ÁP DỤNG KỸ THUẬT TẬP THÔ VÀ TẬP MỜ TRONG PHÂN TÍCH DỮ LIỆU BẢO HIỂM
NGUYỄN KHÁNH LUÂN
Trang nhan đề
Lời cảm ơn
Mục lục
Danh mục các bảng
Mở đầu
Chương 1: Tổng quan.
Chương 2: Lý thuyết tập thô.
Chương 3: Tập mờ và thô.
Chương 4: Áp dụng tập thô vào khai khoáng dữ liệu và khám phá tri thức.
Chương 5: Áp dụng phân tích dữ liệu bảo hiểm nhân thọ.
Đánh giá và kết luận
Hướng phát triển
Tài liệu tham khảo
Phụ lục
38 trang |
Chia sẻ: maiphuongtl | Lượt xem: 2272 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận văn Áp dụng kỹ thuật tập thô và tập mờ trong phân tích dữ liệu bảo hiểm, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
17
CHUONG 2
, ~ ~ ~
L Y THUYET TAP THO.
2.1.H~THONG THONG TIN
Me>th~th6ngthongtinIame>tbi~udi~ncuat~phQ'PduIi~udoIuangcachi~n
tuqngv~tIy nhu:giQngnoi,vanhim,chu6ianh,cactin hi~uxu Iy trongcong
nghi~p,v.v...
Me>th~th6ngthongtinbaag6mb6nthanhph~n:
S =(U,Q,V,f)
Trongdo:
- S:Iah~th6ngthongtin.
- U: Iat~pvli tn,ldong,t~pxacdinhN d6ituqng{xl'X2'X3,...,XN},U khongIat~P"
rong.
- Q:t~pxacdinhcuanthue>ctinh{QpQ2,q3,...,qN}'QkhongIat~pr6ng.
- V=UqEQVq,trongdo VqIami~ngiatri cuathue>ctinhq.
- f: U xV ~ V Ia t~pcachamquy~tdinhhaycongQiIa hambi~udi~nthongtin
saDcho f(x,Q) E Vqv6i mQi QE Q,x E U. Trong baa caDnay ta dung khai ni~m
t~pvli tn,lco ngmaIa t~pvli tn,ldong.
M6i be>(q,v), vai QE Q,VEVqduqcgQiIa me>tmotatrongme>th~th6ngthong
tinS.H~th6ngthongtin clingduqcbi~udi~nb~ngme>tbangduIi~uxacdinh,trong
d6cacce>tbi~udi~ndicthue>ctinh,cacdongbi~udi~ncacd6ituqngvam6iph~n
tut?ice>tq dongx cogiatri Ia f(x,q).M6i dongtrongbangIame>tmotathongtin
cuame>tvaid6ituqngtrongh~th6ngthongtinS.
Bfttkyme>tt~phqpcacd6ituqngkhongr6ngX naoclingduqcgQiIame>tkhai
ni~mtrongS.Me>tkhaini~mcoth~come>tY nghlara rang,chinhxac.Vi dvt~p
hqpduIi~uv~dichqpd6ngbaahi~mnhanthQcoth~xacdinhkhanangditrihQ'P
d6ngcuakhachhang.KhanangduytrihQ'Pd6ngcuakhachhangIame>tkhaini~m
10
dungd~xacdinhduQ'ct1l~IQ'inhu~ncuacongty.N~ukhanangduytrihQ'Pd6ng
caDthihQ'pd6ngdosemangl(;liIQ'inhu~ncaDhanchocongty.
Vi du2.1: Xett~phQ'pdfrli~udangiancuacachQ'Pd6ngbaahi~mnhanthQ
duQ'cbi~udi~ntrangbang2.1:
D6i tU'Q'ng
Ban!!2.1:T~pdfrli~uhQ'Pd6ngbaahi~mnhanthQ(HDBH)
u THANH TOANl MJ};NH-GIA
CacthuQctinh
DUY TJU
Xl
X2
X3
X4
X5
X6
Xl
X8
3
6
6
6
12
12
12
12
Nh6
Trungbinh
LOTI
Trungbinh
Nh6
Trungbinh
Lan
Nh6
'.
SAN PHAM
ASGD
ASTL
ASTV
ASHT
ASTL
NNGH
ASTV
NNGH
Hi~u_h,rc
Huy
Huy
Huy
Hi~u_h,rc
Hi~u_h,rc
Huy
Huy
(Thongtintrangbang2.1chimangtinh vi d1:1minhh(JachaLf; thuyitt4ptho)
Chti thich:
- THANH- TOAN:lahinhthucthanhtoancuakhachhang,co3 hinhthucthanh
toimphibaahi~m:3:theo3thang1lfin;6:theo6thang1lfin;12:theo12thang
1Ifill.
- Mf!;NH_GIA:lagiatri hQ'Pd6ngkhi daDh(;ln.
- SANPHAM:m6ihQ'Pd6ngbaahi~mnhanthQcomQtsanphAmchinh.
ASGD:sanphAmAn SinhGiaoD\lc
ASTL: sanphAmAn SinhTichLfiy
Trangbang2.1:
ASTV: sanphAmAn SinhThinhVUQ'llg
ASHT: sanphAmAn SinhHuu Tri
NNGH: sanphAmNh~tNienGia H(;ln
19
- DUY_TRi: 1£1dQdoduytri hqpd6ngcuakhachhang,6 daychi tinhgiatri duy
tri trongnamd~utiencuahqpd6ng,m\lCtieu1£1xacdinhsaumQtnamhQ'pd6ng
conhi~uhJchaydffbi huy.Ti 1~duytri hqpd6ng1£1mQtti 1~quailtn,mgd6ivai
caccongty baohi~mnhanthQ,ti 1~nay1£1dQdo ch~tluQ'ngkinh doanhcua
congty.
Trongh~th6ngthongtinS motab6i t~pduli~unayg6mcacthanhph~n:
- T~pvutf\lbaog6m8d6ituQ'ng,U={Xl,X2,...,XS}m6id6ituQ'llg1£1mQtbi~u
di~nthongtincuamQthqpd6ngbaohi~m.
- M6i mQtd6ituQ'nghqpd6ngbaohi~mduQ'cbi~udi~nb&ngbQ4 thuQctinh
Q={qI,Q2,Q],Q4}={THANH_TOAN,MENH_GIA, SAN_PHAM, DUY_TRi}, ta
su d\lngcacgia tri rai r(,lc(s6va ky hi~u)d~bi~udi~ncack€t quaduytri hqp
d6ng.
- ~~pt~tca cac gia tri rai r(,lC(d(,lngs6) cua th~.Qctinh THANH ToAN 1£1
VTHANH]oAN={3,6, 12}
- ThuQctinhthuhaiMENH- GIAcobagiatriraiWCkhongphaiki~us6nenmi~n
giatri cuaMENH - GIA 1£1vMf!;NH_G1A={Nh6,Trung binh,Lan}.
- ThuQctinhthubaSAN_PHAM conamgiatri rai r(,lCkhongphaiki~us6nen
mi~ngia tri cua SAN PHAM 1£1VSANPHAM={ASGD,ASTL, ASTV, ASHT,
NNGH}.
- T~pcacgia tri rai r(,lccu6i clingcuathuQctinhDUY_TRi 1£1VDUY]Ri={Hi?u
!z;rc,Huy}. Hai gia tri nay bi~udi~nthlJc t€ cua hqp d6ng 1£1hQ'pd6ng con hi~u
IlJc haydffbi huy.
- Giatri cuahamthongtinf(x,q)duQ'cth~hi~ntrongbang1,tath~yr&ngd6i
tUQ'llgXI va thuQCtinh THANH- ToAN ham thong tin co gia tri 1£1
f(xj,THANH_ToAN) =3.
- T~phqpcacd6itUQ'llg{xj,X5,xd coth~duQ'cxacdinhkhaini~mhQ'pd6ngco
hi~uIlJctrongh~th6ngthongtintren.
20
2.2.QUAN H~TUONG DUONG
GQiS=(U,Q,V,f) la mQth~th6ngthongtin,Ac Q la t~pconcuat~pthuQc
tinhQ;x,yE U la cacd6ituQ'llgtrongh~th6ngthongtinS.Hai d6ituQ'ngx vay
duQ'cgQila c6quanh?tlfongalfangtrent~pthuQctinhA trongS nSunhu:f(x,a)
=f(y,a)mQiaEA
Ky hieu:xAy:x quailh~tuangvaiy trent~pthuQctinhA.
M6it~pconcacthuQctinhA xacdinhmQtquailh~tuangdUO-figtrongt~pvutr\l
U.Quanh~tuo-ngdUO-figtrent~pthuQctinhA trongU duQ'cdinhnghlala:
IND(A)={(x,y)EUx U: Va E A,f(x,a) =f(y,a)}
N~nc~pd6i tUQ'llg(x,y)thuQcquailh~IND(A), ((x,y)E IND(A)) thi tan6ihai
d6i tuQ'ngx vay tuo-ngdUO-figtrent~pA. Hay khongth~nh~nrax hayy nSuchi
dungt~pthuQctinhA.
Quanh~tuo-ngdUO-figIND(A) lamQtquailh~tuangdUO-fignhiphan,chiat~pvu
tf\l U thanhhQcac lap tuo-ngduang{Xl,X2,...Xr}.T~pcuatfitca cac lap tuang
duang{Xl,X2,...Xr}duQ'cXaCdinhb6'iquailh~tuangIND(A) trongU, t~ora SlJ
phanho~chtrenU duQ'cky hi~ulaA*.T~pcuacaclap tuangdUO-figA* duQ'cgQila
mQtphanlap (classification)vaduQ'ckY hi~ula U/IND(A).
Cacd6ituQ'ngthuQcungmQtlapXi thikhongth~phanbi~tduQ'chaytuang
duangnhau,nguQ'cl~ithikhongtuangdUO-figtrent~pthuQctinhA. Caclaptuo-ng
dUO-figXi, i=1,2,3...,r cuaquailh~IND(A)duQ'cgQilacact(tpsacaptren-Atrong
h~th6ngthongtinS.
Ky hien:[xL ={yEU: xIND(A)yhayxAy}
Trongd6: [xL la T(tpsa captren-A(haymQtlap tuo-ngduang)chuad6itUQ'llg
x. Cac T(tpsa captren-AXi la cackh6ithuQccacphanho~chcuat~pvu tr\l U va
bi~udi~nnh6mcacd6i tuQ'llgtuangdUO-fignh6nhfit,nenchungduQ'cgQila Tri
thirccahim(basicknowledge).
VaimQth~th6ngthongtinSchotruac,vamQt~pthuQctinhA~Q t~oraquail
h~tuo-ngdUO-figIND(A). MQtbQAS=(U,IND(A))duQ'cgQila mQtkh6nggianxap
21
xi. MQiphepk€t cuacact!jpsa cdptren-AtrongAS duQ'cgQila t!jpxacatnh
(definablesets)hayt!jptlnhtrongAS.
Cact!jpsa cdptren-QduQ'cgQilacacnguyentu cuamQth~th6ngthongtinS.
, -, *
Kv hieD:DesA(X)bieudient!jpsacaptren-AvaiX EA duQ'cdinhnghIa:
DesA (X) ={(a,b) :f(x,a) =b,'\IxE X,a E A}
hay DesA(X) ={a=b: f(x,a) =b,'\IxE X,a E A}
Vi du 2.2:Phantichl~icact~phQ'ptuangungvai h~th6ngthongtinHDBH
trongbang1,giasur&ngchiquailtamk€t d€n haithuQctinhTHANH- ToANva
MENH_GIA,bi~udi@nt~pthuQctinhA={THANH_TOAN,MENH_GIA}nhutrong
bang2.2:
Bang2.2: Dftli~uHUBHvait~pA={THANH_TOAN,MENH_GIA},A c Q
u THANH TOAN
3
M1JNH-GIA
Nh6
X4
6
6
Trungbinh
Trungbinh
Cae lOptuO'ngQuO'ng
[x11A={xIi "
[x2J A = [x41A = {X2,X4}
Xl
X2
..
X3 6
12
Lan [x31A = {X3}
[x51A = [xii A = {X5, XS}
Xs 12
12
Nh6
Nh6
X5
X7 12 Lan
[x61A= {x6J
[xi A = {X7}
X6 Trungbinh
Nhu trongvi d\l trenchungta thftyr&ngcacd6i tUQ'llgduQ'cchia lam6 nh6m
khacnhauc6giatri b&ngnhautrenthuQctinhTHANH- ToANvaMENH- GIAtrong
t~pA. Cacd6ituQ'ngcuaclingmQtnh6mthitfttcacacthuQctinhcuan6d~uc6
chungmQtgiatrioTrongvi d\ltac6caclaptuangduangsau:
Xl = [xJ A = {Xl}
X2 = [X2JA= [x41A= {X2,X4}
X3 = [x31A= {X3}
22
X4 = [X5]A= [xiiA = {X5,XS}
X5 = [xd A = {Xd
X6 = [x7]A = {Xd
Tath~yr~ngffiQt~pthuQctinhA=(THANH_TOAN,MR;NH_GIA}cQ t~onen
ffiQtquailh~tuangduangIND(A)trent~tcacact~pchuacacd6itugngthuQcT~p
vii tf\lU, hayphatbi~uquailh~IND(A)duaid~ng:IND(A)fa ttitcdm6imi}tcijp
(Xi,X) trangS saachattitcdgiGtrj cuanotrangA fabringnhau.
Trongvi d\ltren,cact~p{(X2,xz),(X2,X4),(X4,X4)}dugcxacdinhbai quailh~
tuangduangIND(A). T~pcuacacd6itugngduaihinhthuctuangduangnaydugc
bi~udi€n duaid;;mglap:
X2=[X2]A=[X4]A={X2,X4}
Quanh~tuangduangIND(A)v~nd\lngt~pA d~tacht~pviitf\lU thanhcaclap
tuangduang,caclap tuangduangla ffiQtphepphanlap U/IND(A)(phepphan
ho~chA*cuaU)
A *= {Xl, X2,00.'X6}={{Xl},{X2,X4},{X3}, {X5,Xs},{X6},{X7}}
v ~yT(tpSO'ctip tren-A X EA * (ffiQt laptuangduang)c6th~gQilaDesA(X),vi d\l
T(tpSO'ctipX2 = {X2,X4}chungta c6:
={(THANH_TOAN,6),(MR;NH_GIA,Trungbinh)}
={(THANH_TOAN=6), (MR;NH_GIA=Trungbinh)}
M6i T(tpSO'ctiptren-AXi (i=1,2,oo.,6)(hayMQttri thuccaban)bi~udi€n ffiQtte
baa (nh6ffi nh6 nh~tcac ph~ntu tuang duang) trong kh6ng gian x~p xi
DesA(X2)
AS=(U,IND(A)).Nhuv~yb~tkyffiQtphepketnaotrongcacT(tpSO'ctiptren-AdSu
lat~pxacdinhtrongAS,vi d\l{{X2,X4}U {X5,xs}}={X2,X4,X5,xs}laffiQt~pxac
dinh.
Xettoanh~th6ngtrongbang2.1,t~tcacacT(tpSO'ctiptren-Q(caclaptuang
duangdugcphanbaiIND(Q),cacnguyentu) trongS la:
~J,~d,~J,~J,~~,~d,~d,~d
23
Bfitky mQtphepk€t naocuaOOungnguyentu nayd~u1amQtt~pxacdinhtrong
khonggianxfipxi AS=(U,IND(Q)),vi dtJOOU{{XIJ,{X2'X4}}={X],X2,X4}1amQtt~p
xacdiOO.
TrongtrucmghQ'ptachiphanho~chtrenthuQctiOOTHANH- ToAN.Phanho~ch
A* (hay phan lap U/IND(A), tucmg(rug v6'i quail h~ tuOTIgdUOTIg
IND(THANH_TOAN),phantrent~pthuQctiOOA={THANH_TOAN},thi tacoA*
={Xj={xIJ, X2={X2,X3, X4},X3={Xs,X6, Xl, Xs}}.CactljpcO'sa tren-Q(cac
nguyentu)1a:
*
Q ={{xIJ, {X2},{X3},{X4},{xs},{X6},{Xl},{xs}}
Xet Yj={Xj , Xs,X6},Y2={X2,X3,X4,Xl, xs}duQ'Cxemnhu cac lap dl)'avao
chuyengiatrongU. d daychungtacoth~gankhaini~mHi?ullfc choYj vakhai
ni~mHuychoY2
2.3.MA T~N KHA PHAN
Thongthuemgvi~cphanbi~tcacd6ituqngthicfinthi€t han1agiatri cuacac
thuQctiOOcuad6ituQ'ngvi baitoandi[ltra1achungtaphaidi phanlo~icacd6i
tuqngkhongro rang.D~thl)'chi~nvi~cnaythimQth~th6ngthongtinduQ'cbi~u
di~ndu6'id~ngmQtmatrljnkhiJphan.SkowronvaRauszer(1992)daduarahai
khaini~m1amatrljnkhiJphanvahamkhiJphan,haikhaini~mnaygiupxayd1!llg
hi~uquacacthu~toanlien quaild€n vi~crut gQncact~pcon cuacacthuQctinh
trongh~th6ngthongtinchotru6'c.V6'ihaikhaini~mmlychungtacoth~1uutm Sl)'
khacOOaucuacacthuQctiOOtrentUngci[lpd6i tuqngtrongmatrljnkhiJphan.Ma
tr~nkhaphanco th~chi chuamQtvai dft li~ucuamQth~th6ngthongtin nhung
phaigiu tfitca thongtin cfinthi€t khi cfinki~mtrat~pthuQctiOOt6i ti~ucuacac
khaini~mduQ'cmotit.
Cho S=(u,Q,V,j) lamQth~th6ngthongtin,t~pcacthuQctinhQ={aj,a2,"',
an}vat~pviitftJU={Xj,X2,..., XN}.MQtmatr~nkhaphanM(Q)cuamQtHTTT S
v6'it~pthuQctinhQ lamQtmatr~nvuongNxNchi~u,v6'idongvacQtxacdinhd6i
tuQ'ngXi(i=l, 2, ...,N).M6iphfintumijcuamatr~nkhaphanlamQt~pcacthuQc
L4
tinhd~nh~ndi~nduQ'cacd6ituqng.Vi v~ymatr~nkhaphancoth~duQ'cxac
dinhnhusau:
{
0 Xi ,Xj cunglOptuongduongtheoquanht:;IN~Q)
mi,j ={aEQ:f(xi,a)=f(xj ,an, Xi,Xjkhac1optuongduongtheoquanht:;IN~Q)
TrangdoXi,XjthuQcU. Ph~ntITmi,jchuatfitcacacthuQctinhmagiatri cua
chunglakhacnhautrenhaid6ituQ'ngXivaXi'f)i~unayclingcoy nghlar~ngXi,Xj
thuQcv~hailapkhacnhaucuamQtphanho?chduQ'cphatsinhtirIND(Q)(XivaXj
bi~udi€n haikhaini~mkhacnhau).Matr~nkhaphanM(Q) lamatr~nd6ixungva
mi,i=0v6i lii.Vi v~y,tachic~ntinhcacgiatricuatamgiacdu6inghlalaxetmi~n
mi,jvai0 ::;;j< i ::;;N-I (N la s6d6ituQ'ngtrangh~th6ngthongtinS).
Ham kha phanIs cua mQtHTTT S la mQtham Bool v6i n bi~nnhi phan
a1,a2,..., an tUOTIgungv6i cacthuQctinhal, a2,...,anva duQ'cdinhnghla
nhu sau: fAfiipa2,...,an)=/\(v (mij):1<s,j <S,m,mi,j"*0)
Trang do: v (mij): n6i rai cuacac gia tri a saGcho a thuQcmi)'
Vi du2.3:ChoT~pduli~uNHLPHA.NvaHTTT S=(U,Q,V,f) nhubang2.3:
Ban22.3:T~pduli~uNHl_PHA.N
CackY hi~ua, c, d, e,0 tUOTIgungtrangdu li~ubaahi~mcoy nghla(Ghi chit:
cackYhi~ua, c,d,e,0 fadoh9CvienkYhi~uaddl bidudiln matr(inkhciphlin):
- a:Gi6itinh;mi~ngiatri 1:Nam;0:Nu.
- c:Coxetnghi~mykhoahaykhong;1:coxetnghi~m;0:khongcoxetnghi~m.
U a c d e 0
Xl 0 1 1 1 1
X2 1 1 0 1 0
X] 1 0 0 1 1
X4 1 0 0 1 0
X5 1 0 0 0 0
X6 1 1 0 1 1
25
- d:SanphAmcochiaunhaysanphAmkh6ngchialai;1:sanphAmcochialai;0:
sanphAmkh6ngchialai.
- e: HQ'Pd6ngnamdfmhayhQ'Pd6ngt{titl)C;0: hQ'Pd6ngnamdfiutien;1:hQ'P
d6ngtaitl)c.
- 0:HQ'Pd6ngconhi~uhJchaykh6ng;I: hQ'pd6ngconhi~uhJc;0:hQ'pd6nghuy
haymc1thi~uhJc.
Matr~nkhaphanseduQ'cbi~udi~ndu6id~ng:
Hinh2.1:Matr~nkhaphanbi~udi~nbangdftli~unhiphan2.3
Hamkhaphansela:
Is(a,c,d,e,0)=c/\ e/\ 0 /\
/\ (av d) /\ (Cv e) /\ (CV 0) /\ (ev 0) /\
/\ (av c v d) /\ (av d v 0) /\ (c v ev 0) /\
/\ (avcvdvo)/\(avcvdvevo)
2.4.BANG QUYET DJNH
MQts6HTTT coth~duQ'cxemnhulamQtbangquy~tdinhn~ut~pthuQctinhQ
duQ'cphanthanhcact~priengbi~tnhau,cact~pnaygQilat~pthuQctinhdiSuki~n
Cvat~pthuQctinhquy~tdinhD, v6i CuD =Q va enD =~
V~ybangquy~tdinhcuaHTTT SduQ'cdinhnghlanhusau:
DT=(U,CuD,V,j)
1 2 3 4 5 6
1
2 ado
3 acd co
4 acdo c 0
5 acdeo ce eo e
6 ad 0 c co ceo
26
Trongd6:
- C: t~pthuQctinhdi€u ki~n(khonglat~pr6ng,lacacgiatri d~uvela,cacmfiuca
s6).
- D: t~pthuQctinhquy€tdinh(khonglat~pr6ng,cacquy€tdinh,cachanhdQng,
caclap)
- V =UqECuDVq v6'iVqlami€n giatft cuathuQctinh q EQj
- f :Ux(CuD) -+V lamQthamquy€tdinhsaDchof(x,q)thuQcVq,v6'im6iq
thuQcQ vax thuQCV.
MQtbangquy€tdinhduQ"cdinhnghlala (U,CuD) hayDTctrongd6C lat~p
thuQctinhdi€u ki~n.T~pD tfmgquatc6 th~chuanhi€ut~pthuQctinhquy€tdinh.
Tuynhien,v6'inhi~mV\lphfu1lap,t~pthuQctinhD thuOngchicomQthuQctinh
quy€tdinhdC;lidi~nchocaclapkhacnhauCErCI,Cl,"', cd.
Bangquy€t dinhgQila xac dinhn€u nhu mQigia tri cuat~pthuQctinhquy€t
dinhduQ"cxacdinhduynhfitb6icacthuQctinhdi€u ki~n.BangthuQctinhgQila
khongxacdinhn€unhuclingmQt~pthuQctinhdi€uki~nchotru6'c,thuQctinh
Bane:2.4:Bangquy€tdinhcuaHTTT hQ"Pd6ngbaahi~m
DAi CacthuQctinhdiu kin CacthuQctinh
tm!ng quyt djnh
C D
U THANH TOAN ME;NH-GIA SAN PHAM DUY TRl
X] 3 NbC> ASGD Hiu hJC
Xl 6 Trungbinh ASTL Huy
X] 6 Lan ASTV Huy
X4 6 Trungbinh ASHT Huy
X5 12 NbC> ASTL Hiu hIc
X6 12 Trungbinh NNGH Hiu hJc
X7 12 Lan ASTV Huy
Xs 12 NbC> NNGH Huy
27
quy~tdinhconhi~ugiatrioCacbangquy~tdinhkhongxacdinhcoth~tachthanh
hatbangconxacdinhvakhongxacdinhhoantoan.Bangquy~tdinhkhongxac
dinhhoantoankhongth~chuabangconxacdinh.
Vi du2.5:MQtbangquy~tdinhv~thongtinHDBH trongbang2.1
M6i d5ituQ'ngduQ'cmotabing mQtt~pcacdi~uki~n:C= {THANH- ToAN,
MENH_GIA, SAN_PHAM}.Mi~n gia tri cua thuQctinh THANH_ToAN:
VTHANH]oAN={3,6, 12}.Mi~n gia tri cuathuQctinhMENH - GIA: VMENH_G1A={Nho,
Trungbinh,Lon}. Mi~ngia tri cuathuQctinh SAN_PHAM: VSAN]HAM={ASGD,
ASTL,ASTV,ASHT, NNGH}.M6i d5ituQ'ngsethuQcv~mQttronghatIo~iHi?u IlfC
hayHuy.T~pcacgiatri VDUY]Ri={Hi?uIlfC,Huy}cuathuQctinhquy~tdinhd dinh
nghlat~pcackhatni~m{Hi?uIlfC,Huy}chungtamu5nh<)cdvatrenthuQctinhgia
tricuac.
2.5.xAp xi T~PHQP,KHONGGIANxAp.xi
MQts5t~pcon(lap)cuacacd5ituqngtrongh~th5ngthongtinkhongth~phan
Io~iduQ'ckhichidvavaGthuQctinhcuachung.Svphanbi~tchungcoth~till thfty
duQ'Ca mucdQxftpxi. Y tuangcuaT~pthoIatill d~ngxftpxi cuamQt~phqp
binghatt~pconkhac,duQ'cg<)iIaTqpx6pxi trenvaTqpx6pxi dU'aichot~phqp
c~ndinhnghla.
Choh~th5ngthongtinS,t~pthuQctinhA cQ vaquailh~tuangduO'ngIND(A).
MQtc~pcothutvAS = (U,IND(A))g<)iIaKh6nggianx6pxi cuah~th5ngthong
tinS.ChoX c U (X IamQtkhatni~m),Tqpx6pxi dU'aidlfatren-AcuaX duQ'ckY
hi~uIaAX vaTqp x6pxi trendlfatren-AcuaX duQ'ckYhi~uIa AX. Hait~pxftp
xiAXva AX trongkhonggianxftpxiASduQ'cdinhnghlanhusau:
*
AX={XE U: [X]ACX} =u{YEA : YcX}
- *
AX= {XEU: [X]AnX;rljJ} =u{YEA : YnX;rljJ}
ChungtaclingnoiringAX va AX IaT~pxftpxi trenvaT~pxftpxi dualcua
khatni~mX trenkhonggianxftpxiAS.T~pxftpxi dualcuaX chinhIahqpcuatftt
28
Celcact~pthanhph~n,trongd6m6it~pthanhph~nd~uchuatrongX. Nhuv~yv6'i
\1'xEAX thidInhienxEX.T~pxftpxi trencuaX chinhlahqptiltCelcact~pthanh
ph~n,trongd6giaocuam6it~pthanhph~nv6'iX khacr6ng.Nhuv~yv6'ixE AX
thixc6th~c6hayclingc6th~khongthu<)cv~X. Vimgbiendlfatren-Acuat~pX c
U trongkhonggianxftpxi AS duQ'cdinhnghlanhu gall:
BNA(X)=AX-4X
BNA(X)congQila vungu6'cluqngcuaIND(A). V6'i \1'xEUva \1'xEBNA(X),thi
khongth~xacdinhduQ'cxEXhaykhong.T~pxftpxi du6'icuaX laAX hi~nnhien
duQ'cxacdinh,xftpxi trencuaX laAX clingduQ'cxacdinh,ducmgbienchinhla
mi~nu6'cluQ'ng.
u AX
X
BNA(X)
-----
Ax
Hinh 2. 2:M<)t~pthovakhonggianxftpxi AS.
V6'ikhonggianxftpxi AS (AEQ) vam<)tt~pconXcU, chungtac6th~chiat~p
vli tn)U thanhbami~nnhugall:
l.
2.
AX: vungkh~ngdinhtrenA,kyhi~ulit:POSA(X)cuakhaini~mX trongS.
AX -AX :vungbientrenA,kyhi~ulit:BNA(X)cuakhaini~mX trongS.
U - AX: vungphudinhtrellA,kYhi~ulit:NEGA(X)cuaXtrongS.3.
- N~uAX=AX, tan6iXcU la T(1pchinhxactren-Atrongkhonggianxftpxi AS.
Trongtruemghqpnay Vimgbientren-ABNA(X)=rp.
29
- N~uAX ~AX,tan6iXcV laT(tpxdpxi thotren-AtrongkhonggianxfipxiAS.
Trongtruanghgpnay,BNA(X)~ t/J.Vimg bientren-AcuaT~pchinhxactren-A
lat~pding.
V6i T~pxfipxi trenvaT~pxfipxi du6icuat~pconcuaU chuacacd6itUQ'I1gX
trent~pthuQctinhA, thid~dangki~mtrathoamancactinhchfitsau:
1. AXcXcAX
2. A t/J= A t/J= t/J
3. AU= AU= U
4. A(XuY)~AXuAY
- --
5. A(XuY)=AXuAY
6. A(Xn Y)=AX n AY
7. A (Xn Y)c A X nAY
8. A (-X) = - A(X)
9. A (-X) = - A(X)
10. AAX= AAX=AX- --
11. A AX = AAX = AX
Vi du2.6:Khaosatt~pdiI li~uHfJBH, v6iX={x],X5,X6}bi~udi~nkhaini~m
Hi?ulvc,va t~pthuQcHnhA={THANH_TOAN}.B6'ivi X]={x]}chic6mQtd6i
tUQ'I1gduynhfittrongX, chungtanh~nduQ'c:
T~pxfipxi du6itrenA cuaX:AX =X]={x]}
T~pxfipxi trentrenAcuaX: AX =X]uX3={x],X5,X6,X7,xs}
Vimgbienla:BNA=AX- AX={X5'X6,X7,xs}
T~PH(1PxAc DINH vA T~P H(1PKHONG xAc DINH
TrongLy thuy~tt~ptho,t~pX c6th~xacdinhho~ckhongxacdinh.N~uAX
=AX, tan6it~pXcV xacdinhdlJatren-A,kYhi~ulaA-Xacatnh.NguQ'cl'.li,X
khongxacdinh,kyhi~uA-Khongxacatnh.
N6icachkhac,t~px xacdinhn~unhuvai b"xEU,tac6th~xacdinhch~ch~nx
thuQcX haykhong.Dod6,AX =AX vat~pbiencuaX 1£1t~pr6ng.
MQiTl)pkh6ngxacainhX thuQcmQtrongcaclapsau:
1.N~uAX;z!:cjJvaAx;z!:UthiX 1aXacainhth6tren-AtrongS.
2.N~uAX ;z!:cjJvaAX = Uthi X 1£1Kh6ngxacainhngoaitren-AtrongS.
3.N~uAX =cjJva AX;z!:U thiX 1£1Kh6ngxacainhtrongtren-AtrongS.
4.N~uAX = cjJva AX = U thiX laKh6ngxacainhhoanloantren-AtrongS.
Vi do2.7:KhaosatmQtHTTT S=,trongd6U={xj,...,Xll}vaAc Q
v6'icaclaptUO'llgduO'llgnhusau:
E]={x], X2}
E2={x], X4}
E]={X5,X6,Xl}
E4={XS, X9}
E5={xJO, Xll}
Cact~p:
X]={x],X4,xs,X9}
Y]={X5J X6, Xl}
Z]={X5, X6, Xl, X]O,Xll} 1£1cac t~p xac dinh.
Cact~p:
X2={x],X5,X6,Xl, Xs,X9,Xll}
Y2={ X], X5, XJO, Xll}
Z2={X],X2,X5,Xl} 1£1cact~pthokhongxacdinhvacact~px~pxi nhusau:
AX2 =E]uE4={ X5,X6,Xl, Xs,X9}
AX2=E] u E] u E4 U E5 = {X],X2,X5,X6,Xl, Xs,X9,XJO,Xll}
4Y2 = E5={XJOJXll}
A Y2=E2 U E] U E5 = {x],X4,X5,X6,Xl, XJO,Xll}
4Z2 = E]={x], X2}
AZ2= E] uE] = {X],X2,x5,X6,Xl}
Caet~p:
X3={XJ, X2,X3,XS,xs, XlO}
Y3={XJ, X3, X4, X6, Xl, X9, XlO}
Z3={X2, X4, X6, XS, X9, Xn} lavi d\lv€ eaet~pkh6ngxaedinhngoai.Caet~p
x~pxi la:
AX3 =EJ={xJ' X2}
AX3=u
AY3 =E2={X3'X4}
A Yj=U
AZ3 =E4={xs,X9}
AZ3=u
Caet~p:
X4={xJ,X3,xs}
Y4={X2,X4,X6,xs}
Z4={X3,xs,xs}laeaet~pkh6ngxaedinhtrong.Caet~px~pxi la:
AX4= ljJ
AX4=EJ U E2 U E4 = {Xl,X2,X3,X4,xs, X9}
AY4= ljJ
A Y4=EJ uE2 uE3 uE4 = {Xl,X2,X3,X4,XS,X6,Xl, xs,X9}
AZ4= ljJ
AZ4=EJ U E2 U E3 = {X3,X4,XS,X6,Xl, xs, X9}
Caet~p:
Xs={Xj, X3,XS,xs, XlO}
Ys={X2,X4,X6,X9,XlO}
Zs={Xj,X4,Xl,xs, Xll}lavi d\lv€ eaet~pkh6ngxaedinhhoantoan.
L....-
32.
Vi do2.8:xetT~pdfrli~uSO
Bane:2.5:T~pdfrli~uSO
Cacky hi~up, q, r, StUO1lg(rugtrongdfrli~ubilOhi~mcoynghia(Ghichu:cac
kYhi?up, q, r, S fadoh(JcvienkYhi?uadbidudiln):
- p: Hinhthucthanhloan.0:thanhloantheo3thangmQtleln(hangqui);1:thanh
loantheo6thangmQtleln(mlanam);2:thanhloantheo12thangmQtleln(hang
nam).
- q:Coxetnghi~mykhoahaykhong.1:coxetnghi~m;0:khongcoxetnghi~m.
- r: HQ"Pd6ngdfitUngcovaykhong.0:hQ"Pd6ngchuacovay;1:hQ"Pd6ngdfi
rungcovaydokhachhangyetiCelli;2:hQ'pd6ngdfitungcovayt\ldQng.
- s:hQ"Pd6ngconhi~ul\lc haykhong.1:hQ"Pd6ngconhi~uh!c;0:hQ"Pd6nghuy
haym~thi~ul\lc.
KhilOsath~th6ngthongtintubang2.8.V6i A={p}va Yj= {X2,X4,xs}lamQtt~p
xacdinhtho.B6i vi:
4Yj =X2={X4,xs}
A Yj =X2uXj ={X2,X4,X6,xs}
T~pY2={Xj,X2,Xi}lamQtt~pkhongxacdinhtrong.B6i vi :
DBi ttrQ'ng CacthoQctinh
U p q r s
Xj 0 1 1 0
X2 2 1 0 1
Xj 0 0 0 1
X4 1 0 2 0
Xs 0 1 1 0
X6 2 1 0 1
X7 0 1 1 0
Xs 1 0 2 1
X9 0 0 0 1
33
AY2= ljJ
A Y2=XlV X3 = {Xl,X2,X3,X5,X6,X7,X9}
T~pY3={Xj,X2,X4,X6}lamQtt~pkhongxacdinhngoai.B6i vi:
AY3 = X3={X2,X6}
A Y3=XjuX2 uX3 = V
T~pY4={Xj,X2,X4}khongxacdinhhoantoan.B6i vi:
AY4 = ljJ
A Y2=Xj uX2 uX3= U
2.6.DOCHiNHxAc CUAxAp xi
T~ptho clingc~pphuangphapdinhlm;mg,mJCluQ'llgv€ ch~tluQ'llgcuaphep
x~pxi t~phqpX EUtrongkhonggianx~pxiAS=(S,IND(A)),b~ngcachsird\mgt~t
cacaclaptuang.~uangtrongquanh~tuangduangIND(A)v6'iAEQ.MQth~th6ng
thongtinS=,A EQ vaX EU dilxacdinhduQ'cmQtkhonggianx~pxi
AS=(U,IND(A)).
DQchinhxaccuamQtx~pxi cuat~pd6itUQ'llgX trent~pthuQctinhA duQ'cdinh
nghlanhusau:
aA (X) =cardAXcardAX
Di€u nayd~danghi~uduQ'cr~ngn~ut~pX duQ'cx~pxi chinhxactrongkhong
gianx~pxi AS v6'iA EQ, thi aA(X)=1.N~uX duQ'cx~pxi khongchinhxacthi
0<aA (X) <1.
D~chQnduQ'cdQchinhxaccuamQtx~pxi chungtadinhnghlanhusau:
P A(X) =1 - a A(X)
Va duQ'CgQila d;;mgtho cuat~pX. D~,mgtho la mQtkhaini~md6i l~pv6'idQ
chinhxac,nobi~udi~nmucdQkhongchinhxaccuax~pxi chot~phqpX trong
khong ianx~pxiAS=(U,IND(A)).
DQchinhxacx~pxi aA(X)cocacthuQctinhsau:
-"
1. IfA c:Q , X c:U, 05{a A(X)5{1
2. N~uaA(X)=1thiBNA(X)= fjJ(AX =AXva t?PX coth~xacdinhdlJatrenA)
3. N~uaA(X)<1thiBNA(X),rfjJ(t?PXkhongth~xacdinhd\l'atrenA)
STjKHONGCHAc CHANvA HAM THANH VIEN THO CUA MOT T~P
HQP
Vi~cmotakhaini~mmah6coth~chuaducmgbaocacd6ituQ'ng.Tinhkhong
ch~ch~ncolienquaild~ny tu6ngthanhvien- mQtph~ntucuat?Phgp.Tirngu
canhcuaT?pthochungtacoth~dinhnghlamQt?Phamthanhviencoquailh~d~n
khaini~mt?Ptho.Dinhnghlanaycoth~duQ'ckhaosatb~ngmQtdQdokhac.Ham
thanhvienthocuamQtd6itugngx trongt?PX duQ'cdinhnghlanhusau:
,u\x) =card([xLnX)
x card([xL)
, A
Trongdo 0~,u (x)~1x
D~ctrungv€ dQdo SlJkhongch~cch~ncuad6i tugngx trent?PX v6'itri thuc
duQ'cxacdinhtrongh~th6ngthongtinduQ'cdinhnghlanhusau:
( )
card([x]A n X)
,uxx =
card(U)
Chungtacoth~timraS\l'khacbi~tgiUahaithu?tngumah6vakhongch~c
ch~n.Tinhmah6colienquaild~ncact?Pd6itugng(c~pdQkhaini~m),trongkhi
d6tinhkhongch~ch~nthilienquaild~ncacthanhph~ncuat?Phgp.T?pthoda:
chungminhr~ngthinhmah6duQ'cdinhnghladu6'id~ngkhongch~ch~n.
Hamthanhviencuat?Pthocoth~duQ'csudvngd~dinhnghlax~pxi trenva
x~pxi du6'icuamQt?PhgpvaduemgbiencuamQt?Phgp:
M={XEU:,u1(x)=1}
AX={XEU: ,u1(x»O}
BNA(X)={XEU:O<,u1(x)<1}
35
Vi du 2.9:Tir t~pdfrli~uRUBB, v6i A={THANH_TOAN}velXI= (Xl,XS,xd,
chungtatinhduQ'c:
aA(Xl) = I{Xl}I =.!.=0.2
I{XI'XS,X6,X7'XS}I 5
2.7.PHEPxAp xi vA DOCHiNHxAc CUAPHANLOP
Khaini~mt~px~pxi coth€ marQngchokhaini~mx~pxi phanho~chcuacac
t~pd6ituQ'ng{Xl,X2,...,Xn}.ChoS=,A cQ, Y={XI,X2,...,Xn}v6i
\?Xic U (1 ::::i::::n) leimQtphanlap (mQtphanho~ch,hayhQcuacact~pcon)trang
U.HQcuacact~phgp Y= {Xl,X2, ... , Xn}duQ'cgQileimQtphanlap trangU cuaS,
n~uXinXj=fJ v6i Ii i,j ::::n , i ;z!:j velU;=lXi =U .XiduQ'cgQileicac16pcuaY.V6i
t~pthuQctinhtinhAct2thix~pxi trenvelx~pxi du6icuaphanho~chY trenh~
th6ngthongtinS,duQ'cki hi~uAYvelA YduQ'cdinhnghlanhusau:
A Y = {AXI' AX2,...,AXn}
- - - -
A Y= {AXI, AX2,...,AXn}
TrangdoA Y duQ'cgQileiVimgkhlmgatnhtren-Acuaphanho~chY
BNA(l)= A Y - AY leiVimgbientren-Acuaphanho~chY, Vitngkhlingatnh
tren-Acuaphanho~chY duQ'cxacdinhbaibi€u thucsau:
POSA(l)=UX,ElAX;
vaVimglfac Ilf(Jngtren-Acuaphanho~chY trongS lei:
BNA(Y)=U BNA(XJ
XiEl
B6'ivi U =UX,ElAXi nenphanho~chY khongco Vitngphu atnhtren-Atrong
h~th6ngthongtinS. Phanho~chY duQ'cgQileiXac atnhtren-An~umQilapXiEY
d€u lacact~pXac atnhtren-A,nguQ'cl~iphanhQachY gQileiKhongxacatnhtren-
A.Phanho~chY duQ'cgQileiXacatnhthotren-An~u3XiE Y,AXi ;z!:0.
£)Qchinhxacphepx~pxi cuaphanho~chY b~ngt~pthuQctinhA duQ'cdinh
nghlanhusau:
36
"n card(AX.)
aA(Y)=L.J~=i = I
I;=icard(AX;)
Ch~tluQ'llgx~pxi cuaphanho~chY trent~pthuQctinhA duQ'cdinhnghlanhu
sau:
"n card(AX.)
PA(Y)=L.J;=i - I
card(U)
Bi~udi~nti s6 cuat~tca cac d6i tUQ'llgduQ'cphan lo~idlJa trent~pthuQctinhA
v&it~tcacacd6itUQ'llgtrongh~th6ngthongtin S.
y tucmgv~dQchinhxaccuaphanlo~ichophepchungtadinhnghlahimth~nao
dQchinhxaccuamQtphanho~chco th~x~pxi mQtphanho~chB* trent~pthuQc
tinhBQ2 b~ngmQtphanho~chA* trent~pthuQctinhAQ2 coth~dinhnghlanhu
sau:
PA(B')=cardPOSA(B')
card(U)
trongdo:
POSA(B')= U AX;
X,ES'
duQ'cgQilaVimgkh~ngdinhcuaphepphanhQachB* trent~pthuQctinhA, dInhien
taco O~PA(B')~l, \7'A,BQ2.
Vi do2.10:xetvi d\lv~HTTT cuaBHNTnhubang2.5:
Cackyhi~up,q,r, stuO'nglingtrongduli~ubaahi~mcoy nghla:
- p: hinhthlicthanhtoan;0: thanhtoanthee3 thangmQtlfin(hangqui); 1:thanh
toanthee6thangmQtlfin(mranam);2:thangtoanthee12thangmQtlfin(hang
nam).
- q:Coxetnghi~mykhoahaykhong;1:coxetnghi~m;0:khongcoxetnghi~m.
- r: hQ'pd6ngda:tungcoyaykhong;0:hqpd6ngchuacoyay;1:hqpd6ngda:
tungcoyaydokhachhangyeticfiu;2:hqpd6ngda:tungcoyaytlJdQng.
- s:hqpd6ngconhi~uIlJc haykhong.1:hqpd6ngconhi~uIlJc; 0:hqpd6ngbuy
haym~thi~uIlJc.
37
Bang2.6:MQth~th6ngthongtinv6iphepphanlap
Khaosat.?~th6ngthongtinill bang2.5.V6i A={p,q,r, s}(A=Q)vaffiQtphan
ho(;lchY={fj, f2, f3},trongd6:
fj={xj, X2,X3}
f2={X4, X5, X6, Xl}
f3={XS, X9}
Cact~ptuangduangkhaosattrent~pthuQctinhA:
Zj={Xj, X5,Xl}
Z2={X2,X6}
Z3={X3,X9}
Z4={X4}
Z5={XS}
H~th6ngthongtinv6iphanho(;lchtrinhbaytrongbang2.5.DQchinhxaccua
phanho(;lchaAen vachfttluQTIgphanho(;lchPAenduQ'Ctinhnhusau:
d.Y ={Afj, Af2,Af3}={{},Z4,Z5}={{},{X4},{XS}}
- - -
A Y = {A fl. A f2, A f3} = {{ZjJZ2,Z3},{Zj,Z2,Z4},{Z3,Z5}}
= {{Xl, X2, X3, X5, X6, Xl, X9},{Xj, X2, X4, X5, X6, Xl}, {X3'Xs, X9}}
r u p q r s
Xj 0 1 1 0
Yj X2 2 1 0 1
X3 0 0 0 1
X4 1 0 2 0
Y2 X5 0 1 1 0
X6 2 1 0 1
Xl 0 1 1 0
Y3 Xs 1 0 2 1
X9 0 0 0 1
0+1+1=0.125
aA(Y)=7+6+3
0+1+1
PACt)= 9 =0.222
2.8.PHEP PHAN LOP vA PHEP RUT GQN
SlJ rheinlapduQ'cxemnhumQtti~ntrinhxu ly nh~mxacdinhmQtlapduynhftt
mamQtd6ituQ'ngthuQcv~lapdo.Cacd6ituQ'ngcoth~duQ'crheinlo~iv~caclap
dlJavaotunggiatri cuathuQctinhquy~tdinh.M6i lapcoth~duQ'cxacdinhdlJa
trencacd~ctrungcuathuQctinhquy~tdinhtuangungcualapdo.SlJrheinlo~id6i
tuQ'ngthanhcaclapd6ituQ'ngcoth~thlJchi~nduQ'chidlJavaomQts6itcacthuQc
tinhtrongt~pthuQctinhcuah~th6ngthongtin.Thongthuangtrongvo s6cac
thuQctinhcuad6itUQ'llgchicomQts61£1quailtr<;mgchom\!cdichrheinlo~icacd6i
tuQ'ng.Tliy vaokhanangthichhQ'Pcuaconnguaivakhanangthongminhtrong. .
rheinlo~ik~thQ'Pvaivi~cchQnllJadungcacd~ctrungquailtrQngnhfttcuacacd6i
tuqng.
MQts6thuQctinhtrongh~th6ngthongtinkhongquailtrQngcoth~duQ'cgiam
bathaybi lo~itm mavftnkhonglammfttnhfrngthongtinrheinlapquailtrQng.
Phuangphaptimrat~pthuQctinhnh6banbinhthuangvaiclingkhanangrheinlap
gQi1£1PheprutgQnthuQctinh.Nhuv~ykh6iluQ'llgh~th6ngthongtinbandc1uco
th~duQ'cgiamthanhmQth~th6ngthongtinvaiquymonh6ban.
T~pthochophepchungtaxacdinhcacthuQctinhquailtrQngnhfttcuamQth~
th5ngthongtinchotruactheodungquaildi~mrheinlo~i.Chicc1nmQts6thuQctinh
1£1coth~duytri quailh~tuangduang.T~pt6i thi~ucacthuQctinhnhuv~ygQi1£1
ffiQtrutgQn.Phc1nchungcuacacrutgQngQi1£1Wi.Deiy1£1haikhaini~mcabansu
d\lngtrongrutgQntrithuc.
MN s6thuQctinhcoth~l~iph\!thuQcvaocacthuQctinhkhac.Vi~cthayd6i
trenthuQctinhquailteimcoth~anhhuangd~ncacthuQctinhkhackhisud\!ngmQt
s5phuangphapphituy~n.T~pthoxacdinhduQ'cmucdQph\!thuQcuacacthuQc
tinhvaynghlacuachung.Trongm6iquailh~tuangduang,SlJph\!thuQccuacac
l
thuQctinhlamQtrongnhungd{tctrungquailtn;mgnh~td6iv6imQth~th6ngthong
tin.
ChoH~th6ngthongtinS =,v6iC lat~pthuQctiOOdi€u ki~n,D la
t~pthuQctinhquy~tdinh,Q=CuD, AcC, chungtacoth~dinhnghlami€nkh~ng
dinhcuat~pthuQctiOOAla POSA(D)trongquailh~tuangduangIND(D)nhusail:
POSA(D) = u{AX IX E IND(D)}
Mi€n kh~ngdinhPOSA(D)chuat~tcacacd6itUQ1lgtrongU, cacd6itUQ1lgnay
co th~duQ"cphan10£;1ihoantoanthaOOcaclap phanbi~tdffduQ"cdiOOnghlatrong
quailh~tuo-ngdUO-figIND(D), dl,1'avaothongtintrenquailh~tuo-ngdUO-figIND(A).
MQtmi€n kh~ngdiOOco th~duQ"ct£;1ora b~nghai t~pthuQctiOOb~tki A, B EQ
trongh~th6ngthongtinS.T~pconcacthuQctiOOBEQ dinhnghlaquailh~tuang
duangIND(B) va phanhO£;1ChB*(U/IND(B)) d6i v6i t~pconA. MiJn khlingajnh
tren-AcuaB dinhnghlaOOusail:
POSA(B)= U AX;
X;EB'
Mi€n kh~ngdinhcuaB chuat~tcacacd6i tUQ1lgmadl,1'avaot~pthuQctiOOA,
coth~phan10£;1ihoantoanthaOOcaclapphanbi~trongphanhO£;1ChB*.
TapthoclingdinhnghladQph\)thuQcgiuacact~pthuQctinh.Kich thu6cMiJn
khlingajnhtren-Acuaphanho£;1ChB duQ"csird\)ngd~diOOnghlamQtdQdov€ Sl,1'
ph\)thuQccuat~pthuQctinhA vaB. (rA (B) )
rA(B)- card(POSA(B))
card(U)
Chungtacoth~noir~ngt~pcacthuQctinhB ph\)thuQcvaot~pcacthuQctinhA
v6imQtdQph\)thuQcb~ngrA (B) .
Choh~th6ngthongtinS=, hait~pthuQctinhA,Be Q.T~pthuQc
tinhB ph\)thuQcvaot~pthuQctiOOA trenS,kyhi~uA~B. N~uvachin~uqUailh~
tuangduangthoaIND(A)e IND(B).T~pthuQctiOOA vaB dQcl~ptrenS n~uva
chin~u:ho{tckhongA~B ho{tckhongB~ A. T~pB ph\)thuQcvaot~pA trongh~
th6ngthongtinSv6ikdQduQ"cdiOOnghlanhusail:
4V
A~B,O::; k::;1,if k =rA(B)
TrongdorA(B)duQ'cmota6tren.
N~uk=], t~pB ph\!thuQchofmtofmvitot~pA (ho~cB--+A),
N~uk=0,t~pB dQcl~phoantoanv6i t~pA,
Cactwangh<JPconll;lithi t~pB ph\!thuQcthovitoA.
DQ do ynghiacuathuQctinh aEA trongt~pthuQctinhA d6i v6i phfinlOl;li
B*(UIIND(B)) duQ'cxacdinhnhugall:
card(POSA(B)) - card(POSA-{a}(B))
J-iA,B(a)= card(U)
SlJ quailtn;mgcuathuQctinha trongt~pAQ2trenphfinhOl;lChg6cQ* tirh~
th6ngthongtinS duQ'cki hi~unhugall:
J-iAa)=J-iA,Q(a)
Chungtaseki€m tracactinhchfitcuat~pthu(>ctinhA trongmQth~th6ngthong
tinS= nhugall:
1. T~pAQ2 hiph\!thuQctrongS n~uvachin~u3Bd saochoIND(B)=IND(A)
(vid\!:aB(X)=aA(X))'
2. T~pAQ2 ladQcl~ptrongS n~uvachin~utIEd, IND(B)~IND(A),(nghiala,
aB(X)<aA(X)).
3. T~pAct! lathiratrongSn~uvachin~uIND(Q-A)=IND(Q),(nghiala,aQ-A(X)
=aQ(X)).
4. T~pAQ2la rutg<;mcuaQ trongSn~uvachin~uQ-A lathiratrongQ vaA ph\!
thuQCtrongS.
MQth~th6ngthongtincotheconhi€ucachrutgQnkhacnhau.Choh~th6ng
thongtinS=. N~uAQ2 la mQtt~pthuQctinhrutgQnthih~th6ng
thongtintUOTIg(rngS'= v6i t~pthuQctinhrutgQnA, S' gQilah~
th6ngthongtinrutgQn.Noi cachkhac,h~th6ngthongtinS' duQ'cxfiydlJllgtirh~
th6ngband~uS b~ngcachlol;lib6mQts6cQtlienquaild~ncacthuQctinhnao
khongcotrongt~pthuQctinhrutgQnA.
41
Vi du2.11:Khaosatt~pdii'li~uHDBHtirbang2.1,
- Chungta chQnhait~pthuQctinhconA={THANH_TOAN,MENH_GIA}va
B={sAN_PHAM}.
PhanhOi;lChA * (phanhOi;lChU/IND(A)), tuO'ngling v6i m6i quailh~tuO'ng
duO'llgIND(THANH- TOAN)trent~pthuQctinhA:
A * ={Yj= {Xl},Y2={X2,X4},Y3={X3},Y4={X5,XS}'Y5= {x6J,Y7={X7}}'
PhanhOi;lchB* (phanhOi;lChU/IND(B))tuO'nglingv6i m6iquailh~tuO'ngduO'ng
IND(THANH_TOAN),B*={X]={xiJ,X2={X2,X3,X4},X3={X5,X6,X7,xs}}.
Mi~nkhlingainhtren-AcuaB tinhnhusau:
POSA(B)= U AX =AXJ+AX2+AX3
XEB"
= {xiJ+{X2'X3,X4}+{X5,X6,X7,xs}
Vi v~~,rB(A)=r=1, chungtor~ngB ph\!thuQchoanto~nvaoA, A~ B.
- ChQnhai t~pcon thuQctinh A={THANH_TOAN,MENH_GIA} va B=
{sAN_P HAM}.
PhanhOi;lchA * la: A *={Yj={xiJ,Y2={X2,X4},Y3={X3},Y4={X5,xs},Y5={X6},
Y6={X7}}'
Phan hOi;lChB* (U/IND(B)) tuO'ng ling v6i quail h~ tuO'ng duO'llg
IND(THANH_TOAN) tren t~p thuQc tinh B={SAN_PHAM}, B*={Xj={x]},
X2={X2,X5}'X3={X3,X7},X4={X4},X5={X6,XS}}'
Mi~nkhlingainhtren-Acuat~pthuQctinhB la:
POSA(B)=U AX =AX!+AX2+AX3+AX4+AXs
XEB"
= {xd+{}+{X3,X7}+{}+{X6}
Vi v~y,rA(B)=~=0.5,chungtor~ngB ph\!thuQcvaoA v6idQph\!thuQc0.5,
A o.s)B .
42
RUTGQNvA LaI CUAH:f:THONG THONG TIN
T~pthut)ctinhtrongh~th6ngthongtinbandelucoth~duqcrutgQnthanhmt)t
phfmho~chd~cbi~tA* tirt~pthut)ctinhA~. Conghlar~ngmt)th~th6ngthong
tincoth~khongm~nhv6'iluqngthongtinduthiranay.N~uth\fchi~nphepphan
laptrenh~th6ngthongtinnaythicoth~choramt)tk~tquacotinht6ngquathoa
th~pkhiduqcthunghi~mtrencacd6ituqngitph6bi~n.
D\fatrencactinhch~tv~S\fph\!thut)cgiuacacthut)ctinhtrongh~th6ngthong
tin,chungtad~dangtimracacthut)ctinhduthira,b~ngcachlo~ib6cacthut)ctinh
khongcolqi,mavfinkhonggiamdikhanangphanlo~itrenh~th6ngthongtinm6'i
nay(h~th6ngthongtindilduqcrutgQn).D~khaithactrithuchi~uquatirh~th6ng
thongtinchungtatimrat~pcacthut)ctinht6iUtiduchom\!cdichphanlo~ivad~t
tinht6ngquatcaonh~t.
Choh~th6ngthol)gtinSvat~pthut)ctinhconA~, mt)thut)ctinhqEA,gQila
khaphantrent~pA n~uIND(A)=IND(A- (a})conghlala:quailh~tu<mgduang
sinhratirt~pA vaA - {a}la gi6ngnhau.Nguqcl~i,thut)ctinha lab~tkhaphan
tren-A.S\f xu~thi~ncuamt)tthut)ctinhkhaphankhongcM thi~nduqcsucm~nh
phanlo~icuah~th6ngthongtinvakhongthayd6iquailh~ph\!thut)cuah~th6ng
bandelu.Nguqcl~i,thut)ctinhb~tkhaphanmangthongtincelnthi~tv~mt)ts6d6i
tuqngtrongh~th6ng.
T~phqpt~tcacacthut)ctinhbfitkhaphantrongt~pA~ gQilaloi cuaA trenS,
vakyhi~ulaCORE(A).T~pthut)ctinhloi cochuat~tcacacthut)ctinhkhongth~
lo~ikh6it~pA n~ub6chungdich~ch~nlamthayd6iphanho~chA*.T~plOicua
'A coth~lat~pr6ng.
Chohait~pthut)ctinhA, B~ trenS.Mt)tthut)ctinha gQilakhaphantrenB
trongt~pA n~uPOSA(B)=POSA-{a;(B).Nguqcl~i,thut)ctinha gQilab~tkhaphan
trenB trongA. N~umQithut)ctinhcuaA lab~tkhaphanB, thiA b~tkhaphanv6'i
B.T~pt~tcacacthut)ctinhb~tkhaphanB trenA gQila lOituangquailB cuaA ky
hi~uCOREs(A):
COREs(A)= (aEA: POSA(B);£POSA-{a;(B)}
43
T~pthuQctinhAQ2 gQila tI1Jcgiaon€u t~tcacacthuQctinhcuan6b~tkha
phan.MQtt~pconthichhQ'PEcA duQ'cdinhnghlanhut~prutgQncuaA trenSn€u
E lamQtn.rcgiaovabaatoankhaniingphanloc;ticuatapA. Dod6,t~prutgQncua
A (RED(A)),dinhnghlanhusau:
E =RED(A)(E c A, IND(E)=IND(A),E fam(Jtnrcgiao)
E gQilamQtrutgQncuaA (nghlala:E=RED(A))n€u E la t~pthuQctinht6i
thi~ukhaphant~tcacacd6itUQ'llgtrenS khaphanb6'itoanbQt~pA,A khongth~
rutgQnthemduQ'cnfra.
T~tcacacrutgQn(hQcacrutgQn)cuaA, kY hi~uREd' (A).Giaocuat~tcacac
t~prutgQncuaA gQila16icuaA:
CORE(A)=n RED(A)
TuO'11gtlJ chungtac6th~dinhnghladuQ'cquanh~rutgQnlienquandenhait~p
thuQCtinhA,BQ2 trongS. T~pA gQila trlJcgiaoB (B-orthorgonal)n€u t~tcacac.
thuQctinhcuaA lab~tkhaphanB (B-indispenable).B~tkyt~pcontI1JcgiaoB cua
A gQilarutgQnB cuaA, vakYhi~ulaREDB(A):
E =REDB(A)(E c A,POSE(B)=POSA(B),E trlfcgiaoB)
N6icachkhac,EcA gQilamQtRutg9ntren-BcuaA trongSn€uE dQcl~pvaiB
vaPOSdB)=POSA(B).N6icachkhac,E cA gQilaREDB(A)cuaA lat~pthuQctinh
t6ithi~utrenA, khaphanvait~tcacacd6ituQ'ngtrenSb6'itoanbQt~pA vakhong
th~rutgQnduQ'cnfra.TAtcacact~prutgQnB duQ'ckYhi~uREDBF(A).Giaot~tca
cact~prutgQnB cuaA latUO'11gquan16iB cuaA:
COREB(A)=n REDB(A)
RUTGQN CUA PHAN HO~CH Y vA LOI CUA PHAN HO~CH Y
Vi~cdinhnghlat~p16ivat~prutgQnclingc6th~thlJchi~nduQ'cb~ngcachhi~u
theophanloc;tirent~pd6itUQ'llgU. Vai h~th6ngthongtincuamQtphanhoc;tch
Y={Xj,X2,... Xn}vai ~cU (0 ::;i ::;n) nhu la mQtphanloc;ticuaU trenS,
U~XI.=U .I=J
44
T~pthuQctinht6iti~uAcQ saochoch~tluQ'Ilgcuaphanlo~iPA(Y)=PQ(Y)gQi
larutgQnphanho~chr, vaki hi~uREDr(Q).
Noi cachkhac,t~pthuQctinhcont6ithi~uA dQcl~ptrenSvaA*=Q*.Nghlala,
phanho~chA*vaQ* cuaU duQ'csinhb6'ihQt~tcacaclaptUO'llgduO'llgcuaquan
h~b~tkhaphanIND(A)vaIND(Q)tuO'llgtmggi6ngnhau.
H~th6ngthongtinS coth~conhi~urutgQnY. T~tcacacrutgQnr kyhi~u
RED!(Q), nghlalamQiA ERED!(Q) PA0) =PQ(Y).
Giaot~tcacact~prutgQncuar, coth~nh~nduQ'cacthuQctinhcoynghla
nh~tchovi~cphanlo~itrongh~th6ng,gQila16icuaY:
COREy(Q)= n A= n REDy(Q)
AeRED{(Q) REDy(Q)eRED{(Q)
Vi v~y,16ir lat~pthuQctinhchudnmakhongth~lo~ibo,n~ubochungdithi
ch~ch~ngiamdich~tluQ'Ilgcuaphanlo~ir.
Vi do2.12:Khaosath~th6ngthongtinHBBH.Cohaid~grutgQntrent~p
di~uki~nC({THANH_TOAN,Mf!;NH_GIA,SANYHAM})v6'imQt~pquy~tdinh
D({d})nhusau:
B]={THANH_TOAN,Mf;NH_GIA}
B2={THANH_TOAN,SAN_PHAM}
L6i cuat~pthuQctinhCvaD duQ'cdinhnghlanhusau:
CORED(C)=B]nB2 ={THANH_TOAN}
Chungtacoth~noir~ngthuQctinh"THANH_ToAN" lathuQctinht6tnh~tviB]
vaB2lahait~pthuQCtinhmacoth~phanlo~icacthuQctinhquy~tdinh.
Vi~cchQnt~prutgQn,vi d\lB]={THANH_TOAN,Mf!;NH_GIA},chungtaco
th~giam kich thu6'ctIT bangdfi' li~ug6c b~ngcach lo~i bo thuQctinh
"SAN_PHAM'.Bang2.6chinhlabangrutgQnnhungv~nbaotoant6tcacthuQc
tinhchoquandi~mphanlo~i.
i
L
45
Ban22.7:Bangquy~tdinhdiiduQ'crutgQnHDBH
D6i ttrQ'ng CacthuQctinhdi~uki~n CacthuQctinhquy~t
dinh
u
C
THANH ToAN Mf:NH-GIA
D
DUY TRi
Xl 3
6
Nh6
Trungbinh
L6n
Hi~uh,rc
Huy
Huy
Xl
Xl 6
6 Trungbinh
Nh6
Trungbinh
L6n
Huy
Hi~uh,rc
X4
Xs 12
12 Hi~ul\lc
Huy
X6
X7 12
12 Nh6 :tIuy.Xs
Vi du: Khaosath~th5ngthongtintirbang5,chungtacohait~prutgQn
REDr= {{p,s},{q,r,s}}
Vat~pnhancuaphanho~ch1:
COREr(A) = {s}
f)~tAi ={p,s}vaA2={q,r,s}.T~pxfipxi vachfitluqngcuaphanlo~inhusau:
AIY={AI~,AIYz,AI~}={{},{x4},{Xg}}- - - -
~Y ={~~,~Yz,~~}={{},{X4},{Xg}}- - - -
0+1+1
poet)=PA(Y) =PA (Y) = =0.222- I 2 9
2.9.cAc LU~T QUYET DJNH
MQttrongnhungungdvngquantrQngcuaT~ptholaduaranhUnglu~tquy~t
dinhchovi~cphanlapcacd5ituqngtrongh~th5ngthongtinchotruac,ho~ctien
d011nlapcuad5ituqngmaioSird\mgbangquy~tdinhg5chaybangquy~tdinhrut
L-