BỘ PHÂN TÍCH BÀI TOÁN HỖ TRỢ CHO VIỆC GIẢI CÁC BÀI TOÁN Ở BẬC PHỔ THÔNG
NGUYỄN NGỌC LONG
Trang nhan đề
Mục lục
Chương 1: Một số nội dung cơ bản về trí tuệ nhân tạo và những ứng dụng của chúng trong nghiên cứu giáo dục và trong thiết kế các phần mềm trợ giúp dạy học toán.
Chương 2: Những vấn đề cần lưu ý khi xây dựng phần mềm giáo dục ở tiểu học.
Chương 3: Phần mềm trợ giúp dạy học toán tiểu học
Tài liệu tham khảo
44 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1780 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận văn Bộ phân tích bài toán hỗ trợ cho việc giải các bài toán ở bậc phổ thông, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ij)mxodday:
mij=
[
1ne'unhu'phepbie'nd6i OJ lamgiamst.l'khacbi<$tdi
0 ne'ungu'(;fcl~i
1~2.2.2/Phlto'l1gphap STRIPS:
Vi<$nghienCUuStanfordda du'ara phu'dngphapSTRIPS (Stanford
ReseachInstitudeProblemSolver)vaonhungnam1970STRIPSda sitdl;mg
phu'dngphaplogichvi tr!tU'capmQtd~motakhonggianbi~udi~ncuavand-e
dudid~ngcacvi trt Tr~ngthaidu'(;fcxemlakhaini<$mcdbancuaSTRIPS.M~t
khacm6iphepbi6nd6iloantittrongSTRIPSc'andu'(;femientiicacdi-euki<$nap
d\lngvacachi<$ulingsankhiapdt.mgcacphepbie'nd6in'ay.
Phu'dngphapSTRIPS daco nhi-eulingdl;mgtrongvi<$cxaydvngmQth<$
th6ngchu'dngtrinhdi-eukhi~nRobotvah<$n'aydingcotenSTRIPS.
1-2.3/Cae phlto'l1gphaptlm kie'm:
Nhudatrlnhbay,h'auhe'tcaevand-ed-euco th~phatbi~udu'did~ng"Ti'imQt
tr~ngthaiband'auhayfunmQtduC1ngdfinde'ntr~ngthaike'tthucmongmu6n".
Quatrinhtoodu'C1ngdfintU'tr~ngth~ixuatphat(So)de'ntr~ngthaike'thuc
(So)dath~hi<$nr5cachgiaiquy6tvand-ebaog6m:
- LvachQnkhonggiantooki6mthichh(;fp.
- Tie'nhanhtimki6mmQtcachcohi<$uquatrongkhonggiantimki6m.
- HuydQngva sitdvngcacngu6ntri thlicco lienquanvaoquatrinhfun
kie'mtilythuQCtirngmi-end6itu'(;fngCt.lth~.
Khonggiantimkie'mcuamQtvand-edU(;fcgiai trenmaytinhthu'C1ngdu'(;fC
bi~udi~nbdi d6 thiho~cmQtd~ngd~cbi<$tcuad6 thila cay.Khi bi~udi~nbai
loandudid~ngd6thiho~ccaytadu'(;fC:
- M6i dinhla mQtgiaido~ncuaquatrinhgiai (tr~ngthai)
9
LU~NVANTHACsTKHOAHQC
- M5i clingla mcd9ngbie"nd6iquatrlnhtU'giaido~nnaysanggiaido~nkhac.
Vi~cgiaiquye"tvftnd~duq~xemnhula vi~cfunduCJngdi ill tr~ngthaiband'au
de"ntr~ngthaimongmu6nduqcbi€u di~nqua2dinhnaod6cuaciy funki6m.
Vi~cc6 th€ bi€u di€n quatrlnhgiiii quye"tm9tsa lo~ivifnd~b~ngda thi
nhutrenkhangnhfi'ngdii chophepcac nhatri tu~nhant~osa dlJ.ngnhi~uke"t
quaclia 19thuye"tda thi ma con clingcifpcho ta phuongti~ndon gian d€ th€
hi~nslJ.'ho~tdQngcnacacky thu~tImki6mkhacnhau.
MQt trongnhfi'ngtrdng~iIon nhiftkhi tamoanapdlJ.ngcacphuongphap
cnatri tu~nhant~od€ giaicacbftiloancliath~I'ct6la qui mavadQphuct~pcna
Unhhuang.M~tkhacdom9tsa bai loan n6ugiiii b~ngphtI'ongphaptlmki6m
ngftunhienthl riftkh6 hy vQngUrnra Wi giciiva sa duCSngdi c6 th€ tang-theo
hamsamll cna cacdinh.VI v~y,banchiftcnaphuongphapkhi giai quye"tcac
vifnd~la giamthi€u sal~ntlmki6m.
Cho d6nnaygiai quy6tvifnd~b~ngphuongphaptlmki6mlcsigiai vftnla
phuongphaprift c~nthi6tvaquailtrQng.
Cacthnt1J.cUmki6mbaagam:
- TIm ki6m theochi~urQng(Breath - fIrst search)
- TIm ki6m theochi~usan (Depth - first search)
- TlDl ki6m sand~n(Depth wise search)
- TlDl ki6m clJ.'cti€u h6a gia thanh(Cost minimization search)
- TlDlki6m voi tri thucb6 sung(Heursisticsearch)
1-2.3.1/Phu'o'ngphapOmkie'mtheochi'eurQng:
Phuongphaptlmki6mtheochi~urQnglaphuongphapki€m ITatft'ngdinh
cuaclingmQtmucraimoichuy€nsangcacdinhd mucsanhon.Vi dlJ.xetcay:
A A : tr~ngthaid~u
B : tr~ngthaicuai
B
A
C A
E F G H
ApdlJ.ngphuongphaptlmki6mtheochi~urQngvaodathitrenvan6sedi
quacaedinhdathitheothut1J.'ABC D E F G
10
LuANVANTHACsTKHOAHQC
Phuongphaptimkie'mtheochi~urQngdambaasetlmdu<JcWigiai(ne'u
tant1;li)VInoclingcoth~suybie'nthanhki~utimkie'mvetc1;ln.
1-2.3.2/Phuongphaptimkie"mtheochi'eusau:
Phuongphaptimkie'mtheochi~usanlaphuongphapthai iliacduongdftn
mQtud'aude'ncu6itradckhichuy~nquaduongdftnkhac.Vi d\lxetcay:
A E : tr1;lngthaicu6i
B
A A
D E F G
Apd\lngphuongphaptlmkie'mtheochi~usanVaGdathjtren,n6sediqua
cacdinhcuadathjtheothunrA B D B E. Theocachtimkie'mnaythlphaidi
de'nt~ndinhcu6iho~cdinhtrainhat.Trongtruongh<Jpg~pdinhcu6ithlc'anlui
mQtmucvasangphaivasand611;lisangtraichode'nkhig~pdinhcu6iho~cdiOO
dich.C'anl~p11;liquatrlnhnaychode'nkhitlmth~ydinhcu6icungcuathonggian
funkie'm.
Phuongphaptlmkie'mtheochi~usandambaaIuonIuontlmthayVItrong
tntongh<Jpxaunhatn6sechuy~nsangtlmkie'mvetc1;ln.
Tuynhienphuongphaptlmkie'mtheochi~usansethongthichh<Jpvdi
nhii'ngtlnhhu6ngtrongd6taphaiki~mITaIDQtnhanhr~tdaichid~bie'tdinh
cuan6thongphaiIa loi giai.Trongnhii'ngtraongh<Jpnhuthe'tanendung
phuongphaptimkie'mtheochi~urQng.
1-2.3.3/Phuongphaptlmkie"msaud:1n:
Phuongphaptlmkie'msand'anmythuQCvaogiatrimucsank dachoband'au.
TaduavaodQsanhi~nt1;liD,gallchodQsanband'aumQtgiatrik duy~tcacdiOO
trongph1;lmvicacdinhdQsan000honho~cb~ngD,sand6tangD=D+kvaduy~t
tie'ptl;1c.Ne'utrongcaytant1;liitnhatI duCfngdi ill dinhg6cde'ndichthlvi~ctlm
kie'msedungvachorake'tquala duongdi c6dQdaikhacduongdi ng~n hat
khongquak - 1.Ne'utrongcaythongtant1;liduongdinhuv~ythiphuongphap
chidungkhidathjIadinhhUllh1;ln.Vi d\lxetcay:
LUANVANTH~CsTKHOAHOC
A
/B
/D~ E~
A ~ L
/c~
~N 0 P
A !\
Q R s T u v x y
Ap d\lngphu'ongphaptimIdemsand'ankhik =2 thti't\fduy~tcacdinh la
ABDECFGHQRKSTLMUVN
1-2.3.4/Phu'o'ngphaptlmkie'mcljcti€u h6agiathanh:
Trongtru'CSngh<Jpmlii clingcuad6 thjdu'<Jcgall gia thanhthlhu'dngdi tim
kie'mdu'<Jcxaedinhbdi vi~ccvclieuh6agiathanhdu'CSngdi.
Vi d\l xetcayvagiacacclingnhu'hlnhve vat~ndinhdichla {D,H}
A
B
Al /\2
D E G H
PhuongphaptimIde'mcvctieDh6agiathanhchoke'tqualadu'CSngdiAPH.
Thu~tgiainaythongtheapd\lngdu'<JCkhibailoanlId nenphti'et~pdodoihoi
phiiithaom(>tseSlu'<JngWncacmil.
1-2.3.5/Phu'o'ngphaptlmkie'mvaitri thucbffsungHeuristic
BeSivdinhi~ubai loanvi~curnkiemdu'CJngdi teSiu'Usedu'<Jcdinhhu'dng
~ptrunghonxungquanhdu'CSngdi teStnh~tneusad\lngcacthongtind~ctav~
btii loan.TheodinhnghlacaethongtinnaygQila Heuristic."Heuristicsdon
giiinla caequi ukdanhgia cackha nangde vi~eurnIdemtie'nhanhIDeom(>t
haongdung"
(TTNT :cacphu'ongphapva«ngd1;1ng-B~chHu'ngKhang,HoangKiem-
Nhaxu~tbanKHKT 1985)
Caekythu~tHeuristicsgQilacacmyOgiai.
12
LUANVANTHACsi KHOAHOC
Ta c6 the du'ara m~ogiainhu'sau:
- ChQntoclnht xftydl;1'ngcungsaochoc6 theIO<;1ibatnhungdinhkhonglien
quande'nbailoan,IO<;1ibatcacdinhitc6trienvQngflAmtrendu'dngdi t6iu'U.
- Sit d~mgthongtinb6 sungnhAmsa:pxe'pcacdinhtrongt~pcacdinhdin
phaimd,m6i fandin IffymQtdinhtrongd6.Mu6n v~y,tadin phaidu'ara du'<;lC
donaod6 choph6pxac dinhtri~nvQngcuacacdinh thu'dngdu'<;lcgQila ham
danhgia(costfuntion)
Cachamdanhgiadlt<;lCxftyd~tngdl1atrennhungphttdngphapkhacnhau:
- Xac sufftmQtdinhnaod6flAmtrendltdngdi t6ilID.
- Khoangcachhays~tkhacbi~tgiua1dinhnaod6vdi cact~pdinhdich.
Vi d~l:X6tbailoanthapHaNQivdin=2
Lffyhamfo=go+ho(ho(m)thongtinn6ithemv~m6ilienh~giuamva
tr<;1ngthai dich)
Chiing h<;1n:
-Ne'ud CQCC chu'ac6ilia naothlho=2
-Ne'udCQC c61iliatothiho=1
- Ne'ud CQCC c6 1dlanhothlho=3
- Ne'ud CQCC c62 dla,dlanhod trenilia to thiho=0 k€t quadu'<;lcchira d
hinhvesau:
g=2
O~J
/ h=2
h=3
0f=5
h=2
f=4
g=l
h=2
f=5
h=O
f=3
h=l
f=4
13
LUANVANTHACsi KHOAHOC
Thong tin Heuristicmy khong phiHIa luon luon chinhxac va dambao
nhungno lamtangcelhQid~vi~ctimkie'mICfigiai,nhanhheln, t6i l1l1helnho~c
ch~nch~nheln.
M~tkhac,trongkhi timICfigiai cl1ngnhugiaiquye'tvin d~,connguCfi
thuCfngb6sungthemhi thuccuabanthanminh.Nhii'ngtrithuciy he'tsucquari
trQngVInogiuptagiambOtthCfigiandmkie'mvahuongram\lclieu.LOpth\!'c
giaiHeuristichaycongQila myOgiai th~ts\!'conIOnhelnca lOpthu~tgiai
Algorithms.Thu~tgiaiHeuristickhacthu~tgiaiAlgorithmsd mucdQph6d\lng
vakhongphailucnaocl1ngthanhcongoHelnnii'akhongphailucnaodingfun
duQcthu~tgiaiAlgorithms.
" " ,., '" " ,
11-l~P lU~N TIEN VA l~P lU~N lUI
11-1/ l~plu~ntie'n:
L~plu~ntie'nb~tdl1uto'tr~ngthaixuitphat,thongthuCfngtaphiiixayd\!,ng
mQtcaycuagiaicacchuy~ndQng(matacoth~gQila giaiICfigiai)biingcach
xuitphatto'hinhth~bandl1ud~t~orag6ccuacay.T~oramuctie'pIDeocua
caybiingcachtlmtit cacaclu~tmaphiatrltOCcuanophfthQpvoinutg6cvasti'
d\lngphiaphaicuanod~t~oracachinhth~mOi.L~it~otie'pcacnuttie'ptheo
biingcachliy m6inutduQct~orad muctrttOcvaapd\lngvaonotit cacaclu~t
maphiatraicu~hl~tIa phfthQpvoi no.Tie'pl\lcnhuv~yde'nkhi naot~ora
duQcmQthinhth~moiphuhQpvoitr~ngthaidich.
11-2/l~plu~nlui :
L~plu~nlftixuit phatto'tr~ngthaidich.B~l~plu~nlfti trttOche'ttaphai
xayd\!,ngmQtcaycuacacdaychuy~ndQngbiingcachxuitphatto'hinhth~dich
d~t~orag6ccuacay.T~omuctie'ptheobiingcachtlmtit cacaclu~tmaphia
phiiicuanophuhQpvoinutg6c.Sti'd\lngphiatraicuacaclu~tiy d~t~ofa cac
dinhdmucthuhai.L~it~otie'pcacmuctie'ptheocuacaybhngcachliy titca
cacdinhd muctruOcvatlmtit cacaclu~tmaphiaphaicualu~tiy phuhQpvoi
no.Rail~isad\lngcacphiatraitu'elngungd~t~oraduQcmQtnutmOi.Tie'pl\lc
nhuv~yde'nkhinaomatat~oduQcmQthinhth~moiphfthQpvoitr~ngthaiban
dl1u.
Vi dl)mink h{Ja:
Giii satacl1ndmWi giai cuabai loansau: "Tan t~ihaykhonghai so'
nguyenduelngm,nthoamand~ngthucsau:
m2+(m+1)2=n4+(n + 1)4
B~kh~ngdinhco tant~ihaykhonghai so'nguyenduelngm, n thoaman
d~ngthucb."enthltaphaihinhdungduQcphl1nnaothuQctinhcuahai s6m,n do.
14
LU~NVANTHACsTKHOAHOC
£)i~ud6 g<;fiY dingtaphaixuiltphattiYtr~ngthaidfch,tucIas\\,tont~icuahais6
nguyenduongm,n thoad~ngthuctren.
m2+(m+1)2=n4+(n +1)4
~ 2m2+2m =2n4+4n3+ 6n2+4n
~ m2+m+ 1=(n2+n + 1)2
Dod6m2+m+Ila s6chinhphuong.
M~tkhactal~ic6(m-1)2<m2+m+1<(m+1)2nenm2+m+1khong
theIas6chinhphuong.
VI V?ykhongthetont~ihais6m,nthoamand~ngthuctren.
Vi dt:!v~bailoantinhtichphan: khonggiancacbai loancuabailoanla
t?Ph<;fpcaccongthUCtrongd6c6mQts6bienthuctichphan.Tr~ngthaixuilt
phatla mQtcongtht1'cql theva trongcongthuciCyco mQts6bienthuctieh
phan.Tr~ngthaidfchmongmu6nla rutramQts6congthuckhongchuabien
thuctichphanvatu'ongduongvdicongthucband'au.Be giaiquye'tvilnd~nay,
l?plu?ntie'nbie'nd6itfchphandet~orabienthuckhongchuatichphanthlt6t
honlaxuiltphattU'cacbienthuckhongchuatichphanva sii'dt:!ngcaequilAc
d~ohamdethii'nh~mt~oracacbienthucc6chuatichphanband'au.
Haividt:!trenconneukharov~t'amquailtrQngcuam6ilienh~gillatr~ng
thaixuiltphatvatr~ngthaidfchtrongvi~cxayd\\,ngmQthuangdi t6tnhiltnh~m
quye'tdinhquatrlnhtimkie'msedi IDeohuangnaokhi mah~s6phannhanh
theohai huangla xilp xi nhau.Tuy nhien,ding c'anphai chuyde'ncatru'ong
h<;jpkhimah~s6phannhanhtheohaihuanglakhongnhunhau.
CackythU?timkie'mvftndU<;fCsii'dt:!ngph6bie'nhi~nnayvftnla timkie'm
theohuongtie'n,timkie'mIDeohuanglui.TrongmQts6tru'ongh<;fpnguoitacon
ph6ih<;fpcahaiphuongphap.
111-BIEUDIEN TRI TH(JC:
Quatrlnhtimkie'mth\\'chillla quatrlnhchuyendQngtrencacdinhcua
mQtd6thiho~caymam6idinhcuachungbiendi~nmQtdiemcuakhonggian
bailOan.Honnllacacbailoanmachungtamu6ngiaiIacacbailoanngaycang
phuc~pthlvilnd~biendi~ncacd6itu'<;fngcacs11ki~nclingnhucactrithuccua
bailoankhongthela mQtvilnd~ddngian.G'andaymQts6ky thU?tmdidu'<;fc
hlnhthanhtrongtinhQcvadatrdthanhnQidungcobancuatritu~nhant~o,d6
lacacky thU?tbiendi~n,xii'ly va quailtri tri thuctrenmaytinh.Theoquail
diemcuatinhQcthltrftu~nhant~ola khoahQcv~vi~cbiendi~nva sii'dt:!ng
kie'nthat.MQichudngtrlnhcuatrftu~nhant~od~uphaid11atrenmQtlU<;fCd6
bi~udi~nkie'nthucnaod6.
15
LU~NVANTHACSI KHOAHQC
111-1/Caed~ngtri thue:
Tri thuctant~idudihaid~ngcdban:
- Tri thacdinhht<Jng.
- Tri thacdinhtinh.
Cactri thacdinhlu<JngthuClngAllvdi cacHenristickhacnhau,cacky
thu~tHeuristicpht~thuQcvaonhi~ucacchatlu<Jngciiacachamdanhgiala cd
sdd~h;1'achQnchie'nlu<Jcdi~ukhi~n:xa ly c~nhtranhvachQnhu'dngdmkie'm
phuh<Jp.
Cactri thacdinhtinhdu<Jchiathanh3 lo~i:
-Tri thacmota(Declarativeknowledge)
-Tri thacthii~c (Proceduralknowledge)
- Tri thucdi~ukhi~n(Controlknowledge)
* Tri thucmotachonhungthongtinv~mQts~ki~n,hi~ntu'<Jnghayqua
trlnhmathongduarathongtinv~ca'utrUcbelltrongclingnhucacphudngphap
sad\mgbelltrongtrithacdo.Tri thucmotaconchophepmientam6ilienh~,
cacrangbuQcgiuacacd6itu'<Jng,cacs~ki~nvacacquatrinh.
* Tri thucthii~cchotanhungca'utructriiliac,ghepn6ivaSHYdi~ncactri
thli'cmditUtrithacdiico.Caclo~itrithacnayt~onencdsdciiaky ngh~xaly
trithac(Knowledgengineering)
* Tri thacdi~ukhi~ndungd~di~ukhi~n,ph6ih<Jpnguantrithacthii~c
vatrithacmatakhacnhau.
VidT!-..E>6ivdiphudngphapgiiiiquye'tva'nd~nhClbi~udi~ntrongkhong
giantr~ngthai.
- Cactrithacmotalacacthongtinv~cung,dinh.
- Cactrithacthii~clacacthii~cfimkie'm.
- Cactri thtl'cdi~ukhi~nlienquande'ncacchie'nlu<Jcdi~ukhi~nd~l~a
chQndinhndu<Jcthaoravahuangtimkie'mtrongthonggian.
111-2/Caephuongphapbi€u di~ntri thue:
Tu'dngungvdihailo~itri thacmotavatri thtl'cthii~c,c62 lapphudng
phapbi~udi~ntrithac: bi~udi~nmotavabi~udi~nthiitq.c.Caccdche'di~u
khi~nseduQclangtrongbanthanca'utrUcngonngubi~udi~ntri iliac.Co th~
phanlo~inhu'san:
16
LU~NVANTHACsTKHOAHOC
- Phuongphapbi€u di~ntri thll'Cmota : logic,m<;lngngii'nghla,AOV
- Phltongphapbi€u di~ntri thucthilt~lC: sanxua't.
-Phu'ongphapbi€u di~nh6nhqp: frame.
111-2.1/Caephuongphapbi€u di~ntri thuemofa.
111-2.1.1/Bi€u di~ntri thueAhalogich:
Cosdlogichbi€u di~nb~nglogichm~nhde.
Cosdtrithuc(Knowledgebase)gam2ph'an:
- Cacs~iki~n: (Facts)
- Caclu~t(Rules)
Cacs~tki~ndltqCchobdicaclu~td~cbi~td<;lng:
T~pF =(qI; q2 qk)t<;lODengia thie'tchoph'anSHYdi~ncac dinhlu~td
d h ;! " "<;lugc uanPI .oo.Pn~ q
Cosdtrithucbi€u di~nb~nglogichvi tri.
Cosdtrithucgam2ph'an:
- T~pcacs~ikit'$nF.
- T~pcaclu~tR.
Cacs\1kit'$nduqcchobdi
0 ~ qi (x, y, zoo..)Hi cac vi tri ph~lthUQCVaGcac h<;lngthucx, y, Zoo.
TrongtruClnghqpx, y, z Hicacbie'n,ne'uchungg1{nvdi luqngtU':3thiphai
thaychungbdi mQtgia tri tltqngtIlingho~cth~ts\1.
Caclu~tcod<;lngPI (.) /\.oo"Pn(.) ~ q(.)dieuc'anluuy lacacbie'nthalligia
trongpi & q denphaig1{nvdihiqngtU'"vdi mQi"
Logicvi tr!va logichmt'$nhdecocacliu di€m san:
- La ngon ngii'bi€u di~nki€u mo ta.
- Co khaDangSHYdi~nvdi caccoche'quellthuQc.
17
0 ql
0 q2
0 qk
LUANVANTH~CsTKHOAHOC
- Kha tr~lcquail dO'ivoi ng11C1isi 'd1Jng.
- Khag'angUiv~cuphap.
- Co th6dungd6motacffutrucvaxii'ly dQngmohinh.
- Co th6ki6mtratinhmauthuantrongcdsdtrith((c.
- Tinhmoduncao.
Ng1IQCl~icongc1;1logichdiibQclQmQtsO'ye'udi6m..
- M((c dQhinhth((choaquacao,danWi kho higHngfi'nghlacacvi tri khi
xemxetch1ldngtrinh.
-Nangsufftxii'ly thffp.
- Do cactri th((cd1lQCbi6u di~nnhC1cacvi tri nendin u'uthe'sii'd1;1ngdiu
trucdfi'li~uthong d1lQCthai iliactri~td6.
111-2.1~2/Bi~udi~ntri thucnhomiJ-ngngunghia.
M.~mgngfi'nghlala d6 thidinhh1longmacacdinhtu'dng((ngdO'ivoicacdO'i
tu'Qngho~cthai ni~mth6,concaccungphananhnhfi'ngquailh~gifi'acacdinhdo.
(Tritu~nhant~o:Cacph1ldngphapva((ngd1Jng)
MQtcachhinhth((c,m~ngngfi'nghlacoth6mohinhbdimQtd6thiG =(N,
A)voit~odinhN vat~pcungA.
T~pdinhN t1ldng((ngvoi cacdO'itu'Qng,cacthai ni~mhays1;fki~nC1;1th6.
T~pcungA = {(a,b) / a,b E N) tu'dng((ngvoi cacmO'ilien h~giUacacdO'i
tu'Qnga& dO'it1lCJngB. Co 2 lo~iquailh~d~cbi~t:
"a lab" va"a baag6mb". Trongquailh~"a baag6mb" cacthongtincd
banv~cacdO'itllQngchobdia setruy'Cnl~ichob.Nh11v~ytacod1lCJCmQtcd
chelantruy~nthongtintrenm~ngngfi'nghlamythuQCvaocacmO'il enh~.Cac
bi6udi~nnayco1mdi6m:
- Cho phepbi6u di€in mQtcachtr1;fcquailcac S~Iki~nva cacmO'ilien h~
gifi'achung.
- Tinhmodulcaotheonghlatrith((cthemvaohoanloandQcl~pvoicactri
thac u.
- La ngonngfi'bi6udi~nd~ngmota.
- Co th6ap d~mg1 sO'cd che'SHYdi€in trenm~ng: cd che'truy~nva thua
huangthongtingiii'achung.
18
LU~NVANTHACsTKHOAHOC
Bi€u di~nnay cling c6 mQtsO"nhll'qcdi€m :
- Khongc6phudngphapSHYdi~nchungchomQilo~im~ngngii'nghla.
- Kh6 ki€m soatquatrinhc~pnh~ttri thl1'c,clandtn c6 mallthuantrongcd
sdtri thl1'c.
111-2.1.3/ Bi€u di~ntri thucthutl}ccach~lu~td~n:
Ngaynaytrenthtgioidaxufithi~nkhanhi~ucaechltdngtrinhIOngiaicac
baitoaDtrencactanhV\l'ckhacnhaunhll'dt;1'baathaititt,thittkt h1dQng...f)~c
di€mcuacacchudngtrinhnayladungl~plu~nthonghinhthl1'cdt;1'atrentrithl1'c
docacchuyengiatrenti1'ngtanhvt;1'cclingcfip.Hftuhtt cacchudngtrinhn6i
trend~uchl1'acactrithl1'cbi€u di~ntheoki€u :"IF -THEN"
Thid~:Ntu tamgiacABC cant~iA thi B =C
CacquiHlcki€u IF - THEN nhll'v~yse t~oDen1 cd sdtri thl1'cbi€u di~n
theoquit~cdi~nxufit(hayh~lu~tdaD).Ta c6d~ngt6ngquatcuamQtqui~c
trongh~lu~tclanla: .
-Quit~cX : Ntu di~uki~n1
di~uki~nrn
Thi ktt lu~n1
ktt lu~nn
Tuytheornl1'cdQphl1'ct~pcuatri thl1'c,quidinhvitt cacdi~uki~nktt lu~n
c6th~lam~nhd~ddngiancacvi tt;1'cfip1 kerntheodQch~ch~nvatinc~y.
Ngu'oitac6th€ sad~ngquit~cclanxufittheochi~uti~nho~clui.
Thi d~chocdsdtri thl1'csan:
Cd sd S\l'ki~n
Tl1'giacPQRS la hinhbinhh~mh.
Tl1'giacc6 2 duangcheob~ngnhau.
Tqpcaeluqfla .-
Tl1'giacPQRSlahinhbinhhanh~ Tu giacc6cacc~pc~nhdO"isongsong(R1)
Tl1'giacla hinhchii'nh~t~ Tl1'giacc64 g6cd dinhd~uvuong(R2)
19
LUANVANTHACsi KHOAHOC
T(( giac PQRSlahinhbinhhanh~ T((giacco c~pq.nh d6i songsong(R3)
T(( giacco c~pc<:J.nhd6i b~ngnhauva 2 du'ongcheob~ngnhau~ T(( giac
la hinh chii'nh~t(Rt)
T(( giac co 4 goc d dinh b~ng1 vuongva ill' giac co 2 du'ongcheob~ng
nhauvaill'giacco2c~pc<:J.nhd6ib~ngnhau~ T((giacco2 trl;1cd6ix((ng(Rs)
T(( giac co 1 c~pc<:J.nhd6i songsongva 2 du'ongcheoc~tnhaut<:J.itrung
di~mcuam6idu'ong~ T((giacla hinhbinhhanh(R6)
Giasatakyhi~u:
Cdsddii'li~ulaM, N
T~pcaclu~tdaDla :
(R3): M ~ A
(R2): B ~ D
(R4):E " N ~ B
(R5) :D " E " N ~ C
(Rl): A~E (R6): G" H ~ A
Nhu'v~yM, N daDxuattheochi€u titn sechoktt quasan:
Vdi qui t~cl~plu~ntrenchi vdi 2 sl;!'ki~nM, N se daDxua'tthemcacsl;!'
ki~nA, B, C, D, E.
Ngu'qcl<:J.imu6nxem sl;!'ki~nD c6 daDxua'tngu'qcto'dii'ki~nnaota sa
dQngquatrinhdaDxua'tlui. Theo sd d6 cay vA. - HoAc trenta tha'y2 bQsl;!'
ki~ndaDraD la (M, N) va(H, G)
G
>v~
Ho~c E
A
D
H B
N
20
(R3) MA {A,M, NJ
(Rl) AE {A,E, M, N}
(R4) E"NB {A,B, E, M, N}
(R2) BD {A,B, D, E, M, N}
(R5) D"E"NC {A,B, C, D, E, M, N}
LUANVANTH~Csi KHOAHOC
Cach bi€u di€n nhCJlu~td~nc6 cac lID di€m san :
-Cachbi€u di€n khaddngianvatn!cquaD:
- C6 th€ SHYdi€n theocacchi6nluQckhacnhau: SHYdi€n ti6n,SHYdi€n
lui, SHYdi€n h6nhQp.
- Khag'angfiivdingonngurootacuangonnguLISP.
- C6th€ ki€m ITatinhmallthu~ngiuacaclu~t.
- Tinh modulcao,nghlala vi~cthembdt, lo(;libi) cac lu~td~nhoanloan
khonganhhudngWicaclu~tkhacvacdch6suydi~n.
NguQcl(;licachbi€u di~nn'ayc6mQts6h(;lnch6:
- Nanglq'cxii'lythip.
- Khongsii'd~ngduQCciu trucduli~u.
Bi€u di€n nhCJbQbalienhQpOAV.
MQtcachbi€u di€n khacla sii'd~ngbQbaB6i tu'Qng- ThuQCtinh - Ghl tri
(Object- attribute- Value)d€ chi ding "B6i tu'Qng"vdi "thuQctinh" da choc6
mQt..gia tri" nao.d6.
C'anphanbi~thaid6itu'Qng: d6itu'Qngtinhva d6itu'QngdQng.Cacd6i
tu'QngfinhduQclu'utrongh~nhddaih(;lnvakhic'anduQcduavaobQnhdlam
vi~cd€ xii'ly.NguQcl(;li,trongquatrinhlam'Yi~ckhic'ansekhdit(;locacgiatri
thuQctinhciiacacd6itu'dngdQngvachungduQchtlldbQnhdtrongph~cv~.cho
vi~cxii'ly ti6ptheo.
Phudngphapbi€u di~nbQbalienhQpc6nhungdi€m m(;lnhsau:
- Chophepbi€udi~ntn!cquaDcacd6itu'Qng.
- Tinhmodultu'dngd6icao.
- La ngonngubi€u di~nd(;lngmotit.
-Cho phepdi~nd(;ltkhatu'CJngminhcaclu~tsuydi~n.
Tuynhienphudngphapn'ayclingc6mQts6nhuQcdi€m nhunhuQcdi€m
cuacachbi€u di€n theom(;lngngunghla.Ngoaira,cacquaDh~lienk6tgiuacac
d6itu'Qngkhongth€ bi€u di~nmQtcachtu'CJngminh.
111-2.1.4/Bi€u di~ntri thucb!ingFrame
B€ ciu truch6amQtluQngtri thacldn.Murskydaduara mQthinhm~u
Frame.Framethl1Cchit la s,!t6ngquath6aciu trUcbanghitrongPascalho~c
danhsachbanth€ tTongLISP vatu'dngt1!nhuciu trucd6itu'QngtrongC++,t~n
21
LU~NVANTH~CsTKHOAHQC
d~lllgdll'~cacu'udi~mcliacac1u~Hdftnvavi tri, clIngnhll'm~ngngfi'nghla.MQt
Framedll'~Ct~onen fir mQtt~ph~pcae tru'ongterminal.Trong m6i tnl'ong
termina1labi~udi6ncilamQtdangky co th~(nhll'mota lo~i,di~uki~nvamall
saochocacdangky do t~oramQtsl1ke'th~phcjp1y)
"Cach~chuyengiau'encdsdFramegall, thiVl]GUSvaNUDGE"
TTNT : Cacphll'dngphapangdl;lngB~chHu'ngKhang-HoangKie'm-Nha
xuatbanKHKT - 1989
Cachbi~udi6nFramechotanhfi'ngll'ndi~msan:
- Bap ll'ngcacyell diu bi~udi6ntri thac.
- Cho phep ngu'oisirdl]ngkha t~l'do khi bi~udi6n tri iliac.
- Framekhongchidu'~cdungd~motatri iliac,macondu'~cdungd~th~
hi~ncacthu~ttoanSHYdftn.
- Framet~ndl;lngdll'~Cnhfi'ngthe'm~nhcuabi~udi6nthutl;lcvamota.
- Quatdnhxa 1ytrenFramedQcl~ptheonghlathilake'thongtinkhong
nhathie'tphaitu'antl1.
Benc~nhdo-FrameclIngcomQtvaih~nche'.
-Quani;ingn~d6ivdi ngll'oisadl;lngthongthu'ong.
- Vi~cgiau'icuacacU'll'ongterminalcotl).~gallquavi~cthvchi~ncacthu
tl;lclamchovi~cthun~pvac~pnh~tri thactrdnenphact~pvalamkhanang
m~mcleophuh~pvdi nhfi'ngthayddicilamoi tru'ongngoaigiamxu6ng. .
-Calltruccllah~FramechophepmotacacCalltrucdi~ukhi~nxa1y: thll
tl;le.Mi;itkhaeCalltrueFrameehophepd~ngbi~udi6ncaeddnvi Calltrucdi~u
khi~nvacaeddnvi CalltrUedfi'li~u,nene'anphaisadl;lngcaebi~nphapkha
diuky.Vi the'matHnhtrvequailtrongphu'dngphapbi~udi6n.
- Khi bai toantrd nen phaet~phdn, vi~emo ta va di~ukhi~ntrongh~
Framesephaet~pnhi~utrongcaephu'dngphapbi~udi6nthll tl;lckhoa.
,
f
l 22
LUANVANTHACsi KHOAHOC
So d'cae phuong phap biiu dieD
Bi~udi~ntri thl1e
B"' /
/eu~
~
Bi~udi~nthd~le
~
BQbalienhqp +-
M~ngng~og7"\n suilt
Frame
811gi6ngnhaugiiiacaephuongphapbiiu dieD
Caelu~tSHYdanlogicconhi~udi~mgi6ngnhausovoicaelu~tsanxua't.
Caedi~uki~ntronglu~tsanxua'trongnhi~utru'onghqpco th~quiv~
d~ngphcitbi~usii'dl;1ngvin'rhaym~nhd~.
Caephu'dngphapbi~udi~ntrithl1ecoth~xemnhu'Him~nhngangnhauv~
khiinangmotad6inl'<;fng,caes11ki~nvamQtph'ancaem6iquailh~gifi'acaed6i
tu'<Jng.Tuynhienphll'dngphapm~ngngii'nghlacokhanangbi~udi~nei~lien
ke'tgiii'acaed6itu'qngphongphunha't.Tu goedQxii'ly thdtl;1e,a'utrueframe
vaeaesloteoloi gQithdtl;1ecokhanangxii'ly m~nhdneaehtie'pe~nlu~tdan.
23
H san Logich Mc;mgfigii' GAV Frame
Lo:;ti xua't nghla
S11kin S11kin Mnh d vi trt Nut BQOAV Slot
Tinh eha't S11kin Lut Quanh Lut Quanh
d6itu'qng
Quan h Sanxua't SHYdan Quanh Cantra
gifi'a ca.e
d6itu'qng
LUANVANTHACsi KHOAHOC
111-2.2/ Cdche'I~plu~nv6;ibi€u di~ntri thuc :
Cac nhalogichdachira C.<icphu'ongphaplu~nchuy€u san:
- Phu'ongphapSHYdi~n.
- Phuongphapquydi~n.
- Phuongphapquin~p.
PhuongphapSHYdi~nduQcdungphcSbi€n trongcac tu'duychinhxacva
ch~tche,haikieuSHYdi~nquellthuQcla modusponensva modustollens.Hai
cachSHYdi~ntrongquatrinhl~plu~nthu'ongdungSHYdi~nti€n valui.Ph6ihQp
caccachSHYdi~nti€n valui sechocacky thu~tSHYdi~nthichhQpchocacva'n
d-eCl}the. . .
Phu'ongphapquin~plaphu'ongphapl~plu~ndi tUcachit$ntu'QngriengIe
dekhaiquatthanhquihl~tc6HnhphcSbi€n. Kieuquin~pmaconnguoisii'd\lllg
clingra'tdad~ngvaphlJthuQcnhi-eutrithlic.DosirdlJngquin~pmatrithlicloai
ngu'oim6ingaydu'Qctangleura'tnhi-eu.
M~tkhactri tut$con nguoicon c6 nhungkha nangra'td~cbit$td6 la kha
nangbienva SHYlu~nbiingphepSHYdi~n.
Trien vQngciia cac chuangtrinh"thongminh" phlJ thuQcnhi-euvao kha
nangv~ndlJngnguontri tut$n6i tren.
Nhi~unha tin hQcchodng diem ma'uch6tde may c6 thebien duQcslJ'
tu'ongtlJ'(nhU'conngu'oi)la vit$cbiendi~nthongtinv~cacd6i tU'Qngdin sosanh
dltdid~ngtit$nIQi.Thi dlJ dltdid~ngcacFramebaogammQtt~phQpchliacac
giatri thuQcHnhnaod6cuad6i tuQng.
DI nhien,ke cachod€n nayvit$cxay d\tngcaccoch€ SHYlu~nchocacht$
tri tut$nhant~ov~nla bai loankh6,d~cbit$tvit$cxay dlJ'ngcoch€ quyn~pcho
caeht$ehuyengiavftnconIa va'nd~nailgiai.
Ngoai fa, cachltdngnghienClmv-eht$ehuyengia clingdangc6 nhi-euthu
hUtvi doclingchlnhlacac nghienell'uv-echltongtrinhhUllich, tit$nIQidapling
duQcvit$cgiai quy€t nhi-eunhudiu th\tct€ matrudchic chU'agiaiquy€t dU'Qe.
VI- H~CHUYEN CIA:
Ht$chuyengia la nhungchltdngtrinhbi€t bAtehU'ocac cachling xii'eiia
caechuyengia.Chungdungnhungthongtin dongltoisii'dlJngCHUgca'pdedua
rayki€n v-emQtchud-enaodo.
(HepbertSchildt- L~phlnhC chohi tut$nhan~o- Nhaxua'tband~ihQc- 1991)
24
LUANVANTH~CsTKHOAHOC
Nhu' v~y,h~ chuyen gia co th~df;itnhi~udiu hoi d~phong va'nnglioi sa
dl)ngcho d€n khi co th~nh~nbi€t dli<;lCdoi tu'<;lngphil h<;lpvoi nQi dung ITa loi
cua ngu'oisadl~ng.
M6i h~chuyengiaco2 bQph~nHicdsdtri tht1'cvacdch€ l~plu~n.
IV-1/ Cd SO'tri thU'c:
"Cd sd tri tht1'cHi mQtcd sd dil li~u cht1'anhilng thong tin df;ictIling clIng
voi cac quy titcv~mQtchu d~nha'tdinh nao da'y"
(HepbertSchildt- L~ptdnhC chotritu~nhflll410- Nhaxua'tband~ih9C-1991)
Cd sd tri tht1'cbaa g6m mQth~lu~tphan anh hi~ubi€t va linh nghi~mcua
cac chuyen gia trongmQtUinhv~l'chyp xac dinhva mQtt~ph<;lpcac sl)'ki~nlien
quail d€n cac Hnhhuong dll'<;lcxem xet dll'<;lCcoi nhli dil li~uva chu y€u do nglioi
sadl)ng clIng ca'p.
Cha'thl'<;lngcliamQth~chuyengiaphl)thuQcra'tnhi~uvaocha'tlli<;lngcua
cdsd tri tht1'c.Cd sd tri tht1'csemotacacdoi t:tl'<;lngva moi quailh~giila chung,
motacacgiai phapkhacnhautrongcacHnhhuongCl)th~vango~il~,cacrang
buQcuaquy€t dinh.Nhl(v~y,tacoth~xemcdsdtritht1'cladaubsachcacdoi
t:tl'<;lngclIngcacqui titcvacacthuQctinhcolien quail.
VI- 2/ Cdch~I~plu~n:
"Cd ch€ l~plu~nHi chll'dngtrinhmo phongcachl~plu~nclia connglioi,
Chl(dngtrinhn'ayco kha nanghQcki€n tht1'chuyengia ca'utrucva khai iliac
. chungd~t~onencacl~plu~n1:1)'dQng".
"Nhli v~ycd ch€ suylu~nHimQtbQph~nclia h~chuyengiaco vai tro sa
d~mgthongtindll'<;lCrungca'pd~Hmra doitli<;lng".
Hai lu~tlogichhinhtht1'cdll'<;lcsa d~mgtrongmQih~chuyengia Himodus
pollensvamodustollens.
Hai phll'dngphapcd band~xiiy dl)'ngcd ch€ SHYlu~nHi l~plu~nti€n va
lui,hof;icca2 hll'ong.
- Phll'dngphapl~plu~nti€n :
Phll'dngphapl~plu~nti€n doi khi condli<;lcgQila phlidngphaptruy~ndil
li~uva cd ch€ l~plu~nsirdl)ngthongtingiongnhli connglioisadl)ng~~ntheo
ID(;lnglogichVA-HOAC d~ti€n d€n k€t thuc,WcHimtoi doi t1i<;lng.N€u cdch€
SHYlu~nkhongHmtha'ydoi t:tl'<;lngbangthongtinhi~ncothinoseyellc'authem
cacthuQctinhxacdinhdoi t:tl'<;lngamthanhdliOngd§n d€n doi t1i<;lng.Cachduy
nha'td~ti€p c~nd€n doi t1i<;lngHithoamanta'tcacacqui titccuadoi t1i<;lngdo.
25
LUANVANTHACsTKHOAHQC
DodocdcheSHYlu~ntienxuitphattirthongtinband'aud~huangWid6ituqng
thichlingvaithongtindo.
Oia sLY,ngu'oitaxay d\ingh~chuyengiav(shinhhQccocdsdtri thucnhu
sau:
Vai cdsdtrithucduqcxaydl!ngnhliv~ytacoth~l~psdd6th~hi~ncach
SHYlu~nCliaphudngphapl~plu~nliendend6itUqnghinhvuongnhuhinhve
sailday.H~th6ng.l~plu~ndfftienhanhxaydl;1'ngmQtcaytUg6cdenla.
4 c?nh
I
4goc
I
2 cf;ipc?nhd6i
biingnhau
C
2duongcheo
biingnhau
I
2duongcheo
vuonggoc
I
Hinhvuong
Phlidngphapl~plu~nllii
L~plu~nlui Hiphudngphapngliqcvdi phudngphapl~plu~ntienxua'tphat
tUgiathietd6i tUqngvayell c'authemthongtind~khiingdinhhayphudinhno.
L~plu~nlui doikhi duqcgQila truy(snd6i tUqng,vi hQchuyengiaxua't
phathI'd6itliqngva sandotimcachki~mchungno.Oia sa,apd\mgquatrinh
l~plu~nllii VaGcdsdtrithuchinhhQcnentrentacosdd6th~hi~nphudngphap
l~plu~nllii de'nd6ihiqnghinhvuong.
26
BQituqng Quitc ThuQctinh
Tugiac co 4c?nh,4 goc
Tugiac co 2duC1ngcheo
ffinhbinhhanh co caccf;ipc?nhd6ibiingnhau
ffinhbinhhanh la tUgiac .
ffinhvuong co 2duongcheovuonggoc
ffinhthai co 4c?nhnhau
ffinhchfi'nht co 1gocddinhvuong
ffinhchfi'nht co 2duongcheobiingnhau
LU~NVANTHACsTKHOAHOC
Hlnhvuong
Hinh chi! nh~t /~ - 2 dttongcMo vu6ngg6c
Hinh hinh hanh /~ 2 Mi!ng cheohAngnhan
Tu giac I co2 c(;lnhd6ib~ngnhau
4 c(;lnh
4 goc 2 dttongcheo
IV-3/ Ca'utruedCi'li~uehomo hlnh I~plu~nlui
Giii sitcaclu~tdftntrongcdsdt\ithucd~ucod(;lng:
If bie'n1=gia tri 1
bie'n2=giatri 2
AND
AND
bie'nn=giatri n
Then
bie'n=giatri
* Bie'nti~nd~Ia cacbie'nchi xu~thic$ntrongph'anIF cuacaclu~tdftn
(khongxu~thic$ntrongph'anTHEN cuab~tky lu~tdftnnao)
* Bie'nke'tlu~n: lacacbie'ntrongph'anTHEN cuacaclu~tdftn.
* Bie'nmc$nhd~:cacbie'ncoxu~thic$ntrongph'anIF cuacaclu~tdftn.
IV- 4/ Caeea'utruedCi'li~u:
IV-4.1/Oanhsaehke'tlu~n: (CONCLUTION LIST)
La danhsacht~tcacacke'tlu~ncoth€ co.Theogiasittrenkichthttdcua
caedanhsaehke'tlu~nb~ngs6lu~tdftntrongedsdtrithue.
M6i ph'antittrongdanhsaehke'tlu~ngam2ph'an:
- s6lu~tdftnvatenbie'nke'tlu~neiialu~tdftndo
27
Lu.~NVANTH~CsTKHOAHOC
CONCLUTION =RECORD
rule_number:interger;
varname:string;
end;
CONCLUTION _LISt: alTay[1..N] ofconc1ution
IV- 4.2/ Oanh sachcaeti'end'e: (VARIABLE LIST)
Dogiatricuacaebie'nm~nhd~c6th~xacdinhdu'<;1Cb~ngeachhoingu'oi
sadl;!ngnentac6diutrUedfi'li~usail:
VARIABLE =record
var_name: string;
instantiated:boonlean;
value: string;
end;
Trangd6 :
var_name: tenbie'n
instatiated: (chobie'tgia tri cuabie'ndil du'<;1Cxacdinhchu'a?)
value: giatri cuabie'n(chidungkhi bie'ndil du'<;1cxacdinh.
(instatiated=true)
IV- 4.3/ Oanhsachbie'nm~nhd'e: (CLAUSEVARIABLE LIST)
La danhsachcaebie'ntrongphiinIF cuacaelu~td~n.
M6i lu~td~nchic6t6idamm~nhd~trongphiinIF, tae6th~dungmilng
IDQtchi~ud~hilldanhsachbie'n.
M6i lu~tsedu'<;1CdanhriengIDvi tri d~chll'acaebie'nm~nhd~cualu~td6.
Ne'ulu~tc6 it hdnmbie'nm~nhd~thlcaevi ill thirasebo tr6ng.
Ca'utruedfi'li~unayt6nbQnhdnhu'ngti~nchovi~ctinhloan.
Vi dl;!:Ta c6th~bie'ttenbie'nm~nhd~thll'j cualu~td~ni chinhla phiintd'
thll'ID* (i - 1)+j cuadanhsachbie'nm~nhd~.
(Ne'ulu~td~ndu'<;1Cdanhs6la bQis6cua10)thlcongthll'cla :
m*(i/l0-1)+j
28
LU~NVANTHAC8TKHOAHQC
IV-4.4/ Ngan xe'pke'tlu~n (CONCLUTION STACK)
Bay Hidiu truedu li~utrungtamd~di~ukhi~nquatrlnhl~plu~nlui. M6i
ph'antd'euanganxe'pgam2 phftn:
stack- item: record;
ruler_number: interger;
clause_number: interger;
end;
Thu~tloanl~plu~nlui trenCAD TRUe nCfLI:e;udii chira :
. Bade 1 : Binh nghTake'tlu~n
. Bade 2 : TIm trong daub saehke't lu~ntri1ngten vdi ke'tlu~ndu'qedinh
nghTa.
+Ne'utim tha'yd~tlu~t d6 vao ngan xe'p,baa gam s6lu~t va (1) d~di~nta
s6m~nhd~. .
+Ne'ukh6ng tlm tha'ythl tra Wi kh6ng tim tha'y.
.Bade3 : Xaedinhcaebie'nm~nhd~eualu~t.
. Bu'<k4 : Ne'umQttrongnhungbie'nm~nhd~kh6ngxaedinhthlhoi ngaoi
dungd~nh~pgiatrio
. Bade5 : Ne'umQttrongnhungbie'nm~nhd~la bie'nke'tlu~nthl d~ts6
eualu~tehuake'tlu~nd6vaodinhnganxe'pke'tlu~nva trdl~ibade3.
. Bade 6 : Ne'u th~hi~nd dinh ngan xe'pke'tlu~nkh6ng thoa ea'utrUeIF
THEN eualu~td6thlloC;lith~hi~nfa khoi dinheuanganxe'pva t1mkie'mtrong
daubsaehke'tlu~nmQtke'tlu~ntrungtenvdike'tlu~ndaqedinhnghTa.
. Bade7 : Ne'utimtha'ytrdlC;libade3.
. Bu'de8 : Ne'ukh6ngconke'tlu~nnaotrennganxe'pke'tlu~nvdi tend6
thllu~traded6lasai.
Ne'ukh6nge6lu~traded6th1baavdingaoidunglakh6ngtlmtha'y.
Ne'ue6lu~traded6thltrdlC;libu'de6.
. Bade9 : Ne'ulu~td dinhnganxe'pdaqexaedinhxongthllo~in6khoi
nganxe'p.
Ne'ue6bie'nke'tlu~nkhaed daditangs6m~nhd~vaoehom~nhd~conlC;li
quaytrdngaqclC;libu'de3.
29
LUANVANTH~CSI KHOAHOC
Ntu khang c6 bitn ktt lu~n nao aduoi chungta c6 th~tnllCfi diu hoi.
Ngu'Cfidungsenh~ndu'qcktt qua.
IY-51 Cach ho~tdQng-cuamQtdun vi chuangtrlnh (DYCT)
Trongphftnnaychungta senghienCUlll£;Linganngu l~ptrinhd~timhi~u
mQts6 mahinh ho£;LtdQngcua donvi chu'angtrinhd~lam ti€n d€ chovi~cd€
xufftcachho£;LtdQngmoichomahinh l~plu~nlui.
Ngl(CfitaphanIO£;Linganngul~ptdnhthanh3 nh6mchinh:
a/ Ngonngil finh (FORTRAN, COBOL) : bQnho dl(qCcffpphattn(ockhi
chuangtrinhdl(qCtht1chi~n,khangchophepgQid~quy.
bl NgonngildT!atrennganxe'p(ALGOL 60 ..) : bQnho duqccffpphatkhi
chuangtrinhduqcth~(chi~ntheonguyent~cLIFO.
c/ NgonngildQng: (LISP, SNOBOL 4, APL, PROLOG) : khangth~doan
trl(OCbQnhodl(qCcffpphatlucnaotranglucch£;LYchuangtrinh..
Chungtasequantamdtn cachho£;LtdQngcuamQtBVCT cuanh6mngan
ngud~(atrenngans~pxtp d~maphongchoCTDL cuaIDahinhl~plu~nlui.
Nhungdotdnht~(phattinhciiacacnh6mngannguchoHendftulienchungtase
xemxetcachh<?£;LtdQngclIamQtDVCT clianh6mnganngutInh.
* Ngonngil finh : SefluqIlgciiacaca nhodungchocacbitn Cl;lCbQla cef
dinhn6 duqccffpphattronglucbiendichchuangtrinhvakhangthayd6itrong
sueftquatrinhth~(chi~nDVCT.
M6i DVCT dl(qCbiendichrCfir£;Lcva tliangungvoi 1BANG KfCH HOAT,
vi~cthitt l~pbangghikichho£;Ltduqcchidinhtruockhi tht1chi~nvi tht bitn Cl;lC
bQ se duqcma truocthCfidi~mch£;LYchuangtrinh va thCfigian sefngciia bitn
dl(qCkeo dai trangthCfigianthlrChi~nloanbQChl(angtrinh.
-
Bang ghikich
ho£;Ltcho cac
bitn an loan
;! ? '"
DIEM TRO VE
GJ
DVCT
(1)
DVCT
(2) Bangghikich
ho£;LtBVCT (1)
BIEN Ct}CBQ
Bangma(C) Bangkfchho~t(D)
* NgonngildT!atrennganxtp: cacnganngudlratrennganxtp c6 cffutrUc
kh6i,cffutrucnayki~mtratamanhhl(angcuabitn vaChl(angtrinhthanhBhang
BVCT.
30
LUANVANTHACsTKHOAHOC
Hai DVCT bfttky ho~cla roi nhauho~cla i6ng nhau.
Ba d~ctru'ngcho ngon ngfi'dt1atren siipxe'pla :
. ChophepgQid~quycacDVCT
Di€u nayc6nghla la sO'Instances(instancesla sO'bangkichho~tdoihai
choDVCT d mQtthaidi€m bfttky) c6 th€ khongdu'<Jcquye'tdinhtru'dcthaigian
th\1chi~n.
0 m6idftnracuaDVCT, mQtbangkich ho~tmdi phai du'<JcphanbO'vdi
bangsaocuabie'nC\ICbQmditht1Chi~n.
. Chftpnh~nnhfi'ngcftutrucdfi'li~udQng.
. Cho phep ngu'oil~ptrinhmd dO'itu'<Jngdfi'li~ud di€m tt)yy trongsuO't
chu'angtrinh.
Cancii'vao:
- Thoi giansO'ngciiabie'n.
- Moi tru'ongthamchie'uchomQth€ hi~ncuaDVCT.
Ngu'oitachiangonngfi'lo~inaythanh4 lo~i:
+Lo~i1 : sO'ch6din thie'tchomQtbie'nla c6dinh : (cftpphattInh)
+ Lo~i 2 : sO'ch6 din thie'tcho mQtbie'nchi du'<Jcxac dinhkhi thi hanh
chu'angtrinhc6chii'abie'nd6.
+Lo~i3 : sO'ch6din thie'theoyell diu cuamQtbangkich ho~tsekhong
dtt<Jcbie'tkhi DVCT bi kich ho~tnhu'ngsedu'<JcftpphatdQngkhiCalll~nht~o
l~pmdibi truyxuftt.
+Lo~i4 :KhimQth€ hi~ncllaDVCT c6th~truyxufttde'nmoitru'ongngoai.
DO'ivdi lo~ingonngfi'mabangghikich ho~tvdi chi€u daibie'ttrUdc,tInh
khi bangghikichho~tdu'<Jct6chii'c.
? ? '"
D~ACHI TRd VE Contratrade'nbangghi
kichho~tdffgQin6.
Con tra trendu'<JcgQila lien ke'tdQng.T~ph<Jpcac con tra t~othanhh~
thO'nglien ke'tdQng.
31
LU~NVANTH~Csi KHOAHOC
Vidt:t: DVCT AgQiB
DVCT B gQiC
Khi C trdv~B thibangghikichho~tcuaC sedu'<;jcgiaiph6ng.
Khi B trdv~A thibangghikichho~tcuaB sedu'<;jcgiaiph6ng.
Ngu'aitadungthem2controh6tr<;jchocontroip.
Controthli I la FREE thu'angd~td vi tri c6hi~ulyc ke'tl;1ctrongDATA
MEMORY.
ControthliII laCURRENTd~td vi tribangghikichho~thi~nthai.
Free
I Current I
C'anphaihill ycdche'l~plu~nvatachbi~tvdicdsdtriiliac.Cdche'fir la 1
quitrlnhv~nhanhchungchonhi~ucdsdtrithlickhacnhaud€ t~onennhungh~
chuyengiakhacnhau.Cdcfiunaychophepthie'tl~pcach~chuyengiadamt:tc
lieukhongc'anl~ptrinhl~i.
Hdnnua,mQtd~ctru'ngcdbanv~hanhvi thongminhcuahechuyengiala
khananggiaithichdu'<;jccacsurdi€n cuaminhtrencondu'angdi de'nke'tlu~n
v~khanangITaWicacdiuhoikhacnhaudongu'aisadl;lngd~tfa.
v- cAc UNG DUNG CUA HE CHUYEN GIA vA TRI TUE NHAN TAO
",' "', ~ '" ,..
TRONGTHIET KECAC PHAN MEM D~NG HQCTOAN.
Nhunglingdl~ngcllakhoahQctinhQcdii lamthayd6ikhaloandi~n,kha
sansAcde'nnhi~unganhkhoahQc,trongd6c6khoahQcgiaodl;lCn6ichungva
d~yhQCn6irieng.Banchfitcuaquatrinhd~yhQclaquatrinhbie'nd6ithongtin,
trongquatrlnhbie'nd6id6th'ayla ngu'aichud~o,conhQcsinhla ngu'aichu
32
LU~NVANTH~Csi KHOAHOC
dQng.D~th~tsvHinguoichud~o,nguoith'aygiaophiiibie'tachacdi'€ukhi~n
quatrlnhlacdQngqual~igiuath'ayva11"0,giuatrovatrithacd~giuphQcsinh
chlldQngtlmdU<;lekie'nthll'c~di.MQttrongnhungDangh!ctachacdola Dang
Ivctachacthongtingiiingd~y,baag"Omcachbi~udi~nthongtin,bi~udi~ntri
thacclingnhu'phanchiatrithacthanhcacdonvi nhasaochom6ilienke'tgiua
cactri thacla khoahQc,la nh§tqUailvaphuh<;lp.CacnQidungdoc6nhung
di~mr§t ti~mc~n,r§t tu'ongd"OngvdicacnQidungvaphuongphapcuatri tu~
nhant~o.Hi~uquiicuavi~capd\lngtd tu~nhant~odU<;lcDangleDmQtbudcVI
nhii'ngtri thacloanhQCthu'ongdu'<;lcphcitbi~udu'did~ngcacm~nhd'€ "ne'u...
thl"choducactrithacdoladinhly phatbi~ududid~ng1dinhnghla,1dinhly
haymQtbailoanti~uhQCblobthu'ong.Cacquyuk duoid~ng"ne'u thl"se
t~onenmQtquitik dfinxu§t.H~quit~cdfinxu§tcungvdi cacdinhlu~tbi~u
di€n sechophepth~hi~ndU<;lccacd6itU<;lngcualoanhQCvam6iquailh~giua
chungdudid~ngcackyhi~u.Di'€ud~cbi~tbonQuala cacd6itu'<;lng§y coth~
dU<;lcxii'ly b~ngcacphuongphaptritu~nhant~odadaycongnghiencau.Ph'an
m'€md~yhQcloandvatrennhii'ngthanht11Ucuatritu~nhant~oconchophep
lu'ul~i"di€n bie'n"cuaquatrlnhSHYlu~ngiupchohQcsinhn~mvungboncac
conduongdide'nke'tquii,t~odi'€uki~nd~sosanhvdinhungeaehgiiii,nhftng
hudngSHYlu~nkhacnhau,tUd6t~oti'€nd'€ cho1hudngdi t6tnh§t,1hudng
sangt~otrongtuonglai.
Nguoitaclingc6th~apd\lngphuongphapnaytrongvi~cnghiencU'ugiao
d\lcd~t~oDencac"bQd"Ongh'€"d~yhQClIen maynnh,"h"Osogiiii toan"...
v- 1/ Bi~udi~ntri thuctminhQc:
Thongthu'ongkhi changminhmQtdinhly haygiiii 1bai loan,connguoi
khongnhii'ngphiiin~mvungcactinhch§t,cacdinhly c6lienquailmaconphiii
hlnhdungdu<;lcvi tri,cachudnggiiiiquye'ttrongtUngkhonggianngii'ciinhhay
noikhacbonladin n~mvii'nglu<;lcd'€ changminhtronghlnhhQcEuclidenguoi
tadungIU<;lCd'€d~chidfinvi~curncachchangminh,lu<;lcd'€naylIdDenmQtbQ
ph~nkhongth~thie'ud6ivdivi~cphattri~nmQtdinhly. GELERNTERdake't
h<;lpcaccachchangminhdinhly tronghlnhhQcEuclidevoi cacquailsatcon
nguoikhisii'd\lngcaeIU<;ltd"OlIend~t~orachuongtrlnhchangminhcacdinhly
khathanhcongoGelernterdagQichuongtrlnhlamayhlobhQc.
ChuongtrlnhcuaGelernterla 1vi d\l cuasvth~hi~nthanhcongcoche'
giiiibailoand1;talIenvi~cbi~udi~ncacd6itu'<;lnghlnhhQcthanhcacvi trirai
dvavaocacliend'€ va logichvi trid~changminhcacdinhly hlnhhQc.MQt
trongcacml~Cdichcualacgiiikhithie'tke'mayhlnhhQCla lamchomayduara
dU<;lCsvtu'ongthichvdi cachchangminhcuaconnguoi.D~thvchi~ndu<;lCco
ehe'giiii bai toaDcaelien d'€ trongmayhlnhhQccuaGelernterdadu<;lechia
thanh3ldp.
33
LuANVANTHAcsTKHOAHOC
Cac tien d~lien ktt cac di~mvdi cac khai ni~mnhu':
Bo~nth~ng,du'ongthAng,caeg6c,cactamgiac.
Vi d~tiend~cactamgiacdu'<;fCmatanhu'san:
Ntu A, B la 2 di~mphanbi~t.
Ntu B, C Hi2 di~mphanbi~t.
Ntu C, Ala 2 di~mphanbi~t.
Ntu A, B, C la cacdi~mkhangth~nghang
Thl A, B, C la tamgiac.
Chungdu'<;fChlnhthlich6anhu'san:
PHAN_BIET (A, B)
PHAN_BIET (B, C)
PHAN_BIET (C, A)
KHONG_THANG_HANG (A, B, C)
TAMGIAC (A, B, C)
Cac tiend~th~hi~ntinhd6i xlingcuacacdo~nth~ng.
Ntu do~nth~ngAB b~ngdo~nth~ngCD thl do~nAB b~ngdo~nDC va
chungdu'<;fCdinhnghianhu'san: .
DOAN (A, B) =DOAN (C, D)
DOAN (C, D) =DOAN (D, C)
Cac tiend~th~hi~ns11b~ngnhaugifi'acacg6cvacacdo~nthiing,s11b~ng
nhau cua cac tam giac, s11song song gifi'a cac do~n th~ng ...
Cac c~nhtu'dngling b~ngnhaudu'<;fCth~hi~nnhu'san :
Tam giac (A, B, C) b~ngtamgiac (D, E, F)
DOAN(A,B)=DOAN(D,~
DOAN (B, C) =DOAN (E, F)
Va hai tamgiac la b~ngnhauntu chungc6 mQtc~nhva 2 g6ckt tu'dng
ungb~ngnhau.
GOC (A, B, C) =GOC (D, E, F) va
34
LU~NVANTHACsi KHOAHOC
GOC (C, A, B) =GOC (F, D, E) va
DOAN (B, C) =DOAN (E, F)
TAMGIAC (A, B, C) =TAMGIAC (D, E, F)
S\1'phan chia cac lien d<3thanh 3 ldp nhu tren la ra"tquantrQngcho vi~c sa
dl;1ngcac luQcd6 d€ bi€u thi cach chang minh. Chiing h(;ln,sa d~ngcac lien d<3
va sll hlnh thac h6a cac dinh 1:9c6 th€ dua fa cach chang minh tlf dQngdinh 1:9
hlnh hQc "BuC1ngphan giac trong mQtg6c luau cach d<3uhai C(;lnhcua g6c a'y".
Sll hlnh thac h6a ciia cac giii dinh nay duQcth€ hi~ndudi cac m~nhd<3Ia :
DOAN (A, D) la PHAN_GIAC_GOC (B, A, C)
DOAN (D, B) DOAN (A, B)
DOAN (D, C) DOAN (A, C)
DOAN (D, B) =DOAN (D, C)
Cay timkie"mduQCminhhQanhusau:
DOAN (D, B) =DOAN (D, C)
/
7C(B, A, 0) = TAM GIA~
GOC (B, A, D) =GOC (D, A, C)
/
DOAN (A, B) =DOAN (A, C)
DOAN (A, D) la PHAN_GIAC_GOC (B, A, C)
35
LUANVANTHACsTKHOAHOC
v- 2/ Giai baitoan:
Ap d~lllgVaGhinhhQCkh6nggiantacocelsdtri thucnhusan:
Cach xiiy dung motdinhIf
[t~pcacm~nhd~giathitt]~ M~nhd~ktt lu~n.D~ngC1;lth~:
M~nhd~1(.)& [M~nhd~2 (.)] & [M~nhd~3 (.)] ~ M~nhd~(.)
36
Mnh d M6 ta
Ba diSmthng hangA, B, C THANG_HANG (ABC)
TrungdiSmM cuadon thng AB TRUNG_DIEM (MAB)
Don thng AB DOAN (AB)
Don AB =Don CD BANG_DOAN (AB CD)
Duongtrungtn;(cd cuadon AB TRUNGTRUC (dAB)
Tamgi:k ABC TAMGIAC (ABC)
Tamgiacdin ti A TAMGIACCAN (AABC)
TU'giacABCD TUGIAC (ABCD).
IDnhblnhhanhABCD HINHBINHHANH (ABCD)
IDnh thaiABCD HINHTHOI (ABCD)
IDnhchfi'nht ABCD HINHCHUNHA T (ABCD)
IDnhvuongABCD HINHVUONG (ABCD)
Mt phng ABC MAT (ABC)
DiSm M E don AB DIEMTRENDOAN (MAB)
DiSmX E duongthng d DIEMTRENDUONG (Xd)
DiSm X flAmtIeDduongtrollc DIEMTRENTRON (Xc)
Don AB E mt phng CDE DOANTRENMA T (ABCDE)
Duongth&ngaflAmtrenmt phng ABC DUONGTRENMA T (aABC)
Giao diSmI cua2 don AB, CD DOANGIAODOAN (IAB.CD)
Giao diSmI cua2 duongthng d, e DUONGGIAODUONG (Ide)
Giao diSmI cuadon AB voi mt CDE DOANGIAOMA T (IABCDE)
WANVANTHACsTKHOAHOC
cae m~nhd~trong [ 1co th~co ho~cthong tUy theo s61uQngm~nhd~gia
thie'tcua dinh ly.
He th6ngdinh IVdungtrongchddngtrinh: (78)
* Mot s6tinh chd'"tcuahlnhphdng:
1.DIEMTHUOCDOAN(IAB) & BANGNHAU(AIBI) =>TRUNGDIEM(IAB)
2. HINHBINHHANH(ABCD) & DOANGIAODOAN(IACBD) =>
TRUNGDIEM(IAC)
3.TRUNGDIEM(EAB) & DIEMTHUOCDOAN(FAC) &
DOANSSONGDOAN(EFBC) =>TRUNGDIEM(FAC)
4.BANGNHAU(ABAC)=>TAMGIACCAN(ABC)
5.TRUNGDIEM(IBC) & DOANVGOCDOAN(AIBC) =>TAMGIACCAN(ABC)
6.DOANSSONGDOAN(ABCD) & DOANSSONGDOAN(ADBC) =>
HINHB INHHANH(AB CD)
7.TRUNGDIEM(IAC) & TRUNGDIEM(IBD) =>HINHBINHHANH(ABCD)
8.DOANSSONGDOAN(ABCD)& BANGNHAU(ABCD)=>
HINHBINHHANH(ABCD)
9.HINHBINHHANH(ABCD)& BANGNHAU(ABBC)=>HINHTHOI(ABCD)
10.HINHBINHHANH(ABCD) & DOANVGOCDOAN(ACBD) =>
HINHTHOI(ABCD)
11.HINHBINHHANH(ABCD) & DOANVGOCDOAN(ABCD) =>
HINHCHUNHA T(ABCD)
12.HINHBINHHANH(ABCD) & BANGNHAU(ACBD) =>
HINHCHUNHA T(ABCD)
* Hai doanthdngbAngnhau:
13.TRUNGDIEM(IAB)=>BANGNHAU(AIBI)
14.BANGNHAU(ABCD) & BANGNHAU(CDEF) =>BANGNHAU(ABEF)
15.TAMGIACCAN(ABC) =>BANGNHAU(ABAC)
16.HINHBINHHANH(ABCD) =>BANGNHAU(ABCD)
37
LU~NVANTHACsTKHOAHOC
17.HINHTHOI(ABCD) =>BANGNHAU(ABBC)
18.HINHCHUNHAT(ABCD) =>BANGNHAU(ACBD)
19.MATSSONGMAT(ABCDEF) & DOANSSONGDOAN(ADBE) =>
BANGNHAU(ADBE)
* Badiim th~nghang:
18.DOANVGOCMAT(ABCDE) & DOANVGOCDOAN(ABFG) &
DIEMNGOAIMA T(FCDE) =>DOANSSONGMAT(FGCDE)
19.DOANSSONGMAT(ABCDE) & DOANSSONGDOAN(ABFG) &
DIEMNGOAIMA T(FCDE) =>DOANSSONGMAT(FGCDE)
* Hai matph~ngsongsong:
20.DOANSSONGDOAN(ABDE) & DOANSSONGDOAN(ACDF) &
.
DIEMNGOAIMAT(ADEF) =>MATSSONGMAT(ABCDEF)
21.MAT(ABC) & DOANSSONGMAT(ABDEF) & DOANSSONGMAT(ACDEF)
=>MATSSONGMAT(ABCDEF)
22.MATSSONGMAT(ABCDEF) & MATSSONGMAT(ABCGHI) &
DIEMNGOAIMAT(GDEF) =>MATSSONGMAT(DEFGHI)
23.MATVGOCDOAN(ABCMN) & MATVGOCDOAN(DEFMN) &
DIEMNGOAIMAT(DABC) =>MATSSONGMAT(ABCDEF)
* Vu6nggoc:
* Hai doanth~ngvu6nggocvdinhau:
24.DOANVGOCDOAN(ABCD)& DOANSSONGDOAN(ABEF)=>
DO ANV GOC DO AN (AB EF)
25.HINHCHUNHAT(ABCD)=>DOANVGOCDOAN(ABBC)
26. HINHTHOI(ABCD) =>DOANVGOCDOAN(ACBD)
27.DOANVGOCMAT(SAABC) =>DOANVGOCDOAN(SAAB)
28.DOANVGOCMAT(ABCDE) & DOANTHUOCMAT(MNCDE) =>
DOANVGOCDOAN(ABMN)
38
LU~NVANTHACsi KHOAHOC
*Doan th~ngvuong g6c vOimat ph~ng:
29.DOANVGOCDOAN(ABCD) & DOANVGOCDOAN(ABCE) ~
DOANVGOCMA T(ABCDE)
30.DOANVGOCMAT(MNABC) &MATSSONGMAT(ABCDEF) ~
DOANVGOCMA T(MNDEF)
31.MATVGOCMAT(ABCDEF) & MATVGOCMAT(ABCGHI) &
MATGIAOMAT(MNDEFGHI)~ DOANVGOCMAT(MNABC)
*Dinh If 3 ddongvuongg6c:
32.DOANVGOCMAT(SAABC) & DOANVGOCDOAN(ABBC) ~
DOANVGOCDOAN(SBBC)
* Hai matph~ngvuongg6c:
33.DOANVGOCMAT(MNABC) & DOANTHUOCMAT(MNDEF) ~
MA TVGOCMA T(ABCDEF)
34.MA TVGOCMA T(ABCDEF) & MA TSSONGMAT(ABCGHI) ~
MA TVGOCMA T(GHIDEF)
39
LU~NVANTHACsi KHOAHOC
40
fact hI .
fact h2
GT fact h3
fact hk
Kl fact heI..
H~
CSTT
GI factList GI RuleList
A ?
HOAT DONG CUA MOTOR. .
Ri
---+ CAY L()I Glib
Rj
WANVANTHACsTKHOAHOC
MQt sO"tac gia con ling dl~ngm~ngngii' nghla d€ giai 1 sO"cac b~LitoaD.
M~ng ngii'nghla Hi d6 thi dinh hu'angma cac dinh tu'ongling vai cac dO"itu'<Jng
ho~ckhai ni~mCl~th€ con cac cung phan anh nhii'ngquaDh~giua cac dinh d6.
Vi dl}m~ngngii'nghla bi€u di~ntri thac hlnh hQcnhu'
Bu'angcheo
/,nh chii'nh~t
/ la
b~ngnhau Blnh vuong
~~p
Tfl}CdO"ixling Bu'angtrOll
v- 3/ M~ngtinhtoan :
#
MQt trongnhii'ngm~ngngii'nghlangu'aita quaDtamd6nm~ngtinhloan.
M~ngHnhtoaDHimQtm~ngngii'nghlachliacacbi6nva cacquaDh~co th€ cai
d~tva sadl~ngchovi~ctinhloan.M~ngtinhloanla 1ki€u dli li~utrUutu'<Jngc6
khaDangxayd1f~gcachamdungchovi~ct6ngh<Jpthanhcacchu'angtrlnh.
Vi dl.l: Quanh~f giii'asO"do 3 g6ctrongA, B, C cuatamgiacABC du'<Jc
chobdi h~thlic :
A"" /C
CD
B/
f : A +B +C = 180(donvi dQ)
N6u gQiM la t~pcacbi6n.
F la t~pcacquaDh~
Thl M(f) vai f E F du'<JcgQila t~pcacbi6nc6 lien h~trongquaDh~f.
M(f) eM
Cho m~ngtmhloan(M, F). Gia sac6 1t~pbi6nA e Mdffdu'<Jcxac~inhva
B la t~pbi6nbfttky trongM. Cacvftndt3d~tfa la :
- C6 th€ xacdinht~pB tUA nhacacquaDh~F ?
- QuamnhHnhloantUA d6nB n6uB xacdinh.
41
LuANVANTHACsTKHOAHOC
- Cac di~uki~nb6 sungde co th~xac dinh du<;jcB tirA.
Bai toaDxacdinhB tirA trenm~ng(M, F) vi6tdu<;jcdltdid~ngA ~ B
Ngu'oitadungkhai ni~mbaodongcuat~ph<;jplam 1 trongnhfi'ngphu'dng
ti~nde giiii quy6tbai toaDU"en.Bao dongcuat~ph<;jpA ky hi~ula duQcxem
nhula sl1mdr(}ngt6idaCllaA U"enmohlnh(M, F)
A chinhla t~pconIOnnhfitthu(}cM saochobai toaDA --7B giiii duQc.Va
tacodinhIy sau: "
Tren m(}tm~ngtinhtoaD(M, F) bai toaDA ~ B la giiii duQckhi B c A
V~Wigiiii cuabaitoaD:
Ta codinhnghiasau:
Cho D = {fI, f2,...,fd la day quaDh~clia m~ngtinhtoaD(M, F). A eM.
Ta noi dayquaDh~D la apd\lngduQctrenA khi va chikhi taco thelfinIUQtap
d~lDgduQccacquaDh~ft. fz, fkxufitphattUgiii thi6tA...
N6u d~tAo=A, Al =AoU M(fI) Ak = Ak U M(fk) vaky hi~uAk=D(A)
thlD la Wigiiii cliabai toaDA ~ D(A)
D(A) la s~l'mdr(}ngcuat~pA nhoapd\lngdayquaDh~D
Ta co m~nhd~sau: Day quaDh~D la loi giiii cuabai toaDA ~ B khi va
chikhi D apdl~ngduQcu"enA vaD(A) ::::>B
Be tlm m(}tWi giiii t6t hon tir loi giiii erabi6t ta co the xem xet til'dinh Iy
sau:
Cho D = {fI,f2, , fIll}la m(}tWi giiii cuabai toaDA ~ B lingvdi m6ii =1
m d~tDi = {fI, f2, , fi},Do=O.Ta xfiydl1ng1hQcacdayconSIll'Sm-I, ...
Sz,SI cuadaynhuD nhusau:
Sm= {fIll}
N6u Dm-Ila Iloi giiii
N6uDm-Ithong la Iloi giiii
Sm=0
Si =Si+I N6u Di-I U Si+Ila 11oigiiii
N6uDi-IU Si+Ithongla Iloi giiiiSi= {fi} U Si+I
"ifi=m - I, m - 2, ,2, 1
Khi do taco
(I) Sm C Sm+IC C Sz C SI
(2) Di-I u Si la 1loi giiii d6ivdibai toaDA ~ B i =m, ...,2, 1
42
LUANVANTHACsTKHOAHQC
(3) Ne'u Si 13.1 day con th~tst!cua Si thi Di-l u Si kh6ng phai 13.1 Wi giai
cuabai tmlnA ~ B'v'i
(4) SI 13.Wi giait6tnhatcuabai toanA ~ B
Ngu'oi ta c6 th€ phat tri€n m~ngtlnh toan thanh m~ngcac d6i tu'Qngtlnh
toan. Trong m~ngcac d6i tuQngtinh toan m6i 1 d6i tu'QngduQcthay the'bdi 1
m~ngtinhtoan tu'dngling gQi 13.m~ngcon hay con gQi la 1 d6i tu'Qngtlnh toan.
Quan h~f giua cac bie'nClIa d6i tu'Qngtinh toan la 1 quail h~giua cac d6i tu'Qng
d6. Nhu the'm~ngcac d6i tu'Qngtlnh toan baa gam m9t t~pcac d6i tu'Qngtinh
toan.
0 ={Ol,O2,03, , On}
va 1t~pcacquailh~giuacacd6i tu'QngF ={fl Fm}
f)~tM(fi) =t~pcacbie'nc6 lien quailvdi nhaubdi quailh~fi
M(F) = U Mf(D
M(O) =U M(Oi)
M(OD la t~pcacbie'nc6 lienquailde'nd6i tu'QngOi)
M la t~phQpcac bie'nduQcxem xet trenm~ngk€ ca cacbie'nthuQct~p
M(fi)
Mi =M (1M (00 i= 1,2,...,m
Vi d\l chobai toanti€u hQcsau:
Bie'tchi'eucaoh cuatamgiacADE va 3 c~nh a, b, c cuatamgiacABC.
Tinh di~ntichhinhthangBCED.
Bai toanc6d~ngcua1m~ngcacd6i tu'Qngtlnhtoanbaagam:
1/ B6n d6i tu'Qng:
01 : Tam giac ABC
O2 : Tam giac AOE
03 : Tam giac BEC
04 : Tam giac BCD
43
LuANVANTHACsTKHOAHQC
Os : Hinh thang BCDE
M6i tamgiaee6caebie'na,b, e,h, s
2/ Quan h«$giii'acaedo'itu'c;lng
fl : 01s=Olb * Ole
f2 : 01h =OlS * 2 : 01a
f3 : 03h =Olh -02h
f4 : 03S =01a * 03h
f5 : 03b=03S * 2 :Ole
f6: O2b=Olb - 03b
fl : 03 S=04S
f8 : 04 e=04S * 2 : 01b
f9 : O2e=Ole - 04e
fl 0 : O2S=O2e * O2b :2
flI :.OsS=OlS - 02S
Trongvi d1;lnaytae6 :
M(fl) ={OlS , Olb , Ole} M(f6) ={02b , Olb , Olb }
M(f2)={Olh, OlS , Ola} M(fl) ={03S, 04S}
M(f3) ={03h,Olh, 02h} M(f8) ={O4e, 04S, Olb }
M(f4) ={03S, Ola , 03h} M(f9) ={Oze,01e , 04e }
M(f5) ={03S, Ola , 03h} M(flO) ={OsS, OlS , O2S }
Caid~tm~ngtinhroan:
Vi«$eaid~tm~ngtinhroand11atrenn~ntangeuavi«$eaid~t~phc;lp.Vi«$e
eaid~t~phc;lphiiiehophepvi«$eth11ehi«$ncaepheproantrent~phc;lPd6.f)~
eaid~t~phc;lpX talamnhu'san:
-Ghinh~ncaeph'antii'x ellaX trongmQtdanhsaeh,m6iph'ane6chiso'
xaedinh.
-A c X sedu'c;lebi~udi~nbflngmQtdaybit,m6ibittu'dnglingvdimQtso'
thlit11haylingvdiph'antd'xeX d~ghinh~nph'antd'x e6thuQet~pconA
haykhong.Kihi«$ubittu'dngllngvdi so'thli111i ( lingvdimQtph'antd'x) trong
44
WANVANTHACsi KHOAHOC
daybitAla A(i),taco th€ quiudcding A(i)=l khi xEA, A(i)=O khi x ~A, IDeo
cachnhuthe't~pr6ngsedu<;fCbi€u di~nbdi daybit O,t~pX du<;fCbi€u di~nbdi
daybit 1,t~ph<;fpchicomQtph'antii'd'autiendu<;fcbi€u di€n bdi daybit d'autien
1£1vacacbitconl(;lila O.
-Cac pheptinhgiao,hQi,hi<$uliiy cacph'anbusetu'dngl1ngvdi cac thao tac
trencacbit
-Phepki~mtraIDQtph'antii'co s6thl1nrla i co thuQc~p h<;fpA haykhong
tu'dngl1ngvdi vi<$cxacdinhxembit i cuadaybitA la O.hay1.
- Vi<$cthembotra ph'antll'co s6 thl1nr i tUt~ph<;fpA tll'dngl1'ngvi<$cgall
chobiti trongdaybitA la 0 hay 1.
D€ cai d~tm(;lngtinh toan chung ta du'ara cach ghi nh~nd'aydu thongtin
c'ancho vi<$cXll'1)1v~t~ph<;fpcac bie'n,t~ph<;fpcac quail h<$.
Do'i vdi cac bie'nta c'anqUail1)1chung IDeocac bie'nsan:
n: s6bie'n trongm(;lng.
s:danhsachcacbie'n.
x: danhsachcacbie'nghinh~ngia tri Cllatl"Yngbie'ntrongm(;lngtinhtoan
Do'ivdi cacquailh<$,tac'ancocacbie'ntrongcai d~tnhusan:
m: so'quailh<$
pf danhsachghinh~ntinhd6ixl1ngcuabie'n.
Mf danhsachcact~pbie'ntu'dngl1ngcuacacquailh<$.
rfdanhsachcach(;lngcuaquail h<$d6ixl1ng
vf danhsachcacbie'nphl;1thuQc.
expf:danhsachcacbi~uthl1cuacacquail h<$.
flamerdanhsachcactenhaycachgQicuavungquailh<$.
Lu~tbie'nd6icacd6i tu<;fngtinhtoan
Trongquatrinhv~ndl;1ngcackie'nthl1cv~d6i tu'<;fngd~giiHquye'tde'ncac
b~litoanlien quail,nguoi ta con v~nd1;lllgcac quy lu~tbie'nd6i giii'acacdo'i
tu'<;fng.Cac quy lu~tbie'nd6i baahammQts6 dinh1)1hay quy tftcthuongdung
cho vi<$chl1ngminh.Chungchophepbie'nd6i hay thaythe'mQts6 do'itu'Qng
tinhtoanclingvdi mQts6quailh<$(hayIDQtm(;lngcacd6i tu'Qngtinhtoan)thanh
mQtd6i tu'Qngkhacmatri thl1cv~nogiupchovi<$ctinhtoandu<;fcd€ dang.
Vi d1;ltaco t~plu~tbie'nd6i lien quailde'ntamgiacnhu:
45
LUANVANTHACsi KHOAHOC
- L 1 : Tam giac c6 hai q.nh b~ngnhauHi tamgiac din.
- L2: Tamgiacc62 g6cb~ngnhaula tamgiacdin.
- L3: Tamgiacc6du'(jngcaovadu'C1ngtrungtuye'ntu'dnglingb~ngnhau
la tamgiacdin.
- L4: Tam giac c6 du'C1ngcao va phan giac tu'dngti'ngb~ngnhaula tam
giac can.
- L5: Tam giac c6 trungtuye'nva phan giac tu'dngti'ngb~ngnhaula tam
giac can.
- L6: Tam ghic c6 mQtg6c vuong la tamgiac vuong.
- L 7 : Tam giac c6 blnh phu'dngmQtc~nhb~ngt5ngblnh phu'dngcuahai
c~nhkia la tamgiac vuong.
- L8: Tamgiacc6mQtg6cvuongvahaic~nhkt3g6cvuongb~ngnhaula
tamgiacvuongcan.
- L9: Tamgiacvuongc6hai c~nhkt3g6cvuongb~ngnhaula tamgiac
vuongcan.
- LID: Tamgiaccanc6g6cd dinhla g6cvuongla tamgiacvuongcan.
- LII: Tamgiacc6bac~nhb~ngnhaula tamgiacdt3u.
- LI2: Tamgiacc6bag6cbhngnhauHitamgiacdt3u.
- LI3: Tamgiaccanc6mQtg6cb~ng;latamgiacdt3u.
46