Luận văn Bộ phân tích bài toán hỗ trợ cho việc giải các bài toán ở bậc phổ thông

BỘ PHÂN TÍCH BÀI TOÁN HỖ TRỢ CHO VIỆC GIẢI CÁC BÀI TOÁN Ở BẬC PHỔ THÔNG NGUYỄN NGỌC LONG Trang nhan đề Mục lục Chương 1: Một số nội dung cơ bản về trí tuệ nhân tạo và những ứng dụng của chúng trong nghiên cứu giáo dục và trong thiết kế các phần mềm trợ giúp dạy học toán. Chương 2: Những vấn đề cần lưu ý khi xây dựng phần mềm giáo dục ở tiểu học. Chương 3: Phần mềm trợ giúp dạy học toán tiểu học Tài liệu tham khảo

pdf44 trang | Chia sẻ: maiphuongtl | Lượt xem: 1780 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận văn Bộ phân tích bài toán hỗ trợ cho việc giải các bài toán ở bậc phổ thông, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ij)mxodday: mij= [ 1ne'unhu'phepbie'nd6i OJ lamgiamst.l'khacbi<$tdi 0 ne'ungu'(;fcl~i 1~2.2.2/Phlto'l1gphap STRIPS: Vi<$nghienCUuStanfordda du'ara phu'dngphapSTRIPS (Stanford ReseachInstitudeProblemSolver)vaonhungnam1970STRIPSda sitdl;mg phu'dngphaplogichvi tr!tU'capmQtd~motakhonggianbi~udi~ncuavand-e dudid~ngcacvi trt Tr~ngthaidu'(;fcxemlakhaini<$mcdbancuaSTRIPS.M~t khacm6iphepbi6nd6iloantittrongSTRIPSc'andu'(;femientiicacdi-euki<$nap d\lngvacachi<$ulingsankhiapdt.mgcacphepbie'nd6in'ay. Phu'dngphapSTRIPS daco nhi-eulingdl;mgtrongvi<$cxaydvngmQth<$ th6ngchu'dngtrinhdi-eukhi~nRobotvah<$n'aydingcotenSTRIPS. 1-2.3/Cae phlto'l1gphaptlm kie'm: Nhudatrlnhbay,h'auhe'tcaevand-ed-euco th~phatbi~udu'did~ng"Ti'imQt tr~ngthaiband'auhayfunmQtduC1ngdfinde'ntr~ngthaike'tthucmongmu6n". Quatrinhtoodu'C1ngdfintU'tr~ngth~ixuatphat(So)de'ntr~ngthaike'thuc (So)dath~hi<$nr5cachgiaiquy6tvand-ebaog6m: - LvachQnkhonggiantooki6mthichh(;fp. - Tie'nhanhtimki6mmQtcachcohi<$uquatrongkhonggiantimki6m. - HuydQngva sitdvngcacngu6ntri thlicco lienquanvaoquatrinhfun kie'mtilythuQCtirngmi-end6itu'(;fngCt.lth~. Khonggiantimkie'mcuamQtvand-edU(;fcgiai trenmaytinhthu'C1ngdu'(;fC bi~udi~nbdi d6 thiho~cmQtd~ngd~cbi<$tcuad6 thila cay.Khi bi~udi~nbai loandudid~ngd6thiho~ccaytadu'(;fC: - M6i dinhla mQtgiaido~ncuaquatrinhgiai (tr~ngthai) 9 LU~NVANTHACsTKHOAHQC - M5i clingla mcd9ngbie"nd6iquatrlnhtU'giaido~nnaysanggiaido~nkhac. Vi~cgiaiquye"tvftnd~duq~xemnhula vi~cfunduCJngdi ill tr~ngthaiband'au de"ntr~ngthaimongmu6nduqcbi€u di~nqua2dinhnaod6cuaciy funki6m. Vi~cc6 th€ bi€u di€n quatrlnhgiiii quye"tm9tsa lo~ivifnd~b~ngda thi nhutrenkhangnhfi'ngdii chophepcac nhatri tu~nhant~osa dlJ.ngnhi~uke"t quaclia 19thuye"tda thi ma con clingcifpcho ta phuongti~ndon gian d€ th€ hi~nslJ.'ho~tdQngcnacacky thu~tImki6mkhacnhau. MQt trongnhfi'ngtrdng~iIon nhiftkhi tamoanapdlJ.ngcacphuongphap cnatri tu~nhant~od€ giaicacbftiloancliath~I'ct6la qui mavadQphuct~pcna Unhhuang.M~tkhacdom9tsa bai loan n6ugiiii b~ngphtI'ongphaptlmki6m ngftunhienthl riftkh6 hy vQngUrnra Wi giciiva sa duCSngdi c6 th€ tang-theo hamsamll cna cacdinh.VI v~y,banchiftcnaphuongphapkhi giai quye"tcac vifnd~la giamthi€u sal~ntlmki6m. Cho d6nnaygiai quy6tvifnd~b~ngphuongphaptlmki6mlcsigiai vftnla phuongphaprift c~nthi6tvaquailtrQng. Cacthnt1J.cUmki6mbaagam: - TIm ki6m theochi~urQng(Breath - fIrst search) - TIm ki6m theochi~usan (Depth - first search) - TlDl ki6m sand~n(Depth wise search) - TlDl ki6m clJ.'cti€u h6a gia thanh(Cost minimization search) - TlDlki6m voi tri thucb6 sung(Heursisticsearch) 1-2.3.1/Phu'o'ngphapOmkie'mtheochi'eurQng: Phuongphaptlmki6mtheochi~urQnglaphuongphapki€m ITatft'ngdinh cuaclingmQtmucraimoichuy€nsangcacdinhd mucsanhon.Vi dlJ.xetcay: A A : tr~ngthaid~u B : tr~ngthaicuai B A C A E F G H ApdlJ.ngphuongphaptlmki6mtheochi~urQngvaodathitrenvan6sedi quacaedinhdathitheothut1J.'ABC D E F G 10 LuANVANTHACsTKHOAHQC Phuongphaptimkie'mtheochi~urQngdambaasetlmdu<JcWigiai(ne'u tant1;li)VInoclingcoth~suybie'nthanhki~utimkie'mvetc1;ln. 1-2.3.2/Phuongphaptimkie"mtheochi'eusau: Phuongphaptimkie'mtheochi~usanlaphuongphapthai iliacduongdftn mQtud'aude'ncu6itradckhichuy~nquaduongdftnkhac.Vi d\lxetcay: A E : tr1;lngthaicu6i B A A D E F G Apd\lngphuongphaptlmkie'mtheochi~usanVaGdathjtren,n6sediqua cacdinhcuadathjtheothunrA B D B E. Theocachtimkie'mnaythlphaidi de'nt~ndinhcu6iho~cdinhtrainhat.Trongtruongh<Jpg~pdinhcu6ithlc'anlui mQtmucvasangphaivasand611;lisangtraichode'nkhig~pdinhcu6iho~cdiOO dich.C'anl~p11;liquatrlnhnaychode'nkhitlmth~ydinhcu6icungcuathonggian funkie'm. Phuongphaptlmkie'mtheochi~usandambaaIuonIuontlmthayVItrong tntongh<Jpxaunhatn6sechuy~nsangtlmkie'mvetc1;ln. Tuynhienphuongphaptlmkie'mtheochi~usansethongthichh<Jpvdi nhii'ngtlnhhu6ngtrongd6taphaiki~mITaIDQtnhanhr~tdaichid~bie'tdinh cuan6thongphaiIa loi giai.Trongnhii'ngtraongh<Jpnhuthe'tanendung phuongphaptimkie'mtheochi~urQng. 1-2.3.3/Phuongphaptlmkie"msaud:1n: Phuongphaptlmkie'msand'anmythuQCvaogiatrimucsank dachoband'au. TaduavaodQsanhi~nt1;liD,gallchodQsanband'aumQtgiatrik duy~tcacdiOO trongph1;lmvicacdinhdQsan000honho~cb~ngD,sand6tangD=D+kvaduy~t tie'ptl;1c.Ne'utrongcaytant1;liitnhatI duCfngdi ill dinhg6cde'ndichthlvi~ctlm kie'msedungvachorake'tquala duongdi c6dQdaikhacduongdi ng~n hat khongquak - 1.Ne'utrongcaythongtant1;liduongdinhuv~ythiphuongphap chidungkhidathjIadinhhUllh1;ln.Vi d\lxetcay: LUANVANTH~CsTKHOAHOC A /B /D~ E~ A ~ L /c~ ~N 0 P A !\ Q R s T u v x y Ap d\lngphu'ongphaptimIdemsand'ankhik =2 thti't\fduy~tcacdinh la ABDECFGHQRKSTLMUVN 1-2.3.4/Phu'o'ngphaptlmkie'mcljcti€u h6agiathanh: Trongtru'CSngh<Jpmlii clingcuad6 thjdu'<Jcgall gia thanhthlhu'dngdi tim kie'mdu'<Jcxaedinhbdi vi~ccvclieuh6agiathanhdu'CSngdi. Vi d\l xetcayvagiacacclingnhu'hlnhve vat~ndinhdichla {D,H} A B Al /\2 D E G H PhuongphaptimIde'mcvctieDh6agiathanhchoke'tqualadu'CSngdiAPH. Thu~tgiainaythongtheapd\lngdu'<JCkhibailoanlId nenphti'et~pdodoihoi phiiithaom(>tseSlu'<JngWncacmil. 1-2.3.5/Phu'o'ngphaptlmkie'mvaitri thucbffsungHeuristic BeSivdinhi~ubai loanvi~curnkiemdu'CJngdi teSiu'Usedu'<Jcdinhhu'dng ~ptrunghonxungquanhdu'CSngdi teStnh~tneusad\lngcacthongtind~ctav~ btii loan.TheodinhnghlacaethongtinnaygQila Heuristic."Heuristicsdon giiinla caequi ukdanhgia cackha nangde vi~eurnIdemtie'nhanhIDeom(>t haongdung" (TTNT :cacphu'ongphapva«ngd1;1ng-B~chHu'ngKhang,HoangKiem- Nhaxu~tbanKHKT 1985) Caekythu~tHeuristicsgQilacacmyOgiai. 12 LUANVANTHACsi KHOAHOC Ta c6 the du'ara m~ogiainhu'sau: - ChQntoclnht xftydl;1'ngcungsaochoc6 theIO<;1ibatnhungdinhkhonglien quande'nbailoan,IO<;1ibatcacdinhitc6trienvQngflAmtrendu'dngdi t6iu'U. - Sit d~mgthongtinb6 sungnhAmsa:pxe'pcacdinhtrongt~pcacdinhdin phaimd,m6i fandin IffymQtdinhtrongd6.Mu6n v~y,tadin phaidu'ara du'<;lC donaod6 choph6pxac dinhtri~nvQngcuacacdinh thu'dngdu'<;lcgQila ham danhgia(costfuntion) Cachamdanhgiadlt<;lCxftyd~tngdl1atrennhungphttdngphapkhacnhau: - Xac sufftmQtdinhnaod6flAmtrendltdngdi t6ilID. - Khoangcachhays~tkhacbi~tgiua1dinhnaod6vdi cact~pdinhdich. Vi d~l:X6tbailoanthapHaNQivdin=2 Lffyhamfo=go+ho(ho(m)thongtinn6ithemv~m6ilienh~giuamva tr<;1ngthai dich) Chiing h<;1n: -Ne'ud CQCC chu'ac6ilia naothlho=2 -Ne'udCQC c61iliatothiho=1 - Ne'ud CQCC c6 1dlanhothlho=3 - Ne'ud CQCC c62 dla,dlanhod trenilia to thiho=0 k€t quadu'<;lcchira d hinhvesau: g=2 O~J / h=2 h=3 0f=5 h=2 f=4 g=l h=2 f=5 h=O f=3 h=l f=4 13 LUANVANTHACsi KHOAHOC Thong tin Heuristicmy khong phiHIa luon luon chinhxac va dambao nhungno lamtangcelhQid~vi~ctimkie'mICfigiai,nhanhheln, t6i l1l1helnho~c ch~nch~nheln. M~tkhac,trongkhi timICfigiai cl1ngnhugiaiquye'tvin d~,connguCfi thuCfngb6sungthemhi thuccuabanthanminh.Nhii'ngtrithuciy he'tsucquari trQngVInogiuptagiambOtthCfigiandmkie'mvahuongram\lclieu.LOpth\!'c giaiHeuristichaycongQila myOgiai th~ts\!'conIOnhelnca lOpthu~tgiai Algorithms.Thu~tgiaiHeuristickhacthu~tgiaiAlgorithmsd mucdQph6d\lng vakhongphailucnaocl1ngthanhcongoHelnnii'akhongphailucnaodingfun duQcthu~tgiaiAlgorithms. " " ,., '" " , 11-l~P lU~N TIEN VA l~P lU~N lUI 11-1/ l~plu~ntie'n: L~plu~ntie'nb~tdl1uto'tr~ngthaixuitphat,thongthuCfngtaphiiixayd\!,ng mQtcaycuagiaicacchuy~ndQng(matacoth~gQila giaiICfigiai)biingcach xuitphatto'hinhth~bandl1ud~t~orag6ccuacay.T~oramuctie'pIDeocua caybiingcachtlmtit cacaclu~tmaphiatrltOCcuanophfthQpvoinutg6cvasti' d\lngphiaphaicuanod~t~oracachinhth~mOi.L~it~otie'pcacnuttie'ptheo biingcachliy m6inutduQct~orad muctrttOcvaapd\lngvaonotit cacaclu~t maphiatraicu~hl~tIa phfthQpvoi no.Tie'pl\lcnhuv~yde'nkhi naot~ora duQcmQthinhth~moiphuhQpvoitr~ngthaidich. 11-2/l~plu~nlui : L~plu~nlftixuit phatto'tr~ngthaidich.B~l~plu~nlfti trttOche'ttaphai xayd\!,ngmQtcaycuacacdaychuy~ndQngbiingcachxuitphatto'hinhth~dich d~t~orag6ccuacay.T~omuctie'ptheobiingcachtlmtit cacaclu~tmaphia phiiicuanophuhQpvoinutg6c.Sti'd\lngphiatraicuacaclu~tiy d~t~ofa cac dinhdmucthuhai.L~it~otie'pcacmuctie'ptheocuacaybhngcachliy titca cacdinhd muctruOcvatlmtit cacaclu~tmaphiaphaicualu~tiy phuhQpvoi no.Rail~isad\lngcacphiatraitu'elngungd~t~oraduQcmQtnutmOi.Tie'pl\lc nhuv~yde'nkhinaomatat~oduQcmQthinhth~moiphfthQpvoitr~ngthaiban dl1u. Vi dl)mink h{Ja: Giii satacl1ndmWi giai cuabai loansau: "Tan t~ihaykhonghai so' nguyenduelngm,nthoamand~ngthucsau: m2+(m+1)2=n4+(n + 1)4 B~kh~ngdinhco tant~ihaykhonghai so'nguyenduelngm, n thoaman d~ngthucb."enthltaphaihinhdungduQcphl1nnaothuQctinhcuahai s6m,n do. 14 LU~NVANTHACsTKHOAHOC £)i~ud6 g<;fiY dingtaphaixuiltphattiYtr~ngthaidfch,tucIas\\,tont~icuahais6 nguyenduongm,n thoad~ngthuctren. m2+(m+1)2=n4+(n +1)4 ~ 2m2+2m =2n4+4n3+ 6n2+4n ~ m2+m+ 1=(n2+n + 1)2 Dod6m2+m+Ila s6chinhphuong. M~tkhactal~ic6(m-1)2<m2+m+1<(m+1)2nenm2+m+1khong theIas6chinhphuong. VI V?ykhongthetont~ihais6m,nthoamand~ngthuctren. Vi dt:!v~bailoantinhtichphan: khonggiancacbai loancuabailoanla t?Ph<;fpcaccongthUCtrongd6c6mQts6bienthuctichphan.Tr~ngthaixuilt phatla mQtcongtht1'cql theva trongcongthuciCyco mQts6bienthuctieh phan.Tr~ngthaidfchmongmu6nla rutramQts6congthuckhongchuabien thuctichphanvatu'ongduongvdicongthucband'au.Be giaiquye'tvilnd~nay, l?plu?ntie'nbie'nd6itfchphandet~orabienthuckhongchuatichphanthlt6t honlaxuiltphattU'cacbienthuckhongchuatichphanva sii'dt:!ngcaequilAc d~ohamdethii'nh~mt~oracacbienthucc6chuatichphanband'au. Haividt:!trenconneukharov~t'amquailtrQngcuam6ilienh~gillatr~ng thaixuiltphatvatr~ngthaidfchtrongvi~cxayd\\,ngmQthuangdi t6tnhiltnh~m quye'tdinhquatrlnhtimkie'msedi IDeohuangnaokhi mah~s6phannhanh theohai huangla xilp xi nhau.Tuy nhien,ding c'anphai chuyde'ncatru'ong h<;jpkhimah~s6phannhanhtheohaihuanglakhongnhunhau. CackythU?timkie'mvftndU<;fCsii'dt:!ngph6bie'nhi~nnayvftnla timkie'm theohuongtie'n,timkie'mIDeohuanglui.TrongmQts6tru'ongh<;fpnguoitacon ph6ih<;fpcahaiphuongphap. 111-BIEUDIEN TRI TH(JC: Quatrlnhtimkie'mth\\'chillla quatrlnhchuyendQngtrencacdinhcua mQtd6thiho~caymam6idinhcuachungbiendi~nmQtdiemcuakhonggian bailOan.Honnllacacbailoanmachungtamu6ngiaiIacacbailoanngaycang phuc~pthlvilnd~biendi~ncacd6itu'<;fngcacs11ki~nclingnhucactrithuccua bailoankhongthela mQtvilnd~ddngian.G'andaymQts6ky thU?tmdidu'<;fc hlnhthanhtrongtinhQcvadatrdthanhnQidungcobancuatritu~nhant~o,d6 lacacky thU?tbiendi~n,xii'ly va quailtri tri thuctrenmaytinh.Theoquail diemcuatinhQcthltrftu~nhant~ola khoahQcv~vi~cbiendi~nva sii'dt:!ng kie'nthat.MQichudngtrlnhcuatrftu~nhant~od~uphaid11atrenmQtlU<;fCd6 bi~udi~nkie'nthucnaod6. 15 LU~NVANTHACSI KHOAHQC 111-1/Caed~ngtri thue: Tri thuctant~idudihaid~ngcdban: - Tri thacdinhht<Jng. - Tri thacdinhtinh. Cactri thacdinhlu<JngthuClngAllvdi cacHenristickhacnhau,cacky thu~tHeuristicpht~thuQcvaonhi~ucacchatlu<Jngciiacachamdanhgiala cd sdd~h;1'achQnchie'nlu<Jcdi~ukhi~n:xa ly c~nhtranhvachQnhu'dngdmkie'm phuh<Jp. Cactri thacdinhtinhdu<Jchiathanh3 lo~i: -Tri thacmota(Declarativeknowledge) -Tri thacthii~c (Proceduralknowledge) - Tri thucdi~ukhi~n(Controlknowledge) * Tri thucmotachonhungthongtinv~mQts~ki~n,hi~ntu'<Jnghayqua trlnhmathongduarathongtinv~ca'utrUcbelltrongclingnhucacphudngphap sad\mgbelltrongtrithacdo.Tri thucmotaconchophepmientam6ilienh~, cacrangbuQcgiuacacd6itu'<Jng,cacs~ki~nvacacquatrinh. * Tri thucthii~cchotanhungca'utructriiliac,ghepn6ivaSHYdi~ncactri thli'cmditUtrithacdiico.Caclo~itrithacnayt~onencdsdciiaky ngh~xaly trithac(Knowledgengineering) * Tri thacdi~ukhi~ndungd~di~ukhi~n,ph6ih<Jpnguantrithacthii~c vatrithacmatakhacnhau. VidT!-..E>6ivdiphudngphapgiiiiquye'tva'nd~nhClbi~udi~ntrongkhong giantr~ngthai. - Cactrithacmotalacacthongtinv~cung,dinh. - Cactrithacthii~clacacthii~cfimkie'm. - Cactri thtl'cdi~ukhi~nlienquande'ncacchie'nlu<Jcdi~ukhi~nd~l~a chQndinhndu<Jcthaoravahuangtimkie'mtrongthonggian. 111-2/Caephuongphapbi€u di~ntri thue: Tu'dngungvdihailo~itri thacmotavatri thtl'cthii~c,c62 lapphudng phapbi~udi~ntrithac: bi~udi~nmotavabi~udi~nthiitq.c.Caccdche'di~u khi~nseduQclangtrongbanthanca'utrUcngonngubi~udi~ntri iliac.Co th~ phanlo~inhu'san: 16 LU~NVANTHACsTKHOAHOC - Phuongphapbi€u di~ntri thll'Cmota : logic,m<;lngngii'nghla,AOV - Phltongphapbi€u di~ntri thucthilt~lC: sanxua't. -Phu'ongphapbi€u di~nh6nhqp: frame. 111-2.1/Caephuongphapbi€u di~ntri thuemofa. 111-2.1.1/Bi€u di~ntri thueAhalogich: Cosdlogichbi€u di~nb~nglogichm~nhde. Cosdtrithuc(Knowledgebase)gam2ph'an: - Cacs~iki~n: (Facts) - Caclu~t(Rules) Cacs~tki~ndltqCchobdicaclu~td~cbi~td<;lng: T~pF =(qI; q2 qk)t<;lODengia thie'tchoph'anSHYdi~ncac dinhlu~td d h ;! " "<;lugc uanPI .oo.Pn~ q Cosdtrithucbi€u di~nb~nglogichvi tri. Cosdtrithucgam2ph'an: - T~pcacs~ikit'$nF. - T~pcaclu~tR. Cacs\1kit'$nduqcchobdi 0 ~ qi (x, y, zoo..)Hi cac vi tri ph~lthUQCVaGcac h<;lngthucx, y, Zoo. TrongtruClnghqpx, y, z Hicacbie'n,ne'uchungg1{nvdi luqngtU':3thiphai thaychungbdi mQtgia tri tltqngtIlingho~cth~ts\1. Caclu~tcod<;lngPI (.) /\.oo"Pn(.) ~ q(.)dieuc'anluuy lacacbie'nthalligia trongpi & q denphaig1{nvdihiqngtU'"vdi mQi" Logicvi tr!va logichmt'$nhdecocacliu di€m san: - La ngon ngii'bi€u di~nki€u mo ta. - Co khaDangSHYdi~nvdi caccoche'quellthuQc. 17 0 ql 0 q2 0 qk LUANVANTH~CsTKHOAHOC - Kha tr~lcquail dO'ivoi ng11C1isi 'd1Jng. - Khag'angUiv~cuphap. - Co th6dungd6motacffutrucvaxii'ly dQngmohinh. - Co th6ki6mtratinhmauthuantrongcdsdtrith((c. - Tinhmoduncao. Ng1IQCl~icongc1;1logichdiibQclQmQtsO'ye'udi6m.. - M((c dQhinhth((choaquacao,danWi kho higHngfi'nghlacacvi tri khi xemxetch1ldngtrinh. -Nangsufftxii'ly thffp. - Do cactri th((cd1lQCbi6u di~nnhC1cacvi tri nendin u'uthe'sii'd1;1ngdiu trucdfi'li~uthong d1lQCthai iliactri~td6. 111-2.1~2/Bi~udi~ntri thucnhomiJ-ngngunghia. M.~mgngfi'nghlala d6 thidinhh1longmacacdinhtu'dng((ngdO'ivoicacdO'i tu'Qngho~cthai ni~mth6,concaccungphananhnhfi'ngquailh~gifi'acacdinhdo. (Tritu~nhant~o:Cacph1ldngphapva((ngd1Jng) MQtcachhinhth((c,m~ngngfi'nghlacoth6mohinhbdimQtd6thiG =(N, A)voit~odinhN vat~pcungA. T~pdinhN t1ldng((ngvoi cacdO'itu'Qng,cacthai ni~mhays1;fki~nC1;1th6. T~pcungA = {(a,b) / a,b E N) tu'dng((ngvoi cacmO'ilien h~giUacacdO'i tu'Qnga& dO'it1lCJngB. Co 2 lo~iquailh~d~cbi~t: "a lab" va"a baag6mb". Trongquailh~"a baag6mb" cacthongtincd banv~cacdO'itllQngchobdia setruy'Cnl~ichob.Nh11v~ytacod1lCJCmQtcd chelantruy~nthongtintrenm~ngngfi'nghlamythuQCvaocacmO'il enh~.Cac bi6udi~nnayco1mdi6m: - Cho phepbi6u di€in mQtcachtr1;fcquailcac S~Iki~nva cacmO'ilien h~ gifi'achung. - Tinhmodulcaotheonghlatrith((cthemvaohoanloandQcl~pvoicactri thac u. - La ngonngfi'bi6udi~nd~ngmota. - Co th6ap d~mg1 sO'cd che'SHYdi€in trenm~ng: cd che'truy~nva thua huangthongtingiii'achung. 18 LU~NVANTHACsTKHOAHOC Bi€u di~nnay cling c6 mQtsO"nhll'qcdi€m : - Khongc6phudngphapSHYdi~nchungchomQilo~im~ngngii'nghla. - Kh6 ki€m soatquatrinhc~pnh~ttri thl1'c,clandtn c6 mallthuantrongcd sdtri thl1'c. 111-2.1.3/ Bi€u di~ntri thucthutl}ccach~lu~td~n: Ngaynaytrenthtgioidaxufithi~nkhanhi~ucaechltdngtrinhIOngiaicac baitoaDtrencactanhV\l'ckhacnhaunhll'dt;1'baathaititt,thittkt h1dQng...f)~c di€mcuacacchudngtrinhnayladungl~plu~nthonghinhthl1'cdt;1'atrentrithl1'c docacchuyengiatrenti1'ngtanhvt;1'cclingcfip.Hftuhtt cacchudngtrinhn6i trend~uchl1'acactrithl1'cbi€u di~ntheoki€u :"IF -THEN" Thid~:Ntu tamgiacABC cant~iA thi B =C CacquiHlcki€u IF - THEN nhll'v~yse t~oDen1 cd sdtri thl1'cbi€u di~n theoquit~cdi~nxufit(hayh~lu~tdaD).Ta c6d~ngt6ngquatcuamQtqui~c trongh~lu~tclanla: . -Quit~cX : Ntu di~uki~n1 di~uki~nrn Thi ktt lu~n1 ktt lu~nn Tuytheornl1'cdQphl1'ct~pcuatri thl1'c,quidinhvitt cacdi~uki~nktt lu~n c6th~lam~nhd~ddngiancacvi tt;1'cfip1 kerntheodQch~ch~nvatinc~y. Ngu'oitac6th€ sad~ngquit~cclanxufittheochi~uti~nho~clui. Thi d~chocdsdtri thl1'csan: Cd sd S\l'ki~n Tl1'giacPQRS la hinhbinhh~mh. Tl1'giacc6 2 duangcheob~ngnhau. Tqpcaeluqfla .- Tl1'giacPQRSlahinhbinhhanh~ Tu giacc6cacc~pc~nhdO"isongsong(R1) Tl1'giacla hinhchii'nh~t~ Tl1'giacc64 g6cd dinhd~uvuong(R2) 19 LUANVANTHACsi KHOAHOC T(( giac PQRSlahinhbinhhanh~ T((giacco c~pq.nh d6i songsong(R3) T(( giacco c~pc<:J.nhd6i b~ngnhauva 2 du'ongcheob~ngnhau~ T(( giac la hinh chii'nh~t(Rt) T(( giac co 4 goc d dinh b~ng1 vuongva ill' giac co 2 du'ongcheob~ng nhauvaill'giacco2c~pc<:J.nhd6ib~ngnhau~ T((giacco2 trl;1cd6ix((ng(Rs) T(( giac co 1 c~pc<:J.nhd6i songsongva 2 du'ongcheoc~tnhaut<:J.itrung di~mcuam6idu'ong~ T((giacla hinhbinhhanh(R6) Giasatakyhi~u: Cdsddii'li~ulaM, N T~pcaclu~tdaDla : (R3): M ~ A (R2): B ~ D (R4):E " N ~ B (R5) :D " E " N ~ C (Rl): A~E (R6): G" H ~ A Nhu'v~yM, N daDxuattheochi€u titn sechoktt quasan: Vdi qui t~cl~plu~ntrenchi vdi 2 sl;!'ki~nM, N se daDxua'tthemcacsl;!' ki~nA, B, C, D, E. Ngu'qcl<:J.imu6nxem sl;!'ki~nD c6 daDxua'tngu'qcto'dii'ki~nnaota sa dQngquatrinhdaDxua'tlui. Theo sd d6 cay vA. - HoAc trenta tha'y2 bQsl;!' ki~ndaDraD la (M, N) va(H, G) G >v~ Ho~c E A D H B N 20 (R3) MA {A,M, NJ (Rl) AE {A,E, M, N} (R4) E"NB {A,B, E, M, N} (R2) BD {A,B, D, E, M, N} (R5) D"E"NC {A,B, C, D, E, M, N} LUANVANTH~Csi KHOAHOC Cach bi€u di€n nhCJlu~td~nc6 cac lID di€m san : -Cachbi€u di€n khaddngianvatn!cquaD: - C6 th€ SHYdi€n theocacchi6nluQckhacnhau: SHYdi€n ti6n,SHYdi€n lui, SHYdi€n h6nhQp. - Khag'angfiivdingonngurootacuangonnguLISP. - C6th€ ki€m ITatinhmallthu~ngiuacaclu~t. - Tinh modulcao,nghlala vi~cthembdt, lo(;libi) cac lu~td~nhoanloan khonganhhudngWicaclu~tkhacvacdch6suydi~n. NguQcl(;licachbi€u di~nn'ayc6mQts6h(;lnch6: - Nanglq'cxii'lythip. - Khongsii'd~ngduQCciu trucduli~u. Bi€u di€n nhCJbQbalienhQpOAV. MQtcachbi€u di€n khacla sii'd~ngbQbaB6i tu'Qng- ThuQCtinh - Ghl tri (Object- attribute- Value)d€ chi ding "B6i tu'Qng"vdi "thuQctinh" da choc6 mQt..gia tri" nao.d6. C'anphanbi~thaid6itu'Qng: d6itu'Qngtinhva d6itu'QngdQng.Cacd6i tu'QngfinhduQclu'utrongh~nhddaih(;lnvakhic'anduQcduavaobQnhdlam vi~cd€ xii'ly.NguQcl(;li,trongquatrinhlam'Yi~ckhic'ansekhdit(;locacgiatri thuQctinhciiacacd6itu'dngdQngvachungduQchtlldbQnhdtrongph~cv~.cho vi~cxii'ly ti6ptheo. Phudngphapbi€u di~nbQbalienhQpc6nhungdi€m m(;lnhsau: - Chophepbi€udi~ntn!cquaDcacd6itu'Qng. - Tinhmodultu'dngd6icao. - La ngonngubi€u di~nd(;lngmotit. -Cho phepdi~nd(;ltkhatu'CJngminhcaclu~tsuydi~n. Tuynhienphudngphapn'ayclingc6mQts6nhuQcdi€m nhunhuQcdi€m cuacachbi€u di€n theom(;lngngunghla.Ngoaira,cacquaDh~lienk6tgiuacac d6itu'Qngkhongth€ bi€u di~nmQtcachtu'CJngminh. 111-2.1.4/Bi€u di~ntri thucb!ingFrame B€ ciu truch6amQtluQngtri thacldn.Murskydaduara mQthinhm~u Frame.Framethl1Cchit la s,!t6ngquath6aciu trUcbanghitrongPascalho~c danhsachbanth€ tTongLISP vatu'dngt1!nhuciu trucd6itu'QngtrongC++,t~n 21 LU~NVANTH~CsTKHOAHQC d~lllgdll'~cacu'udi~mcliacac1u~Hdftnvavi tri, clIngnhll'm~ngngfi'nghla.MQt Framedll'~Ct~onen fir mQtt~ph~pcae tru'ongterminal.Trong m6i tnl'ong termina1labi~udi6ncilamQtdangky co th~(nhll'mota lo~i,di~uki~nvamall saochocacdangky do t~oramQtsl1ke'th~phcjp1y) "Cach~chuyengiau'encdsdFramegall, thiVl]GUSvaNUDGE" TTNT : Cacphll'dngphapangdl;lngB~chHu'ngKhang-HoangKie'm-Nha xuatbanKHKT - 1989 Cachbi~udi6nFramechotanhfi'ngll'ndi~msan: - Bap ll'ngcacyell diu bi~udi6ntri thac. - Cho phep ngu'oisirdl]ngkha t~l'do khi bi~udi6n tri iliac. - Framekhongchidu'~cdungd~motatri iliac,macondu'~cdungd~th~ hi~ncacthu~ttoanSHYdftn. - Framet~ndl;lngdll'~Cnhfi'ngthe'm~nhcuabi~udi6nthutl;lcvamota. - Quatdnhxa 1ytrenFramedQcl~ptheonghlathilake'thongtinkhong nhathie'tphaitu'antl1. Benc~nhdo-FrameclIngcomQtvaih~nche'. -Quani;ingn~d6ivdi ngll'oisadl;lngthongthu'ong. - Vi~cgiau'icuacacU'll'ongterminalcotl).~gallquavi~cthvchi~ncacthu tl;lclamchovi~cthun~pvac~pnh~tri thactrdnenphact~pvalamkhanang m~mcleophuh~pvdi nhfi'ngthayddicilamoi tru'ongngoaigiamxu6ng. . -Calltruccllah~FramechophepmotacacCalltrucdi~ukhi~nxa1y: thll tl;le.Mi;itkhaeCalltrueFrameehophepd~ngbi~udi6ncaeddnvi Calltrucdi~u khi~nvacaeddnvi CalltrUedfi'li~u,nene'anphaisadl;lngcaebi~nphapkha diuky.Vi the'matHnhtrvequailtrongphu'dngphapbi~udi6n. - Khi bai toantrd nen phaet~phdn, vi~emo ta va di~ukhi~ntrongh~ Framesephaet~pnhi~utrongcaephu'dngphapbi~udi6nthll tl;lckhoa. , f l 22 LUANVANTHACsi KHOAHOC So d'cae phuong phap biiu dieD Bi~udi~ntri thl1e B"' / /eu~ ~ Bi~udi~nthd~le ~ BQbalienhqp +- M~ngng~og7"\n suilt Frame 811gi6ngnhaugiiiacaephuongphapbiiu dieD Caelu~tSHYdanlogicconhi~udi~mgi6ngnhausovoicaelu~tsanxua't. Caedi~uki~ntronglu~tsanxua'trongnhi~utru'onghqpco th~quiv~ d~ngphcitbi~usii'dl;1ngvin'rhaym~nhd~. Caephu'dngphapbi~udi~ntrithl1ecoth~xemnhu'Him~nhngangnhauv~ khiinangmotad6inl'<;fng,caes11ki~nvamQtph'ancaem6iquailh~gifi'acaed6i tu'<Jng.Tuynhienphll'dngphapm~ngngii'nghlacokhanangbi~udi~nei~lien ke'tgiii'acaed6itu'qngphongphunha't.Tu goedQxii'ly thdtl;1e,a'utrueframe vaeaesloteoloi gQithdtl;1ecokhanangxii'ly m~nhdneaehtie'pe~nlu~tdan. 23 H san Logich Mc;mgfigii' GAV Frame Lo:;ti xua't nghla S11kin S11kin Mnh d vi trt Nut BQOAV Slot Tinh eha't S11kin Lut Quanh Lut Quanh d6itu'qng Quan h Sanxua't SHYdan Quanh Cantra gifi'a ca.e d6itu'qng LUANVANTHACsi KHOAHOC 111-2.2/ Cdche'I~plu~nv6;ibi€u di~ntri thuc : Cac nhalogichdachira C.<icphu'ongphaplu~nchuy€u san: - Phu'ongphapSHYdi~n. - Phuongphapquydi~n. - Phuongphapquin~p. PhuongphapSHYdi~nduQcdungphcSbi€n trongcac tu'duychinhxacva ch~tche,haikieuSHYdi~nquellthuQcla modusponensva modustollens.Hai cachSHYdi~ntrongquatrinhl~plu~nthu'ongdungSHYdi~nti€n valui.Ph6ihQp caccachSHYdi~nti€n valui sechocacky thu~tSHYdi~nthichhQpchocacva'n d-eCl}the. . . Phu'ongphapquin~plaphu'ongphapl~plu~ndi tUcachit$ntu'QngriengIe dekhaiquatthanhquihl~tc6HnhphcSbi€n. Kieuquin~pmaconnguoisii'd\lllg clingra'tdad~ngvaphlJthuQcnhi-eutrithlic.DosirdlJngquin~pmatrithlicloai ngu'oim6ingaydu'Qctangleura'tnhi-eu. M~tkhactri tut$con nguoicon c6 nhungkha nangra'td~cbit$td6 la kha nangbienva SHYlu~nbiingphepSHYdi~n. Trien vQngciia cac chuangtrinh"thongminh" phlJ thuQcnhi-euvao kha nangv~ndlJngnguontri tut$n6i tren. Nhi~unha tin hQcchodng diem ma'uch6tde may c6 thebien duQcslJ' tu'ongtlJ'(nhU'conngu'oi)la vit$cbiendi~nthongtinv~cacd6i tU'Qngdin sosanh dltdid~ngtit$nIQi.Thi dlJ dltdid~ngcacFramebaogammQtt~phQpchliacac giatri thuQcHnhnaod6cuad6i tuQng. DI nhien,ke cachod€n nayvit$cxay d\tngcaccoch€ SHYlu~nchocacht$ tri tut$nhant~ov~nla bai loankh6,d~cbit$tvit$cxay dlJ'ngcoch€ quyn~pcho caeht$ehuyengiavftnconIa va'nd~nailgiai. Ngoai fa, cachltdngnghienClmv-eht$ehuyengia clingdangc6 nhi-euthu hUtvi doclingchlnhlacac nghienell'uv-echltongtrinhhUllich, tit$nIQidapling duQcvit$cgiai quy€t nhi-eunhudiu th\tct€ matrudchic chU'agiaiquy€t dU'Qe. VI- H~CHUYEN CIA: Ht$chuyengia la nhungchltdngtrinhbi€t bAtehU'ocac cachling xii'eiia caechuyengia.Chungdungnhungthongtin dongltoisii'dlJngCHUgca'pdedua rayki€n v-emQtchud-enaodo. (HepbertSchildt- L~phlnhC chohi tut$nhan~o- Nhaxua'tband~ihQc- 1991) 24 LUANVANTH~CsTKHOAHOC Nhu' v~y,h~ chuyen gia co th~df;itnhi~udiu hoi d~phong va'nnglioi sa dl)ngcho d€n khi co th~nh~nbi€t dli<;lCdoi tu'<;lngphil h<;lpvoi nQi dung ITa loi cua ngu'oisadl~ng. M6i h~chuyengiaco2 bQph~nHicdsdtri tht1'cvacdch€ l~plu~n. IV-1/ Cd SO'tri thU'c: "Cd sd tri tht1'cHi mQtcd sd dil li~u cht1'anhilng thong tin df;ictIling clIng voi cac quy titcv~mQtchu d~nha'tdinh nao da'y" (HepbertSchildt- L~ptdnhC chotritu~nhflll410- Nhaxua'tband~ih9C-1991) Cd sd tri tht1'cbaa g6m mQth~lu~tphan anh hi~ubi€t va linh nghi~mcua cac chuyen gia trongmQtUinhv~l'chyp xac dinhva mQtt~ph<;lpcac sl)'ki~nlien quail d€n cac Hnhhuong dll'<;lcxem xet dll'<;lCcoi nhli dil li~uva chu y€u do nglioi sadl)ng clIng ca'p. Cha'thl'<;lngcliamQth~chuyengiaphl)thuQcra'tnhi~uvaocha'tlli<;lngcua cdsd tri tht1'c.Cd sd tri tht1'csemotacacdoi t:tl'<;lngva moi quailh~giila chung, motacacgiai phapkhacnhautrongcacHnhhuongCl)th~vango~il~,cacrang buQcuaquy€t dinh.Nhl(v~y,tacoth~xemcdsdtritht1'cladaubsachcacdoi t:tl'<;lngclIngcacqui titcvacacthuQctinhcolien quail. VI- 2/ Cdch~I~plu~n: "Cd ch€ l~plu~nHi chll'dngtrinhmo phongcachl~plu~nclia connglioi, Chl(dngtrinhn'ayco kha nanghQcki€n tht1'chuyengia ca'utrucva khai iliac . chungd~t~onencacl~plu~n1:1)'dQng". "Nhli v~ycd ch€ suylu~nHimQtbQph~nclia h~chuyengiaco vai tro sa d~mgthongtindll'<;lCrungca'pd~Hmra doitli<;lng". Hai lu~tlogichhinhtht1'cdll'<;lcsa d~mgtrongmQih~chuyengia Himodus pollensvamodustollens. Hai phll'dngphapcd band~xiiy dl)'ngcd ch€ SHYlu~nHi l~plu~nti€n va lui,hof;icca2 hll'ong. - Phll'dngphapl~plu~nti€n : Phll'dngphapl~plu~nti€n doi khi condli<;lcgQila phlidngphaptruy~ndil li~uva cd ch€ l~plu~nsirdl)ngthongtingiongnhli connglioisadl)ng~~ntheo ID(;lnglogichVA-HOAC d~ti€n d€n k€t thuc,WcHimtoi doi t1i<;lng.N€u cdch€ SHYlu~nkhongHmtha'ydoi t:tl'<;lngbangthongtinhi~ncothinoseyellc'authem cacthuQctinhxacdinhdoi t:tl'<;lngamthanhdliOngd§n d€n doi t1i<;lng.Cachduy nha'td~ti€p c~nd€n doi t1i<;lngHithoamanta'tcacacqui titccuadoi t1i<;lngdo. 25 LUANVANTHACsTKHOAHQC DodocdcheSHYlu~ntienxuitphattirthongtinband'aud~huangWid6ituqng thichlingvaithongtindo. Oia sLY,ngu'oitaxay d\ingh~chuyengiav(shinhhQccocdsdtri thucnhu sau: Vai cdsdtrithucduqcxaydl!ngnhliv~ytacoth~l~psdd6th~hi~ncach SHYlu~nCliaphudngphapl~plu~nliendend6itUqnghinhvuongnhuhinhve sailday.H~th6ng.l~plu~ndfftienhanhxaydl;1'ngmQtcaytUg6cdenla. 4 c?nh I 4goc I 2 cf;ipc?nhd6i biingnhau C 2duongcheo biingnhau I 2duongcheo vuonggoc I Hinhvuong Phlidngphapl~plu~nllii L~plu~nlui Hiphudngphapngliqcvdi phudngphapl~plu~ntienxua'tphat tUgiathietd6i tUqngvayell c'authemthongtind~khiingdinhhayphudinhno. L~plu~nlui doikhi duqcgQila truy(snd6i tUqng,vi hQchuyengiaxua't phathI'd6itliqngva sandotimcachki~mchungno.Oia sa,apd\mgquatrinh l~plu~nllii VaGcdsdtrithuchinhhQcnentrentacosdd6th~hi~nphudngphap l~plu~nllii de'nd6ihiqnghinhvuong. 26 BQituqng Quitc ThuQctinh Tugiac co 4c?nh,4 goc Tugiac co 2duC1ngcheo ffinhbinhhanh co caccf;ipc?nhd6ibiingnhau ffinhbinhhanh la tUgiac . ffinhvuong co 2duongcheovuonggoc ffinhthai co 4c?nhnhau ffinhchfi'nht co 1gocddinhvuong ffinhchfi'nht co 2duongcheobiingnhau LU~NVANTHACsTKHOAHOC Hlnhvuong Hinh chi! nh~t /~ - 2 dttongcMo vu6ngg6c Hinh hinh hanh /~ 2 Mi!ng cheohAngnhan Tu giac I co2 c(;lnhd6ib~ngnhau 4 c(;lnh 4 goc 2 dttongcheo IV-3/ Ca'utruedCi'li~uehomo hlnh I~plu~nlui Giii sitcaclu~tdftntrongcdsdt\ithucd~ucod(;lng: If bie'n1=gia tri 1 bie'n2=giatri 2 AND AND bie'nn=giatri n Then bie'n=giatri * Bie'nti~nd~Ia cacbie'nchi xu~thic$ntrongph'anIF cuacaclu~tdftn (khongxu~thic$ntrongph'anTHEN cuab~tky lu~tdftnnao) * Bie'nke'tlu~n: lacacbie'ntrongph'anTHEN cuacaclu~tdftn. * Bie'nmc$nhd~:cacbie'ncoxu~thic$ntrongph'anIF cuacaclu~tdftn. IV- 4/ Caeea'utruedCi'li~u: IV-4.1/Oanhsaehke'tlu~n: (CONCLUTION LIST) La danhsacht~tcacacke'tlu~ncoth€ co.Theogiasittrenkichthttdcua caedanhsaehke'tlu~nb~ngs6lu~tdftntrongedsdtrithue. M6i ph'antittrongdanhsaehke'tlu~ngam2ph'an: - s6lu~tdftnvatenbie'nke'tlu~neiialu~tdftndo 27 Lu.~NVANTH~CsTKHOAHOC CONCLUTION =RECORD rule_number:interger; varname:string; end; CONCLUTION _LISt: alTay[1..N] ofconc1ution IV- 4.2/ Oanh sachcaeti'end'e: (VARIABLE LIST) Dogiatricuacaebie'nm~nhd~c6th~xacdinhdu'<;1Cb~ngeachhoingu'oi sadl;!ngnentac6diutrUedfi'li~usail: VARIABLE =record var_name: string; instantiated:boonlean; value: string; end; Trangd6 : var_name: tenbie'n instatiated: (chobie'tgia tri cuabie'ndil du'<;1Cxacdinhchu'a?) value: giatri cuabie'n(chidungkhi bie'ndil du'<;1cxacdinh. (instatiated=true) IV- 4.3/ Oanhsachbie'nm~nhd'e: (CLAUSEVARIABLE LIST) La danhsachcaebie'ntrongphiinIF cuacaelu~td~n. M6i lu~td~nchic6t6idamm~nhd~trongphiinIF, tae6th~dungmilng IDQtchi~ud~hilldanhsachbie'n. M6i lu~tsedu'<;1CdanhriengIDvi tri d~chll'acaebie'nm~nhd~cualu~td6. Ne'ulu~tc6 it hdnmbie'nm~nhd~thlcaevi ill thirasebo tr6ng. Ca'utruedfi'li~unayt6nbQnhdnhu'ngti~nchovi~ctinhloan. Vi dl;!:Ta c6th~bie'ttenbie'nm~nhd~thll'j cualu~td~ni chinhla phiintd' thll'ID* (i - 1)+j cuadanhsachbie'nm~nhd~. (Ne'ulu~td~ndu'<;1Cdanhs6la bQis6cua10)thlcongthll'cla : m*(i/l0-1)+j 28 LU~NVANTHAC8TKHOAHQC IV-4.4/ Ngan xe'pke'tlu~n (CONCLUTION STACK) Bay Hidiu truedu li~utrungtamd~di~ukhi~nquatrlnhl~plu~nlui. M6i ph'antd'euanganxe'pgam2 phftn: stack- item: record; ruler_number: interger; clause_number: interger; end; Thu~tloanl~plu~nlui trenCAD TRUe nCfLI:e;udii chira : . Bade 1 : Binh nghTake'tlu~n . Bade 2 : TIm trong daub saehke't lu~ntri1ngten vdi ke'tlu~ndu'qedinh nghTa. +Ne'utim tha'yd~tlu~t d6 vao ngan xe'p,baa gam s6lu~t va (1) d~di~nta s6m~nhd~. . +Ne'ukh6ng tlm tha'ythl tra Wi kh6ng tim tha'y. .Bade3 : Xaedinhcaebie'nm~nhd~eualu~t. . Bu'<k4 : Ne'umQttrongnhungbie'nm~nhd~kh6ngxaedinhthlhoi ngaoi dungd~nh~pgiatrio . Bade5 : Ne'umQttrongnhungbie'nm~nhd~la bie'nke'tlu~nthl d~ts6 eualu~tehuake'tlu~nd6vaodinhnganxe'pke'tlu~nva trdl~ibade3. . Bade 6 : Ne'u th~hi~nd dinh ngan xe'pke'tlu~nkh6ng thoa ea'utrUeIF THEN eualu~td6thlloC;lith~hi~nfa khoi dinheuanganxe'pva t1mkie'mtrong daubsaehke'tlu~nmQtke'tlu~ntrungtenvdike'tlu~ndaqedinhnghTa. . Bade7 : Ne'utimtha'ytrdlC;libade3. . Bu'de8 : Ne'ukh6ngconke'tlu~nnaotrennganxe'pke'tlu~nvdi tend6 thllu~traded6lasai. Ne'ukh6nge6lu~traded6th1baavdingaoidunglakh6ngtlmtha'y. Ne'ue6lu~traded6thltrdlC;libu'de6. . Bade9 : Ne'ulu~td dinhnganxe'pdaqexaedinhxongthllo~in6khoi nganxe'p. Ne'ue6bie'nke'tlu~nkhaed daditangs6m~nhd~vaoehom~nhd~conlC;li quaytrdngaqclC;libu'de3. 29 LUANVANTH~CSI KHOAHOC Ntu khang c6 bitn ktt lu~n nao aduoi chungta c6 th~tnllCfi diu hoi. Ngu'Cfidungsenh~ndu'qcktt qua. IY-51 Cach ho~tdQng-cuamQtdun vi chuangtrlnh (DYCT) Trongphftnnaychungta senghienCUlll£;Linganngu l~ptrinhd~timhi~u mQts6 mahinh ho£;LtdQngcua donvi chu'angtrinhd~lam ti€n d€ chovi~cd€ xufftcachho£;LtdQngmoichomahinh l~plu~nlui. Ngl(CfitaphanIO£;Linganngul~ptdnhthanh3 nh6mchinh: a/ Ngonngil finh (FORTRAN, COBOL) : bQnho dl(qCcffpphattn(ockhi chuangtrinhdl(qCtht1chi~n,khangchophepgQid~quy. bl NgonngildT!atrennganxe'p(ALGOL 60 ..) : bQnho duqccffpphatkhi chuangtrinhduqcth~(chi~ntheonguyent~cLIFO. c/ NgonngildQng: (LISP, SNOBOL 4, APL, PROLOG) : khangth~doan trl(OCbQnhodl(qCcffpphatlucnaotranglucch£;LYchuangtrinh.. Chungtasequantamdtn cachho£;LtdQngcuamQtBVCT cuanh6mngan ngud~(atrenngans~pxtp d~maphongchoCTDL cuaIDahinhl~plu~nlui. Nhungdotdnht~(phattinhciiacacnh6mngannguchoHendftulienchungtase xemxetcachh<?£;LtdQngclIamQtDVCT clianh6mnganngutInh. * Ngonngil finh : SefluqIlgciiacaca nhodungchocacbitn Cl;lCbQla cef dinhn6 duqccffpphattronglucbiendichchuangtrinhvakhangthayd6itrong sueftquatrinhth~(chi~nDVCT. M6i DVCT dl(qCbiendichrCfir£;Lcva tliangungvoi 1BANG KfCH HOAT, vi~cthitt l~pbangghikichho£;Ltduqcchidinhtruockhi tht1chi~nvi tht bitn Cl;lC bQ se duqcma truocthCfidi~mch£;LYchuangtrinh va thCfigian sefngciia bitn dl(qCkeo dai trangthCfigianthlrChi~nloanbQChl(angtrinh. - Bang ghikich ho£;Ltcho cac bitn an loan ;! ? '" DIEM TRO VE GJ DVCT (1) DVCT (2) Bangghikich ho£;LtBVCT (1) BIEN Ct}CBQ Bangma(C) Bangkfchho~t(D) * NgonngildT!atrennganxtp: cacnganngudlratrennganxtp c6 cffutrUc kh6i,cffutrucnayki~mtratamanhhl(angcuabitn vaChl(angtrinhthanhBhang BVCT. 30 LUANVANTHACsTKHOAHOC Hai DVCT bfttky ho~cla roi nhauho~cla i6ng nhau. Ba d~ctru'ngcho ngon ngfi'dt1atren siipxe'pla : . ChophepgQid~quycacDVCT Di€u nayc6nghla la sO'Instances(instancesla sO'bangkichho~tdoihai choDVCT d mQtthaidi€m bfttky) c6 th€ khongdu'<Jcquye'tdinhtru'dcthaigian th\1chi~n. 0 m6idftnracuaDVCT, mQtbangkich ho~tmdi phai du'<JcphanbO'vdi bangsaocuabie'nC\ICbQmditht1Chi~n. . Chftpnh~nnhfi'ngcftutrucdfi'li~udQng. . Cho phep ngu'oil~ptrinhmd dO'itu'<Jngdfi'li~ud di€m tt)yy trongsuO't chu'angtrinh. Cancii'vao: - Thoi giansO'ngciiabie'n. - Moi tru'ongthamchie'uchomQth€ hi~ncuaDVCT. Ngu'oitachiangonngfi'lo~inaythanh4 lo~i: +Lo~i1 : sO'ch6din thie'tchomQtbie'nla c6dinh : (cftpphattInh) + Lo~i 2 : sO'ch6 din thie'tcho mQtbie'nchi du'<Jcxac dinhkhi thi hanh chu'angtrinhc6chii'abie'nd6. +Lo~i3 : sO'ch6din thie'theoyell diu cuamQtbangkich ho~tsekhong dtt<Jcbie'tkhi DVCT bi kich ho~tnhu'ngsedu'<JcftpphatdQngkhiCalll~nht~o l~pmdibi truyxuftt. +Lo~i4 :KhimQth€ hi~ncllaDVCT c6th~truyxufttde'nmoitru'ongngoai. DO'ivdi lo~ingonngfi'mabangghikich ho~tvdi chi€u daibie'ttrUdc,tInh khi bangghikichho~tdu'<Jct6chii'c. ? ? '" D~ACHI TRd VE Contratrade'nbangghi kichho~tdffgQin6. Con tra trendu'<JcgQila lien ke'tdQng.T~ph<Jpcac con tra t~othanhh~ thO'nglien ke'tdQng. 31 LU~NVANTH~Csi KHOAHOC Vidt:t: DVCT AgQiB DVCT B gQiC Khi C trdv~B thibangghikichho~tcuaC sedu'<;jcgiaiph6ng. Khi B trdv~A thibangghikichho~tcuaB sedu'<;jcgiaiph6ng. Ngu'aitadungthem2controh6tr<;jchocontroip. Controthli I la FREE thu'angd~td vi tri c6hi~ulyc ke'tl;1ctrongDATA MEMORY. ControthliII laCURRENTd~td vi tribangghikichho~thi~nthai. Free I Current I C'anphaihill ycdche'l~plu~nvatachbi~tvdicdsdtriiliac.Cdche'fir la 1 quitrlnhv~nhanhchungchonhi~ucdsdtrithlickhacnhaud€ t~onennhungh~ chuyengiakhacnhau.Cdcfiunaychophepthie'tl~pcach~chuyengiadamt:tc lieukhongc'anl~ptrinhl~i. Hdnnua,mQtd~ctru'ngcdbanv~hanhvi thongminhcuahechuyengiala khananggiaithichdu'<;jccacsurdi€n cuaminhtrencondu'angdi de'nke'tlu~n v~khanangITaWicacdiuhoikhacnhaudongu'aisadl;lngd~tfa. v- cAc UNG DUNG CUA HE CHUYEN GIA vA TRI TUE NHAN TAO ",' "', ~ '" ,.. TRONGTHIET KECAC PHAN MEM D~NG HQCTOAN. Nhunglingdl~ngcllakhoahQctinhQcdii lamthayd6ikhaloandi~n,kha sansAcde'nnhi~unganhkhoahQc,trongd6c6khoahQcgiaodl;lCn6ichungva d~yhQCn6irieng.Banchfitcuaquatrinhd~yhQclaquatrinhbie'nd6ithongtin, trongquatrlnhbie'nd6id6th'ayla ngu'aichud~o,conhQcsinhla ngu'aichu 32 LU~NVANTH~Csi KHOAHOC dQng.D~th~tsvHinguoichud~o,nguoith'aygiaophiiibie'tachacdi'€ukhi~n quatrlnhlacdQngqual~igiuath'ayva11"0,giuatrovatrithacd~giuphQcsinh chlldQngtlmdU<;lekie'nthll'c~di.MQttrongnhungDangh!ctachacdola Dang Ivctachacthongtingiiingd~y,baag"Omcachbi~udi~nthongtin,bi~udi~ntri thacclingnhu'phanchiatrithacthanhcacdonvi nhasaochom6ilienke'tgiua cactri thacla khoahQc,la nh§tqUailvaphuh<;lp.CacnQidungdoc6nhung di~mr§t ti~mc~n,r§t tu'ongd"OngvdicacnQidungvaphuongphapcuatri tu~ nhant~o.Hi~uquiicuavi~capd\lngtd tu~nhant~odU<;lcDangleDmQtbudcVI nhii'ngtri thacloanhQCthu'ongdu'<;lcphcitbi~udu'did~ngcacm~nhd'€ "ne'u... thl"choducactrithacdoladinhly phatbi~ududid~ng1dinhnghla,1dinhly haymQtbailoanti~uhQCblobthu'ong.Cacquyuk duoid~ng"ne'u thl"se t~onenmQtquitik dfinxu§t.H~quit~cdfinxu§tcungvdi cacdinhlu~tbi~u di€n sechophepth~hi~ndU<;lccacd6itU<;lngcualoanhQCvam6iquailh~giua chungdudid~ngcackyhi~u.Di'€ud~cbi~tbonQuala cacd6itu'<;lng§y coth~ dU<;lcxii'ly b~ngcacphuongphaptritu~nhant~odadaycongnghiencau.Ph'an m'€md~yhQcloandvatrennhii'ngthanht11Ucuatritu~nhant~oconchophep lu'ul~i"di€n bie'n"cuaquatrlnhSHYlu~ngiupchohQcsinhn~mvungboncac conduongdide'nke'tquii,t~odi'€uki~nd~sosanhvdinhungeaehgiiii,nhftng hudngSHYlu~nkhacnhau,tUd6t~oti'€nd'€ cho1hudngdi t6tnh§t,1hudng sangt~otrongtuonglai. Nguoitaclingc6th~apd\lngphuongphapnaytrongvi~cnghiencU'ugiao d\lcd~t~oDencac"bQd"Ongh'€"d~yhQClIen maynnh,"h"Osogiiii toan"... v- 1/ Bi~udi~ntri thuctminhQc: Thongthu'ongkhi changminhmQtdinhly haygiiii 1bai loan,connguoi khongnhii'ngphiiin~mvungcactinhch§t,cacdinhly c6lienquailmaconphiii hlnhdungdu<;lcvi tri,cachudnggiiiiquye'ttrongtUngkhonggianngii'ciinhhay noikhacbonladin n~mvii'nglu<;lcd'€ changminhtronghlnhhQcEuclidenguoi tadungIU<;lCd'€d~chidfinvi~curncachchangminh,lu<;lcd'€naylIdDenmQtbQ ph~nkhongth~thie'ud6ivdivi~cphattri~nmQtdinhly. GELERNTERdake't h<;lpcaccachchangminhdinhly tronghlnhhQcEuclidevoi cacquailsatcon nguoikhisii'd\lngcaeIU<;ltd"OlIend~t~orachuongtrlnhchangminhcacdinhly khathanhcongoGelernterdagQichuongtrlnhlamayhlobhQc. ChuongtrlnhcuaGelernterla 1vi d\l cuasvth~hi~nthanhcongcoche' giiiibailoand1;talIenvi~cbi~udi~ncacd6itu'<;lnghlnhhQcthanhcacvi trirai dvavaocacliend'€ va logichvi trid~changminhcacdinhly hlnhhQc.MQt trongcacml~Cdichcualacgiiikhithie'tke'mayhlnhhQCla lamchomayduara dU<;lCsvtu'ongthichvdi cachchangminhcuaconnguoi.D~thvchi~ndu<;lCco ehe'giiii bai toaDcaelien d'€ trongmayhlnhhQccuaGelernterdadu<;lechia thanh3ldp. 33 LuANVANTHAcsTKHOAHOC Cac tien d~lien ktt cac di~mvdi cac khai ni~mnhu': Bo~nth~ng,du'ongthAng,caeg6c,cactamgiac. Vi d~tiend~cactamgiacdu'<;fCmatanhu'san: Ntu A, B la 2 di~mphanbi~t. Ntu B, C Hi2 di~mphanbi~t. Ntu C, Ala 2 di~mphanbi~t. Ntu A, B, C la cacdi~mkhangth~nghang Thl A, B, C la tamgiac. Chungdu'<;fChlnhthlich6anhu'san: PHAN_BIET (A, B) PHAN_BIET (B, C) PHAN_BIET (C, A) KHONG_THANG_HANG (A, B, C) TAMGIAC (A, B, C) Cac tiend~th~hi~ntinhd6i xlingcuacacdo~nth~ng. Ntu do~nth~ngAB b~ngdo~nth~ngCD thl do~nAB b~ngdo~nDC va chungdu'<;fCdinhnghianhu'san: . DOAN (A, B) =DOAN (C, D) DOAN (C, D) =DOAN (D, C) Cac tiend~th~hi~ns11b~ngnhaugifi'acacg6cvacacdo~nthiing,s11b~ng nhau cua cac tam giac, s11song song gifi'a cac do~n th~ng ... Cac c~nhtu'dngling b~ngnhaudu'<;fCth~hi~nnhu'san : Tam giac (A, B, C) b~ngtamgiac (D, E, F) DOAN(A,B)=DOAN(D,~ DOAN (B, C) =DOAN (E, F) Va hai tamgiac la b~ngnhauntu chungc6 mQtc~nhva 2 g6ckt tu'dng ungb~ngnhau. GOC (A, B, C) =GOC (D, E, F) va 34 LU~NVANTHACsi KHOAHOC GOC (C, A, B) =GOC (F, D, E) va DOAN (B, C) =DOAN (E, F) TAMGIAC (A, B, C) =TAMGIAC (D, E, F) S\1'phan chia cac lien d<3thanh 3 ldp nhu tren la ra"tquantrQngcho vi~c sa dl;1ngcac luQcd6 d€ bi€u thi cach chang minh. Chiing h(;ln,sa d~ngcac lien d<3 va sll hlnh thac h6a cac dinh 1:9c6 th€ dua fa cach chang minh tlf dQngdinh 1:9 hlnh hQc "BuC1ngphan giac trong mQtg6c luau cach d<3uhai C(;lnhcua g6c a'y". Sll hlnh thac h6a ciia cac giii dinh nay duQcth€ hi~ndudi cac m~nhd<3Ia : DOAN (A, D) la PHAN_GIAC_GOC (B, A, C) DOAN (D, B) DOAN (A, B) DOAN (D, C) DOAN (A, C) DOAN (D, B) =DOAN (D, C) Cay timkie"mduQCminhhQanhusau: DOAN (D, B) =DOAN (D, C) / 7C(B, A, 0) = TAM GIA~ GOC (B, A, D) =GOC (D, A, C) / DOAN (A, B) =DOAN (A, C) DOAN (A, D) la PHAN_GIAC_GOC (B, A, C) 35 LUANVANTHACsTKHOAHOC v- 2/ Giai baitoan: Ap d~lllgVaGhinhhQCkh6nggiantacocelsdtri thucnhusan: Cach xiiy dung motdinhIf [t~pcacm~nhd~giathitt]~ M~nhd~ktt lu~n.D~ngC1;lth~: M~nhd~1(.)& [M~nhd~2 (.)] & [M~nhd~3 (.)] ~ M~nhd~(.) 36 Mnh d M6 ta Ba diSmthng hangA, B, C THANG_HANG (ABC) TrungdiSmM cuadon thng AB TRUNG_DIEM (MAB) Don thng AB DOAN (AB) Don AB =Don CD BANG_DOAN (AB CD) Duongtrungtn;(cd cuadon AB TRUNGTRUC (dAB) Tamgi:k ABC TAMGIAC (ABC) Tamgiacdin ti A TAMGIACCAN (AABC) TU'giacABCD TUGIAC (ABCD). IDnhblnhhanhABCD HINHBINHHANH (ABCD) IDnh thaiABCD HINHTHOI (ABCD) IDnhchfi'nht ABCD HINHCHUNHA T (ABCD) IDnhvuongABCD HINHVUONG (ABCD) Mt phng ABC MAT (ABC) DiSm M E don AB DIEMTRENDOAN (MAB) DiSmX E duongthng d DIEMTRENDUONG (Xd) DiSm X flAmtIeDduongtrollc DIEMTRENTRON (Xc) Don AB E mt phng CDE DOANTRENMA T (ABCDE) Duongth&ngaflAmtrenmt phng ABC DUONGTRENMA T (aABC) Giao diSmI cua2 don AB, CD DOANGIAODOAN (IAB.CD) Giao diSmI cua2 duongthng d, e DUONGGIAODUONG (Ide) Giao diSmI cuadon AB voi mt CDE DOANGIAOMA T (IABCDE) WANVANTHACsTKHOAHOC cae m~nhd~trong [ 1co th~co ho~cthong tUy theo s61uQngm~nhd~gia thie'tcua dinh ly. He th6ngdinh IVdungtrongchddngtrinh: (78) * Mot s6tinh chd'"tcuahlnhphdng: 1.DIEMTHUOCDOAN(IAB) & BANGNHAU(AIBI) =>TRUNGDIEM(IAB) 2. HINHBINHHANH(ABCD) & DOANGIAODOAN(IACBD) => TRUNGDIEM(IAC) 3.TRUNGDIEM(EAB) & DIEMTHUOCDOAN(FAC) & DOANSSONGDOAN(EFBC) =>TRUNGDIEM(FAC) 4.BANGNHAU(ABAC)=>TAMGIACCAN(ABC) 5.TRUNGDIEM(IBC) & DOANVGOCDOAN(AIBC) =>TAMGIACCAN(ABC) 6.DOANSSONGDOAN(ABCD) & DOANSSONGDOAN(ADBC) => HINHB INHHANH(AB CD) 7.TRUNGDIEM(IAC) & TRUNGDIEM(IBD) =>HINHBINHHANH(ABCD) 8.DOANSSONGDOAN(ABCD)& BANGNHAU(ABCD)=> HINHBINHHANH(ABCD) 9.HINHBINHHANH(ABCD)& BANGNHAU(ABBC)=>HINHTHOI(ABCD) 10.HINHBINHHANH(ABCD) & DOANVGOCDOAN(ACBD) => HINHTHOI(ABCD) 11.HINHBINHHANH(ABCD) & DOANVGOCDOAN(ABCD) => HINHCHUNHA T(ABCD) 12.HINHBINHHANH(ABCD) & BANGNHAU(ACBD) => HINHCHUNHA T(ABCD) * Hai doanthdngbAngnhau: 13.TRUNGDIEM(IAB)=>BANGNHAU(AIBI) 14.BANGNHAU(ABCD) & BANGNHAU(CDEF) =>BANGNHAU(ABEF) 15.TAMGIACCAN(ABC) =>BANGNHAU(ABAC) 16.HINHBINHHANH(ABCD) =>BANGNHAU(ABCD) 37 LU~NVANTHACsTKHOAHOC 17.HINHTHOI(ABCD) =>BANGNHAU(ABBC) 18.HINHCHUNHAT(ABCD) =>BANGNHAU(ACBD) 19.MATSSONGMAT(ABCDEF) & DOANSSONGDOAN(ADBE) => BANGNHAU(ADBE) * Badiim th~nghang: 18.DOANVGOCMAT(ABCDE) & DOANVGOCDOAN(ABFG) & DIEMNGOAIMA T(FCDE) =>DOANSSONGMAT(FGCDE) 19.DOANSSONGMAT(ABCDE) & DOANSSONGDOAN(ABFG) & DIEMNGOAIMA T(FCDE) =>DOANSSONGMAT(FGCDE) * Hai matph~ngsongsong: 20.DOANSSONGDOAN(ABDE) & DOANSSONGDOAN(ACDF) & . DIEMNGOAIMAT(ADEF) =>MATSSONGMAT(ABCDEF) 21.MAT(ABC) & DOANSSONGMAT(ABDEF) & DOANSSONGMAT(ACDEF) =>MATSSONGMAT(ABCDEF) 22.MATSSONGMAT(ABCDEF) & MATSSONGMAT(ABCGHI) & DIEMNGOAIMAT(GDEF) =>MATSSONGMAT(DEFGHI) 23.MATVGOCDOAN(ABCMN) & MATVGOCDOAN(DEFMN) & DIEMNGOAIMAT(DABC) =>MATSSONGMAT(ABCDEF) * Vu6nggoc: * Hai doanth~ngvu6nggocvdinhau: 24.DOANVGOCDOAN(ABCD)& DOANSSONGDOAN(ABEF)=> DO ANV GOC DO AN (AB EF) 25.HINHCHUNHAT(ABCD)=>DOANVGOCDOAN(ABBC) 26. HINHTHOI(ABCD) =>DOANVGOCDOAN(ACBD) 27.DOANVGOCMAT(SAABC) =>DOANVGOCDOAN(SAAB) 28.DOANVGOCMAT(ABCDE) & DOANTHUOCMAT(MNCDE) => DOANVGOCDOAN(ABMN) 38 LU~NVANTHACsi KHOAHOC *Doan th~ngvuong g6c vOimat ph~ng: 29.DOANVGOCDOAN(ABCD) & DOANVGOCDOAN(ABCE) ~ DOANVGOCMA T(ABCDE) 30.DOANVGOCMAT(MNABC) &MATSSONGMAT(ABCDEF) ~ DOANVGOCMA T(MNDEF) 31.MATVGOCMAT(ABCDEF) & MATVGOCMAT(ABCGHI) & MATGIAOMAT(MNDEFGHI)~ DOANVGOCMAT(MNABC) *Dinh If 3 ddongvuongg6c: 32.DOANVGOCMAT(SAABC) & DOANVGOCDOAN(ABBC) ~ DOANVGOCDOAN(SBBC) * Hai matph~ngvuongg6c: 33.DOANVGOCMAT(MNABC) & DOANTHUOCMAT(MNDEF) ~ MA TVGOCMA T(ABCDEF) 34.MA TVGOCMA T(ABCDEF) & MA TSSONGMAT(ABCGHI) ~ MA TVGOCMA T(GHIDEF) 39 LU~NVANTHACsi KHOAHOC 40 fact hI . fact h2 GT fact h3 fact hk Kl fact heI.. H~ CSTT GI factList GI RuleList A ? HOAT DONG CUA MOTOR. . Ri ---+ CAY L()I Glib Rj WANVANTHACsTKHOAHOC MQt sO"tac gia con ling dl~ngm~ngngii' nghla d€ giai 1 sO"cac b~LitoaD. M~ng ngii'nghla Hi d6 thi dinh hu'angma cac dinh tu'ongling vai cac dO"itu'<Jng ho~ckhai ni~mCl~th€ con cac cung phan anh nhii'ngquaDh~giua cac dinh d6. Vi dl}m~ngngii'nghla bi€u di~ntri thac hlnh hQcnhu' Bu'angcheo /,nh chii'nh~t / la b~ngnhau Blnh vuong ~~p Tfl}CdO"ixling Bu'angtrOll v- 3/ M~ngtinhtoan : # MQt trongnhii'ngm~ngngii'nghlangu'aita quaDtamd6nm~ngtinhloan. M~ngHnhtoaDHimQtm~ngngii'nghlachliacacbi6nva cacquaDh~co th€ cai d~tva sadl~ngchovi~ctinhloan.M~ngtinhloanla 1ki€u dli li~utrUutu'<Jngc6 khaDangxayd1f~gcachamdungchovi~ct6ngh<Jpthanhcacchu'angtrlnh. Vi dl.l: Quanh~f giii'asO"do 3 g6ctrongA, B, C cuatamgiacABC du'<Jc chobdi h~thlic : A"" /C CD B/ f : A +B +C = 180(donvi dQ) N6u gQiM la t~pcacbi6n. F la t~pcacquaDh~ Thl M(f) vai f E F du'<JcgQila t~pcacbi6nc6 lien h~trongquaDh~f. M(f) eM Cho m~ngtmhloan(M, F). Gia sac6 1t~pbi6nA e Mdffdu'<Jcxac~inhva B la t~pbi6nbfttky trongM. Cacvftndt3d~tfa la : - C6 th€ xacdinht~pB tUA nhacacquaDh~F ? - QuamnhHnhloantUA d6nB n6uB xacdinh. 41 LuANVANTHACsTKHOAHOC - Cac di~uki~nb6 sungde co th~xac dinh du<;jcB tirA. Bai toaDxacdinhB tirA trenm~ng(M, F) vi6tdu<;jcdltdid~ngA ~ B Ngu'oitadungkhai ni~mbaodongcuat~ph<;jplam 1 trongnhfi'ngphu'dng ti~nde giiii quy6tbai toaDU"en.Bao dongcuat~ph<;jpA ky hi~ula duQcxem nhula sl1mdr(}ngt6idaCllaA U"enmohlnh(M, F) A chinhla t~pconIOnnhfitthu(}cM saochobai toaDA --7B giiii duQc.Va tacodinhIy sau: " Tren m(}tm~ngtinhtoaD(M, F) bai toaDA ~ B la giiii duQckhi B c A V~Wigiiii cuabaitoaD: Ta codinhnghiasau: Cho D = {fI, f2,...,fd la day quaDh~clia m~ngtinhtoaD(M, F). A eM. Ta noi dayquaDh~D la apd\lngduQctrenA khi va chikhi taco thelfinIUQtap d~lDgduQccacquaDh~ft. fz, fkxufitphattUgiii thi6tA... N6u d~tAo=A, Al =AoU M(fI) Ak = Ak U M(fk) vaky hi~uAk=D(A) thlD la Wigiiii cliabai toaDA ~ D(A) D(A) la s~l'mdr(}ngcuat~pA nhoapd\lngdayquaDh~D Ta co m~nhd~sau: Day quaDh~D la loi giiii cuabai toaDA ~ B khi va chikhi D apdl~ngduQcu"enA vaD(A) ::::>B Be tlm m(}tWi giiii t6t hon tir loi giiii erabi6t ta co the xem xet til'dinh Iy sau: Cho D = {fI,f2, , fIll}la m(}tWi giiii cuabai toaDA ~ B lingvdi m6ii =1 m d~tDi = {fI, f2, , fi},Do=O.Ta xfiydl1ng1hQcacdayconSIll'Sm-I, ... Sz,SI cuadaynhuD nhusau: Sm= {fIll} N6u Dm-Ila Iloi giiii N6uDm-Ithong la Iloi giiii Sm=0 Si =Si+I N6u Di-I U Si+Ila 11oigiiii N6uDi-IU Si+Ithongla Iloi giiiiSi= {fi} U Si+I "ifi=m - I, m - 2, ,2, 1 Khi do taco (I) Sm C Sm+IC C Sz C SI (2) Di-I u Si la 1loi giiii d6ivdibai toaDA ~ B i =m, ...,2, 1 42 LUANVANTHACsTKHOAHQC (3) Ne'u Si 13.1 day con th~tst!cua Si thi Di-l u Si kh6ng phai 13.1 Wi giai cuabai tmlnA ~ B'v'i (4) SI 13.Wi giait6tnhatcuabai toanA ~ B Ngu'oi ta c6 th€ phat tri€n m~ngtlnh toan thanh m~ngcac d6i tu'Qngtlnh toan. Trong m~ngcac d6i tuQngtinh toan m6i 1 d6i tu'QngduQcthay the'bdi 1 m~ngtinhtoan tu'dngling gQi 13.m~ngcon hay con gQi la 1 d6i tu'Qngtlnh toan. Quan h~f giua cac bie'nClIa d6i tu'Qngtinh toan la 1 quail h~giua cac d6i tu'Qng d6. Nhu the'm~ngcac d6i tu'Qngtlnh toan baa gam m9t t~pcac d6i tu'Qngtinh toan. 0 ={Ol,O2,03, , On} va 1t~pcacquailh~giuacacd6i tu'QngF ={fl Fm} f)~tM(fi) =t~pcacbie'nc6 lien quailvdi nhaubdi quailh~fi M(F) = U Mf(D M(O) =U M(Oi) M(OD la t~pcacbie'nc6 lienquailde'nd6i tu'QngOi) M la t~phQpcac bie'nduQcxem xet trenm~ngk€ ca cacbie'nthuQct~p M(fi) Mi =M (1M (00 i= 1,2,...,m Vi d\l chobai toanti€u hQcsau: Bie'tchi'eucaoh cuatamgiacADE va 3 c~nh a, b, c cuatamgiacABC. Tinh di~ntichhinhthangBCED. Bai toanc6d~ngcua1m~ngcacd6i tu'Qngtlnhtoanbaagam: 1/ B6n d6i tu'Qng: 01 : Tam giac ABC O2 : Tam giac AOE 03 : Tam giac BEC 04 : Tam giac BCD 43 LuANVANTHACsTKHOAHQC Os : Hinh thang BCDE M6i tamgiaee6caebie'na,b, e,h, s 2/ Quan h«$giii'acaedo'itu'c;lng fl : 01s=Olb * Ole f2 : 01h =OlS * 2 : 01a f3 : 03h =Olh -02h f4 : 03S =01a * 03h f5 : 03b=03S * 2 :Ole f6: O2b=Olb - 03b fl : 03 S=04S f8 : 04 e=04S * 2 : 01b f9 : O2e=Ole - 04e fl 0 : O2S=O2e * O2b :2 flI :.OsS=OlS - 02S Trongvi d1;lnaytae6 : M(fl) ={OlS , Olb , Ole} M(f6) ={02b , Olb , Olb } M(f2)={Olh, OlS , Ola} M(fl) ={03S, 04S} M(f3) ={03h,Olh, 02h} M(f8) ={O4e, 04S, Olb } M(f4) ={03S, Ola , 03h} M(f9) ={Oze,01e , 04e } M(f5) ={03S, Ola , 03h} M(flO) ={OsS, OlS , O2S } Caid~tm~ngtinhroan: Vi«$eaid~tm~ngtinhroand11atrenn~ntangeuavi«$eaid~t~phc;lp.Vi«$e eaid~t~phc;lphiiiehophepvi«$eth11ehi«$ncaepheproantrent~phc;lPd6.f)~ eaid~t~phc;lpX talamnhu'san: -Ghinh~ncaeph'antii'x ellaX trongmQtdanhsaeh,m6iph'ane6chiso' xaedinh. -A c X sedu'c;lebi~udi~nbflngmQtdaybit,m6ibittu'dnglingvdimQtso' thlit11haylingvdiph'antd'xeX d~ghinh~nph'antd'x e6thuQet~pconA haykhong.Kihi«$ubittu'dngllngvdi so'thli111i ( lingvdimQtph'antd'x) trong 44 WANVANTHACsi KHOAHOC daybitAla A(i),taco th€ quiudcding A(i)=l khi xEA, A(i)=O khi x ~A, IDeo cachnhuthe't~pr6ngsedu<;fCbi€u di~nbdi daybit O,t~pX du<;fCbi€u di~nbdi daybit 1,t~ph<;fpchicomQtph'antii'd'autiendu<;fcbi€u di€n bdi daybit d'autien 1£1vacacbitconl(;lila O. -Cac pheptinhgiao,hQi,hi<$uliiy cacph'anbusetu'dngl1ngvdi cac thao tac trencacbit -Phepki~mtraIDQtph'antii'co s6thl1nrla i co thuQc~p h<;fpA haykhong tu'dngl1ngvdi vi<$cxacdinhxembit i cuadaybitA la O.hay1. - Vi<$cthembotra ph'antll'co s6 thl1nr i tUt~ph<;fpA tll'dngl1'ngvi<$cgall chobiti trongdaybitA la 0 hay 1. D€ cai d~tm(;lngtinh toan chung ta du'ara cach ghi nh~nd'aydu thongtin c'ancho vi<$cXll'1)1v~t~ph<;fpcac bie'n,t~ph<;fpcac quail h<$. Do'i vdi cac bie'nta c'anqUail1)1chung IDeocac bie'nsan: n: s6bie'n trongm(;lng. s:danhsachcacbie'n. x: danhsachcacbie'nghinh~ngia tri Cllatl"Yngbie'ntrongm(;lngtinhtoan Do'ivdi cacquailh<$,tac'ancocacbie'ntrongcai d~tnhusan: m: so'quailh<$ pf danhsachghinh~ntinhd6ixl1ngcuabie'n. Mf danhsachcact~pbie'ntu'dngl1ngcuacacquailh<$. rfdanhsachcach(;lngcuaquail h<$d6ixl1ng vf danhsachcacbie'nphl;1thuQc. expf:danhsachcacbi~uthl1cuacacquail h<$. flamerdanhsachcactenhaycachgQicuavungquailh<$. Lu~tbie'nd6icacd6i tu<;fngtinhtoan Trongquatrinhv~ndl;1ngcackie'nthl1cv~d6i tu'<;fngd~giiHquye'tde'ncac b~litoanlien quail,nguoi ta con v~nd1;lllgcac quy lu~tbie'nd6i giii'acacdo'i tu'<;fng.Cac quy lu~tbie'nd6i baahammQts6 dinh1)1hay quy tftcthuongdung cho vi<$chl1ngminh.Chungchophepbie'nd6i hay thaythe'mQts6 do'itu'Qng tinhtoanclingvdi mQts6quailh<$(hayIDQtm(;lngcacd6i tu'Qngtinhtoan)thanh mQtd6i tu'Qngkhacmatri thl1cv~nogiupchovi<$ctinhtoandu<;fcd€ dang. Vi d1;ltaco t~plu~tbie'nd6i lien quailde'ntamgiacnhu: 45 LUANVANTHACsi KHOAHOC - L 1 : Tam giac c6 hai q.nh b~ngnhauHi tamgiac din. - L2: Tamgiacc62 g6cb~ngnhaula tamgiacdin. - L3: Tamgiacc6du'(jngcaovadu'C1ngtrungtuye'ntu'dnglingb~ngnhau la tamgiacdin. - L4: Tam giac c6 du'C1ngcao va phan giac tu'dngti'ngb~ngnhaula tam giac can. - L5: Tam giac c6 trungtuye'nva phan giac tu'dngti'ngb~ngnhaula tam giac can. - L6: Tam ghic c6 mQtg6c vuong la tamgiac vuong. - L 7 : Tam giac c6 blnh phu'dngmQtc~nhb~ngt5ngblnh phu'dngcuahai c~nhkia la tamgiac vuong. - L8: Tamgiacc6mQtg6cvuongvahaic~nhkt3g6cvuongb~ngnhaula tamgiacvuongcan. - L9: Tamgiacvuongc6hai c~nhkt3g6cvuongb~ngnhaula tamgiac vuongcan. - LID: Tamgiaccanc6g6cd dinhla g6cvuongla tamgiacvuongcan. - LII: Tamgiacc6bac~nhb~ngnhaula tamgiacdt3u. - LI2: Tamgiacc6bag6cbhngnhauHitamgiacdt3u. - LI3: Tamgiaccanc6mQtg6cb~ng;latamgiacdt3u. 46

Các file đính kèm theo tài liệu này:

  • pdf2_2.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf3.pdf
  • pdf4_2.pdf
  • pdf5.pdf
Tài liệu liên quan