'pxi cuat~phQpla lienquailch;}tcheWikhaini~mv~stfph\!thuQc(toan
bQho;}ctung ph~n).B~ngtrtfcgiac,mQtt~pcacthuQctinhD phlj thul)cholm
tolmvaomQt~pcacthuQctinhC,kyhi~ulaC =>D,ne'uta'tcacacgiatricua
thuQctinhtuD xacdinhduynha'tb~ng iatricuacacthuQctinhtuC.Noicach
khac, D ph\!thuQchoantoanvao C, ne'ut6n t<;limQtstfph\!thuQchamgiua gia
tri cuaD va C. Trangbang2.1khongco ph\!thuQchoantoannao.
Chungtaclingdn mQtkhaini~mt6ngquathancuastfph\!thuQcvaocac
thuQctinh,duQcgQilaphlj thul)cml)tphiln cuathuQctinh.Ph\!thuQcmQtph~n
conghlalachicovaigiatricuaD laduQcxacdinhbdigiatricuaC
Thongthuongthl,stfph\!thuQcoth~duQcdinhnghlatheocachsau:xet
D vaC la t~pconcuaA, chungtanoir~ngD ph\!thuQcvaoCd milcdQk (0~k
~1),kyhi~ula C ~k D, ne'u
k =r(C,D) =IPOSe(D) I
IVI
(2.11)
trangdo
POSe(D)= YC.(X) (2.12)
XEUID
duQcgQila vungxacdinhcuathanhph~nDID d6ivdi C, la t~phQpcuata'tca
ph~nph~ntti'cuaD manocoth~duQcphanbi~tduynha'tucackh6icuaph~n
DID bdiC. Hi~nnhien:
r(C,D) = L Ic.(X)I
XEUID IV I (2.13)
28
Ne'uk =1chungtanoi r~ngD ph\!thuQcho~mto~mvaoC, vane'uk < 1,
chungtanoiD ph\!thuQcmOtph~n(dmucdQk) vaoC.
H~s6k noitenti 1~cuaHitcacacph~ntacuat~pvii tr\!manocoth~
phanbi~tr6rangtrongcackh6icuaph~nDID,sad\!ngthuQCtinhC,vasedu'Qc
gQilamucdQcuaslfph\!thuQcmacoth~ciingdu'Qchi~unhu'laxacsua'tmax E
U thuQcvemQttrongcactrongcaclopquye'tdinhxacdinhbdithuQctinhquye't
dinh.Thi d\!:(slfnut)ph\!thuQcvao(C,S,P)d ca'pdQk =4/6=2/3.conghlalahai
ph~nbacuadu'ang6ngcoth~phanbi~tr6rang la nUtho~ckhongb~ngcachsa
d\!ngcacthuQctinhC,SvaP.
2.7.StjGIAM TRIEU cAe TRUQC TINR
Chungtathu'angphaid6iphovoicallhoikhongbie'tcoth~bovaidii'ki~n
titmOtbangdii'li~uvav§:nconduytri cacd~ctinhcdbancuanokhong,
conghlalacohaykhongmOtbangchuavaithongtinvo dvng.ThidV,d~
dangtha'yr~ngne'uchungtaborakhoibang2.1ho~cthuQctinhS ho~c
thuQctinhP, chungtaco du'Qct~pdii' 1i~utu'dngdu'dngvoi cai nguyen
thuy,voi slfquantamvaocacxa'pXldu'oivamucdQcuaslfphvthuQc.
Haygiaithichytu'dngnaychinhxachdn sauday.X6t C,D c A la
cact~phQpcuacacthuQctinhdi€u ki~nvaquye'tdinhmOtcachphanbi~t.
chungtase noi r~ngC'c C la mOtD-rutgQncua(rutgQnd6ivoiD) cua
C, ne'uC' la t~pt6ithi~ucuaC saDcho:
Y (C,D)=Y (C' ,D) (2.14)
29
Trangbang2.1,chungtacohait~prutgQn,(C,S)va (C,P),d6ivdi thuQc
tinhNut.Co nghIalaho~cthuQctinhSho~cthuQctinhP cotheIO<;litrukhoibang
va,VIv~y,thayvaobang2.1cothesad\mgbang2.2ho~cbang2.3.
GiaocuatfftcacacD-rutgQngQilaV-core(cored6ivdiD).Bai VIcorela
giaocuatfftcacacrutgQn,nola chuatrangtfftcacacrutgQn,nghIala m6iphffn
tacuacorethuQcv~vairutgQn.Do do,corela t~pconvo rungquantrQngcua
cacthuQctinh,khongcobfftky phffntii'naocuachungco thebi IO<;limakhong
anhhuangde'nst!phanbi~tcuacacthuQctinh.Trangbang2.1corecua(C,S,P)
d6ivdiNutlaC
Bang2.2.RutgQncuabang2.1
Bang2.3.RutgQncuabang2.1
Duong6ng C S NUt
1 Cao Cao Co
2 TB Cao Khong
3 TB Cao Co
4 Thffp ThffP Khong
5 TB Thffp Khong
6 Cao Thffp Co
Duong6ng C P NUt
1 Cao Thffp Co
2 TB Thffp Khong
3 TB Thffp Co
4 Thffp Thffp Khong
5 TB Cao Khong
6 Cao Cao Co
30
2.8.MATR~NPHAN BItT vA HAM
D€ d~dangtinhtmlnsvgiamthi€u vacorechungtasesad\,mgmatr~nphan
bi~t(SkwronRauszer,1992)machungtasedinhnghlasailday
MQtmatr~nphanbi~tcuaB c A la matr~nn x n dinhnghlanhu'sau:
8 ( x,y)={a E B : a(x)*a(y)} (2.15)
Do do8( x,y)la t~pcuata'tcacacthuQctinhmanophanbi~tcacd6i
tu'Qngxvay.
Matr~nphanbi~tcuabang2.1vat~phQpcacthuQctinhB =( C, S, P) la
du'Qchotrongbang2.4.Ma tr~nphanbi~tgallchom6ic~pcuacacd6itu'Qngx
vay, mQt~pconcuacacthuQctinh,8(x,y) c B, voicacthuQctinhsailday:
a) 8( x,x)=0
b) 8( x,y)=8(y,x)
c) 8 ( x,z)c 8( x,y)u 8 (y,z)
Nhii'ngthuQctinhnaytu'dngtvvoibankhoangcach(semidistance),va,dodo
ham 8 co th€ du'Qcbie'tnhu'la tlfa metricd€ do cha'tIu'Qng(qualitative
semimetric)va8 ( x,y)
31
Bang2.4Ma tr~nphanbi~tchobang2.1
Tlfametricd€ docha'tluQng(qualitativesemimetric).Do domatr~nphan
bi~t co th€ xem nhu la mOt ma tr~nban khoangcach (semi distance
(qualitative».
Clingchuydingvdim6ix,y, ZE U chungtaco
d) 18( x,x)1=0;
e) 18(x,y)I=18(y,x)1
f) 18( x,z)1::;;18( x,y)1+ 18( y,z) 1
D€ tinhtoanD-rutgQncuacacdi~uki~ncuathuQctinhC, chungtasedin
chinhsU'ad6ichutmatr~nphanbi~tgQilamatr~n(C,D),maduQcchonhusau:
8 ( x,y)={a E C : a(x)*-a(y)va w(x,y) }, (2.16)
Trongdo:
W(x,y)E POSe (D) vay ~POSe (D) hoi;icla
1 2 3 4 5 6
1
2 C
3 C 0
4 C,S C,S C,S
5 C,S,P S,P S,P C,S
6 S,P C,S,P C,S,P C,P C
32
x !l POSe(D)vaY E POSe(D) ho~cla
X,y E POSe (D) va x,y !l ID (2.17)
vC1imQi X,Y E U
NSuph~ndinhnghlabdiD la xacdinhbdi C, thldi~uki~nw(x,y)trong
dinhnghlabelltrencoth€ giamthi€u thanhX,Y!l ID.Dodo8( x,y)la t~pcuata-t
cathuQctinhmanophanbi~tcacd6itu'<;fngx vay makhongthuQcv~clingWp
tu'dngdu'dngcuaquailh~ID.
Ma tr~n(C,D)chobang2.1vC1icacthuQctinhdi~uki~nC,S,PvathuQCtinh
quyStdinhnUtladu'<;fcchotrongbang2.5.
Bang2.5:matr~n(C,D)chobang2.1
T~ph<;fpC' c ClaD-nit gQntrongC, nSuC' la t~pt6i thi€u cuaC saocho:
C' n c :;t:0vC1imQic khacr6ng (c :;t:0)cuamatr~nphanbi~t(C,D).
1 2 3 4 5 6
1
2 C
3 - 0
4 C,S C,S C,S
5 C,S,P - S,P C,S
6 - C,S,P - C,P C
33
Do D6 D-rutgQnla t~pcon nhonha'tcuacacthuQctinhman6phanbi~t
ta'tca cac lOptu'dngdu'dngcuamO'iquanh~ID phanbi~tbdi toanbQt~pcua
thuQctinh.M6i mQtmatr~n(C,D)phanbi~tduynhfftxacdinh mQthamphan
bi~tman6dinhnghlanhu'sau:
Chungtahaygallm6ithuQCtinhamQtbi€n nhiphan,a,vaxet I8 (x,y)
kyhi~ut6ngbooleancuata'tcacacbi€n booleandu'Qcgallchot~phQpcacthuQc
tinh8(x,y). saud6hamphanbi~tc6th~du'Qcdinhnghlabdicongthuc:
ID(C) = TI (I 8(x,y)): (x,y) E u2va8(x,y)*-0
(X,Y)EU2
(2.18)
ThuQctinhsaudaythi€t l~pmO'iquanh~giii'ahlnhthucphanbi~tblnh
thu'ongcuahamfD(C)vata'tcacacD-rutgQncuaC
Tfftcanhii'ngy€u to'trongd~ngblnhthu'ongphanbi~tcuahamfD(C)la ta't
cacacD-rUtgQncuaC
N6i cachkhac,mQt~pconnhonha'tcuatfftcacacthuQctinhmaphanbi~t
ta'tcacacdO'itu'Qngcoth~phanbi~tbditoanbQt~pthuQctinh.
Hamphanbi~t(C,D)chomatr~nphanbi~t(C,D)chiratrongbang2.5la
nhu'sau:
fD(C) =C. (C+S).(C+S+P).(C+S)
.(C+S+P).(C+S).(S+P).C =C. ( S+P) (2.19)
34
Trongdo"+" va"." Ky hi~uphepcQngvanhanBoolean,riengbi~t.Bdi
VI, d,;mgblnhthuongphanbi~tcuahamla:
fD(C) =c.s+c.p (2.20)
ChungtacohaiD-rUtgQn,(C,S)va(C,P),cuat~phQpthuQcHnhdi~uki~n
(C,S,P).chungtadIng nh~nxetdingD-corela t~phQpcuaUltcaph~nturieng
recuamatr~nphanbi~t,nghlala:
CORED(C)=(a E C :8(x,y) ={a},voimQix,y}. (2.21)
Voi nhungbangqualOn,phuongphapd~fightv~HnhroanrutgQnkhong
hi~uquaduvacacphuongphaptinhvi duQcsudl,mg.
2.9.DO DO CHAT Lu'(1NGTHUOC TINH
Khi quailtamde'nslfgiamthiSuthuQcHnh,chungkhongthSco slfquail
trQngnhunhau,vavai cai cuachungco thSloc;tibo rakhoimQtbangthongtin
makhongma'tmatthongtinchilabelltrongbang.Y tudnggiamthiSuthuQcHnh
cothSphatsinhbdivi~cgioithi~umQtkhaini~mladf)dochiltlli(Jngthuf)ctinh,
dodocothSchophepchungtadaubgiacacthuQcHnhchibdihaimilcgiatrj,la
cdnthiefhoi;tckh6ngcdnthief,nhungbdivi~cgallchomQtthuQcHnhmQtcons6
thlfctrongkhoang[0,1],nothShi~nslfquailtrQngnhuthe'naocuamQtthuQcHnh
trongmQtbangthongtin.
35
DQdocha'th1QngthuQctinhco th~daubgiabdivi~cdolu'onganhhu'dng
cuavi~cloc;timQtthuQctinhtitmQtbangthongtin trenvi~cxacdinhphanbi~t
b~ngbang.XetC vaD Iat~phQpcacthuQcHnhdi€u ki~nvaquy€tdinh,rieng
bi~t,xeta la mQthuQctinhdi€u ki~n.Nhu'dachIratru'ocday,cons6 y(C,D)
th~hi~nmilcdQcuaslfph\}thuQcgifi'athuQctinhC vaD. Chungtaco th~bi€t
h~s6Y(C,D)thayd6inhu'th€ naokhi loc;tibi)thuQctinha nghlaIa slfkhacbi~t
Ia nhu'th€ naogifi'ay (C,D)vay (C - {a},D).tieuchuffnhoaslfkhacbi~tvaxac
dinhmilcdQdangk~cuathuQctinhanhu'la:
(J"CD(a) =(y(c,D)- y(C - {a},D)) =1- y(C - {a},D) ,. y(C,D) y(C,D) (2.22)
Va ky hi~ub~nga (a)~1.thuQctinhquailtrc;mghonathlldn honcons6
a(a)co.Thi d\},cacthuQctinhdi€u ki~ntrongbang2.1chungtacok€t quasau:
cr(C)=0.75
cr(S)=0.00
cr(C)=0.00
Bdi VImilcdQquailtn.mgcuathuQctinhS vaP la zero,loc;tibi)mQttrong
chungra khi)ithuQctinhdi€u ki~nkhonganhhu'dngd€n slfph\}thuQc.Do do,
thuQctinhC Ia dangk~nha'trongbang,loc;tibi)C, 75%( baphantIT)cacdu'ong
6ngkhongth~phanbi~trarangdu'Qc.
D§u sao,d~giamthi~ubangdfi'li~u,trongbang2,chungtaco
cr(C) =1
cr (S)=0.25
36
TrongtrtionghQpnay,giaffithi€u thuQctinhS d€ rut gQn,nghlala, sa
d\mgchIthuQctinhC, 25%(mQtphffntti)cuacacd6ittiQngcoth€ dtiQcphanbi<$t
ro rang,trongkhi bo thuQctinhC, nghlala sad\lngchI thuQCtinhS, 100%(ta't
cii) cacd6ittiQngkh6ngth€ dtiQcphanbi<$trorang,conghlala trongtrtionghQp
nayra ffiQtquye'tdinhla hoantoankh6ngth€, ngtiQcl~ib~ngvi<$cchIsad\lng
thuQCtinhC, vaiquye'tdinhcoth€ dtiQcth\fchi<$n.
Do doh<$sO'cr(a) coth€ hi€u nhtila ffiQt16ixayrakhi thuQctinhabi boo
H<$s6ffiucdQdangk€ coth€ dtiQchi€u la ffiQt~pcacthuQctinhnhtisail:
CYCD(B)=(y(C,D)- y(C - B,D)) =1- y(C - B,D) ,
y(C,D) y(C,D)
(2.23)
Ky hi<$ubdicr (B),ne'uC vaD diidtiQCbie't,B la ffiQt~pconcuaC.
Ne'uB la rutgQncuaC, thla (B) =1,nghlala,boba'tky rutgQnnaokhoi
t~phQpcuacaclu~tquye'tdinhlamchokh6ngth€ codtiQcquye'tdinhvdiffiQts\f
chilcchiln:
Ba'tky t~pconB naocuaC sedtiQcgQila mQtrutgQnxa'pXl cuaC, va
consO'
8CD(B)= (y(C,D)-y(C-B,D)) -1- y(C-B,D),
y(C,D) y(C,D)
(2.24)
37
E(B) sedu'QcgQila mQtZ6icuasl!x{{pxl gt1ndung.No thShic$nchinhxac
lamthe'naot~phQpcacthuQctinhB xffpXl t~phQpcacthuQctinhdieukic$nC.
hiSn nhien,E(B)=1- cr(B)vaE(B)=1- E(C+B).bfftky t~phQpcon B naocuaC
chungtacoE(B)::;E(C),ne'uB la mQthu nhecuaC, thlE(B)=o.Thidl;l,thuQc
tinhS ho~cC cothSbie'tnhu'larutgQnxffpXlcua(C,S),va
E(C)= 1.00
nhu'ngtfftca t~phQpcuathuQctinhdieukic$n(C,S,P)chungtaclingco
giamthiSuxffpXlnnhu'sau:
E(S,P) =0.75
Khai nic$mcuamQts1!rfftgQnxffpxlla phatsinhcuakhainic$mvemQts1!
rutgQndffquailtamtru'dcday.MQtt~phQpB nhenhfftcuacacthuQctinhdieu
kic$nC, saDchoy(C,D)=y(B,D)ho~cE (c,D)(B) =0 la mQtrutgQntrongchieu
hu'dngtru'dcday. Y tu'dngve mQts1!rut gQngffn dung co thS hUll dl;lngtrong
tru'onghQpkhi mQtcons6nhehancuacacthuQctinhdieukic$nco ichhantinh
chinhxaccuas1!phanbic$t.
2.10.CACQUY LU! T QUYET DJNH vA s1jPHT)THUQC
Vdi m6i s1!phl;lthuQc,C ~ k D chungtacothSlienh~vdimQt~pcacquy
lu~tquye'tdinh,s1!matacacquylu~tquye'tdinhla nendu'Qcth1!chic$nkhidieu
ki~nchinhxacla rhea.Noi cachkhac,m6imQtbangquye'tdinhxacdinhmQtt~p
caccangthuccod(~lllg:
" ne'u...thl ..."
Thi dl;l,bang2.1xacdinht~pcaclu~tquye'tdinhsauday:
1. ne'u(C,Cao)va(S,Cao)va(P,Thffp)thl(Nut,Co),
38
2. ne'u(C,TB ) va(S,Cao)va(P,Tha'p)thi(Nlit,Khong),
3. ne'u(C,TB ) va(S,Cao)va(P,Tha'p)thi(Nlit,Co),
4. ne'u(C,Tha'p) va(S,Tha'p) va(P,Tha'p)thi(Nut,Khong),
5. ne'u(C,TB ) va(S,Tha'p) va(P,Cao)thi(Nut,Khong),
6. ne'u(C,Cao)va(S,Tha'p) va(P,Cao)thi(Nut,Co).
Tli mQtquaildiemvelogic,caclu~tquye'tdinhIa lienh~m~thie'tli cac
congthucph~ntli'cuad~ng(tenthuQctinh,gia tfi thuQctinh) va ke'thQpvdi
nhaubdi "va ""ho~c ", va "sl)'suyfa "theo cachthongthuong.
MQtlu~tquye'tdinhla chinhxac (chclchcln,baadam)ne'ucacdieuki~n
cuanoxacdinhduynha'tcacquye'tdinh;ngoaifa lu~tquye'tdinhlakhongchinh
xac(khongchclcchcln,khongco the).Trangthi dl,lbell tfen,lu~t1,4,5va 6 la
chinhxac,ngoaifa lu~t2 va3 la khongchinhxac.HiennhienchIconhii'nglu~t
chinhxacxacdinhcacquye'tdinhkhongmdh6.
Bdi vi caclu~tquye'tdinhla caccongthuclogic,chungco theduQCddn
gianhoab~ngcacsli'dl,lngcacphudngphaplogicthongthuongmakhongtrinh
bayd day.Ngoaifa chungcotheclingduQcddngianhoasli'dl,lngphudngphap
t~phQptho.thi dl,l,khaini~mve sl)'giamthieudfinde'nlo~ib6 cacdieuki~n
khongdn thie't.Do do,ngoai bang2.1chungtaco thesli'dl,lngbang2.2ho~c
2.3decoduQccacquylu~tquye'tdinh.
Tli bang2.2chungtaco:
1. ne'u(C,Cao)va(S,Cao)thi(Nlit,Co),
2. ne'u(C,TB ) va(S,Cao)thi(Nut,Khong),
39
3. ne'u(C,TB ) va(S,Cao)thl(NLi't,Co),
4. ne'u(C,Th!p) va(S,Th!p) thl(Nut,Khong),
5. ne'u(C,TB ) va(S,Th!p) thl(Nut,Khong),
6. ne'u(C,Cao)va(S,Th!p) thl(Nut,Co).
Va tU'bang2.3chungtaco:
7. ne'u(C,Cao)va(P,Th!p)thl(Nut,Co),
8. ne'u(C,TB) va(P,Th!p)thl(Nut,Khong),
9. ne'u(C,TB) va(P,Th!p)thl(Nut,Co),
1O.ne'u(C,Th!p) va(P,Th!p)thl(Nut,Khong),
11.ne'u(C,TB) va(P,Cao)thl(Nut,Khong),
12.ne'u(C,Cao)va(P,Cao)thl(Nut,Co).
Sa d1.;mgkY'thu~tlo~ibogiathuye'tkhongdn thie'tronglu~ttrlnhbayd
phftnke'tie'p,cacquylu~tquye'tdinhcoth€ duQcddngianhoahdnnlla,
Bang2.2.RutgQncuabang2.1
X6t lu~t1."neu(C,Cao)va(S,Cao)thl(Nlit,Co)"vabang2.2
Duong6ng C S Nut
1 Cao Cao Co
2 TB Cao Khong
3 TB Cao Co
4 Th!p Th!p Khong
5 TB Th!p Khong
6 Cao Th!p Co
40
Ta mu6nb6 (C,Cao),dSc6 "(S,Cao)thl(Nut,C6)",diSud6la kh6ngthS,
VI duang6ng I va 3 thl dungla "(S,Cao)thl (Nut,C6)",nhungduang6ng2
"(S,Cao)thl(Nut,Kh6ng)"
Ta mu6nb6(S,Cao),dSc6"(C,Cao)thl(Nut,C6)",diSud6la c6thSdu<;5c,
bdiVIchIc62 duang6ng1va6 th6a"(C,Cao)thl(Nut,C6)",ngoairakh6ngc6
truangh<;5pnaomatithuftnnghlala kh6ngc6 truangh<;5pnaoma "(C,Cao)ma
(Nut,Kh6ng)"ca
X6t lu~t4. "ne'u(C,Thffp) va(s,Thffp) thl(Nut,Kh6ng) " vabang2.2
Ta mu6nb6(C,Thffp),dSc6"(S,Thffp)thl(Nut,Kh6ng)",diSud6la kh6ng
thS,VIduang6ng4 va 5 thldungla "(S,Thffp)thl (Nut,Kh6ng)",nhungduang
6ng6 "(S,Thffp)thl(Nut,C6)"
Ta mu6nb6(S,Thffp),dSc6 "(C,Thffp)thl (Nli't,Thffp)",diSud6la c6thS
dU<;5c,bdiVI duang6ng4 c6(c,Thffp)va c6 "(Nut,Kh6ng)",ngoairakh6ngc6
truangh<;5pnaomatithuftnnghlala kh6ngc6truangh<;5pnaoma "(C,Thffp)ma
(Nut,C6)" ca
X6t lu~t5."ne'u(C,TB ) va(S,Thffp) thl(Nut,Kh6ng) " vabang2.2
Ta mu6nb6 (C,TB),dSc6 "(S,Thffp)thl (Nut,Kh6ng)",diSud6la kh6ng
thSnhudilchungminhtren
Ta mu6nbo (S,Thffp),dSc6 "(C,TB) thl (Nli't'Kh6ng)",diSud6la kh6ng
thS,VIduang6ng2 va 5 thldungla "(C,TB)thl(Nut,Kh6ng)",nhungduang6ng
3 "(C,TB)thl(Nut,C6)"
T6ml<;tid6ivdilu~t"ne'u(C,TB ) va(s,Thffp) thl(Nut,Kh6ng) " vabang
2.2,kh6ngc6giathie'tnaolakh6ngdn thie't.
41
Xet lu~t"6.ne'u(C,Cao)va(S,Thilp)thl(Nut,C6)".vabang2.2,
Ta mu6nbo (C,Cao),d€ c6 "(SThilp)thl (Nut,C6)",di€u d6la khangth€,
VIdlidng6ng4 va 5 thldungla "(S,Thilp)thl(Nut,Khang)",nhlingdlidng6ng6
"(S,Thilp)thl(Nut,C6)"
Ta mu6nbo (S,Thilp),d€ c6 "(C,Cao)thl (Nut,C6)",di€u d6 la c6 th€
dli<jc,bdiVI dlidng6ngI va6 thoa" (C,Cao)thl (Nut,C6)",ngoairakhangc6
trlidngh<jpnaomallthu§.nnghlala khangc6 tru'dngh<jpnaoma "(C,Cao)ma
(Nut,Khang)"ca
T6ml<;li,sailkhi lli<jcbogiathie'tkhangdn thie'tcuacaelu~t1,2,3,4,5,6,tac6:
1. ne'u(C,Cao)thl(Nut,C6),
2. ne'u(C,TB ) va(S,Cao)thl(Nli't,Khang),
3. ne'u(C,TB ) va(S,Cao)thl(Nli't,C6),
4. ne'u(C,Thilp) thl(Nut,Khang),
5. ne'u(C,TB ) va(s,Thilp) thl(Nut,Khang),
6. ne'u(C,Cao)va(S,Thilp) thl(Nut,C6).
D€ th€ hi~ntlnhchinhxacmOtquye'tdinhmatabdilu~tquye'tdinhchung
tadn th€ hi~nb~ngmOtconso'cualu~t,chIrar~ngsl!mdrOngnaocualu~tla
khangth€ tinc~y.D€ thl!c hi~nnochungtadinhnghlamOtIInhvl!cchilechiln
cualu~t.
Xet <Dva \{'la caecangthuclogicth€ hi~ncaedi€u ki~nva caequye't
dinh,riengre,vaxet <D-7 \{'lamOtlu~tquye'tdinh,trongdo<Dsla ky hi~ucua
42
tronght$th6ngS, nghIa1at~phQpcuatfttca cac d6i tuQngthoatfongS dinh
nghIatheoeachthongthuong
Voi m6i 1u~tquye'tdinh -7 'P, chungta lien ht$mQtcon so'gQi1alInh
vlfc cha:ccha:ncua1u~t,va dinhnghIanhusau:
,u«1>,\f) = I<Psn \fs I
Is I
(2.25)
DI nhien,0 S J.l(,'P)s 1,ne'u1u~t-7 'P 1achinhxacthl J.l(,'P)=1
vacac1u~tkhongchinhxacthlJ.l(,'P)<1
Thi d\!,lInhvlfcchinhxaccuacac1u~tquye'tdinhdil quailtamtfUOCday
1anhusau:
J.l«1>],'P])=1, J.l( 4,'P4)= 1,
J.l( s,'Ps)= 1,J.l( 2,'P 2) = Y2,
J.l( 3,'P3) = Y2, J.l( 6,'P 6) = 1 (2.26)
trongdoi,'Pi kyhit$ucacdi@ukit$nvacacquye'tdinhcua1u~ti
Chuy dinglInhvlfccha:cha:ncoth~duQcxemnhu1amQt slfphatsinh
cuahamthanhvientheo1ythuye'tt~pthovaco th~duQchi~unhu1amQtkha
nangcotinhchftt1adi@ukit$nmamQtd6ituQngx thoacacquye'tdinhclingcftp
no thoacacdi@ukit$ncua1u~t.Thlfcslfthl,cac1u~tquye'tdinhcoduQctu mQt
bangdli 1it$u1acac1u~tsuyfa cotlnhchfttlogicmanochophepkhamphacac
m~uin giftutrongdli lit$u,vaco th~duQcsad\!ngtrongcacthao1u~nd~tlm
chan1y,ho~cnhu1amQtdi~mba:td~uchovit$cthlfCthicacht$th6ngquye'tdinh
b~ngmaytlnh,cacht$chuyengia,cacthu~toandi@ukhi~n,...
43
Do do, vdi m6i lu~tquy~tdinh-7\fIcoth~lienquailmQtlu~tsuylu~n
theot~pth6gQila cacroughmodusponens
n«t»;,u«t>,\f')
n(\f')
(2.27)
trangdo1"[«1»=Isl/IVI va 1"[(\fI)=1"[(~I\\fI)+ 1"[«I».Il«I>,\fI).
Lu~tnaychophepchungtatinhloanxacsua'tcuaquy~tdinhtrangdieu
ki~ncuaxacsua'tcuacacdieuki~nvaxacsua'tdieuki~ncualu~tquy~tdinh.
Thi dt,l,d~dangd~tinhloanr~ngn~u=(C, TB), (S,cao),(P,tha'p)va\fI
=(nut,co),thlchungtaco 1"[«I» =1/3, Il( ,\fI)=Y2va 1"[(\fI)=1/3;d6ivdi
=(C, cao)va \fI=(nUt,co), thl chungta co 1"[«I» = 1/3, Il( ,\fI)= 1va 1"[(\fI)
= 1/3,nguqcl'.livdi = (S, tha'p)va \fI=(nUt,co), thl chungtaco 1"[«I» = 1/2,
Il( ,\fI) = 1/6 va 1"[(\fI) = lA.
Va'nde quailtamd trenla mQtphgncuacali hoi IOnhondii theodu6i
nhieunamtrongtri tu~nhant'.lO(AI) va lien quaild~ncacphuongphapsuy
lu~nhqpIy chung.Tranglogicc6di~n,cacIu~tcobancuaphgnk~tlu~nIacan
cu trengia thi~tr~ngn~uva -7\f' ladung,thlphgnk~tlu~n\fI phaidung.
Lu~tsuylu~nduqcbi~tnhu la moduspOllens.Dgusao,trongcaephuongphap
suylu~nhqply chungchungtaphaithuanh~ndingphgnlien de vaphgnk~t
Iu~nIa thuongkh6ngduqcbi~tmQtcachchilcchiln,mathuongIa vdivaiphgn
suydoan,vadodophgnk~tlu~nclingphaiduqctrangbi vdi mQtst;(doIuong
xacsua'thkhhqp.Logicc6di~nkh6ngclingca'pcacphuongphapd~giaiquy~t
th~ti~nthoaiIuongnailnayvacachcualogicc6di~nla kh6ngcogiatri trong
truonghqpnay.Do do,moduspOllenskh6ngth~duqcdoi hoinhuia mQtquy
lu~thqply cobanchost;(suylu~nhqpIy chung.
44
Nhi€u mohlnhtinhroandangduqcd€ nghid~giaiquye'tva'nd€ nayvad~
di€u khiSntinhkhongch~cch~ncuano trongsl!hqply. Phudngphapt~ptho
duqcgidi thi~ucove la mQtdiu traWira'tla tl!nhienchova'nd€ nayvanoco
mQtsl!giaithichra'tla cdhtl'utrongcact~pdfi'li~u.
2.ll.PHUONG PHA.P LU!.N UNG DTjNG
Ly thuye'tt~phqpthoduqcxemnhula mQtphudngphaptinhroanmdid~kham
phanhfi'ngmohlnhtrongdfi'li~unghlala chungtaduqcchomQtt~pdfi'li~unhu
la ke'tquacuasl!rhead5icachi~ntuqngtl!nnhienvaxii hQidC5ithl!Cva cong
vi~cd~utiencuachungtala tlmnhfi'ngmohlnh~ngia'utrongdfi'li~u.Cacmo
hlnhthuC5ngla trlnhbaydudid<;lngmQtt~pcacquylu~tquye'tdinh.Cacquylu~t
cothSduqcsU'd\lngdSgiaithichdfi'li~u,nghlala,giaithichhi~ntuqngtl!nhien
xii hQiho~cla cactie'ntrlnh n~md belldudidfi'li~u cuavaim6iquailh~"gay
rahi~uqua".Thi d\lv€ khanangchilldl!ngki~mtracuacacduC5ng6ngducb~ng
s~tduqcchotrongph~ngidi thi~u,la mQtthid\lminhhQara'tt6tcualo<;liling
d\lngnay.
D~usao,co ra'tnhi€u khanangkhacv€ lingd\lngcualy thuye't~phqp
tho.Ngoai vi~cphanrichdfi'li~u,sl!chuY d~cbi~tcuacovelaphudngphapt~p
hqpthoxU'ly cacd~cdiSm,maseduqcthaolu~nsdqua,b~ngmQtthid\l ddn
giancuamQtsl!di€u khiSntinhi~ugiaothongphantan.
45
Xet rnQtgiaoIQra'tdongiand tronghlnh( giaonhautheoki~uchil'T) chIra d
hlnh2.6.
b
@
+-
II
............................
-..
..........................
-.. Carn ling
Hinh2.6:rnQtgiaoIQdongian
Chungtoi rnongrnu6nthie'tke'rnQthu~toandi~ukhi~nphantanIDase
di~uhanhgiaothongdin cli trendi~uki~nt~ich6.ChungWi gia sadingcae
di~uki~nlaxacdinhbdicacearnbie'nd~trenIanxevachIrahuangqu~ornong
rnu6ncuarnQtchie'cxekhi de'ng~ngiaoIQ.VI rnvcdfchdongianchungWibo
quanhi~ulInhvtfequailtrQngdn thie'trongvi~cdi~ukhi~nthtfcte'vagiasa
dingcacd~cdi~rneuastfdi~ukhi~nco th~eha'pthu~nduQetrongtlnhhu6ng
duQcrhotrongbang6duaiday,trongdo
46
O-do
l-xanh
2-miiitenxanh(retnii)
Nh~nxetr~ngbang2.6la khongphailake'tquacuaSvquailsatnhu'ngla
mQt d~cdi~mcuacacyell du cholingxii' cuah~th6ngriengbi~td~cbi~t
(nghlala Svdi~ukhi~n,chuongtrlnh,..)
Sii'dl;mgphuongphapchiratru'ocdaychungtacobangcacquylu~tdi~u
khi~nnhusau:
./ ne'u(b,O)ho~c(b,2)thl (a,O),
./ ne'u(b,l) thl (a,l),
./ ne'u(c,2) thl (b,O),
./ ne'u(a,O)thl (c,O)thl(b,2),
./ ne'u(b,l) ho~c(b,2)thl (c,O),
./ ne'u(b,O)thl (c,2),
M<;tchchuy~nm<;tchtu'ongling cho t~pcua lu~tdi~ukhi~ndU<;1chi ra
tronghlnh2.7.f)i~ukhi~ntuonglingdU<;1cve a hlnh 2.8
47
Bang2.6.mota caeyelleftuehoh~th6ngrieng
bi~td~ebi~teuav~caeeachungxii
~.
.,
.&;1[n.~o
Hinh2.7.m~ehehuy~nm~ehehot~pcaelu~tdi~ukhi~n
a b e
1 1 1 0
2 0 2 0
3 0 0 2
48
t~
"[
n ,
~
__d. r
ok !
- v \
1J --~_o :---\
-, 1-1~ /';".Lr':'n.-./ [2]
( 1( ~
/,-r-4
D Cambie'n
0 Dauhi~u
Hinh2.8.Cantra1ercha t~pcac1u~tdi~ukhi~n
Trangthid\l bell trenchungta chI r6 vi~csli'd\lng phuongti~ncuaky
thu~tt~pthod~xli'19vai 1a(;licuatie'ntdnhd6ngthai.Chinh lOpnay cuacactie'n
tdnh th~ hi~nmQtvai troratquail trQngtrangnhi~ulInh v1,1'c,d~cbi~t,trangmoi
truangcongnghi~p,vakhongcon nghingaglnua,mohlnhthanhcongnhatclia
cactie'ntdnhhi~nhanh1am(;lngPetri.Phuongphap1u~nt~phQpthoclingcoth~
hUlld\lngtrangvi~cchIr6v~cactie'ntdnhd6ngthai vat6nghQpcach~th6ng
di~ukhi~nphlict<;1p,nhunglInhv1,1'cnaycualingd\lngyellcftunhi~unghiencUu
hall.Vai ke'tquatranglInhv1,1'cnaycoth~tlmtrangnhi~utai1i~unghiencUu.
49
2.12.KETLU!N
Phuongphapt~ph<;1pthod~phantichdli li~uconhi~ul<;1ithe'quantrQng.Vai
l<;1ithe'du<;1cchiraduoiday:
./ clingca'pthu~toanhi~uquachovi~ctimkie'mcacquylu~t§'ngia'utrong
dli li~u;
./ choranhlingdli li~uv~cacha'tlu<;1ngvas61u<;1ng;
./ timt~pnhonha'tcuadlili~uCsvgiamthi~udli li~u);
./ danhgiatinhdangk~cuadli li~u;
./ phatsinhrat~pcaclu~tquye'tdinhtUdli li~u;
./ d€ hi~u
./ clingca'pSvgiaithichd€ hi~uv~cacke'tquagianhdu<;1c;
./ nhi~uthu~toandin Cllly thuye'tt~ph<;1pthola di;icbi~tthichh<;1pchocac
tie'ntrlnhxii'ly songsong,nhungd~khamphadi;icdi~mnaymQtcachd~y
du,mQt6ChllCtinhtoandin Clltrenly thuye'tt~ph<;1ptholadn thie't.
Ly thuye'tt~ph<;1pthoconhi~uthanhtlfu,tuythe',nhi~uva'nd~thvchanh
va ly thuye'tdn themsvchliy. Bi;icbi~tla svphattri~ncacph~nm~mhi~uqua
co anhhuangrQngrai trongvi~cphantichdli li~udin Clltrent~ph<;1ptho, cho
cact~ph<;1pdli li~utoIon.
Mi;icdil diiconhi~uphuongphapcogiatri v~tinhhi~uqua,t6iu'u,them
nhi~unghienCUuv§:nla dn thie't,di;icbi~tkhi cacthuQctinhco gia tri la s6
lu<;1ngdu<;1cquantam.Trangb6icanhdocacphuongphapmoiphilh<;1pchocac
giatri cuathuQctinhs6lU<;1nglaclingra'tdn thie't.NghienCUumarQngv~ma't
50
matdfi'li~uclingrfitquailtrQng.MQtslfsosanhvdi cacphuongphaptuongtlf
khacv~ncondn du<;5cquailtam,m~cdli, dii co cacke'tquaquailtrQnggianh
du<;5ctrong11nhvlfcnay.C~ncoslfquailtamd~cbi~ttrongvi~cnghiencUum6i
quailh~gifi'am<;lngth~nkinhvaphuongphapt~ph<;5pthod~ruttrichdfi'lic$u.
Cu6icling,cacmaytinht~ph<;5pthoclingrfitdn thie'tnhi~ulingdt,mgtien
tie'n.Vai nghienCUutrong11nhvlfcnayla dangdu<;5ctie'nhanh.