Luận văn Áp dụng khai khoáng dữ liệu đề xuất một mô hình phát triển lợi nhuận của một ngân hàng

ÁP DỤNG KHAI KHOÁNG DỮ LIỆU ĐỀ XUẤT MỘT MÔ HÌNH PHÁT TRIỂN LỢI NHUẬN CỦA MỘT NGÂN HÀNG NGUYỄN KIẾN QUỐC Trang nhan đề Mục lục Chương 1: Mở đầu. Chương 2: Lý thuyết tập hợp thô và các ứng dụng trong phân tích dữ liệu. Chương 3: Các quy luật hoạt động: phương pháp phát triển lợi nhuận của một công ty. Tài liệu tham khảo

pdf41 trang | Chia sẻ: maiphuongtl | Lượt xem: 1805 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận văn Áp dụng khai khoáng dữ liệu đề xuất một mô hình phát triển lợi nhuận của một ngân hàng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
10 CHUaNG2: I LYTHUYETT!PH(jP THO vA cAc UNG DT)NGTRONG PHAN TicH DU LI}tU Trongchudngnayseduaracac9tudngcdban v~19thuye't~phQptho- mQt phudngphaptinh loan moi d~phantichdIT1i~u.xa'pXl duoiva trencuamQtt~p " hQp,cacloantll'cdbancua19thuye't,1acacsl!gioi thi~uband~uvadinhnghIa hlnhthli'c.Vai li'ngdl,mgcua19thuye'tt~phQpthoduQCtrinhbay tomHitvavai va'nd~trongtudng1aiclingduQcphacthao. L9 thuye't~phQptho( Pawlak,1982)[3]duaramQtcachphudngphaptinh loanmoid~phantichdITli~uvakhaikhoangdITli~u.Saunhi~unamphattri~n, 19thuye'tdad~tduQcdQchinmu6i.TrongnhITngnamg~ndaychungtadachli'ng kie'nmQtsl!tangtrudngnhanhchongtrong19thuye'tt~phQpthovacacli'ngdl,mg cuano trenloanthe'gioi.Nhi~uhQithao,hQinghiquO'cte'vacacseminarv~19 thuye't~phQpthotrongcacchudngtrinh.MQtsO'IOncactai li~uco cha't1uQng cao daduQcphathanhg~ndaytrennhi~ukhiac~nhcuacact~phQptho.Khai ni~mv~t~phQp1akhaini~mcanbancholoanbQtinhloandudngthaiva 19 thuye'tv~t~phQpduQcGeorgCantord~xua'tvaonam1883r6 rang1acQtmO'c trongvi~cphattri~ncachsuyfighTtinh,loanhi~nd~i. MQtt~phQpduQcxacdinhbdicacph~ntll'cua no,nghIa1anoduQcxac dinhne'umQiphffntll'cuano1axacdinhduynha't.Thi d1,l,t~phQpcua ta'tcacac sO'chan(Ie)1axacdinhduynha'tvam6imQtsO'nguyencoth~duQcphanbi~tma khongco sl!nhffm1iln,nhu1ach~nva Ie. Lo~ikhaini~mnay thuangduQcbie't 11 de'nnhula crisp(stfr5rang).Hi~nnhien,aftcacackhaini~mtinhtoanla crisp, ne'ukh6ng,thinokh6ngth~dungd~chungminhbfftky ly thuye'ttinhtoannao. \ Nhungrfftnhi~ulInhvtfckhac,tlnhhu6nglakh6ngr5rang.Trongy khoa, thi dl;1,khaini~mmQtnguBi"m<;tnhk oe( ho~cb~nh)" kh6ngth~dinhnghIa mQtcachduynhfft.Tuongttf,tronglu~tphapkhaini~m"cotQi"(ho~c"kh6ngco tQi") kh6ngth~'dinhnghIamQtcachchinhxac.Nhii'nglo<;tikhai ni~mkh6ng chinhxacnayduQcgQila mB (vague).Cackhaini~mmBkhan6i tie'ng,kh6ng chi trongy khoaho~clu~tkhoa,nhunghffuhe'tmQinoi,thidl;1,kinhte'vachinh tri la nhii'ngmi~nd~nchungdi~nhinhkhac,noicackhaini~mmBla thanhphffn banchfftchocacphuongphapsuyfighTvatranhdE. Cac khaini~mmBbi~uthibdi mQt "vunggidi h<;tn"(boundaryregion), nobaag6mtfftcacacthanhphffnmakh6ngth~duQcn6ike'tvdikhaini~mho~c phffnbucuakhaini~m.Thi dl;1,khaini~mv~mQtconso'chan (1e)la chinhxac, bdivi mQtcons6thila chanho~cIe, trongkhidokhai ni~mv~caidypthimo h6bdivi kh6ngth~quye'tdinhmQtcachkhachquailmQithula dyphaykh6ng. PhuongphapduQcbie'trongvanchuangtrie'thQcnhula phuongphapcoduBng gidih<;tnchotinhmBvala thuQCv~ nhalogicDucGottlobFrege,nguBidffutien hinhthanhtu'tudngnayvaonam1984.Theocachdo, cackhaini~mmBhinh thanhcosdcholy lu(iny thacchungtrongnhi~ulInhvtfclienh~ voinhi~utlnh hu6ngtrongthtfcte'. Tinh mBnhi~unamthuhutstfchuycuacacnhalogicva trie'thQC.Gffn day,cacnhakhoahQcmaytinhclingconhi~unghienCUutronglInhvtfcnay, 12 nhi~ulingdl;!ngmayHnh,noirieng,nhula "tri tu~nhant<:lO",dn sii' dl;!ngcacI khaini~mmavaphuongphaply l~n din cu trenkhaini~mmo. Phuongphaply thuye'tthanhcongnhfitv~tinhmala lythuye'tv~t:\ipma dU<;fcd~nghibdiZadeh.Y tudngcobancualy thuye't:\iph<;fpmaxoayquanh trenhamthanhvienma,manochophepmQtphftncuacacphftntii'thuQcv~ mQtt:\iph<;fpnghiala no chophepcacphftntii'thuQcvaomQtt:\iph<;fptheomQt "mucdQ" Ly thuye't:\iph<;fpthola mQtphuongphap Hnhtoankhaccua Hnhmo. Trangphuongphapt:\iph<;fpthoHnhmanghlala thie'ucacthongtinv~vaiph~n tii'cuat:\ipvutrl;!. Ne'uclingmQtthongtinmalienquailtdi vai ph~ntii',trongph<:lmvi cua thongtin nay,nhungphftntii'nayla kh6ngthi phanbi~tduf!c.Thi dl;!,ne'uvai b~nhnhanbi m~cclingmQtdin b~nhcl;!th€ th€ hi~nclingmQtri~uchung,hQla khongth€ phanbi~tdU<;fcd6ivdi thongtin v~hQ.Hoara dingHnhkhongth€ phanbi~tdu<;fcd~nde'ncac truangh<;fpv~vling gioi h(,ln,nghla la, vai ph~ntii' khong thS ke'tn6i vdi mQtkhai ni~mhoi;icph~nbli cua khai ni~m nay trong ph<:lmvi cuathongtincosan.Bdi VIcackhaini~mmacocactru'angh<;fpvling gidi h<:ln,ghlala cocacph~ntii'makhongthSphanbi~tla noco chinhxacla ph~ntii'cuakhaini~mhaykhong,Hnhmala lienh~tn!ctie'phoantoan vdiy tudngcuastfch~c h~n(hoi;ickhongch~ch~n). Ly thuye't:\iph<;fph<;fpthoco ve rfitthichh<;fpnhula mQtmohlnhHnh toanchoHnhmavastfkhongch~cch~n.Tinhmala mQtthuQcHnhcua t:\iph<;fp 13 (khai ni<$m)va n6 lien quail hoantoande'nslf hi<$ndi<$ncua vung gioi hC;lncua, mQtt~phQp.NguQc1C;lislfkhongcha:ccha:n1amQtthuQctinhcuacacphftntii'cua cac t~phQp.Trong phuongphapt~phQptho ca hai khai ni<$m1alien quail gftn gili bai VI tinhkhongphanbi<$tduQCgayra bai thie'uthongtinv€ the'gioi ma chungtaquailtamde'n. Slfke'thQpcua1ythuye'tt~phQpthovanhi€u 1ythuye'tkhacdfitranenr6 rang.N6i r6 hon1am6ilienh<$giil'a1ythuye'tt~phQpmava1ythuye'tDempster - Shaferv€ tinhr6 rang.Khaini<$mcuat~phQpthovat~phQpma1akhacnhau bai VI chungbi€u di€n cackhiaqnh khacnhaucuacuatinhmoh6 (Pawlak& SLowron 1994),nguQc1C;lislf n6i ke'tvoi 1ythuye'tv€ tinh chungcu 1adin ban hon (Skowron & Gizyma1aBusse, 1994).Hon nil'a,1ythuye'tt~phQptho lien quailde'nslf phantichbi<$tso'(Krusinskava AI.,1992),phuongphap1u~n1y (Skowron& Rauszer,1992),vanhil'ngphuongphapkhac.M6i quailh<$giil'aly thuye't~phQptho va phantich quye'tdinh duQcgioi thi<$ubai Pawlak& SLowinski(1994)va SLowinski(1995).Nhi€u ma rQngkhacv€ mo hlnh1y thuye'tcuat~phQpthodangduQcd€ xua'tvaphathi<$nthem. Ly thuye'tt~phQpthoc6ra'tnhi€u lingdl;!ng.Phuongphapt~phQpthodfi 1acongCl;!quail tn;mgtronglInh vlfc tri tu<$nhantC;lOva cac lInh vlfc lien quail de'nnh~nthuc,d~cbi<$ttronglInh vlfc may hQc,truy va'n kie'nthuc,phan tich quye'tdinh,khamphakie'nthuctUcosadil'1i<$u,h<$th6ngchuyengia,1y1u~nquy nC;lpva nh~ndC;lngm~ug6mnh~ndC;lngtie'ngn6i va chil'vie'ttay.N6 ra'tquail trQngchocach<$th6ngra quye'tdinhvakhai khoangdil'1i<$u.LQi the'chinhcua1y thuye't~phQptho1an6 khongdn ba'tky thongtin sobQva themvaov€ dil'li<$u - nghla1agi6ngnhukhanangtrongth6ngke, trongphancongcua 1ythuye't 14 Dempster- Shafer,ca'pb~cthanhvienho~cgiatQcuakhanangtrongly thuye't t~ph<;5pmo.Ly thuye't~ph<;5pthoda thanhcongkhi dapling trongnhi~uva'nd~ v~th1.!cte'trongy khoa,dU<;5ckhoa,xayd1.!ng,nganhang,taichinhvaphantich thjtruong,...E>~cbic$ttronglInhv1.!cdu<;5ckhoas1.!phantichm6iquailhc$giuaca'u truchoa hQCva hoC;ltdOngch6ngvi trung cua thu6cdangdu<;5cxuc tie'nra'thic$u qua.Cac ling dl.mgtrongnganhangbaa g6mdanhgia cac rui ro va nghienCUu thj truongdang thu du<;5cnhi~uke'tqua t6t va ngay dng gianh dU<;5cs1.!thita nh~n. Phuong phap t~ph<;5ptho cling quail trQngtrong nhi~uling dl.mgthuOc khoahQcxay d1.!ngnhula nghiencUu,chuffndoanmaymocsadl,mgcacda'uhic$u v~dO6n djnh (tie'ng6n,s1.!rung),vas1.!di~ukhi~ncactie'ntrinh.Caclingdvng trongngonngu,moitruong,vacosCJdulic$ula caclInhv1.!cquailtrQngkhac.Ra't nhi~uhilah~nla cacIInhv1.!cmoicuacaclingdvngcuakhainic$mt~pthosen6i len trongtuonglai gfin.Chungbaag6ms1.!di~ukhi~ntho,cosCJdulic$utho,rut trichthongtintho,mC;lngthfinkinhthovacaclInhv1.!ckhac. Cac ling dvng cua t~ph<;5ptho yell du phfin m~mthich h<;5p.Nhi~uhc$ th6ngphfinm~mcho cac workstationva may PC, can cu tren ly thuye'tt~ph<;5p tho,dangphattri~n.Cac sanphffm n6i tie'ngnha'tbaag6mLERS (Gizymala- Busse,1992),RoughDAS andRoughClass(SLowinski& Stefanoski, 1992)va DATALOGIC (Szladow,1993).Vai caidaduQcthuongmC;lihoa. 15 2.1.Y TU<1NGCO BAN Y tu'dngcua t~phQpthodljatft?nsljthuanh~nding,tniivoi ly thuye'tvS t~phQpc6diSn,chungWicovaithongtinthemvao( kie'nthuc,dli li~u)vScac ph~ntti'cuamQtt~phQp.Noi ra hon,thid\)nhu',mQtnhomcacb~nhnhanbi dati tuclingmQtdin b~nh.Trongb~nhvi~ndangdiSutri cacb~nhnhannaycocac file dli li~uchua"cacthongtinvSb~nhnhan nhu'lathannhi~t,aplljc mali,ten, tu6i,diachi,...Ta'tcab~nhnhanbQclQclingtri~uchungla thongthi phiinbi?t dU(lC(gi6ngnhau)trongph~mvi cuathongtincosanva t~othanhcackh6i,ma noco thSdu'QchiSunhu'la cacmllunhocua kie'nthucvSb~nhnhan(ho~clo~i b~nhnhan).Cacmllunhonaydu'QcgQila cactqpcdban (elementarysets)ho~c cackhai ni~m(concept),vacothSdu'Qcbie'tnhu'lacackhol xaydI1ngcdban (nguyentti'- atoms)cuakie'nthucchungtavS diSumachungtaquailtamde'n. Cac khai ni~mco banco thSke'thQpvao cacthai ni?m da h(lp (compound concepts)nghlala cackhaini~mdu'Qcxacdinhduynha'tronggiOih~ncuakhai ni~mcoban.Ba'tky sljke'thQpcuacact~phQpcobandu'QcgQila t~pra (crisp), vaba'tky t~phQpnaokhacthldu'Qchola tho(mo,khongchinhxac).Voi mQi t~pX chungtacothSlienh~hait~pcrispdu'QcgQilaxiipxi dumvatrencuaX. xa'pXldu'oicuaX la ke'thQpta'tcacact~phQpcobanmanothuQcvS X, ngu'Qc l~ixa'pXltrencuaX la hQpcuata'tcacact~pcoban,ma giaokhacr6ngvoiX. Noi cachkhacxa'pXl du'oicuamQtt~phQpcuata'tcacacph~ntti'mano cha:c cha:nph\)thuQcvaoX, ngu'Qcl~it~pxa'pXl trencuaX la t~pta'tcacacph~ntti' manocokhaniingthuQcvaoX. Slj khacbi~tcua xa'pXl trenvadu'oicuaX la vimggiai h{m.HiSnnhien, mQtt~pla tho ne'uno khongco vlinggioi h~nr6ng; ngoaifa, t~phQpla ra 16 (crisp).Cac ph~ntli'cuavunggidi h~nthl khongth~phanbi~tdu'<;Jc,sli'dl;mg kie'nthliccosan,1anothuQcv€ t~ph<;Jpho~cph~nbucuat~ph<;Jp.Slj xa'pXlcua cac t~ph<;Jp1atoantli'co ban trang19thuye't~ph<;Jptho va du'<;Jcsli'dl;mgnhu'1a congCl;lchinhd~d6i phovdi dli li~umava dli li~ukhongch~cch~n. 2.2.THI DT) HaychochungtoiminhhQa9tu'dngbell trenb~ngphu'ongti~n1amQt thi dl;ldongian.Dli li~uthu'angdu'<;JctrlnhbaytrangmQtbang,caccQtcuanodu'<;Jc d~ten1athuQctinh,cacdong1acacd6itu'<;Jngvacacth~hi~ncuabang1agiatri cuacacthuQctinh.Cac bangnhu'the'du'<;Jcbie'tnhu'1acach~th6ngthongtin,cac banggiatricacthuQctinh,cacbangdli1i~u,ho~c1acacbangthongtin. Trangcacbangthongtinchungtoi thu'angphanbi~tgiliahai lo~ithuQc tinh,du'<;Jcd~ten1adi€u ki~nvaquye'tdinh.Nhlingbangnhu'the'du'<;Jcbie'tnhu' 1abangquye'tdinh.Cac dongcuabangquye'tdinh du'<;Jcbie'tnhu'1acac quy1u~t quye'tdinh "ne'u...thL", ma no cling ca'pcac di€u ki~ndn thie'td~t~olien cac quye'tdinhdinh bdicacthuQctinhquye'tdinh.Bang2.11amQthidl;lv€ mQtbangquye'tdinh. 17 Bang2.1:bangquye'tdinh, Bangchuacacdfi'1i~ulienquailde'n6 duong6ngb~ngsa:tdu<jcki~mtra , khanangchiliapsua'tcao.TrongbangC,S va P la cacthuQctinhdiSuki~n,th~ hi~nnQi dungph~ntram than da (Coal), sul-phur(Sulfur), va ph6t-pho (Phosphorus),riengtungcai,ngu<jcl~ithuQctinhNUt th~hi~nke'tquacuavi~c ki~mtra.Gia tri cuathuQctinhdiSuki~nla nhusau(C, cao» 3,6%,3,5%~ (C,TB) ~3.6%,(C,tha'p)<3.5%,(S,cao)~0,1%. (S,tha'p)<0.1%, (P,cao)~0.3%, (P,tha'p)<0.3%. Va'ndS chinhchungta quailHimla st!chili dt!ng nhuthe'naocuacac du'ong6ngphl;!thuQcvaot6 h<jpC,S vaP ke'th<jptrong10,ho~cnoicachkhac, cohaykhong mQtphl;!thuQchamgifi'athuQctinhquye'tdinhNUt vacacthuQc tinhdiSuki~nC,S va P. Trongngonngfi'ly thuye't~ph<jptho,di~mquailtam ma'uch6tla t~ptrungvaocalihoikhongbie'tr~ngt~ph<jp{2,4,5}cuata'tciicac duong6ng khong co ve'tnut sauki~mtra ( ho~cla t~ph<jp{1,3,6}cuacac Duong6ng C S P Nut 1 Cao Cao Tha'p Co. 2 TB Cao Tha'p Khong 3 TB Cao Tha'p Co 4 Tha'p Tha'p Tha'p Khong 5 TB Tha'p Cao Khong 6 Cao Tha'p Cao Co 18 du'ong6ngcove'tnut),coth€ dinhnghladuynha'tronggioih(;lncuacacgiatri, thuQctinhdi@uki~nkhong. Co th€ d~dangnh~ntha'yr~ngdi@udolakhongth€, baiVI6ng2 va3 th€ hi~nrungd~cdi€m tronggiOih(;lncuathuQctinhC, S vaP, nhu'ngcogiatrikhac nhaucua thuQctinhNut.Do dothongtindu'Qcrhotrongbang2.1la khongd~y dud€ giaiquye'tva'nd@cuachungta.Chungta,coth€, dusao,rhomQtgiaiphap bQph~n.ChungfahayquailsatthuQCtinh C cogiatri CaorhomQtdu'ong6ng, r6i thldu'ong6ngnut,ngu'Qcl(;line'ugia tri cuathuQctinhC la Tha'p,thldu'ong 6ngkhongbi nut.Do do,sad\)ngthuQCtinh C, S vaP chungtacoth€ noir~ng cacdu'ong6ng1va6 la ch3:ch3:nt6tnghlala tinh ch3:ch3:nph\)thuQcvaot~p (1,3,6),ngu'Qcl(;licacdu'ong6ng1,2,3 va6 la cokhanangt6tnghlala cokha nangph\)thuQcvaot~p(1,3,6).Do dot~p(1,6),( 1,2,3,6),va(2,3)la xa'pXldu'oi, tren,vavunggiOih(;lncuat~p(1,3,6),riengbi~ttungt~pmQt. £>i@udo co nghlala cha'tlu'Qngcuadu'ong6ngkhongth€ du'Qcxacdinh chinhxacbai nQidungcuathanda,sul-phurva ph6t-photrong10,nhu'ngcoth€ du'Qcxac dinh mQtcach xa'pxl. Tht!c te'thl, st!xa'pXl xac dinh st!ph\) thuQc (toanph~nho~cmQtph~n)giuacac thuQctinhdi@uki~nva quye'tdinh,nghlaIa m6iquailh~r6 ranggiuacacthuQctinhdi@uki~nvaquye'tdinh.Muc dQcuast! ph\)thuQcgiuacacthuQctinhdi@uki~nvaquye'tdinh coth€ dinhnghlanhu'lat1 1~giua ta'tcacacdongmagiatri cuathuQctinhdi@uki~nxacdinhduynha'tgia tri cuacacthuQctinhquye'tdinhva ta'tcacacdongtrongbang.Thi d\),mucdQ cuastfph\)thuQcgiuacacve'tnut vast!ke'thQpcac6ngs3:tla4/6=2/3.Co nghla la4/6(xa'pXl66%)cac6ngcoth€ phanbi~tdungd3:nla t6ttrencdsast!ke'thQp ? ,cua no. 19 Chungtaco th~clingquailHimde'nvi~cgiamvai thuQctinhdi~uki~n, \ nghIala cohaykhongvi~cta'tcacacdi~uki~nladn thie'td~t~oracacquye't dinhmotatrongbang.D~giaiquye'tnochungtasesadl;mgkhaini~mv~mQt slj thunho (cacthuQctinhdi~uki~n).B~ngslfthunhochungtatimduQcmQt~p connhonha'tcuacacthuQcHnhdi~uki~nmanococlingca'pdQcuaslfphlJthuQc giil'acacthuQctinhdi~uki~nvaquye'tdinh.De dangd~Hnhroanr~ngtrong bang2.1chungtacohaicaithunho,d~tenla (C,S)va(C,P).Giao ta'tcacac thunhoduQcgQila core.Trongthi dlJ cuachungta,corela thuQcHnhC mano conghIala trongph~mvi cuadil'li~u,thandala lInhvlfcquailtrQngnha'tgayra ve'tnutvakhongth~duQclo~itnrkhoislfquailtamcuachungta,nguQcl~i,Sul- phurvaPh6t-phodongmQtvaitrothuye'uvacoth~duQcthayd6ilin nhaunhu la lInhvlfcgayrave'tnut. 2.3.TINHKHONG THE PHAN BItT DU<jC NhudaduQcd~c~ptrongph~ngidithi~u,di~mkhaid~ucua19thuye't~p hQptholam6iquailh~khongth~phanbi~tduQc,sinhrabaithongtinv~cacd6i tuQngmataquailtam.M6i quailh~khongth~phanbi~tduQcnglJ9dug dothie'u kie'nthucmachungtakhongth~phanbi~tduQcvaid6ituQngtrencosathongtin cosan.Di~udo conghIar~ng,noichung,chungtakhongchI giaiquye'tcacd6i tuQngriengIe macon phaiquailtamde'nnhomcacd6ituQngkhongth~phan bi~tduQcnhula cackhaini~mcobanv~kie'nthuc. Bay giOchungtanoir6 honv~di~uquailtambelltren.Gia sli'chungta duQcchohai t~phQpxacdinh,khongr6ng,U vaA, U la tqpvii trq vaA la tqp caethul)ctinh.VOi m6ithuQcHnhathuQcA, chungtalienh~vdit~pVa cuacac 20 giatri cuanoduQcgQilamiencuaa.Ci,ipS=(U,A)seduQcgQilamQth~thO"ng thongtin. Ba'tcut~pconB naocuaA xacdinhm6iquailh~haingoiIB trenV, seduQcgQila molquanhf thong thi phlin hift dll(1C,va duQcdinhnghlanhu sau: XIBy ne'uvachine'ua(x)=a(y)voimQiathuQcA trongdoa(x)kyhi~ugiatricuathuQctinhacuaph~ntti'x (2.1) HitinnhienthlIB la mQtm6iquanh~tuongduong.T~phQpcuata'tcacaclOp tuongduongcuaIB,nghlala duQcxacdinhmQtph~nbdiB, seduQcky hi~ubdi VIIB ho~cdongianla VIB ; mQtlOptuongduongcuaIB nghlala kh6icuaph~n U/B chuax seduQckyhi~ulaB(x). Ne'u(x,y)thuQcv6IB chungtase noidingx vay la B-khongthi phlin hift dll(1c.Cac lOpWongduongcuam6iquailh~ IB (ho~cla cackh6icuaph~n UIE) thlduQcbie'tnhulaB- cdhim ho~claB-sdclip.NhudaduQcd6c~ptruoc daytrongphuongphap t~phQptho,khaini~mcoban la cackh6ixay dl;l'ngco ban (khai ni~m)cuakie'nthucchungtav6 the'giOithl;l'c.D6i voi thi d~,cac duong6ng1,2 va 3,clingnhula cacduong6ng5 va 6 la khongth~phanbi~t duQctronggioih<;lncuaS vaP, duong6ng1va6 cling nhula 2,3va5 la khong th~phanbi~tduQctronggioih<;lncuathuQctinhC. 21 K ?, A 2.4.STjXAP XI CAC T~P H(1P M6i quailhc$khongthephanbic$tdu<;1csedu<;1csli'dl,mgke'tie'pdedinh nghlacackhainic$mco banv€ ly thuye'tt~ph<;1ptho.Baygiochungtahaydinh nghlahai toantli' trent~ph<;1pnhusau. B*(X)={x E U: B(x)c X} * B (X)={XEU: B(x) n X :;t:0} (2.2) Hai toan tli'nay gall cho m6i t~pcon X cua t~pvu trl;lU hai t~ph<;1p,B*(X) va B*(X), gQila B-xiip xi du:oivaB-xilp xi trencua x, riengtungcai mQt.T~ph<;1p BNg(X)=B*(X) - B*(X) (2.3) Se du<;1cbie'tde'nnhula vimggiUihfJ-nB cuaX Ne'uvunggioi h~ncuaX la t~pr6ng,nghlala BNg(X) =0, thl t~pX la ro (crisp) d6i voi B; trongtruongh<;1pngu<;1cl~i,nghlala, ne'uBNB(X):;t:0, t~p h(khong ra) d6i voi B Thi dl;lsaudaysechIra lamcachnaodetinhtoanvungxa'pXlduoi,tren vavunggioih~ncuamQtt~ph<;1p.Hay kyhic$ut~pcacthuQctinhdi€u kic$nC,S, vaP b~ngB, vaky hic$uXC6={1,3,6},XKh6ng={2,4,5}Ia cact~pcuaduong 6ng bi nutvakhongbi nut,riengbic$t,cact~pB-coban trongthidl;l la cact~p sauday:{I},{2,3},{4},{5},va {6}.Dodo,chungtaco: B*(XC6)={I}U {6}={1,6} B*(XC6)={l}U {2,3}U {6}={I, 2,3,6} B*(XKh6ng)= {4}U {5}= {4,5} 22 * B (XKh6ng)={2,3}U {4}U {5}={2,3,4,5} BNg(XCo) = BNg(Xkh6ng)= {2,3 } (2.4) C6th~dSdangchIfacactinhcha'tcuatinhxa'p xl. 1. B*XcXcB*X 2. B*(0) = B*(0) = 0; B*(U)=B*(U)=U 3. B* (Xu Y) = B*(X) u B*(Y) 4. B*(X n Y ) = B*(X) n B*(Y) 5. X c Y baahamla B*(X) c B*(Y) vaB*(X) c B*(Y) 6. B*(X u Y ) ;;;;? B*(X) u B*(Y) 7. B* (X n Y) c B*(X) n B*(Y) 8. B*(-X)=- B*(X) 9. B* (-X)=- B*(X) Trangd6- X lakyhi~uU-X 10.B*B*(X) =B* B*(X) =B*(X) l1.B* B*(X) =B*B*(X) =B*(X) Nh<\inxetdingbdiVIthuQctinh6va7,cacxa'pXlkhongth~tinhtoantung budc,bdiVIxa'pXldudicuahQinhi~ut<\iph<;1pla chua hQicuanhi~uxa'pXl dudi cuatUngt<\iph<;1pthanhph~n; tudngtlf nhuv<\iy,xa'pXl tfen cuagiao cua cac t<\iph<;1pchuatranggiao cua xa'pXl tfen cua cac t<\iph<;1pthanhph~n.C6 nghIala, n6i chung,bangdii' li~ukhongth~chiathanhcacph~nnh6hdn (ho~ccacbangkhongth~dU<;1cgoml<,tivdi nhau),ke'tquac6 dU<;1ctu cac bangdi'ichia fa ho~cgom l<,tic6 th~khac. C6th~dinhnghIa4ldpdin bancuat<\iptho,nghIala4 lo<,ticuatinh ma: 23 a) B*(X):;t:0vaB*(X) * U, ne'ux la B-coth€ xacdinhduQcvakhong chinhxac b) B*(X)=0vaB*(X)*U,ne'ux laB-khongth€ xacdinhduQc vabell trong c) B*(X)*0 va B*(X)=U,ne'ux la B-co th€ xacdinhduQCva tubell ngoai. d) B*(X)=0vaB*(X) =U, ne'ux laB- hoantoankhongth€ xacdinh duQc Y nghIatn,icgiaccuacacphanlo~inaylanhusau . Ne'uX la B-coth€ xacdinhduQCvakhongchinhxac, conghIala chungtacoth€ quye'tdinhvaiph~ntii'cuaU ho~cla thuQcX ho~c-X sii'dlJngB . Ne'uX laB-khongth€ xacdinhvabelltrang,conghIala chungtaco th€ quye'tdinhvaiph~ntii'cuaU thuQcv€ -X, nhungchungtakhong th€ quye'tdinhchoba'tky ph~ntii'naGcuaU, ho~cno thuQcv€ X ho~ckhongsii'dlJngB . Ne'uX la B-khongth€ xacdinhtubellngoai,conghIala chungtaco th€ quye'tdinhvaiph~ntii'cuaU ho~cla thuQcv€ X, nhungchungta khongth€ quye'tdinhba'tky ph~ntii'naGcuaU ho~cno thuQcv€ -X ho~ckhongsii'dlJngB. . Ne'uX la hoantoanB-khongth€ xacdinhduQc,chungtakhongth€ quye'tdinhba'tky ph~ntii'naGcuaU ho~cla nophlJthuQcVaGX ho~c - X sii'dlJngB 24 Trong thi dt,lcuachungta B*(XC6)"*U, B*( XC6)"*0 va B*(XKhOng)"*0 ; do do ca hai XC6 va XKh6ngla khong chinhxac va B-co th€ xac dinh duQc. T~phQpthocoth€ clingduQcbi€u thiblingcons6h~s6: as(X)= IB*(X) I IB *(X) I (2.5) duQcgQila dl)chinhxac cuasl;l'x~pxl, trongdo IXI ky hi~us6phftntil'cuaX. Hi€n nhien,a :::;aB(X):::;2.NC'uaB(X)=1,X la crispd6ivoiB ( X la ro d6ivoi B); ngoaira,nC'uaB(X)< I, X la khongchinhxac d6ivoiB. thidt,l,d6ivoiXC6 chungtaco: a B (XeD)=a B(Xkhong)=2/4 =1/2 (2.6) 2.5.T~PH<JPTHO vA HAM THANH VlEN T~phQpthocoth€ clingduQcdinhnghlablingcachsil'dt,lngillQthamthanhvien tho,dinhnghlanhusau: J1~(x)=IXnB(x) I IB(x)I (2.7) hi€n nhien: J1~(x) E[0,1] (2.8) 25 Gia tri cua ham thanhvien ,uf(x) la mQtlo<;lixac sufftdi€u ki~n,va co th€ du'QC hi€u nhu'la muc dQcua stfca quye'tvao stfki~nla x thuQcv€ X (ho~cla 1- J.!XB(X),la muc dQ cua stfkhong ch1:lcch1:ln.) Ham thanhvien thoco th€ du'QCsadl,mgd€ dinhnghIatinhxffpxi va vung gidi h<;lncuamQtt~pnhu'chi fa du'diday: B*(X) ={XE U: ,uf(x)=I}, B* (X) ={XE U: J.i%(x)>O}, BNB(X) ={XE U :O<,uf(x)<I}, (2.9) Ham thanhvien tho co nhil'ngthuQctinh sau day (Pawlak & SLowron, 1994): a) ,uf(x) =1ne'uXE B* (X); b) ,uf(x)=0 ne'uXE -B* (X); c) O<,uf(x)<1ne'uXE BNB (X); d) ne'u(B)={(x,x): x E U },thl ,uf(x) la hamd~ctfu'ngcuaX; e) ne'ux IBy thl ,uf(x)=,uf(y) xacdinh bdiIB; f) ,u~-x(x)=1- ,uf(x)vdimQix E U; g) ,ufuY(x)2 max(,uf(x)"u:(x)) vdi mQix E U; h) ,ufnY(x)~min(,u:(x), ,uf(x)) vdi mQix E U; i) ne'uX la t~pcacc~ptungdoi tach foi cuaU, thl ,u~x(X)=L x E X ,uf(x)vdi mQi x E U; 26 ThuQctinhtrenchi ra r~ngsVkhacbi~tgiuahamthanhviencuat~p, mava tho,N6i rieng,thuQctinhg) vah) chira r~ngcachamthanhvien thoc6th~ du'<;1cdanhgiachinhthucnhu'Ia svkhaiquath6a hamthanh vienmadotoantii'maxvamill rhophephQivagiaocuat~ph<;1p,Wang lingvoi, t~pmala cactru'angh<;1pd?cbi~tcuat~ptho.Nhu'ngchungta nhol~ir~ng"hamthanhvientho", lacai tu'angphanvoi "hamthanhvien IDa",thuQcv€ hu'angvi cuatinhxacsua't.Thi d\),hamthanhvienthocua cacdu'ang6ngrhoXC6la du'<;1cchiradu'oiday J.1~co(~)=1; J.1~C()(P2)= 1/2; J.1~cJ~) = 1/2; J.1~co (P4) = 0; J.1~co(ps) = 0; J.1~(P )=l'co 6 , (2.10) C6 nghlala ne'u,mQtdu'ang6ng c6 chuanhi€u thandel,sul-phurva it ph6t-pho,thln6nUt,ngu'<;1cl~ine'uthandel,suI-furva ph6t-phola trung blnh,nhi€u vait thlxacsua'td~du'ang6ngbinutla Yz C6 th~d~dangtha'yr~ngt6nt~imQtm6ilienke'tmongmanhgiua tinhmava tinhkhongcha:cha:n,Nhu'du'<;1cd€ ~ptru'ocdaytinhmalien quail t~ph<;1p(khai ni~m),ngu'<;1cl~i, tinhkhongcha:ccha:nlien quailde'n cacph~nttl'cuat~ph<;1p. 27 2.6.STjPHT)THUOCCUA cAe THUOCTINH \ Tinhxa'pxi cuat~phQpla lienquailch;}tcheWikhaini~mv~stfph\!thuQc(toan bQho;}ctung ph~n).B~ngtrtfcgiac,mQtt~pcacthuQctinhD phlj thul)cholm tolmvaomQt~pcacthuQctinhC,kyhi~ulaC =>D,ne'uta'tcacacgiatricua thuQctinhtuD xacdinhduynha'tb~ng iatricuacacthuQctinhtuC.Noicach khac, D ph\!thuQchoantoanvao C, ne'ut6n t<;limQtstfph\!thuQchamgiua gia tri cuaD va C. Trangbang2.1khongco ph\!thuQchoantoannao. Chungtaclingdn mQtkhaini~mt6ngquathancuastfph\!thuQcvaocac thuQctinh,duQcgQilaphlj thul)cml)tphiln cuathuQctinh.Ph\!thuQcmQtph~n conghlalachicovaigiatricuaD laduQcxacdinhbdigiatricuaC Thongthuongthl,stfph\!thuQcoth~duQcdinhnghlatheocachsau:xet D vaC la t~pconcuaA, chungtanoir~ngD ph\!thuQcvaoCd milcdQk (0~k ~1),kyhi~ula C ~k D, ne'u k =r(C,D) =IPOSe(D) I IVI (2.11) trangdo POSe(D)= YC.(X) (2.12) XEUID duQcgQila vungxacdinhcuathanhph~nDID d6ivdi C, la t~phQpcuata'tca ph~nph~ntti'cuaD manocoth~duQcphanbi~tduynha'tucackh6icuaph~n DID bdiC. Hi~nnhien: r(C,D) = L Ic.(X)I XEUID IV I (2.13) 28 Ne'uk =1chungtanoi r~ngD ph\!thuQcho~mto~mvaoC, vane'uk < 1, chungtanoiD ph\!thuQcmOtph~n(dmucdQk) vaoC. H~s6k noitenti 1~cuaHitcacacph~ntacuat~pvii tr\!manocoth~ phanbi~tr6rangtrongcackh6icuaph~nDID,sad\!ngthuQCtinhC,vasedu'Qc gQilamucdQcuaslfph\!thuQcmacoth~ciingdu'Qchi~unhu'laxacsua'tmax E U thuQcvemQttrongcactrongcaclopquye'tdinhxacdinhbdithuQctinhquye't dinh.Thi d\!:(slfnut)ph\!thuQcvao(C,S,P)d ca'pdQk =4/6=2/3.conghlalahai ph~nbacuadu'ang6ngcoth~phanbi~tr6rang la nUtho~ckhongb~ngcachsa d\!ngcacthuQctinhC,SvaP. 2.7.StjGIAM TRIEU cAe TRUQC TINR Chungtathu'angphaid6iphovoicallhoikhongbie'tcoth~bovaidii'ki~n titmOtbangdii'li~uvav§:nconduytri cacd~ctinhcdbancuanokhong, conghlalacohaykhongmOtbangchuavaithongtinvo dvng.ThidV,d~ dangtha'yr~ngne'uchungtaborakhoibang2.1ho~cthuQctinhS ho~c thuQctinhP, chungtaco du'Qct~pdii' 1i~utu'dngdu'dngvoi cai nguyen thuy,voi slfquantamvaocacxa'pXldu'oivamucdQcuaslfphvthuQc. Haygiaithichytu'dngnaychinhxachdn sauday.X6t C,D c A la cact~phQpcuacacthuQctinhdi€u ki~nvaquye'tdinhmOtcachphanbi~t. chungtase noi r~ngC'c C la mOtD-rutgQncua(rutgQnd6ivoiD) cua C, ne'uC' la t~pt6ithi~ucuaC saDcho: Y (C,D)=Y (C' ,D) (2.14) 29 Trangbang2.1,chungtacohait~prutgQn,(C,S)va (C,P),d6ivdi thuQc tinhNut.Co nghIalaho~cthuQctinhSho~cthuQctinhP cotheIO<;litrukhoibang va,VIv~y,thayvaobang2.1cothesad\mgbang2.2ho~cbang2.3. GiaocuatfftcacacD-rutgQngQilaV-core(cored6ivdiD).Bai VIcorela giaocuatfftcacacrutgQn,nola chuatrangtfftcacacrutgQn,nghIala m6iphffn tacuacorethuQcv~vairutgQn.Do do,corela t~pconvo rungquantrQngcua cacthuQctinh,khongcobfftky phffntii'naocuachungco thebi IO<;limakhong anhhuangde'nst!phanbi~tcuacacthuQctinh.Trangbang2.1corecua(C,S,P) d6ivdiNutlaC Bang2.2.RutgQncuabang2.1 Bang2.3.RutgQncuabang2.1 Duong6ng C S NUt 1 Cao Cao Co 2 TB Cao Khong 3 TB Cao Co 4 Thffp ThffP Khong 5 TB Thffp Khong 6 Cao Thffp Co Duong6ng C P NUt 1 Cao Thffp Co 2 TB Thffp Khong 3 TB Thffp Co 4 Thffp Thffp Khong 5 TB Cao Khong 6 Cao Cao Co 30 2.8.MATR~NPHAN BItT vA HAM D€ d~dangtinhtmlnsvgiamthi€u vacorechungtasesad\,mgmatr~nphan bi~t(SkwronRauszer,1992)machungtasedinhnghlasailday MQtmatr~nphanbi~tcuaB c A la matr~nn x n dinhnghlanhu'sau: 8 ( x,y)={a E B : a(x)*a(y)} (2.15) Do do8( x,y)la t~pcuata'tcacacthuQctinhmanophanbi~tcacd6i tu'Qngxvay. Matr~nphanbi~tcuabang2.1vat~phQpcacthuQctinhB =( C, S, P) la du'Qchotrongbang2.4.Ma tr~nphanbi~tgallchom6ic~pcuacacd6itu'Qngx vay, mQt~pconcuacacthuQctinh,8(x,y) c B, voicacthuQctinhsailday: a) 8( x,x)=0 b) 8( x,y)=8(y,x) c) 8 ( x,z)c 8( x,y)u 8 (y,z) Nhii'ngthuQctinhnaytu'dngtvvoibankhoangcach(semidistance),va,dodo ham 8 co th€ du'Qcbie'tnhu'la tlfa metricd€ do cha'tIu'Qng(qualitative semimetric)va8 ( x,y) 31 Bang2.4Ma tr~nphanbi~tchobang2.1 Tlfametricd€ docha'tluQng(qualitativesemimetric).Do domatr~nphan bi~t co th€ xem nhu la mOt ma tr~nban khoangcach (semi distance (qualitative». Clingchuydingvdim6ix,y, ZE U chungtaco d) 18( x,x)1=0; e) 18(x,y)I=18(y,x)1 f) 18( x,z)1::;;18( x,y)1+ 18( y,z) 1 D€ tinhtoanD-rutgQncuacacdi~uki~ncuathuQctinhC, chungtasedin chinhsU'ad6ichutmatr~nphanbi~tgQilamatr~n(C,D),maduQcchonhusau: 8 ( x,y)={a E C : a(x)*-a(y)va w(x,y) }, (2.16) Trongdo: W(x,y)E POSe (D) vay ~POSe (D) hoi;icla 1 2 3 4 5 6 1 2 C 3 C 0 4 C,S C,S C,S 5 C,S,P S,P S,P C,S 6 S,P C,S,P C,S,P C,P C 32 x !l POSe(D)vaY E POSe(D) ho~cla X,y E POSe (D) va x,y !l ID (2.17) vC1imQi X,Y E U NSuph~ndinhnghlabdiD la xacdinhbdi C, thldi~uki~nw(x,y)trong dinhnghlabelltrencoth€ giamthi€u thanhX,Y!l ID.Dodo8( x,y)la t~pcuata-t cathuQctinhmanophanbi~tcacd6itu'<;fngx vay makhongthuQcv~clingWp tu'dngdu'dngcuaquailh~ID. Ma tr~n(C,D)chobang2.1vC1icacthuQctinhdi~uki~nC,S,PvathuQCtinh quyStdinhnUtladu'<;fcchotrongbang2.5. Bang2.5:matr~n(C,D)chobang2.1 T~ph<;fpC' c ClaD-nit gQntrongC, nSuC' la t~pt6i thi€u cuaC saocho: C' n c :;t:0vC1imQic khacr6ng (c :;t:0)cuamatr~nphanbi~t(C,D). 1 2 3 4 5 6 1 2 C 3 - 0 4 C,S C,S C,S 5 C,S,P - S,P C,S 6 - C,S,P - C,P C 33 Do D6 D-rutgQnla t~pcon nhonha'tcuacacthuQctinhman6phanbi~t ta'tca cac lOptu'dngdu'dngcuamO'iquanh~ID phanbi~tbdi toanbQt~pcua thuQctinh.M6i mQtmatr~n(C,D)phanbi~tduynhfftxacdinh mQthamphan bi~tman6dinhnghlanhu'sau: Chungtahaygallm6ithuQCtinhamQtbi€n nhiphan,a,vaxet I8 (x,y) kyhi~ut6ngbooleancuata'tcacacbi€n booleandu'Qcgallchot~phQpcacthuQc tinh8(x,y). saud6hamphanbi~tc6th~du'Qcdinhnghlabdicongthuc: ID(C) = TI (I 8(x,y)): (x,y) E u2va8(x,y)*-0 (X,Y)EU2 (2.18) ThuQctinhsaudaythi€t l~pmO'iquanh~giii'ahlnhthucphanbi~tblnh thu'ongcuahamfD(C)vata'tcacacD-rutgQncuaC Tfftcanhii'ngy€u to'trongd~ngblnhthu'ongphanbi~tcuahamfD(C)la ta't cacacD-rUtgQncuaC N6i cachkhac,mQt~pconnhonha'tcuatfftcacacthuQctinhmaphanbi~t ta'tcacacdO'itu'Qngcoth~phanbi~tbditoanbQt~pthuQctinh. Hamphanbi~t(C,D)chomatr~nphanbi~t(C,D)chiratrongbang2.5la nhu'sau: fD(C) =C. (C+S).(C+S+P).(C+S) .(C+S+P).(C+S).(S+P).C =C. ( S+P) (2.19) 34 Trongdo"+" va"." Ky hi~uphepcQngvanhanBoolean,riengbi~t.Bdi VI, d,;mgblnhthuongphanbi~tcuahamla: fD(C) =c.s+c.p (2.20) ChungtacohaiD-rUtgQn,(C,S)va(C,P),cuat~phQpthuQcHnhdi~uki~n (C,S,P).chungtadIng nh~nxetdingD-corela t~phQpcuaUltcaph~nturieng recuamatr~nphanbi~t,nghlala: CORED(C)=(a E C :8(x,y) ={a},voimQix,y}. (2.21) Voi nhungbangqualOn,phuongphapd~fightv~HnhroanrutgQnkhong hi~uquaduvacacphuongphaptinhvi duQcsudl,mg. 2.9.DO DO CHAT Lu'(1NGTHUOC TINH Khi quailtamde'nslfgiamthiSuthuQcHnh,chungkhongthSco slfquail trQngnhunhau,vavai cai cuachungco thSloc;tibo rakhoimQtbangthongtin makhongma'tmatthongtinchilabelltrongbang.Y tudnggiamthiSuthuQcHnh cothSphatsinhbdivi~cgioithi~umQtkhaini~mladf)dochiltlli(Jngthuf)ctinh, dodocothSchophepchungtadaubgiacacthuQcHnhchibdihaimilcgiatrj,la cdnthiefhoi;tckh6ngcdnthief,nhungbdivi~cgallchomQtthuQcHnhmQtcons6 thlfctrongkhoang[0,1],nothShi~nslfquailtrQngnhuthe'naocuamQtthuQcHnh trongmQtbangthongtin. 35 DQdocha'th1QngthuQctinhco th~daubgiabdivi~cdolu'onganhhu'dng cuavi~cloc;timQtthuQctinhtitmQtbangthongtin trenvi~cxacdinhphanbi~t b~ngbang.XetC vaD Iat~phQpcacthuQcHnhdi€u ki~nvaquy€tdinh,rieng bi~t,xeta la mQthuQctinhdi€u ki~n.Nhu'dachIratru'ocday,cons6 y(C,D) th~hi~nmilcdQcuaslfph\}thuQcgifi'athuQctinhC vaD. Chungtaco th~bi€t h~s6Y(C,D)thayd6inhu'th€ naokhi loc;tibi)thuQctinha nghlaIa slfkhacbi~t Ia nhu'th€ naogifi'ay (C,D)vay (C - {a},D).tieuchuffnhoaslfkhacbi~tvaxac dinhmilcdQdangk~cuathuQctinhanhu'la: (J"CD(a) =(y(c,D)- y(C - {a},D)) =1- y(C - {a},D) ,. y(C,D) y(C,D) (2.22) Va ky hi~ub~nga (a)~1.thuQctinhquailtrc;mghonathlldn honcons6 a(a)co.Thi d\},cacthuQctinhdi€u ki~ntrongbang2.1chungtacok€t quasau: cr(C)=0.75 cr(S)=0.00 cr(C)=0.00 Bdi VImilcdQquailtn.mgcuathuQctinhS vaP la zero,loc;tibi)mQttrong chungra khi)ithuQctinhdi€u ki~nkhonganhhu'dngd€n slfph\}thuQc.Do do, thuQctinhC Ia dangk~nha'trongbang,loc;tibi)C, 75%( baphantIT)cacdu'ong 6ngkhongth~phanbi~trarangdu'Qc. D§u sao,d~giamthi~ubangdfi'li~u,trongbang2,chungtaco cr(C) =1 cr (S)=0.25 36 TrongtrtionghQpnay,giaffithi€u thuQctinhS d€ rut gQn,nghlala, sa d\mgchIthuQctinhC, 25%(mQtphffntti)cuacacd6ittiQngcoth€ dtiQcphanbi<$t ro rang,trongkhi bo thuQctinhC, nghlala sad\lngchI thuQCtinhS, 100%(ta't cii) cacd6ittiQngkh6ngth€ dtiQcphanbi<$trorang,conghlala trongtrtionghQp nayra ffiQtquye'tdinhla hoantoankh6ngth€, ngtiQcl~ib~ngvi<$cchIsad\lng thuQCtinhC, vaiquye'tdinhcoth€ dtiQcth\fchi<$n. Do doh<$sO'cr(a) coth€ hi€u nhtila ffiQt16ixayrakhi thuQctinhabi boo H<$s6ffiucdQdangk€ coth€ dtiQchi€u la ffiQt~pcacthuQctinhnhtisail: CYCD(B)=(y(C,D)- y(C - B,D)) =1- y(C - B,D) , y(C,D) y(C,D) (2.23) Ky hi<$ubdicr (B),ne'uC vaD diidtiQCbie't,B la ffiQt~pconcuaC. Ne'uB la rutgQncuaC, thla (B) =1,nghlala,boba'tky rutgQnnaokhoi t~phQpcuacaclu~tquye'tdinhlamchokh6ngth€ codtiQcquye'tdinhvdiffiQts\f chilcchiln: Ba'tky t~pconB naocuaC sedtiQcgQila mQtrutgQnxa'pXl cuaC, va consO' 8CD(B)= (y(C,D)-y(C-B,D)) -1- y(C-B,D), y(C,D) y(C,D) (2.24) 37 E(B) sedu'QcgQila mQtZ6icuasl!x{{pxl gt1ndung.No thShic$nchinhxac lamthe'naot~phQpcacthuQctinhB xffpXl t~phQpcacthuQctinhdieukic$nC. hiSn nhien,E(B)=1- cr(B)vaE(B)=1- E(C+B).bfftky t~phQpcon B naocuaC chungtacoE(B)::;E(C),ne'uB la mQthu nhecuaC, thlE(B)=o.Thidl;l,thuQc tinhS ho~cC cothSbie'tnhu'larutgQnxffpXlcua(C,S),va E(C)= 1.00 nhu'ngtfftca t~phQpcuathuQctinhdieukic$n(C,S,P)chungtaclingco giamthiSuxffpXlnnhu'sau: E(S,P) =0.75 Khai nic$mcuamQts1!rfftgQnxffpxlla phatsinhcuakhainic$mvemQts1! rutgQndffquailtamtru'dcday.MQtt~phQpB nhenhfftcuacacthuQctinhdieu kic$nC, saDchoy(C,D)=y(B,D)ho~cE (c,D)(B) =0 la mQtrutgQntrongchieu hu'dngtru'dcday. Y tu'dngve mQts1!rut gQngffn dung co thS hUll dl;lngtrong tru'onghQpkhi mQtcons6nhehancuacacthuQctinhdieukic$nco ichhantinh chinhxaccuas1!phanbic$t. 2.10.CACQUY LU! T QUYET DJNH vA s1jPHT)THUQC Vdi m6i s1!phl;lthuQc,C ~ k D chungtacothSlienh~vdimQt~pcacquy lu~tquye'tdinh,s1!matacacquylu~tquye'tdinhla nendu'Qcth1!chic$nkhidieu ki~nchinhxacla rhea.Noi cachkhac,m6imQtbangquye'tdinhxacdinhmQtt~p caccangthuccod(~lllg: " ne'u...thl ..." Thi dl;l,bang2.1xacdinht~pcaclu~tquye'tdinhsauday: 1. ne'u(C,Cao)va(S,Cao)va(P,Thffp)thl(Nut,Co), 38 2. ne'u(C,TB ) va(S,Cao)va(P,Tha'p)thi(Nlit,Khong), 3. ne'u(C,TB ) va(S,Cao)va(P,Tha'p)thi(Nlit,Co), 4. ne'u(C,Tha'p) va(S,Tha'p) va(P,Tha'p)thi(Nut,Khong), 5. ne'u(C,TB ) va(S,Tha'p) va(P,Cao)thi(Nut,Khong), 6. ne'u(C,Cao)va(S,Tha'p) va(P,Cao)thi(Nut,Co). Tli mQtquaildiemvelogic,caclu~tquye'tdinhIa lienh~m~thie'tli cac congthucph~ntli'cuad~ng(tenthuQctinh,gia tfi thuQctinh) va ke'thQpvdi nhaubdi "va ""ho~c ", va "sl)'suyfa "theo cachthongthuong. MQtlu~tquye'tdinhla chinhxac (chclchcln,baadam)ne'ucacdieuki~n cuanoxacdinhduynha'tcacquye'tdinh;ngoaifa lu~tquye'tdinhlakhongchinh xac(khongchclcchcln,khongco the).Trangthi dl,lbell tfen,lu~t1,4,5va 6 la chinhxac,ngoaifa lu~t2 va3 la khongchinhxac.HiennhienchIconhii'nglu~t chinhxacxacdinhcacquye'tdinhkhongmdh6. Bdi vi caclu~tquye'tdinhla caccongthuclogic,chungco theduQCddn gianhoab~ngcacsli'dl,lngcacphudngphaplogicthongthuongmakhongtrinh bayd day.Ngoaifa chungcotheclingduQcddngianhoasli'dl,lngphudngphap t~phQptho.thi dl,l,khaini~mve sl)'giamthieudfinde'nlo~ib6 cacdieuki~n khongdn thie't.Do do,ngoai bang2.1chungtaco thesli'dl,lngbang2.2ho~c 2.3decoduQccacquylu~tquye'tdinh. Tli bang2.2chungtaco: 1. ne'u(C,Cao)va(S,Cao)thi(Nlit,Co), 2. ne'u(C,TB ) va(S,Cao)thi(Nut,Khong), 39 3. ne'u(C,TB ) va(S,Cao)thl(NLi't,Co), 4. ne'u(C,Th!p) va(S,Th!p) thl(Nut,Khong), 5. ne'u(C,TB ) va(S,Th!p) thl(Nut,Khong), 6. ne'u(C,Cao)va(S,Th!p) thl(Nut,Co). Va tU'bang2.3chungtaco: 7. ne'u(C,Cao)va(P,Th!p)thl(Nut,Co), 8. ne'u(C,TB) va(P,Th!p)thl(Nut,Khong), 9. ne'u(C,TB) va(P,Th!p)thl(Nut,Co), 1O.ne'u(C,Th!p) va(P,Th!p)thl(Nut,Khong), 11.ne'u(C,TB) va(P,Cao)thl(Nut,Khong), 12.ne'u(C,Cao)va(P,Cao)thl(Nut,Co). Sa d1.;mgkY'thu~tlo~ibogiathuye'tkhongdn thie'tronglu~ttrlnhbayd phftnke'tie'p,cacquylu~tquye'tdinhcoth€ duQcddngianhoahdnnlla, Bang2.2.RutgQncuabang2.1 X6t lu~t1."neu(C,Cao)va(S,Cao)thl(Nlit,Co)"vabang2.2 Duong6ng C S Nut 1 Cao Cao Co 2 TB Cao Khong 3 TB Cao Co 4 Th!p Th!p Khong 5 TB Th!p Khong 6 Cao Th!p Co 40 Ta mu6nb6 (C,Cao),dSc6 "(S,Cao)thl(Nut,C6)",diSud6la kh6ngthS, VI duang6ng I va 3 thl dungla "(S,Cao)thl (Nut,C6)",nhungduang6ng2 "(S,Cao)thl(Nut,Kh6ng)" Ta mu6nb6(S,Cao),dSc6"(C,Cao)thl(Nut,C6)",diSud6la c6thSdu<;5c, bdiVIchIc62 duang6ng1va6 th6a"(C,Cao)thl(Nut,C6)",ngoairakh6ngc6 truangh<;5pnaomatithuftnnghlala kh6ngc6 truangh<;5pnaoma "(C,Cao)ma (Nut,Kh6ng)"ca X6t lu~t4. "ne'u(C,Thffp) va(s,Thffp) thl(Nut,Kh6ng) " vabang2.2 Ta mu6nb6(C,Thffp),dSc6"(S,Thffp)thl(Nut,Kh6ng)",diSud6la kh6ng thS,VIduang6ng4 va 5 thldungla "(S,Thffp)thl (Nut,Kh6ng)",nhungduang 6ng6 "(S,Thffp)thl(Nut,C6)" Ta mu6nb6(S,Thffp),dSc6 "(C,Thffp)thl (Nli't,Thffp)",diSud6la c6thS dU<;5c,bdiVI duang6ng4 c6(c,Thffp)va c6 "(Nut,Kh6ng)",ngoairakh6ngc6 truangh<;5pnaomatithuftnnghlala kh6ngc6truangh<;5pnaoma "(C,Thffp)ma (Nut,C6)" ca X6t lu~t5."ne'u(C,TB ) va(S,Thffp) thl(Nut,Kh6ng) " vabang2.2 Ta mu6nb6 (C,TB),dSc6 "(S,Thffp)thl (Nut,Kh6ng)",diSud6la kh6ng thSnhudilchungminhtren Ta mu6nbo (S,Thffp),dSc6 "(C,TB) thl (Nli't'Kh6ng)",diSud6la kh6ng thS,VIduang6ng2 va 5 thldungla "(C,TB)thl(Nut,Kh6ng)",nhungduang6ng 3 "(C,TB)thl(Nut,C6)" T6ml<;tid6ivdilu~t"ne'u(C,TB ) va(s,Thffp) thl(Nut,Kh6ng) " vabang 2.2,kh6ngc6giathie'tnaolakh6ngdn thie't. 41 Xet lu~t"6.ne'u(C,Cao)va(S,Thilp)thl(Nut,C6)".vabang2.2, Ta mu6nbo (C,Cao),d€ c6 "(SThilp)thl (Nut,C6)",di€u d6la khangth€, VIdlidng6ng4 va 5 thldungla "(S,Thilp)thl(Nut,Khang)",nhlingdlidng6ng6 "(S,Thilp)thl(Nut,C6)" Ta mu6nbo (S,Thilp),d€ c6 "(C,Cao)thl (Nut,C6)",di€u d6 la c6 th€ dli<jc,bdiVI dlidng6ngI va6 thoa" (C,Cao)thl (Nut,C6)",ngoairakhangc6 trlidngh<jpnaomallthu§.nnghlala khangc6 tru'dngh<jpnaoma "(C,Cao)ma (Nut,Khang)"ca T6ml<;li,sailkhi lli<jcbogiathie'tkhangdn thie'tcuacaelu~t1,2,3,4,5,6,tac6: 1. ne'u(C,Cao)thl(Nut,C6), 2. ne'u(C,TB ) va(S,Cao)thl(Nli't,Khang), 3. ne'u(C,TB ) va(S,Cao)thl(Nli't,C6), 4. ne'u(C,Thilp) thl(Nut,Khang), 5. ne'u(C,TB ) va(s,Thilp) thl(Nut,Khang), 6. ne'u(C,Cao)va(S,Thilp) thl(Nut,C6). D€ th€ hi~ntlnhchinhxacmOtquye'tdinhmatabdilu~tquye'tdinhchung tadn th€ hi~nb~ngmOtconso'cualu~t,chIrar~ngsl!mdrOngnaocualu~tla khangth€ tinc~y.D€ thl!c hi~nnochungtadinhnghlamOtIInhvl!cchilechiln cualu~t. Xet <Dva \{'la caecangthuclogicth€ hi~ncaedi€u ki~nva caequye't dinh,riengre,vaxet <D-7 \{'lamOtlu~tquye'tdinh,trongdo<Dsla ky hi~ucua 42 tronght$th6ngS, nghIa1at~phQpcuatfttca cac d6i tuQngthoatfongS dinh nghIatheoeachthongthuong Voi m6i 1u~tquye'tdinh -7 'P, chungta lien ht$mQtcon so'gQi1alInh vlfc cha:ccha:ncua1u~t,va dinhnghIanhusau: ,u«1>,\f) = I<Psn \fs I Is I (2.25) DI nhien,0 S J.l(,'P)s 1,ne'u1u~t-7 'P 1achinhxacthl J.l(,'P)=1 vacac1u~tkhongchinhxacthlJ.l(,'P)<1 Thi d\!,lInhvlfcchinhxaccuacac1u~tquye'tdinhdil quailtamtfUOCday 1anhusau: J.l«1>],'P])=1, J.l( 4,'P4)= 1, J.l( s,'Ps)= 1,J.l( 2,'P 2) = Y2, J.l( 3,'P3) = Y2, J.l( 6,'P 6) = 1 (2.26) trongdoi,'Pi kyhit$ucacdi@ukit$nvacacquye'tdinhcua1u~ti Chuy dinglInhvlfccha:cha:ncoth~duQcxemnhu1amQt slfphatsinh cuahamthanhvientheo1ythuye'tt~pthovaco th~duQchi~unhu1amQtkha nangcotinhchftt1adi@ukit$nmamQtd6ituQngx thoacacquye'tdinhclingcftp no thoacacdi@ukit$ncua1u~t.Thlfcslfthl,cac1u~tquye'tdinhcoduQctu mQt bangdli 1it$u1acac1u~tsuyfa cotlnhchfttlogicmanochophepkhamphacac m~uin giftutrongdli lit$u,vaco th~duQcsad\!ngtrongcacthao1u~nd~tlm chan1y,ho~cnhu1amQtdi~mba:td~uchovit$cthlfCthicacht$th6ngquye'tdinh b~ngmaytlnh,cacht$chuyengia,cacthu~toandi@ukhi~n,... 43 Do do, vdi m6i lu~tquy~tdinh-7\fIcoth~lienquailmQtlu~tsuylu~n theot~pth6gQila cacroughmodusponens n«t»;,u«t>,\f') n(\f') (2.27) trangdo1"[«1»=Isl/IVI va 1"[(\fI)=1"[(~I\\fI)+ 1"[«I».Il«I>,\fI). Lu~tnaychophepchungtatinhloanxacsua'tcuaquy~tdinhtrangdieu ki~ncuaxacsua'tcuacacdieuki~nvaxacsua'tdieuki~ncualu~tquy~tdinh. Thi dt,l,d~dangd~tinhloanr~ngn~u=(C, TB), (S,cao),(P,tha'p)va\fI =(nut,co),thlchungtaco 1"[«I» =1/3, Il( ,\fI)=Y2va 1"[(\fI)=1/3;d6ivdi =(C, cao)va \fI=(nUt,co), thl chungta co 1"[«I» = 1/3, Il( ,\fI)= 1va 1"[(\fI) = 1/3,nguqcl'.livdi = (S, tha'p)va \fI=(nUt,co), thl chungtaco 1"[«I» = 1/2, Il( ,\fI) = 1/6 va 1"[(\fI) = lA. Va'nde quailtamd trenla mQtphgncuacali hoi IOnhondii theodu6i nhieunamtrongtri tu~nhant'.lO(AI) va lien quaild~ncacphuongphapsuy lu~nhqpIy chung.Tranglogicc6di~n,cacIu~tcobancuaphgnk~tlu~nIacan cu trengia thi~tr~ngn~uva -7\f' ladung,thlphgnk~tlu~n\fI phaidung. Lu~tsuylu~nduqcbi~tnhu la moduspOllens.Dgusao,trongcaephuongphap suylu~nhqply chungchungtaphaithuanh~ndingphgnlien de vaphgnk~t Iu~nIa thuongkh6ngduqcbi~tmQtcachchilcchiln,mathuongIa vdivaiphgn suydoan,vadodophgnk~tlu~nclingphaiduqctrangbi vdi mQtst;(doIuong xacsua'thkhhqp.Logicc6di~nkh6ngclingca'pcacphuongphapd~giaiquy~t th~ti~nthoaiIuongnailnayvacachcualogicc6di~nla kh6ngcogiatri trong truonghqpnay.Do do,moduspOllenskh6ngth~duqcdoi hoinhuia mQtquy lu~thqply cobanchost;(suylu~nhqpIy chung. 44 Nhi€u mohlnhtinhroandangduqcd€ nghid~giaiquye'tva'nd€ nayvad~ di€u khiSntinhkhongch~cch~ncuano trongsl!hqply. Phudngphapt~ptho duqcgidi thi~ucove la mQtdiu traWira'tla tl!nhienchova'nd€ nayvanoco mQtsl!giaithichra'tla cdhtl'utrongcact~pdfi'li~u. 2.ll.PHUONG PHA.P LU!.N UNG DTjNG Ly thuye'tt~phqpthoduqcxemnhula mQtphudngphaptinhroanmdid~kham phanhfi'ngmohlnhtrongdfi'li~unghlala chungtaduqcchomQtt~pdfi'li~unhu la ke'tquacuasl!rhead5icachi~ntuqngtl!nnhienvaxii hQidC5ithl!Cva cong vi~cd~utiencuachungtala tlmnhfi'ngmohlnh~ngia'utrongdfi'li~u.Cacmo hlnhthuC5ngla trlnhbaydudid<;lngmQtt~pcacquylu~tquye'tdinh.Cacquylu~t cothSduqcsU'd\lngdSgiaithichdfi'li~u,nghlala,giaithichhi~ntuqngtl!nhien xii hQiho~cla cactie'ntrlnh n~md belldudidfi'li~u cuavaim6iquailh~"gay rahi~uqua".Thi d\lv€ khanangchilldl!ngki~mtracuacacduC5ng6ngducb~ng s~tduqcchotrongph~ngidi thi~u,la mQtthid\lminhhQara'tt6tcualo<;liling d\lngnay. D~usao,co ra'tnhi€u khanangkhacv€ lingd\lngcualy thuye't~phqp tho.Ngoai vi~cphanrichdfi'li~u,sl!chuY d~cbi~tcuacovelaphudngphapt~p hqpthoxU'ly cacd~cdiSm,maseduqcthaolu~nsdqua,b~ngmQtthid\l ddn giancuamQtsl!di€u khiSntinhi~ugiaothongphantan. 45 Xet rnQtgiaoIQra'tdongiand tronghlnh( giaonhautheoki~uchil'T) chIra d hlnh2.6. b @ +- II ............................ -.. .......................... -.. Carn ling Hinh2.6:rnQtgiaoIQdongian Chungtoi rnongrnu6nthie'tke'rnQthu~toandi~ukhi~nphantanIDase di~uhanhgiaothongdin cli trendi~uki~nt~ich6.ChungWi gia sadingcae di~uki~nlaxacdinhbdicacearnbie'nd~trenIanxevachIrahuangqu~ornong rnu6ncuarnQtchie'cxekhi de'ng~ngiaoIQ.VI rnvcdfchdongianchungWibo quanhi~ulInhvtfequailtrQngdn thie'trongvi~cdi~ukhi~nthtfcte'vagiasa dingcacd~cdi~rneuastfdi~ukhi~nco th~eha'pthu~nduQetrongtlnhhu6ng duQcrhotrongbang6duaiday,trongdo 46 O-do l-xanh 2-miiitenxanh(retnii) Nh~nxetr~ngbang2.6la khongphailake'tquacuaSvquailsatnhu'ngla mQt d~cdi~mcuacacyell du cholingxii' cuah~th6ngriengbi~td~cbi~t (nghlala Svdi~ukhi~n,chuongtrlnh,..) Sii'dl;mgphuongphapchiratru'ocdaychungtacobangcacquylu~tdi~u khi~nnhusau: ./ ne'u(b,O)ho~c(b,2)thl (a,O), ./ ne'u(b,l) thl (a,l), ./ ne'u(c,2) thl (b,O), ./ ne'u(a,O)thl (c,O)thl(b,2), ./ ne'u(b,l) ho~c(b,2)thl (c,O), ./ ne'u(b,O)thl (c,2), M<;tchchuy~nm<;tchtu'ongling cho t~pcua lu~tdi~ukhi~ndU<;1chi ra tronghlnh2.7.f)i~ukhi~ntuonglingdU<;1cve a hlnh 2.8 47 Bang2.6.mota caeyelleftuehoh~th6ngrieng bi~td~ebi~teuav~caeeachungxii ~. ., .&;1[n.~o Hinh2.7.m~ehehuy~nm~ehehot~pcaelu~tdi~ukhi~n a b e 1 1 1 0 2 0 2 0 3 0 0 2 48 t~ "[ n , ~ __d. r ok ! - v \ 1J --~_o :---\ -, 1-1~ /';".Lr':'n.-./ [2] ( 1( ~ /,-r-4 D Cambie'n 0 Dauhi~u Hinh2.8.Cantra1ercha t~pcac1u~tdi~ukhi~n Trangthid\l bell trenchungta chI r6 vi~csli'd\lng phuongti~ncuaky thu~tt~pthod~xli'19vai 1a(;licuatie'ntdnhd6ngthai.Chinh lOpnay cuacactie'n tdnh th~ hi~nmQtvai troratquail trQngtrangnhi~ulInh v1,1'c,d~cbi~t,trangmoi truangcongnghi~p,vakhongcon nghingaglnua,mohlnhthanhcongnhatclia cactie'ntdnhhi~nhanh1am(;lngPetri.Phuongphap1u~nt~phQpthoclingcoth~ hUlld\lngtrangvi~cchIr6v~cactie'ntdnhd6ngthai vat6nghQpcach~th6ng di~ukhi~nphlict<;1p,nhunglInhv1,1'cnaycualingd\lngyellcftunhi~unghiencUu hall.Vai ke'tquatranglInhv1,1'cnaycoth~tlmtrangnhi~utai1i~unghiencUu. 49 2.12.KETLU!N Phuongphapt~ph<;1pthod~phantichdli li~uconhi~ul<;1ithe'quantrQng.Vai l<;1ithe'du<;1cchiraduoiday: ./ clingca'pthu~toanhi~uquachovi~ctimkie'mcacquylu~t§'ngia'utrong dli li~u; ./ choranhlingdli li~uv~cacha'tlu<;1ngvas61u<;1ng; ./ timt~pnhonha'tcuadlili~uCsvgiamthi~udli li~u); ./ danhgiatinhdangk~cuadli li~u; ./ phatsinhrat~pcaclu~tquye'tdinhtUdli li~u; ./ d€ hi~u ./ clingca'pSvgiaithichd€ hi~uv~cacke'tquagianhdu<;1c; ./ nhi~uthu~toandin Cllly thuye'tt~ph<;1pthola di;icbi~tthichh<;1pchocac tie'ntrlnhxii'ly songsong,nhungd~khamphadi;icdi~mnaymQtcachd~y du,mQt6ChllCtinhtoandin Clltrenly thuye'tt~ph<;1ptholadn thie't. Ly thuye'tt~ph<;1pthoconhi~uthanhtlfu,tuythe',nhi~uva'nd~thvchanh va ly thuye'tdn themsvchliy. Bi;icbi~tla svphattri~ncacph~nm~mhi~uqua co anhhuangrQngrai trongvi~cphantichdli li~udin Clltrent~ph<;1ptho, cho cact~ph<;1pdli li~utoIon. Mi;icdil diiconhi~uphuongphapcogiatri v~tinhhi~uqua,t6iu'u,them nhi~unghienCUuv§:nla dn thie't,di;icbi~tkhi cacthuQctinhco gia tri la s6 lu<;1ngdu<;1cquantam.Trangb6icanhdocacphuongphapmoiphilh<;1pchocac giatri cuathuQctinhs6lU<;1nglaclingra'tdn thie't.NghienCUumarQngv~ma't 50 matdfi'li~uclingrfitquailtrQng.MQtslfsosanhvdi cacphuongphaptuongtlf khacv~ncondn du<;5cquailtam,m~cdli, dii co cacke'tquaquailtrQnggianh du<;5ctrong11nhvlfcnay.C~ncoslfquailtamd~cbi~ttrongvi~cnghiencUum6i quailh~gifi'am<;lngth~nkinhvaphuongphapt~ph<;5pthod~ruttrichdfi'lic$u. Cu6icling,cacmaytinht~ph<;5pthoclingrfitdn thie'tnhi~ulingdt,mgtien tie'n.Vai nghienCUutrong11nhvlfcnayla dangdu<;5ctie'nhanh.

Các file đính kèm theo tài liệu này:

  • pdf3.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf2.pdf
  • pdf4.pdf
  • pdf5.pdf
Tài liệu liên quan