Luận văn Áp dụng kỹ thuật tập thô và tập mờ trong phân tích dữ liệu bảo hiểm

ÁP DỤNG KỸ THUẬT TẬP THÔ VÀ TẬP MỜ TRONG PHÂN TÍCH DỮ LIỆU BẢO HIỂM NGUYỄN KHÁNH LUÂN Trang nhan đề Lời cảm ơn Mục lục Danh mục các bảng Mở đầu Chương 1: Tổng quan. Chương 2: Lý thuyết tập thô. Chương 3: Tập mờ và thô. Chương 4: Áp dụng tập thô vào khai khoáng dữ liệu và khám phá tri thức. Chương 5: Áp dụng phân tích dữ liệu bảo hiểm nhân thọ. Đánh giá và kết luận Hướng phát triển Tài liệu tham khảo Phụ lục

pdf38 trang | Chia sẻ: maiphuongtl | Lượt xem: 2283 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận văn Áp dụng kỹ thuật tập thô và tập mờ trong phân tích dữ liệu bảo hiểm, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
17 CHUONG 2 , ~ ~ ~ L Y THUYET TAP THO. 2.1.H~THONG THONG TIN Me>th~th6ngthongtinIame>tbi~udi~ncuat~phQ'PduIi~udoIuangcachi~n tuqngv~tIy nhu:giQngnoi,vanhim,chu6ianh,cactin hi~uxu Iy trongcong nghi~p,v.v... Me>th~th6ngthongtinbaag6mb6nthanhph~n: S =(U,Q,V,f) Trongdo: - S:Iah~th6ngthongtin. - U: Iat~pvli tn,ldong,t~pxacdinhN d6ituqng{xl'X2'X3,...,XN},U khongIat~P" rong. - Q:t~pxacdinhcuanthue>ctinh{QpQ2,q3,...,qN}'QkhongIat~pr6ng. - V=UqEQVq,trongdo VqIami~ngiatri cuathue>ctinhq. - f: U xV ~ V Ia t~pcachamquy~tdinhhaycongQiIa hambi~udi~nthongtin saDcho f(x,Q) E Vqv6i mQi QE Q,x E U. Trong baa caDnay ta dung khai ni~m t~pvli tn,lco ngmaIa t~pvli tn,ldong. M6i be>(q,v), vai QE Q,VEVqduqcgQiIa me>tmotatrongme>th~th6ngthong tinS.H~th6ngthongtin clingduqcbi~udi~nb~ngme>tbangduIi~uxacdinh,trong d6cacce>tbi~udi~ndicthue>ctinh,cacdongbi~udi~ncacd6ituqngvam6iph~n tut?ice>tq dongx cogiatri Ia f(x,q).M6i dongtrongbangIame>tmotathongtin cuame>tvaid6ituqngtrongh~th6ngthongtinS. Bfttkyme>tt~phqpcacd6ituqngkhongr6ngX naoclingduqcgQiIame>tkhai ni~mtrongS.Me>tkhaini~mcoth~come>tY nghlara rang,chinhxac.Vi dvt~p hqpduIi~uv~dichqpd6ngbaahi~mnhanthQcoth~xacdinhkhanangditrihQ'P d6ngcuakhachhang.KhanangduytrihQ'Pd6ngcuakhachhangIame>tkhaini~m 10 dungd~xacdinhduQ'ct1l~IQ'inhu~ncuacongty.N~ukhanangduytrihQ'Pd6ng caDthihQ'pd6ngdosemangl(;liIQ'inhu~ncaDhanchocongty. Vi du2.1: Xett~phQ'pdfrli~udangiancuacachQ'Pd6ngbaahi~mnhanthQ duQ'cbi~udi~ntrangbang2.1: D6i tU'Q'ng Ban!!2.1:T~pdfrli~uhQ'Pd6ngbaahi~mnhanthQ(HDBH) u THANH TOANl MJ};NH-GIA CacthuQctinh DUY TJU Xl X2 X3 X4 X5 X6 Xl X8 3 6 6 6 12 12 12 12 Nh6 Trungbinh LOTI Trungbinh Nh6 Trungbinh Lan Nh6 '. SAN PHAM ASGD ASTL ASTV ASHT ASTL NNGH ASTV NNGH Hi~u_h,rc Huy Huy Huy Hi~u_h,rc Hi~u_h,rc Huy Huy (Thongtintrangbang2.1chimangtinh vi d1:1minhh(JachaLf; thuyitt4ptho) Chti thich: - THANH- TOAN:lahinhthucthanhtoancuakhachhang,co3 hinhthucthanh toimphibaahi~m:3:theo3thang1lfin;6:theo6thang1lfin;12:theo12thang 1Ifill. - Mf!;NH_GIA:lagiatri hQ'Pd6ngkhi daDh(;ln. - SANPHAM:m6ihQ'Pd6ngbaahi~mnhanthQcomQtsanphAmchinh. ASGD:sanphAmAn SinhGiaoD\lc ASTL: sanphAmAn SinhTichLfiy Trangbang2.1: ASTV: sanphAmAn SinhThinhVUQ'llg ASHT: sanphAmAn SinhHuu Tri NNGH: sanphAmNh~tNienGia H(;ln 19 - DUY_TRi: 1£1dQdoduytri hqpd6ngcuakhachhang,6 daychi tinhgiatri duy tri trongnamd~utiencuahqpd6ng,m\lCtieu1£1xacdinhsaumQtnamhQ'pd6ng conhi~uhJchaydffbi huy.Ti 1~duytri hqpd6ng1£1mQtti 1~quailtn,mgd6ivai caccongty baohi~mnhanthQ,ti 1~nay1£1dQdo ch~tluQ'ngkinh doanhcua congty. Trongh~th6ngthongtinS motab6i t~pduli~unayg6mcacthanhph~n: - T~pvutf\lbaog6m8d6ituQ'ng,U={Xl,X2,...,XS}m6id6ituQ'llg1£1mQtbi~u di~nthongtincuamQthqpd6ngbaohi~m. - M6i mQtd6ituQ'nghqpd6ngbaohi~mduQ'cbi~udi~nb&ngbQ4 thuQctinh Q={qI,Q2,Q],Q4}={THANH_TOAN,MENH_GIA, SAN_PHAM, DUY_TRi}, ta su d\lngcacgia tri rai r(,lc(s6va ky hi~u)d~bi~udi~ncack€t quaduytri hqp d6ng. - ~~pt~tca cac gia tri rai r(,lC(d(,lngs6) cua th~.Qctinh THANH ToAN 1£1 VTHANH]oAN={3,6, 12} - ThuQctinhthuhaiMENH- GIAcobagiatriraiWCkhongphaiki~us6nenmi~n giatri cuaMENH - GIA 1£1vMf!;NH_G1A={Nh6,Trung binh,Lan}. - ThuQctinhthubaSAN_PHAM conamgiatri rai r(,lCkhongphaiki~us6nen mi~ngia tri cua SAN PHAM 1£1VSANPHAM={ASGD,ASTL, ASTV, ASHT, NNGH}. - T~pcacgia tri rai r(,lccu6i clingcuathuQctinhDUY_TRi 1£1VDUY]Ri={Hi?u !z;rc,Huy}. Hai gia tri nay bi~udi~nthlJc t€ cua hqp d6ng 1£1hQ'pd6ng con hi~u IlJc haydffbi huy. - Giatri cuahamthongtinf(x,q)duQ'cth~hi~ntrongbang1,tath~yr&ngd6i tUQ'llgXI va thuQCtinh THANH- ToAN ham thong tin co gia tri 1£1 f(xj,THANH_ToAN) =3. - T~phqpcacd6itUQ'llg{xj,X5,xd coth~duQ'cxacdinhkhaini~mhQ'pd6ngco hi~uIlJctrongh~th6ngthongtintren. 20 2.2.QUAN H~TUONG DUONG GQiS=(U,Q,V,f) la mQth~th6ngthongtin,Ac Q la t~pconcuat~pthuQc tinhQ;x,yE U la cacd6ituQ'llgtrongh~th6ngthongtinS.Hai d6ituQ'ngx vay duQ'cgQila c6quanh?tlfongalfangtrent~pthuQctinhA trongS nSunhu:f(x,a) =f(y,a)mQiaEA Ky hieu:xAy:x quailh~tuangvaiy trent~pthuQctinhA. M6it~pconcacthuQctinhA xacdinhmQtquailh~tuangdUO-figtrongt~pvutr\l U.Quanh~tuo-ngdUO-figtrent~pthuQctinhA trongU duQ'cdinhnghlala: IND(A)={(x,y)EUx U: Va E A,f(x,a) =f(y,a)} N~nc~pd6i tUQ'llg(x,y)thuQcquailh~IND(A), ((x,y)E IND(A)) thi tan6ihai d6i tuQ'ngx vay tuo-ngdUO-figtrent~pA. Hay khongth~nh~nrax hayy nSuchi dungt~pthuQctinhA. Quanh~tuo-ngdUO-figIND(A) lamQtquailh~tuangdUO-fignhiphan,chiat~pvu tf\l U thanhhQcac lap tuo-ngduang{Xl,X2,...Xr}.T~pcuatfitca cac lap tuang duang{Xl,X2,...Xr}duQ'cXaCdinhb6'iquailh~tuangIND(A) trongU, t~ora SlJ phanho~chtrenU duQ'cky hi~ulaA*.T~pcuacaclap tuangdUO-figA* duQ'cgQila mQtphanlap (classification)vaduQ'ckY hi~ula U/IND(A). Cacd6ituQ'ngthuQcungmQtlapXi thikhongth~phanbi~tduQ'chaytuang duangnhau,nguQ'cl~ithikhongtuangdUO-figtrent~pthuQctinhA. Caclaptuo-ng dUO-figXi, i=1,2,3...,r cuaquailh~IND(A)duQ'cgQilacact(tpsacaptren-Atrong h~th6ngthongtinS. Ky hien:[xL ={yEU: xIND(A)yhayxAy} Trongd6: [xL la T(tpsa captren-A(haymQtlap tuo-ngduang)chuad6itUQ'llg x. Cac T(tpsa captren-AXi la cackh6ithuQccacphanho~chcuat~pvu tr\l U va bi~udi~nnh6mcacd6i tuQ'llgtuangdUO-fignh6nhfit,nenchungduQ'cgQila Tri thirccahim(basicknowledge). VaimQth~th6ngthongtinSchotruac,vamQt~pthuQctinhA~Q t~oraquail h~tuo-ngdUO-figIND(A). MQtbQAS=(U,IND(A))duQ'cgQila mQtkh6nggianxap 21 xi. MQiphepk€t cuacact!jpsa cdptren-AtrongAS duQ'cgQila t!jpxacatnh (definablesets)hayt!jptlnhtrongAS. Cact!jpsa cdptren-QduQ'cgQilacacnguyentu cuamQth~th6ngthongtinS. , -, * Kv hieD:DesA(X)bieudient!jpsacaptren-AvaiX EA duQ'cdinhnghIa: DesA (X) ={(a,b) :f(x,a) =b,'\IxE X,a E A} hay DesA(X) ={a=b: f(x,a) =b,'\IxE X,a E A} Vi du 2.2:Phantichl~icact~phQ'ptuangungvai h~th6ngthongtinHDBH trongbang1,giasur&ngchiquailtamk€t d€n haithuQctinhTHANH- ToANva MENH_GIA,bi~udi@nt~pthuQctinhA={THANH_TOAN,MENH_GIA}nhutrong bang2.2: Bang2.2: Dftli~uHUBHvait~pA={THANH_TOAN,MENH_GIA},A c Q u THANH TOAN 3 M1JNH-GIA Nh6 X4 6 6 Trungbinh Trungbinh Cae lOptuO'ngQuO'ng [x11A={xIi " [x2J A = [x41A = {X2,X4} Xl X2 .. X3 6 12 Lan [x31A = {X3} [x51A = [xii A = {X5, XS} Xs 12 12 Nh6 Nh6 X5 X7 12 Lan [x61A= {x6J [xi A = {X7} X6 Trungbinh Nhu trongvi d\l trenchungta thftyr&ngcacd6i tUQ'llgduQ'cchia lam6 nh6m khacnhauc6giatri b&ngnhautrenthuQctinhTHANH- ToANvaMENH- GIAtrong t~pA. Cacd6ituQ'ngcuaclingmQtnh6mthitfttcacacthuQctinhcuan6d~uc6 chungmQtgiatrioTrongvi d\ltac6caclaptuangduangsau: Xl = [xJ A = {Xl} X2 = [X2JA= [x41A= {X2,X4} X3 = [x31A= {X3} 22 X4 = [X5]A= [xiiA = {X5,XS} X5 = [xd A = {Xd X6 = [x7]A = {Xd Tath~yr~ngffiQt~pthuQctinhA=(THANH_TOAN,MR;NH_GIA}cQ t~onen ffiQtquailh~tuangduangIND(A)trent~tcacact~pchuacacd6itugngthuQcT~p vii tf\lU, hayphatbi~uquailh~IND(A)duaid~ng:IND(A)fa ttitcdm6imi}tcijp (Xi,X) trangS saachattitcdgiGtrj cuanotrangA fabringnhau. Trongvi d\ltren,cact~p{(X2,xz),(X2,X4),(X4,X4)}dugcxacdinhbai quailh~ tuangduangIND(A). T~pcuacacd6itugngduaihinhthuctuangduangnaydugc bi~udi€n duaid;;mglap: X2=[X2]A=[X4]A={X2,X4} Quanh~tuangduangIND(A)v~nd\lngt~pA d~tacht~pviitf\lU thanhcaclap tuangduang,caclap tuangduangla ffiQtphepphanlap U/IND(A)(phepphan ho~chA*cuaU) A *= {Xl, X2,00.'X6}={{Xl},{X2,X4},{X3}, {X5,Xs},{X6},{X7}} v ~yT(tpSO'ctip tren-A X EA * (ffiQt laptuangduang)c6th~gQilaDesA(X),vi d\l T(tpSO'ctipX2 = {X2,X4}chungta c6: ={(THANH_TOAN,6),(MR;NH_GIA,Trungbinh)} ={(THANH_TOAN=6), (MR;NH_GIA=Trungbinh)} M6i T(tpSO'ctiptren-AXi (i=1,2,oo.,6)(hayMQttri thuccaban)bi~udi€n ffiQtte baa (nh6ffi nh6 nh~tcac ph~ntu tuang duang) trong kh6ng gian x~p xi DesA(X2) AS=(U,IND(A)).Nhuv~yb~tkyffiQtphepketnaotrongcacT(tpSO'ctiptren-AdSu lat~pxacdinhtrongAS,vi d\l{{X2,X4}U {X5,xs}}={X2,X4,X5,xs}laffiQt~pxac dinh. Xettoanh~th6ngtrongbang2.1,t~tcacacT(tpSO'ctiptren-Q(caclaptuang duangdugcphanbaiIND(Q),cacnguyentu) trongS la: ~J,~d,~J,~J,~~,~d,~d,~d 23 Bfitky mQtphepk€t naocuaOOungnguyentu nayd~u1amQtt~pxacdinhtrong khonggianxfipxi AS=(U,IND(Q)),vi dtJOOU{{XIJ,{X2'X4}}={X],X2,X4}1amQtt~p xacdiOO. TrongtrucmghQ'ptachiphanho~chtrenthuQctiOOTHANH- ToAN.Phanho~ch A* (hay phan lap U/IND(A), tucmg(rug v6'i quail h~ tuOTIgdUOTIg IND(THANH_TOAN),phantrent~pthuQctiOOA={THANH_TOAN},thi tacoA* ={Xj={xIJ, X2={X2,X3, X4},X3={Xs,X6, Xl, Xs}}.CactljpcO'sa tren-Q(cac nguyentu)1a: * Q ={{xIJ, {X2},{X3},{X4},{xs},{X6},{Xl},{xs}} Xet Yj={Xj , Xs,X6},Y2={X2,X3,X4,Xl, xs}duQ'Cxemnhu cac lap dl)'avao chuyengiatrongU. d daychungtacoth~gankhaini~mHi?ullfc choYj vakhai ni~mHuychoY2 2.3.MA T~N KHA PHAN Thongthuemgvi~cphanbi~tcacd6ituqngthicfinthi€t han1agiatri cuacac thuQctiOOcuad6ituQ'ngvi baitoandi[ltra1achungtaphaidi phanlo~icacd6i tuqngkhongro rang.D~thl)'chi~nvi~cnaythimQth~th6ngthongtinduQ'cbi~u di~ndu6'id~ngmQtmatrljnkhiJphan.SkowronvaRauszer(1992)daduarahai khaini~m1amatrljnkhiJphanvahamkhiJphan,haikhaini~mnaygiupxayd1!llg hi~uquacacthu~toanlien quaild€n vi~crut gQncact~pcon cuacacthuQctinh trongh~th6ngthongtinchotru6'c.V6'ihaikhaini~mmlychungtacoth~1uutm Sl)' khacOOaucuacacthuQctiOOtrentUngci[lpd6i tuqngtrongmatrljnkhiJphan.Ma tr~nkhaphanco th~chi chuamQtvai dft li~ucuamQth~th6ngthongtin nhung phaigiu tfitca thongtin cfinthi€t khi cfinki~mtrat~pthuQctiOOt6i ti~ucuacac khaini~mduQ'cmotit. Cho S=(u,Q,V,j) lamQth~th6ngthongtin,t~pcacthuQctinhQ={aj,a2,"', an}vat~pviitftJU={Xj,X2,..., XN}.MQtmatr~nkhaphanM(Q)cuamQtHTTT S v6'it~pthuQctinhQ lamQtmatr~nvuongNxNchi~u,v6'idongvacQtxacdinhd6i tuQ'ngXi(i=l, 2, ...,N).M6iphfintumijcuamatr~nkhaphanlamQt~pcacthuQc L4 tinhd~nh~ndi~nduQ'cacd6ituqng.Vi v~ymatr~nkhaphancoth~duQ'cxac dinhnhusau: { 0 Xi ,Xj cunglOptuongduongtheoquanht:;IN~Q) mi,j ={aEQ:f(xi,a)=f(xj ,an, Xi,Xjkhac1optuongduongtheoquanht:;IN~Q) TrangdoXi,XjthuQcU. Ph~ntITmi,jchuatfitcacacthuQctinhmagiatri cua chunglakhacnhautrenhaid6ituQ'ngXivaXi'f)i~unayclingcoy nghlar~ngXi,Xj thuQcv~hailapkhacnhaucuamQtphanho?chduQ'cphatsinhtirIND(Q)(XivaXj bi~udi€n haikhaini~mkhacnhau).Matr~nkhaphanM(Q) lamatr~nd6ixungva mi,i=0v6i lii.Vi v~y,tachic~ntinhcacgiatricuatamgiacdu6inghlalaxetmi~n mi,jvai0 ::;;j< i ::;;N-I (N la s6d6ituQ'ngtrangh~th6ngthongtinS). Ham kha phanIs cua mQtHTTT S la mQtham Bool v6i n bi~nnhi phan a1,a2,..., an tUOTIgungv6i cacthuQctinhal, a2,...,anva duQ'cdinhnghla nhu sau: fAfiipa2,...,an)=/\(v (mij):1<s,j <S,m,mi,j"*0) Trang do: v (mij): n6i rai cuacac gia tri a saGcho a thuQcmi)' Vi du2.3:ChoT~pduli~uNHLPHA.NvaHTTT S=(U,Q,V,f) nhubang2.3: Ban22.3:T~pduli~uNHl_PHA.N CackY hi~ua, c, d, e,0 tUOTIgungtrangdu li~ubaahi~mcoy nghla(Ghi chit: cackYhi~ua, c,d,e,0 fadoh9CvienkYhi~uaddl bidudiln matr(inkhciphlin): - a:Gi6itinh;mi~ngiatri 1:Nam;0:Nu. - c:Coxetnghi~mykhoahaykhong;1:coxetnghi~m;0:khongcoxetnghi~m. U a c d e 0 Xl 0 1 1 1 1 X2 1 1 0 1 0 X] 1 0 0 1 1 X4 1 0 0 1 0 X5 1 0 0 0 0 X6 1 1 0 1 1 25 - d:SanphAmcochiaunhaysanphAmkh6ngchialai;1:sanphAmcochialai;0: sanphAmkh6ngchialai. - e: HQ'Pd6ngnamdfmhayhQ'Pd6ngt{titl)C;0: hQ'Pd6ngnamdfiutien;1:hQ'P d6ngtaitl)c. - 0:HQ'Pd6ngconhi~uhJchaykh6ng;I: hQ'pd6ngconhi~uhJc;0:hQ'pd6nghuy haymc1thi~uhJc. Matr~nkhaphanseduQ'cbi~udi~ndu6id~ng: Hinh2.1:Matr~nkhaphanbi~udi~nbangdftli~unhiphan2.3 Hamkhaphansela: Is(a,c,d,e,0)=c/\ e/\ 0 /\ /\ (av d) /\ (Cv e) /\ (CV 0) /\ (ev 0) /\ /\ (av c v d) /\ (av d v 0) /\ (c v ev 0) /\ /\ (avcvdvo)/\(avcvdvevo) 2.4.BANG QUYET DJNH MQts6HTTT coth~duQ'cxemnhulamQtbangquy~tdinhn~ut~pthuQctinhQ duQ'cphanthanhcact~priengbi~tnhau,cact~pnaygQilat~pthuQctinhdiSuki~n Cvat~pthuQctinhquy~tdinhD, v6i CuD =Q va enD =~ V~ybangquy~tdinhcuaHTTT SduQ'cdinhnghlanhusau: DT=(U,CuD,V,j) 1 2 3 4 5 6 1 2 ado 3 acd co 4 acdo c 0 5 acdeo ce eo e 6 ad 0 c co ceo 26 Trongd6: - C: t~pthuQctinhdi€u ki~n(khonglat~pr6ng,lacacgiatri d~uvela,cacmfiuca s6). - D: t~pthuQctinhquy€tdinh(khonglat~pr6ng,cacquy€tdinh,cachanhdQng, caclap) - V =UqECuDVq v6'iVqlami€n giatft cuathuQctinh q EQj - f :Ux(CuD) -+V lamQthamquy€tdinhsaDchof(x,q)thuQcVq,v6'im6iq thuQcQ vax thuQCV. MQtbangquy€tdinhduQ"cdinhnghlala (U,CuD) hayDTctrongd6C lat~p thuQctinhdi€u ki~n.T~pD tfmgquatc6 th~chuanhi€ut~pthuQctinhquy€tdinh. Tuynhien,v6'inhi~mV\lphfu1lap,t~pthuQctinhD thuOngchicomQthuQctinh quy€tdinhdC;lidi~nchocaclapkhacnhauCErCI,Cl,"', cd. Bangquy€t dinhgQila xac dinhn€u nhu mQigia tri cuat~pthuQctinhquy€t dinhduQ"cxacdinhduynhfitb6icacthuQctinhdi€u ki~n.BangthuQctinhgQila khongxacdinhn€unhuclingmQt~pthuQctinhdi€uki~nchotru6'c,thuQctinh Bane:2.4:Bangquy€tdinhcuaHTTT hQ"Pd6ngbaahi~m DAi CacthuQctinhdiu kin CacthuQctinh tm!ng quyt djnh C D U THANH TOAN ME;NH-GIA SAN PHAM DUY TRl X] 3 NbC> ASGD Hiu hJC Xl 6 Trungbinh ASTL Huy X] 6 Lan ASTV Huy X4 6 Trungbinh ASHT Huy X5 12 NbC> ASTL Hiu hIc X6 12 Trungbinh NNGH Hiu hJc X7 12 Lan ASTV Huy Xs 12 NbC> NNGH Huy 27 quy~tdinhconhi~ugiatrioCacbangquy~tdinhkhongxacdinhcoth~tachthanh hatbangconxacdinhvakhongxacdinhhoantoan.Bangquy~tdinhkhongxac dinhhoantoankhongth~chuabangconxacdinh. Vi du2.5:MQtbangquy~tdinhv~thongtinHDBH trongbang2.1 M6i d5ituQ'ngduQ'cmotabing mQtt~pcacdi~uki~n:C= {THANH- ToAN, MENH_GIA, SAN_PHAM}.Mi~n gia tri cua thuQctinh THANH_ToAN: VTHANH]oAN={3,6, 12}.Mi~n gia tri cuathuQctinhMENH - GIA: VMENH_G1A={Nho, Trungbinh,Lon}. Mi~ngia tri cuathuQctinh SAN_PHAM: VSAN]HAM={ASGD, ASTL,ASTV,ASHT, NNGH}.M6i d5ituQ'ngsethuQcv~mQttronghatIo~iHi?u IlfC hayHuy.T~pcacgiatri VDUY]Ri={Hi?uIlfC,Huy}cuathuQctinhquy~tdinhd dinh nghlat~pcackhatni~m{Hi?uIlfC,Huy}chungtamu5nh<)cdvatrenthuQctinhgia tricuac. 2.5.xAp xi T~PHQP,KHONGGIANxAp.xi MQts5t~pcon(lap)cuacacd5ituqngtrongh~th5ngthongtinkhongth~phan Io~iduQ'ckhichidvavaGthuQctinhcuachung.Svphanbi~tchungcoth~till thfty duQ'Ca mucdQxftpxi. Y tuangcuaT~pthoIatill d~ngxftpxi cuamQt~phqp binghatt~pconkhac,duQ'cg<)iIaTqpx6pxi trenvaTqpx6pxi dU'aichot~phqp c~ndinhnghla. Choh~th5ngthongtinS,t~pthuQctinhA cQ vaquailh~tuangduO'ngIND(A). MQtc~pcothutvAS = (U,IND(A))g<)iIaKh6nggianx6pxi cuah~th5ngthong tinS.ChoX c U (X IamQtkhatni~m),Tqpx6pxi dU'aidlfatren-AcuaX duQ'ckY hi~uIaAX vaTqp x6pxi trendlfatren-AcuaX duQ'ckYhi~uIa AX. Hait~pxftp xiAXva AX trongkhonggianxftpxiASduQ'cdinhnghlanhusau: * AX={XE U: [X]ACX} =u{YEA : YcX} - * AX= {XEU: [X]AnX;rljJ} =u{YEA : YnX;rljJ} ChungtaclingnoiringAX va AX IaT~pxftpxi trenvaT~pxftpxi dualcua khatni~mX trenkhonggianxftpxiAS.T~pxftpxi dualcuaX chinhIahqpcuatftt 28 Celcact~pthanhph~n,trongd6m6it~pthanhph~nd~uchuatrongX. Nhuv~yv6'i \1'xEAX thidInhienxEX.T~pxftpxi trencuaX chinhlahqptiltCelcact~pthanh ph~n,trongd6giaocuam6it~pthanhph~nv6'iX khacr6ng.Nhuv~yv6'ixE AX thixc6th~c6hayclingc6th~khongthu<)cv~X. Vimgbiendlfatren-Acuat~pX c U trongkhonggianxftpxi AS duQ'cdinhnghlanhu gall: BNA(X)=AX-4X BNA(X)congQila vungu6'cluqngcuaIND(A). V6'i \1'xEUva \1'xEBNA(X),thi khongth~xacdinhduQ'cxEXhaykhong.T~pxftpxi du6'icuaX laAX hi~nnhien duQ'cxacdinh,xftpxi trencuaX laAX clingduQ'cxacdinh,ducmgbienchinhla mi~nu6'cluQ'ng. u AX X BNA(X) ----- Ax Hinh 2. 2:M<)t~pthovakhonggianxftpxi AS. V6'ikhonggianxftpxi AS (AEQ) vam<)tt~pconXcU, chungtac6th~chiat~p vli tn)U thanhbami~nnhugall: l. 2. AX: vungkh~ngdinhtrenA,kyhi~ulit:POSA(X)cuakhaini~mX trongS. AX -AX :vungbientrenA,kyhi~ulit:BNA(X)cuakhaini~mX trongS. U - AX: vungphudinhtrellA,kYhi~ulit:NEGA(X)cuaXtrongS.3. - N~uAX=AX, tan6iXcU la T(1pchinhxactren-Atrongkhonggianxftpxi AS. Trongtruemghqpnay Vimgbientren-ABNA(X)=rp. 29 - N~uAX ~AX,tan6iXcV laT(tpxdpxi thotren-AtrongkhonggianxfipxiAS. Trongtruanghgpnay,BNA(X)~ t/J.Vimg bientren-AcuaT~pchinhxactren-A lat~pding. V6i T~pxfipxi trenvaT~pxfipxi du6icuat~pconcuaU chuacacd6itUQ'I1gX trent~pthuQctinhA, thid~dangki~mtrathoamancactinhchfitsau: 1. AXcXcAX 2. A t/J= A t/J= t/J 3. AU= AU= U 4. A(XuY)~AXuAY - -- 5. A(XuY)=AXuAY 6. A(Xn Y)=AX n AY 7. A (Xn Y)c A X nAY 8. A (-X) = - A(X) 9. A (-X) = - A(X) 10. AAX= AAX=AX- -- 11. A AX = AAX = AX Vi du2.6:Khaosatt~pdiI li~uHfJBH, v6iX={x],X5,X6}bi~udi~nkhaini~m Hi?ulvc,va t~pthuQcHnhA={THANH_TOAN}.B6'ivi X]={x]}chic6mQtd6i tUQ'I1gduynhfittrongX, chungtanh~nduQ'c: T~pxfipxi du6itrenA cuaX:AX =X]={x]} T~pxfipxi trentrenAcuaX: AX =X]uX3={x],X5,X6,X7,xs} Vimgbienla:BNA=AX- AX={X5'X6,X7,xs} T~PH(1PxAc DINH vA T~P H(1PKHONG xAc DINH TrongLy thuy~tt~ptho,t~pX c6th~xacdinhho~ckhongxacdinh.N~uAX =AX, tan6it~pXcV xacdinhdlJatren-A,kYhi~ulaA-Xacatnh.NguQ'cl'.li,X khongxacdinh,kyhi~uA-Khongxacatnh. N6icachkhac,t~px xacdinhn~unhuvai b"xEU,tac6th~xacdinhch~ch~nx thuQcX haykhong.Dod6,AX =AX vat~pbiencuaX 1£1t~pr6ng. MQiTl)pkh6ngxacainhX thuQcmQtrongcaclapsau: 1.N~uAX;z!:cjJvaAx;z!:UthiX 1aXacainhth6tren-AtrongS. 2.N~uAX ;z!:cjJvaAX = Uthi X 1£1Kh6ngxacainhngoaitren-AtrongS. 3.N~uAX =cjJva AX;z!:U thiX 1£1Kh6ngxacainhtrongtren-AtrongS. 4.N~uAX = cjJva AX = U thiX laKh6ngxacainhhoanloantren-AtrongS. Vi do2.7:KhaosatmQtHTTT S=,trongd6U={xj,...,Xll}vaAc Q v6'icaclaptUO'llgduO'llgnhusau: E]={x], X2} E2={x], X4} E]={X5,X6,Xl} E4={XS, X9} E5={xJO, Xll} Cact~p: X]={x],X4,xs,X9} Y]={X5J X6, Xl} Z]={X5, X6, Xl, X]O,Xll} 1£1cac t~p xac dinh. Cact~p: X2={x],X5,X6,Xl, Xs,X9,Xll} Y2={ X], X5, XJO, Xll} Z2={X],X2,X5,Xl} 1£1cact~pthokhongxacdinhvacact~px~pxi nhusau: AX2 =E]uE4={ X5,X6,Xl, Xs,X9} AX2=E] u E] u E4 U E5 = {X],X2,X5,X6,Xl, Xs,X9,XJO,Xll} 4Y2 = E5={XJOJXll} A Y2=E2 U E] U E5 = {x],X4,X5,X6,Xl, XJO,Xll} 4Z2 = E]={x], X2} AZ2= E] uE] = {X],X2,x5,X6,Xl} Caet~p: X3={XJ, X2,X3,XS,xs, XlO} Y3={XJ, X3, X4, X6, Xl, X9, XlO} Z3={X2, X4, X6, XS, X9, Xn} lavi d\lv€ eaet~pkh6ngxaedinhngoai.Caet~p x~pxi la: AX3 =EJ={xJ' X2} AX3=u AY3 =E2={X3'X4} A Yj=U AZ3 =E4={xs,X9} AZ3=u Caet~p: X4={xJ,X3,xs} Y4={X2,X4,X6,xs} Z4={X3,xs,xs}laeaet~pkh6ngxaedinhtrong.Caet~px~pxi la: AX4= ljJ AX4=EJ U E2 U E4 = {Xl,X2,X3,X4,xs, X9} AY4= ljJ A Y4=EJ uE2 uE3 uE4 = {Xl,X2,X3,X4,XS,X6,Xl, xs,X9} AZ4= ljJ AZ4=EJ U E2 U E3 = {X3,X4,XS,X6,Xl, xs, X9} Caet~p: Xs={Xj, X3,XS,xs, XlO} Ys={X2,X4,X6,X9,XlO} Zs={Xj,X4,Xl,xs, Xll}lavi d\lv€ eaet~pkh6ngxaedinhhoantoan. L....- 32. Vi do2.8:xetT~pdfrli~uSO Bane:2.5:T~pdfrli~uSO Cacky hi~up, q, r, StUO1lg(rugtrongdfrli~ubilOhi~mcoynghia(Ghichu:cac kYhi?up, q, r, S fadoh(JcvienkYhi?uadbidudiln): - p: Hinhthucthanhloan.0:thanhloantheo3thangmQtleln(hangqui);1:thanh loantheo6thangmQtleln(mlanam);2:thanhloantheo12thangmQtleln(hang nam). - q:Coxetnghi~mykhoahaykhong.1:coxetnghi~m;0:khongcoxetnghi~m. - r: HQ"Pd6ngdfitUngcovaykhong.0:hQ"Pd6ngchuacovay;1:hQ"Pd6ngdfi rungcovaydokhachhangyetiCelli;2:hQ'pd6ngdfitungcovayt\ldQng. - s:hQ"Pd6ngconhi~ul\lc haykhong.1:hQ"Pd6ngconhi~uh!c;0:hQ"Pd6nghuy haym~thi~ul\lc. KhilOsath~th6ngthongtintubang2.8.V6i A={p}va Yj= {X2,X4,xs}lamQtt~p xacdinhtho.B6i vi: 4Yj =X2={X4,xs} A Yj =X2uXj ={X2,X4,X6,xs} T~pY2={Xj,X2,Xi}lamQtt~pkhongxacdinhtrong.B6i vi : DBi ttrQ'ng CacthoQctinh U p q r s Xj 0 1 1 0 X2 2 1 0 1 Xj 0 0 0 1 X4 1 0 2 0 Xs 0 1 1 0 X6 2 1 0 1 X7 0 1 1 0 Xs 1 0 2 1 X9 0 0 0 1 33 AY2= ljJ A Y2=XlV X3 = {Xl,X2,X3,X5,X6,X7,X9} T~pY3={Xj,X2,X4,X6}lamQtt~pkhongxacdinhngoai.B6i vi: AY3 = X3={X2,X6} A Y3=XjuX2 uX3 = V T~pY4={Xj,X2,X4}khongxacdinhhoantoan.B6i vi: AY4 = ljJ A Y2=Xj uX2 uX3= U 2.6.DOCHiNHxAc CUAxAp xi T~ptho clingc~pphuangphapdinhlm;mg,mJCluQ'llgv€ ch~tluQ'llgcuaphep x~pxi t~phqpX EUtrongkhonggianx~pxiAS=(S,IND(A)),b~ngcachsird\mgt~t cacaclaptuang.~uangtrongquanh~tuangduangIND(A)v6'iAEQ.MQth~th6ng thongtinS=,A EQ vaX EU dilxacdinhduQ'cmQtkhonggianx~pxi AS=(U,IND(A)). DQchinhxaccuamQtx~pxi cuat~pd6itUQ'llgX trent~pthuQctinhA duQ'cdinh nghlanhusau: aA (X) =cardAXcardAX Di€u nayd~danghi~uduQ'cr~ngn~ut~pX duQ'cx~pxi chinhxactrongkhong gianx~pxi AS v6'iA EQ, thi aA(X)=1.N~uX duQ'cx~pxi khongchinhxacthi 0<aA (X) <1. D~chQnduQ'cdQchinhxaccuamQtx~pxi chungtadinhnghlanhusau: P A(X) =1 - a A(X) Va duQ'CgQila d;;mgtho cuat~pX. D~,mgtho la mQtkhaini~md6i l~pv6'idQ chinhxac,nobi~udi~nmucdQkhongchinhxaccuax~pxi chot~phqpX trong khong ianx~pxiAS=(U,IND(A)). DQchinhxacx~pxi aA(X)cocacthuQctinhsau: -" 1. IfA c:Q , X c:U, 05{a A(X)5{1 2. N~uaA(X)=1thiBNA(X)= fjJ(AX =AXva t?PX coth~xacdinhdlJatrenA) 3. N~uaA(X)<1thiBNA(X),rfjJ(t?PXkhongth~xacdinhd\l'atrenA) STjKHONGCHAc CHANvA HAM THANH VIEN THO CUA MOT T~P HQP Vi~cmotakhaini~mmah6coth~chuaducmgbaocacd6ituQ'ng.Tinhkhong ch~ch~ncolienquaild~ny tu6ngthanhvien- mQtph~ntucuat?Phgp.Tirngu canhcuaT?pthochungtacoth~dinhnghlamQt?Phamthanhviencoquailh~d~n khaini~mt?Ptho.Dinhnghlanaycoth~duQ'ckhaosatb~ngmQtdQdokhac.Ham thanhvienthocuamQtd6itugngx trongt?PX duQ'cdinhnghlanhusau: ,u\x) =card([xLnX) x card([xL) , A Trongdo 0~,u (x)~1x D~ctrungv€ dQdo SlJkhongch~cch~ncuad6i tugngx trent?PX v6'itri thuc duQ'cxacdinhtrongh~th6ngthongtinduQ'cdinhnghlanhusau: ( ) card([x]A n X) ,uxx = card(U) Chungtacoth~timraS\l'khacbi~tgiUahaithu?tngumah6vakhongch~c ch~n.Tinhmah6colienquaild~ncact?Pd6itugng(c~pdQkhaini~m),trongkhi d6tinhkhongch~ch~nthilienquaild~ncacthanhph~ncuat?Phgp.T?pthoda: chungminhr~ngthinhmah6duQ'cdinhnghladu6'id~ngkhongch~ch~n. Hamthanhviencuat?Pthocoth~duQ'csudvngd~dinhnghlax~pxi trenva x~pxi du6'icuamQt?PhgpvaduemgbiencuamQt?Phgp: M={XEU:,u1(x)=1} AX={XEU: ,u1(x»O} BNA(X)={XEU:O<,u1(x)<1} 35 Vi du 2.9:Tir t~pdfrli~uRUBB, v6i A={THANH_TOAN}velXI= (Xl,XS,xd, chungtatinhduQ'c: aA(Xl) = I{Xl}I =.!.=0.2 I{XI'XS,X6,X7'XS}I 5 2.7.PHEPxAp xi vA DOCHiNHxAc CUAPHANLOP Khaini~mt~px~pxi coth€ marQngchokhaini~mx~pxi phanho~chcuacac t~pd6ituQ'ng{Xl,X2,...,Xn}.ChoS=,A cQ, Y={XI,X2,...,Xn}v6i \?Xic U (1 ::::i::::n) leimQtphanlap (mQtphanho~ch,hayhQcuacact~pcon)trang U.HQcuacact~phgp Y= {Xl,X2, ... , Xn}duQ'cgQileimQtphanlap trangU cuaS, n~uXinXj=fJ v6i Ii i,j ::::n , i ;z!:j velU;=lXi =U .XiduQ'cgQileicac16pcuaY.V6i t~pthuQctinhtinhAct2thix~pxi trenvelx~pxi du6icuaphanho~chY trenh~ th6ngthongtinS,duQ'cki hi~uAYvelA YduQ'cdinhnghlanhusau: A Y = {AXI' AX2,...,AXn} - - - - A Y= {AXI, AX2,...,AXn} TrangdoA Y duQ'cgQileiVimgkhlmgatnhtren-Acuaphanho~chY BNA(l)= A Y - AY leiVimgbientren-Acuaphanho~chY, Vitngkhlingatnh tren-Acuaphanho~chY duQ'cxacdinhbaibi€u thucsau: POSA(l)=UX,ElAX; vaVimglfac Ilf(Jngtren-Acuaphanho~chY trongS lei: BNA(Y)=U BNA(XJ XiEl B6'ivi U =UX,ElAXi nenphanho~chY khongco Vitngphu atnhtren-Atrong h~th6ngthongtinS. Phanho~chY duQ'cgQileiXac atnhtren-An~umQilapXiEY d€u lacact~pXac atnhtren-A,nguQ'cl~iphanhQachY gQileiKhongxacatnhtren- A.Phanho~chY duQ'cgQileiXacatnhthotren-An~u3XiE Y,AXi ;z!:0. £)Qchinhxacphepx~pxi cuaphanho~chY b~ngt~pthuQctinhA duQ'cdinh nghlanhusau: 36 "n card(AX.) aA(Y)=L.J~=i = I I;=icard(AX;) Ch~tluQ'llgx~pxi cuaphanho~chY trent~pthuQctinhA duQ'cdinhnghlanhu sau: "n card(AX.) PA(Y)=L.J;=i - I card(U) Bi~udi~nti s6 cuat~tca cac d6i tUQ'llgduQ'cphan lo~idlJa trent~pthuQctinhA v&it~tcacacd6itUQ'llgtrongh~th6ngthongtin S. y tucmgv~dQchinhxaccuaphanlo~ichophepchungtadinhnghlahimth~nao dQchinhxaccuamQtphanho~chco th~x~pxi mQtphanho~chB* trent~pthuQc tinhBQ2 b~ngmQtphanho~chA* trent~pthuQctinhAQ2 coth~dinhnghlanhu sau: PA(B')=cardPOSA(B') card(U) trongdo: POSA(B')= U AX; X,ES' duQ'cgQilaVimgkh~ngdinhcuaphepphanhQachB* trent~pthuQctinhA, dInhien taco O~PA(B')~l, \7'A,BQ2. Vi do2.10:xetvi d\lv~HTTT cuaBHNTnhubang2.5: Cackyhi~up,q,r, stuO'nglingtrongduli~ubaahi~mcoy nghla: - p: hinhthlicthanhtoan;0: thanhtoanthee3 thangmQtlfin(hangqui); 1:thanh toanthee6thangmQtlfin(mranam);2:thangtoanthee12thangmQtlfin(hang nam). - q:Coxetnghi~mykhoahaykhong;1:coxetnghi~m;0:khongcoxetnghi~m. - r: hQ'pd6ngda:tungcoyaykhong;0:hqpd6ngchuacoyay;1:hqpd6ngda: tungcoyaydokhachhangyeticfiu;2:hqpd6ngda:tungcoyaytlJdQng. - s:hqpd6ngconhi~uIlJc haykhong.1:hqpd6ngconhi~uIlJc; 0:hqpd6ngbuy haym~thi~uIlJc. 37 Bang2.6:MQth~th6ngthongtinv6iphepphanlap Khaosat.?~th6ngthongtinill bang2.5.V6i A={p,q,r, s}(A=Q)vaffiQtphan ho(;lchY={fj, f2, f3},trongd6: fj={xj, X2,X3} f2={X4, X5, X6, Xl} f3={XS, X9} Cact~ptuangduangkhaosattrent~pthuQctinhA: Zj={Xj, X5,Xl} Z2={X2,X6} Z3={X3,X9} Z4={X4} Z5={XS} H~th6ngthongtinv6iphanho(;lchtrinhbaytrongbang2.5.DQchinhxaccua phanho(;lchaAen vachfttluQTIgphanho(;lchPAenduQ'Ctinhnhusau: d.Y ={Afj, Af2,Af3}={{},Z4,Z5}={{},{X4},{XS}} - - - A Y = {A fl. A f2, A f3} = {{ZjJZ2,Z3},{Zj,Z2,Z4},{Z3,Z5}} = {{Xl, X2, X3, X5, X6, Xl, X9},{Xj, X2, X4, X5, X6, Xl}, {X3'Xs, X9}} r u p q r s Xj 0 1 1 0 Yj X2 2 1 0 1 X3 0 0 0 1 X4 1 0 2 0 Y2 X5 0 1 1 0 X6 2 1 0 1 Xl 0 1 1 0 Y3 Xs 1 0 2 1 X9 0 0 0 1 0+1+1=0.125 aA(Y)=7+6+3 0+1+1 PACt)= 9 =0.222 2.8.PHEP PHAN LOP vA PHEP RUT GQN SlJ rheinlapduQ'cxemnhumQtti~ntrinhxu ly nh~mxacdinhmQtlapduynhftt mamQtd6ituQ'ngthuQcv~lapdo.Cacd6ituQ'ngcoth~duQ'crheinlo~iv~caclap dlJavaotunggiatri cuathuQctinhquy~tdinh.M6i lapcoth~duQ'cxacdinhdlJa trencacd~ctrungcuathuQctinhquy~tdinhtuangungcualapdo.SlJrheinlo~id6i tuQ'ngthanhcaclapd6ituQ'ngcoth~thlJchi~nduQ'chidlJavaomQts6itcacthuQc tinhtrongt~pthuQctinhcuah~th6ngthongtin.Thongthuangtrongvo s6cac thuQctinhcuad6itUQ'llgchicomQts61£1quailtr<;mgchom\!cdichrheinlo~icacd6i tuQ'ng.Tliy vaokhanangthichhQ'Pcuaconnguaivakhanangthongminhtrong. . rheinlo~ik~thQ'Pvaivi~cchQnllJadungcacd~ctrungquailtrQngnhfttcuacacd6i tuqng. MQts6thuQctinhtrongh~th6ngthongtinkhongquailtrQngcoth~duQ'cgiam bathaybi lo~itm mavftnkhonglammfttnhfrngthongtinrheinlapquailtrQng. Phuangphaptimrat~pthuQctinhnh6banbinhthuangvaiclingkhanangrheinlap gQi1£1PheprutgQnthuQctinh.Nhuv~ykh6iluQ'llgh~th6ngthongtinbandc1uco th~duQ'cgiamthanhmQth~th6ngthongtinvaiquymonh6ban. T~pthochophepchungtaxacdinhcacthuQctinhquailtrQngnhfttcuamQth~ th5ngthongtinchotruactheodungquaildi~mrheinlo~i.Chicc1nmQts6thuQctinh 1£1coth~duytri quailh~tuangduang.T~pt6i thi~ucacthuQctinhnhuv~ygQi1£1 ffiQtrutgQn.Phc1nchungcuacacrutgQngQi1£1Wi.Deiy1£1haikhaini~mcabansu d\lngtrongrutgQntrithuc. MN s6thuQctinhcoth~l~iph\!thuQcvaocacthuQctinhkhac.Vi~cthayd6i trenthuQctinhquailteimcoth~anhhuangd~ncacthuQctinhkhackhisud\!ngmQt s5phuangphapphituy~n.T~pthoxacdinhduQ'cmucdQph\!thuQcuacacthuQc tinhvaynghlacuachung.Trongm6iquailh~tuangduang,SlJph\!thuQccuacac l thuQctinhlamQtrongnhungd{tctrungquailtn;mgnh~td6iv6imQth~th6ngthong tin. ChoH~th6ngthongtinS =,v6iC lat~pthuQctiOOdi€u ki~n,D la t~pthuQctinhquy~tdinh,Q=CuD, AcC, chungtacoth~dinhnghlami€nkh~ng dinhcuat~pthuQctiOOAla POSA(D)trongquailh~tuangduangIND(D)nhusail: POSA(D) = u{AX IX E IND(D)} Mi€n kh~ngdinhPOSA(D)chuat~tcacacd6itUQ1lgtrongU, cacd6itUQ1lgnay co th~duQ"cphan10£;1ihoantoanthaOOcaclap phanbi~tdffduQ"cdiOOnghlatrong quailh~tuo-ngdUO-figIND(D), dl,1'avaothongtintrenquailh~tuo-ngdUO-figIND(A). MQtmi€n kh~ngdiOOco th~duQ"ct£;1ora b~nghai t~pthuQctiOOb~tki A, B EQ trongh~th6ngthongtinS.T~pconcacthuQctiOOBEQ dinhnghlaquailh~tuang duangIND(B) va phanhO£;1ChB*(U/IND(B)) d6i v6i t~pconA. MiJn khlingajnh tren-AcuaB dinhnghlaOOusail: POSA(B)= U AX; X;EB' Mi€n kh~ngdinhcuaB chuat~tcacacd6i tUQ1lgmadl,1'avaot~pthuQctiOOA, coth~phan10£;1ihoantoanthaOOcaclapphanbi~trongphanhO£;1ChB*. TapthoclingdinhnghladQph\)thuQcgiuacact~pthuQctinh.Kich thu6cMiJn khlingajnhtren-Acuaphanho£;1ChB duQ"csird\)ngd~diOOnghlamQtdQdov€ Sl,1' ph\)thuQccuat~pthuQctinhA vaB. (rA (B) ) rA(B)- card(POSA(B)) card(U) Chungtacoth~noir~ngt~pcacthuQctinhB ph\)thuQcvaot~pcacthuQctinhA v6imQtdQph\)thuQcb~ngrA (B) . Choh~th6ngthongtinS=, hait~pthuQctinhA,Be Q.T~pthuQc tinhB ph\)thuQcvaot~pthuQctiOOA trenS,kyhi~uA~B. N~uvachin~uqUailh~ tuangduangthoaIND(A)e IND(B).T~pthuQctiOOA vaB dQcl~ptrenS n~uva chin~u:ho{tckhongA~B ho{tckhongB~ A. T~pB ph\)thuQcvaot~pA trongh~ th6ngthongtinSv6ikdQduQ"cdiOOnghlanhusail: 4V A~B,O::; k::;1,if k =rA(B) TrongdorA(B)duQ'cmota6tren. N~uk=], t~pB ph\!thuQchofmtofmvitot~pA (ho~cB--+A), N~uk=0,t~pB dQcl~phoantoanv6i t~pA, Cactwangh<JPconll;lithi t~pB ph\!thuQcthovitoA. DQ do ynghiacuathuQctinh aEA trongt~pthuQctinhA d6i v6i phfinlOl;li B*(UIIND(B)) duQ'cxacdinhnhugall: card(POSA(B)) - card(POSA-{a}(B)) J-iA,B(a)= card(U) SlJ quailtn;mgcuathuQctinha trongt~pAQ2trenphfinhOl;lChg6cQ* tirh~ th6ngthongtinS duQ'cki hi~unhugall: J-iAa)=J-iA,Q(a) Chungtaseki€m tracactinhchfitcuat~pthu(>ctinhA trongmQth~th6ngthong tinS= nhugall: 1. T~pAQ2 hiph\!thuQctrongS n~uvachin~u3Bd saochoIND(B)=IND(A) (vid\!:aB(X)=aA(X))' 2. T~pAQ2 ladQcl~ptrongS n~uvachin~utIEd, IND(B)~IND(A),(nghiala, aB(X)<aA(X)). 3. T~pAct! lathiratrongSn~uvachin~uIND(Q-A)=IND(Q),(nghiala,aQ-A(X) =aQ(X)). 4. T~pAQ2la rutg<;mcuaQ trongSn~uvachin~uQ-A lathiratrongQ vaA ph\! thuQCtrongS. MQth~th6ngthongtincotheconhi€ucachrutgQnkhacnhau.Choh~th6ng thongtinS=. N~uAQ2 la mQtt~pthuQctinhrutgQnthih~th6ng thongtintUOTIg(rngS'= v6i t~pthuQctinhrutgQnA, S' gQilah~ th6ngthongtinrutgQn.Noi cachkhac,h~th6ngthongtinS' duQ'cxfiydlJllgtirh~ th6ngband~uS b~ngcachlol;lib6mQts6cQtlienquaild~ncacthuQctinhnao khongcotrongt~pthuQctinhrutgQnA. 41 Vi du2.11:Khaosatt~pdii'li~uHDBHtirbang2.1, - Chungta chQnhait~pthuQctinhconA={THANH_TOAN,MENH_GIA}va B={sAN_PHAM}. PhanhOi;lChA * (phanhOi;lChU/IND(A)), tuO'ngling v6i m6i quailh~tuO'ng duO'llgIND(THANH- TOAN)trent~pthuQctinhA: A * ={Yj= {Xl},Y2={X2,X4},Y3={X3},Y4={X5,XS}'Y5= {x6J,Y7={X7}}' PhanhOi;lchB* (phanhOi;lChU/IND(B))tuO'nglingv6i m6iquailh~tuO'ngduO'ng IND(THANH_TOAN),B*={X]={xiJ,X2={X2,X3,X4},X3={X5,X6,X7,xs}}. Mi~nkhlingainhtren-AcuaB tinhnhusau: POSA(B)= U AX =AXJ+AX2+AX3 XEB" = {xiJ+{X2'X3,X4}+{X5,X6,X7,xs} Vi v~~,rB(A)=r=1, chungtor~ngB ph\!thuQchoanto~nvaoA, A~ B. - ChQnhai t~pcon thuQctinh A={THANH_TOAN,MENH_GIA} va B= {sAN_P HAM}. PhanhOi;lchA * la: A *={Yj={xiJ,Y2={X2,X4},Y3={X3},Y4={X5,xs},Y5={X6}, Y6={X7}}' Phan hOi;lChB* (U/IND(B)) tuO'ng ling v6i quail h~ tuO'ng duO'llg IND(THANH_TOAN) tren t~p thuQc tinh B={SAN_PHAM}, B*={Xj={x]}, X2={X2,X5}'X3={X3,X7},X4={X4},X5={X6,XS}}' Mi~nkhlingainhtren-Acuat~pthuQctinhB la: POSA(B)=U AX =AX!+AX2+AX3+AX4+AXs XEB" = {xd+{}+{X3,X7}+{}+{X6} Vi v~y,rA(B)=~=0.5,chungtor~ngB ph\!thuQcvaoA v6idQph\!thuQc0.5, A o.s)B . 42 RUTGQNvA LaI CUAH:f:THONG THONG TIN T~pthut)ctinhtrongh~th6ngthongtinbandelucoth~duqcrutgQnthanhmt)t phfmho~chd~cbi~tA* tirt~pthut)ctinhA~. Conghlar~ngmt)th~th6ngthong tincoth~khongm~nhv6'iluqngthongtinduthiranay.N~uth\fchi~nphepphan laptrenh~th6ngthongtinnaythicoth~choramt)tk~tquacotinht6ngquathoa th~pkhiduqcthunghi~mtrencacd6ituqngitph6bi~n. D\fatrencactinhch~tv~S\fph\!thut)cgiuacacthut)ctinhtrongh~th6ngthong tin,chungtad~dangtimracacthut)ctinhduthira,b~ngcachlo~ib6cacthut)ctinh khongcolqi,mavfinkhonggiamdikhanangphanlo~itrenh~th6ngthongtinm6'i nay(h~th6ngthongtindilduqcrutgQn).D~khaithactrithuchi~uquatirh~th6ng thongtinchungtatimrat~pcacthut)ctinht6iUtiduchom\!cdichphanlo~ivad~t tinht6ngquatcaonh~t. Choh~th6ngthol)gtinSvat~pthut)ctinhconA~, mt)thut)ctinhqEA,gQila khaphantrent~pA n~uIND(A)=IND(A- (a})conghlala:quailh~tu<mgduang sinhratirt~pA vaA - {a}la gi6ngnhau.Nguqcl~i,thut)ctinha lab~tkhaphan tren-A.S\f xu~thi~ncuamt)tthut)ctinhkhaphankhongcM thi~nduqcsucm~nh phanlo~icuah~th6ngthongtinvakhongthayd6iquailh~ph\!thut)cuah~th6ng bandelu.Nguqcl~i,thut)ctinhb~tkhaphanmangthongtincelnthi~tv~mt)ts6d6i tuqngtrongh~th6ng. T~phqpt~tcacacthut)ctinhbfitkhaphantrongt~pA~ gQilaloi cuaA trenS, vakyhi~ulaCORE(A).T~pthut)ctinhloi cochuat~tcacacthut)ctinhkhongth~ lo~ikh6it~pA n~ub6chungdich~ch~nlamthayd6iphanho~chA*.T~plOicua 'A coth~lat~pr6ng. Chohait~pthut)ctinhA, B~ trenS.Mt)tthut)ctinha gQilakhaphantrenB trongt~pA n~uPOSA(B)=POSA-{a;(B).Nguqcl~i,thut)ctinha gQilab~tkhaphan trenB trongA. N~umQithut)ctinhcuaA lab~tkhaphanB, thiA b~tkhaphanv6'i B.T~pt~tcacacthut)ctinhb~tkhaphanB trenA gQila lOituangquailB cuaA ky hi~uCOREs(A): COREs(A)= (aEA: POSA(B);£POSA-{a;(B)} 43 T~pthuQctinhAQ2 gQila tI1Jcgiaon€u t~tcacacthuQctinhcuan6b~tkha phan.MQtt~pconthichhQ'PEcA duQ'cdinhnghlanhut~prutgQncuaA trenSn€u E lamQtn.rcgiaovabaatoankhaniingphanloc;ticuatapA. Dod6,t~prutgQncua A (RED(A)),dinhnghlanhusau: E =RED(A)(E c A, IND(E)=IND(A),E fam(Jtnrcgiao) E gQilamQtrutgQncuaA (nghlala:E=RED(A))n€u E la t~pthuQctinht6i thi~ukhaphant~tcacacd6itUQ'llgtrenS khaphanb6'itoanbQt~pA,A khongth~ rutgQnthemduQ'cnfra. T~tcacacrutgQn(hQcacrutgQn)cuaA, kY hi~uREd' (A).Giaocuat~tcacac t~prutgQncuaA gQila16icuaA: CORE(A)=n RED(A) TuO'11gtlJ chungtac6th~dinhnghladuQ'cquanh~rutgQnlienquandenhait~p thuQCtinhA,BQ2 trongS. T~pA gQila trlJcgiaoB (B-orthorgonal)n€u t~tcacac. thuQctinhcuaA lab~tkhaphanB (B-indispenable).B~tkyt~pcontI1JcgiaoB cua A gQilarutgQnB cuaA, vakYhi~ulaREDB(A): E =REDB(A)(E c A,POSE(B)=POSA(B),E trlfcgiaoB) N6icachkhac,EcA gQilamQtRutg9ntren-BcuaA trongSn€uE dQcl~pvaiB vaPOSdB)=POSA(B).N6icachkhac,E cA gQilaREDB(A)cuaA lat~pthuQctinh t6ithi~utrenA, khaphanvait~tcacacd6ituQ'ngtrenSb6'itoanbQt~pA vakhong th~rutgQnduQ'cnfra.TAtcacact~prutgQnB duQ'ckYhi~uREDBF(A).Giaot~tca cact~prutgQnB cuaA latUO'11gquan16iB cuaA: COREB(A)=n REDB(A) RUTGQN CUA PHAN HO~CH Y vA LOI CUA PHAN HO~CH Y Vi~cdinhnghlat~p16ivat~prutgQnclingc6th~thlJchi~nduQ'cb~ngcachhi~u theophanloc;tirent~pd6itUQ'llgU. Vai h~th6ngthongtincuamQtphanhoc;tch Y={Xj,X2,... Xn}vai ~cU (0 ::;i ::;n) nhu la mQtphanloc;ticuaU trenS, U~XI.=U .I=J 44 T~pthuQctinht6iti~uAcQ saochoch~tluQ'Ilgcuaphanlo~iPA(Y)=PQ(Y)gQi larutgQnphanho~chr, vaki hi~uREDr(Q). Noi cachkhac,t~pthuQctinhcont6ithi~uA dQcl~ptrenSvaA*=Q*.Nghlala, phanho~chA*vaQ* cuaU duQ'csinhb6'ihQt~tcacaclaptUO'llgduO'llgcuaquan h~b~tkhaphanIND(A)vaIND(Q)tuO'llgtmggi6ngnhau. H~th6ngthongtinS coth~conhi~urutgQnY. T~tcacacrutgQnr kyhi~u RED!(Q), nghlalamQiA ERED!(Q) PA0) =PQ(Y). Giaot~tcacact~prutgQncuar, coth~nh~nduQ'cacthuQctinhcoynghla nh~tchovi~cphanlo~itrongh~th6ng,gQila16icuaY: COREy(Q)= n A= n REDy(Q) AeRED{(Q) REDy(Q)eRED{(Q) Vi v~y,16ir lat~pthuQctinhchudnmakhongth~lo~ibo,n~ubochungdithi ch~ch~ngiamdich~tluQ'Ilgcuaphanlo~ir. Vi do2.12:Khaosath~th6ngthongtinHBBH.Cohaid~grutgQntrent~p di~uki~nC({THANH_TOAN,Mf!;NH_GIA,SANYHAM})v6'imQt~pquy~tdinh D({d})nhusau: B]={THANH_TOAN,Mf;NH_GIA} B2={THANH_TOAN,SAN_PHAM} L6i cuat~pthuQctinhCvaD duQ'cdinhnghlanhusau: CORED(C)=B]nB2 ={THANH_TOAN} Chungtacoth~noir~ngthuQctinh"THANH_ToAN" lathuQctinht6tnh~tviB] vaB2lahait~pthuQCtinhmacoth~phanlo~icacthuQctinhquy~tdinh. Vi~cchQnt~prutgQn,vi d\lB]={THANH_TOAN,Mf!;NH_GIA},chungtaco th~giam kich thu6'ctIT bangdfi' li~ug6c b~ngcach lo~i bo thuQctinh "SAN_PHAM'.Bang2.6chinhlabangrutgQnnhungv~nbaotoant6tcacthuQc tinhchoquandi~mphanlo~i. i L 45 Ban22.7:Bangquy~tdinhdiiduQ'crutgQnHDBH D6i ttrQ'ng CacthuQctinhdi~uki~n CacthuQctinhquy~t dinh u C THANH ToAN Mf:NH-GIA D DUY TRi Xl 3 6 Nh6 Trungbinh L6n Hi~uh,rc Huy Huy Xl Xl 6 6 Trungbinh Nh6 Trungbinh L6n Huy Hi~uh,rc X4 Xs 12 12 Hi~ul\lc Huy X6 X7 12 12 Nh6 :tIuy.Xs Vi du: Khaosath~th5ngthongtintirbang5,chungtacohait~prutgQn REDr= {{p,s},{q,r,s}} Vat~pnhancuaphanho~ch1: COREr(A) = {s} f)~tAi ={p,s}vaA2={q,r,s}.T~pxfipxi vachfitluqngcuaphanlo~inhusau: AIY={AI~,AIYz,AI~}={{},{x4},{Xg}}- - - - ~Y ={~~,~Yz,~~}={{},{X4},{Xg}}- - - - 0+1+1 poet)=PA(Y) =PA (Y) = =0.222- I 2 9 2.9.cAc LU~T QUYET DJNH MQttrongnhungungdvngquantrQngcuaT~ptholaduaranhUnglu~tquy~t dinhchovi~cphanlapcacd5ituqngtrongh~th5ngthongtinchotruac,ho~ctien d011nlapcuad5ituqngmaioSird\mgbangquy~tdinhg5chaybangquy~tdinhrut L-

Các file đính kèm theo tài liệu này:

  • pdf6.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf10.pdf
  • pdf11.pdf
  • pdf12.pdf
  • pdf13.pdf
  • pdf2_2.pdf
  • pdf3.pdf
  • pdf4_2.pdf
  • pdf5.pdf
  • pdf7.pdf
  • pdf8.pdf
  • pdf9.pdf
Tài liệu liên quan