CÁC HỆ ĐỘNG LỰC TUYẾN TÍNH BỊ ĐỘNG VÀ ĐƠN NGUYÊN
NGUYỄN MINH HẰNG
Trang nhan đề
Mục lục
Phần mở đầu
Chương1: Tổng quan về các vấn đề đặt ra trong luận án.
Chương2: Khai triển tường minh các hệ mô hình đơn nguyên.
Chương3: Hàm non tốt nhất của tích các hàng toán tử co giải tích trên dĩa tròn đơn vị.
Chương4: Hệ bị động và tính tối ưu.
Chương5: Hệ nối và hàm non tốt nhất.
Kết luận
Tài liệu tham khảo
15 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1984 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Luận văn Các hệ động lực tuyến tính bị động và đơn nguyên, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
CHUaNG 1
1 , - - ,
TONG QUAN vB CAC VAN DE BAT RA
TRONG LUAN AN
Giai tichhamnoi chung,va d~cbi~t1a1ythuy~tmohiOOtoantlf co r~t
OOi~uling d\illg trongcac 1InhVL;fckhacOOaucua toanhQCva v~t1y.Ly
thuy~tcactoantlf k~th<;5pvdi mo hiOOcach~d9ngllJC tuy~ntiOOda dfu1d~n
cack~tquathll vi trongvi~cnghiencoo cactiOOch~tcach~tuy~ntiOOvo h?ll
chi~u.N9i dungcua1u~an1anghiencoocactiOOch~tcuacach~d9ngllJC
tuy~ntioovo h?ll chi~ubfulgcongClfmohiOOtoantlf va mohiOOh~tuy~n
tiOO.
1.Ly tbuy~tfiG binb tmintn.
Nho vaoOOilngk~tquan6i ti~ngcuaHilbertv~ph6toantlf, ta daco
du<;5CmohiOOcuacactoantlf tlJ lienh<;5pva toantlf ddnnguyen,chUngdu<;5c
bi€u di~nd d?llgtichphan
T = fAdP).
a(T)
dm9thudngkhac,tadabi~tcack~tquacuaShillv~duam9tmatr~
tlJ lienh<;5pv~d?llgduongcheo000phepbi~nd6iddnnguyen.
Phattri€n haihudngtren,vaodftuOOilngnam50,cacOOatoanhQcXo
Vi~tb~tdftuxay d1..fng1ythuy~tmohiOOchocactoantlf k.hongtlJ lienh<;5p
, ho~ckhong ddn nguyenva nguoi di tien phongtrong 1InhVL;fcnay 1a
M.S.Livsis.Nam1946,Livsis dacongb6congtriooqUailtrQng[38],trongdo
l§.nd~utienhamtoantitd~ctnfngcuatoantitdu<jcduafa.Khaini~mham
toantitd~ctnfngsaDnaytrdthanhmQtcongclfquantrQngtrongnghiencUu
cuar~tnhi~unhatoanhQC.Quatrinhti~nboacualy thuy~thamtoantitd~c
trlfngdi~nrakh<idaivakhokhan.NgaytUd~unam1946,Livsis[38]dalieU
congthuchamtoantit d~ctnfngcuatoantitcod?Ilgkh<iphuct;tpnhusaD
eA(Z)=-A sign(I-AA*)+zI I-AA * 11/2(I-zA *f1 II-A *A 1112 (1.1)
D?Ilghamd~ctnfngnhutrenkhati~ndlfngchotoantit"g§.n"donnguyen.
D6i vdi toantit"g§.n"tVlienh<jp,nam1954,Livsis [39JduadinhnghTa
saD
W(z)=I+2i(SignAl)1 AI I 112(A*-zIfl I AI 1112
*
A = A-A
I 2i
vdi
Dinhnghlatrendadu<jcM.S.Brodskii[36JmdrQngvaonam1956d
d?IlgsaD
W(z)=I-2iK*(A-zI) -lKJ
trongdo J=J*, J2=I,KJK*=Ar vdiJ, K lacactoantitbi ch~ lienh~,vdi
toantitA bdicaccongthuctren.
Sl}caiti~nhamd~ctnfngd?Ilg(1.1)chotoantit "g§.n"donnguyenmai
d~nnam1972mdidu<jckhkg dinh,dolahamtoantit
eA(z)=D+zC(I-zAflB
trongdoB, C, D lacactoantitb6tr<j,thoadi~uki~n
I-A *A=C*C I-AA *=BB*I-D*D=B*B I-DD*=CC* -A *B=C*D, , , , .
4
Cilia khoad€ sud\lIlgcachamtoantVd~ctningdtrenduejcth€ hi~nqua
dinhly cobansauday.
Dinh ly Livsis [37].N~uhai toantVbi ch~, dongianco clInghamtoantV
d~ctningthiWongduongd6nnguyen.
Ti~psau,nhonhi1ngnghiencdusaus~cvehamtoantVcuaPotapov
[32],Ginzburg[18];Brodskiva Livsis [37]dakhaitri€n hamtoantVd~c
tningvaod~g
"J
1 1 de:(t) 00 "J
eA(Z)=7eel-aCt) IT(I - 1 q~qk)
0 k=l Ak - Z
trong docactoantVaCt),set),~ thoamanmQts6h~thuc.
Nho vaobi€u di~nnay,Livsis daxaydvngmohinhcuatoantV"gfu1"tl!
lienhejp,daychinhlabudcd~utienqUailtrQngtrongly thuy~tmohinhtoan
tV khongdonnguyenho~ckhongtl!li~nhejp.Mo hinhcu~Livsisdadu<Jc
cacd6ngnghi~pva cachQctrocuaongcM.ti~n, mdrQngV3.0nhUngnam60
va70[41].Mo hinhnaytrongtniongh<Jph6roi f?Ccod~g :
(Af)k=AJk+i I, fjqjJq~;
j=k+l
trongtniongh<Jph6lientvccod~g :
1
(Af)(x)=a(x)f(x)+if f(t)q(t)Jq*(x)dt.
x
D~unhvngnam60,dmQthudngkhac,cacnhatoanhQcDongAu, Nagy
va Foiasdati~nhanhnhUngnghiencilil r~tsaus~cve cactoantVco trong
khonggianHilbertmamQtv~ detrQngtamlaphepgian(dilation)toantV.
5
TrongquatrinhxtlydlJngphepgiffilcactoantv,cacnhatoanhQcnaydathi~t
l~pm9td<:lih1Qngd~ctnfngcuatoantv,va th~thuvi la d<:lilv(jngd~ctnfng
nayl<:litrimgvdikhaini~mv~hamd~ctnfngcuaLivsis.DlJavaokhaini~m
hamtoancld~ctnfngdo,NagyvaFoiasdaxtlydlJngm9tmahinhrfttti~n
d1Jngmasannaylienh;1cxuftthi~ntrencaccangtrinhcuacacnhatoanhQc
trenth~gidi.
Ly thuy~tmahinhtoancl cuaNagyvaFoiascoth~tomt~tnhvsan.
ChoA latoanclcotrenkhanggianHilbert,hamtoancld~ctnfngcuaA
dvQcdinhnghlab6i
eA(z)=-A +z(I - AA *)1/2(I - zA*)-1(I - A *A)1/2
Ngv(jcl<:li,chotrlfdchame(Z)E$ (U,V), Nagy-FoiasxtlydlJngmahinhtoan
clconhvsan.
x =[L~(V)Ef)&2(U) ]e{(eO)Ef)ilO))/ 0)E L~(U)},
A( <pEf) \jf) =e-it «p(eit) - <p(O))Ef)e-it\jf( eit),
trongdo il( eit)=(I - e(eit)*e(eit))1/2.
ToanclA nayddngianvacohamtoancl d~ctnfngtrimgvdie(z).Sando,
vaonam1972BrodskidaxtlydlJngth~mcactoancl
Bu =e-it (e(eit) - e(o))uEf)e-itil( eit)u ,
C( <pEf)\jf) = <p(O),
Du =e(O)u,
d~dVav~mahinhcuah~.H~tuy~ntinhdv(jcxtlydlJngnhvtrenla ddngian,
ddnnguyenva co hamtruy~nla e(z).Ta co k~tqua(diM ly Livsis-Brodski)
6
L1haih~dongian,donnguyenco cUnghamtruy~nthi Wongduongdon
nguyen.Nhuv~ymohinhcuaNagy-Foiasdacom9tvaitroqUailtr<;mgd~
nghiencUucach~donnguyen,mohinhnaycoth~chotanhi~uthu~1Qivi
cactoantUd~uduQcxaydlJIlgtlfdngminh.
Hudngthllbatrong1ythuy~tmohinhtoantUduQcphattri~nb6icac
nhatoanhQcMy, DeBranges,Rovnyak[13].SaDday1amohinhcuaDe
BrangesvaRovnyakchotoantU coduQcxaydlJIlgtheoham8(Z)E$ (U,V)
chotrudc.GQiBe1akhonggiang6mcacphfu1tU (f(z),g(z))vdi f(z)EH2(V),
g(z)EH2(U)saocho
«f(z),g(z)), Kew,X,/Z»Be=y+u
vdi Kew,x,/z)1ahamcactoantUduQcdinhnghiab6i
K e (z)=w,x,y
(
I - 8(z)8(w)* 8(z)- 8(w) 8(z)- 8(w) 1- 8(z)8(w)*
J
x+ y, . x + y
1-zw z-w z-w 1-zw
trongdo 8(z) =8("2)*,WEq}),XEV, YEU.
ToantUmohinhtrenBeduQcdiM nghiab6i
A : (f(z),g(z))H (zf(z)-8(z)g(O),g(z)- g(O))
z
cohamtoantUd~ctrlfng1a8(z).Vi cactoantU A trongcacmohiOOcua
Nagy-FoiasvacuaDe Branges-Rovnyakd~udongianlienchUngtlfong
duc5ngdonnguyen.TrongmorJlli~cuaDeBranges-Rovnyak,tuykhonggian
Bekhongcobi~udi~ntlfdngminhnhungcouu di~m1acacphfu1tUfez),g(z)
d~u1acachamgildtich.
7
Ngoai cacGongtriOOchuy~utren,ly thuy~tmohiOOtoantVconduQc
mdr<)ngchocacloptoantVkhac,kScatoantVkhongbi ch~ [6],[8].
Tronglu?nannay,chUngWiS11dlJIlgchuy~umohiOOcuaNagy-Foias.
LUll Y lacacmohiOOtrenlamohiOOham.Ngoairaconcohuangxfty
dlJIlgmohiOOd~g tichphant:.heocackhonggianconbfttbi~nduQcxftyd\fng
bdiBrodski[14],Gohberg,Krein [19].
2.Ly thuy~th~dQnghfetuy~ntinh.
BM d~utUnam1960,sailcacGongtrioocuaKalman[23],m<)ts6huang
nghiencoocactiOOchfttdiOOtiOOcuah~d<)ngh.Jctuy~ntiOOphattriSnm~.
KalmandadUafa cackhaini~mrfttqUailtr<;mg: tiOOdieDkhiSnduQc,qUail
satduQc,xftydlJngmohiOOcach~(ly thuy~thShi~n),sqd6ngd~g cuacac
h~tuy~ntiOO[23],...
Xet h~d<)nglqc tuy~ntiOOa=(X,U,V,A,B,C,D) duQcmohiOOhoabdi
h~phuongtrioosail
dx =Ax(t)+Bu(t),
dt
vet)=Cx(t)+Du(t);
x(t),u(t),vet),la cachamvectovoigiatri la cacvectdl~ luQthu<)ccac
khonggianHilbertkhatachX, U, V. Hamx(t)duQcgQila hamtr~gthai,
u(t)duQcgQiIahamdieDkhiSnvavet)duQcgQiIahamqUailsat.
H~a duQcgQiIa dieDkhiSnduQctUtr~g thaiXod~ntr~g thaiXl trong
khoangthdigian[to,tl]n~ut6nt(;lim<)thamdieDkhiSnu(t)xacdiOOtren[to,t1]
saochon~uh~b~td~utUtr~g thaiXo(tUcla x(to)=Xo)thi t(;lithdidiSmtl no
8
cotr?llgthaiXl' tUGlax(tl)=Xl'Di~udod6ivdih~tuy~nt1nhxetd trenco
nghiala
X(tl) =eA(tl-tO)Xo+ ftt~eA(tl-S)Bu(s)ds.
H~a duQcgqi la di~ukhi€n duQchoantoann~ua di~ukhi€n duQctUtr?llg
thaibM10'Xov~tr?llgthaib~t10'Xl trongkhO<lngthaigianb~t10'[to,tl].
Trongdi~uki~nX,U,V la cackhonggianhituh?ll chi~uthi h~di~u
khi€nduQckhivacmkhi
rang(B,AB, ...,An-lB)=n=dimX.
D6i vdi h~vo h?ll chi~u,khaini~mdi~ukhi€n duQcthuangduQchi€u d
d~lgdi~u~~i€nduQcx~pxi, nghia1.1vdi ill<)tIanc~ chotrVdccuaXb luon
t6nt?i m9thamdi~ukhi€n u(t)di~ukhi€n quyd?ocuah~tUtr?llgthaiXod~n
Ianc~ cuatr?llgthaiXl trongm9tthaigianhituh?ll,Khi ~ydi~uki~ncfu1va
du d€ h~di~ukhi€n duQcla
:AkBU=X
0
D6i ng~uvdi khaini~mdi~ukhi€n duQc,Kalmanduarakhaini~mqUail
satduQc.V~ d~d~tralakhibi~thamqUailsatvet)(t2 to)thi tr?llgthaiban
d~uXo=x(to)coduQcxacdinhduynh~tkh6ng?N~uh~a cotr?llgthaix(to)
=Xo"*0,hamdi~ukhi€n u(t)=0(t2 to)l'itico hamqUailsatvet)=0 (t2 to)thi
tr?llg thai Xogqi la kt~ongqUailsatduQCt'itithai di€m to.H~duQCgqi la qUail
satduQchoantoann~ut'itimqithaidi€m , khongcovectonaokhongqUailsat
duQc.Khi dotacok~tquad6ing~uchotinhqUailsatduQc.H~hituh?ll chi~u
, ,,', l'
qUailsatduQchoantoanneuvachineu
9
rang(C*, A *C*,.. .,A*n-1C*)=n=dimX;
\trongtru6nghpvo h~ chi~uthidi~uki~nc§nvadud~h~qUailsatduQc
hoantoanla
00
vA *kc*v=x.
0
MQtkhaini~mqUailtr(;mgtrongh~tuyentioodUnglakhaini~mham
truy~n,hamnayducxa dinhb6icongthuc
eaCz)=D+zC(I-zAr1B:U ~ V.
Ly thuyeth~dQngl\fCtuyentinh d\fatrenhamtruy~nva ly thuyetmohiOO
toantUtronggiaitichphattri~ndQcl~psongsongOOungcoOOi~udi~mWong
d6ngth1.ivi. D6i vdimQts6ldpcach~thihamtruy~ntrUngvdihamd~ctrung
? , ? Acuatoanill .
Hamtruy~nmangynghiaOOusail:giasith~a covectotr~g thaixCi)=
XoeZ\vectovaou(t)=uoezt,vectoravet)=voezt,hivet)=e(l(z)u(t).Nhu v~y
haih~coclinghamtruy~ncoth~coilaWongduongvi tr~gthaibentrong
cuahaih~coth~khacOOaunhungkhi choclingtinhi~uvaou(t),tad~c
clingtin hi~ura vet).TiOOqUailtrQngcuahamtruy~ncon duQcth~hi~n6
dinhly Kalman[23]: neu"haih~hituh~ chi~uai, ~ di~ukhi~nduQc,qUail
satduQCcoclinghamtruy~nthichUngd6ngd~g,nghialakhidot6nt?imQt
toantUkhanghichlien1:\1cW:xi~ X2saocho
A2 =WA1W-1 ,
B2 =WE1 ,
C2 =C1W-1,
10
D2=Dl ;
vara ranghaih~d6ngd~g till chUngcoclIngmQts6cactinhch~tqUailtn;mg
nhl1tinhdi~ukhi€n dl1<JC,qUailsatdl1<JC,dndinh,phd... N~uhon1l11alOantli
W ladonnguyentill ng116itanoihaih~laWongdl1ongdonnguyen.
Trenco s6dinhly d6ngd~g, KalmandaxaydljIlgcacmohinhcuah~
tuy~ntinhIDeomQthamtruy~n8(z) chotrUocmaongtagQila cacth€ hi~n
(realization)cuaham8(z) [23].Ly thuy~th€ hi~ndapilattri€n kham~,
khongnhltngchoh~tuy~ntinhdung,h~khongdUngmaCelh~phituy~n.
Di Sailhonnltad6i voi h~tuy~ntinh,cacnhalOanhQcMy (Brockett,
Barass...[10],Israel(Gohberg[11]),... danghienCUllSlJlienk~tcaeh~.Cac
h~tuy~ntinh khi lien k~tn6~ti~pnhau IDeonghia : Cho hai h~ a k=
(Xk,Uk,VbAbBbCbDk),k = 1,2,saochoU2=Vl . H~a =(X,U,V,A,B,C,D )
dl1<JCgQila lienk~tn6i ti~p(tichn6iti~p)cuahaih~al , a2va dl1<JCkY hi~u
laa =a2aln~u:
U =Vl ;V =V2 ;X =Xl EBX2,
A =A1P1+A2P2+B2ClP1,
B =Bl +B2Dl,
C =C2P2+D2C1P1,
D =D2D1,
trongdo Pk la phepchi~uvuonggoctUkhonggianX lenkhonggianXk,
k=12., ,
thicactiOOdi~ukhi€n dUdC,qUail satdUdC,t6i thi€u, ddn gian, t6i ULl...coth€
~. .
khong du\Jc baa toan.Cac taGgia trenda co mQts6 k@tqua v~di~uki~nd€
baa toancac tiOOch~tdo khi lien k@tcach~.Cac k@tquanay du\Jcphatbi€u
trenligonngvb~cMacMilancilahammatr~.Trongt~tcacacth€ hi~ncila
ham8(z),th€ hi~ncos6chi~ucilakhonggiantr~gthaila006OO~tdu\Jcgqi
la th€ hi~nt6i thi€u. S6chi~ucilakhonggiantr~g thaitrongth€ hi~nt6i
thi€ucila8(z)du\Jcgqilab~cMacMilancila8(z)vadu\JCkYhi~uladeg8(z).
MQtk@tquav~di~uki~nd€ baatoantiOOch~t6i thi€u du\Jcphatbi€u trong
diOOly Gohberg: Lien k@tn6i ti@pa cilahaih~t6i thi€u aj va a2la t6i thi€u
. n@uvachin@udeg8a(z)=degeaj(z)+degea2(z).
CongClfcilahudngnghiencoonayla GongClfd?is6matr~, r~tkho
phatri€nchotr1.fdngh\Jpvoh~ chi~u.
3.Ly thuy~th~dQngI1fctuy~ntlnh trenkhonggianHilbert.
Livsis la ngudid~utiennghiencooly thuy@th~tuy@ntiOOtrongkhong
gianvo h?il chi~u[40].Ongdakhaosatcach~dQngh.;tctuy@ntiOOdissipative
d~g
x =Ax+Bu,
v =Cx+Du;
trong do C=B* D=I, ,
A - A * ,
BB* ,. h' ,,' d
~= , VOl am truyen co ~g
S(z)=I+2iB*(zI-AflB;vanghiencoonhi~ulingd\lilgcilachUngtrongv~tly.
12
? ~, ,-
cachQctracuaangclingd3:tienhanhcacnghiencUuvecach~ngaunhien
(Iancevich[30]),v~ th€ hi~ncua cac hamphanhinh (meromorphic-
D.C.Khanh [42]).D~cbi~tArov d3:nghiencUusailv~cach~bi dQng
(passive).Do lah~rair~cd~g
~+l=~+B~,
vn =C~+D~;
vcii(~ ~):XEBU~XEj)V1aloanttJcovamUlltruy~n8(z)=D+zC(I-zArIB.
Ongd3:xaydl,fngcach~mahinhcualopcach~bi dQngt6iliu,xaydl,fngcac
th€ hi~nbi dQngkhacnhaucuacaclophamtoanhf trongkhanggianHilbert
voinhifngynghlav~tly hfongling,d6ngthailienh~voiphepgiancach~.
Arovd3:xaydlJIlgphepgiancuahamtoanhfcogi::iitichS(z),hIcla timma
tr~kh6i
~
(
Sll (z) S(z)
)
"
S(z) =
S21(z) S22(z)
don nguyentren yang trOll don vi fj}Jjva thoa di~uki~nt6i thi€u
KerSll(z)={O}h~ukh~ptrenfj}Jj.sv dl)11gcack~tquacuaArov, D.C.Khanh
d3:khaosatcacbaitoanv~lienk~tcach~,slJbaatoancactinhchMdiOOtiOO
cuah~trongquatriOOlienk~t[24],[44],[45],[46].PhuongphapnghienCUlld
daylaOOanhfhoacachamtoanhf covaly thuy~tmahiOOtoanhf.Duavao
cackhaini~mmoi(:t) nhanhfhoachiOOquycuahamtoanhf,D.C.Khanhd3:
thi~tl~pcacdi~uki~nc~ va du d€ baatoantioodi~ukhi€n du<;jc,qUailsat
du<;jc,t6ithi€u khi lienk~tcach~donnguyenho~ccach~bi dQng.
13
Cho 8(z) E ,%\U,V-j,8k(z)E $(UbVk), k=l, 2,U)=U, V)=U2,V?=V.
Nhan111hoahamtoan1118(z)=8iz)8)(z)dllQCgQila (+)chiOOquyn~utoan
111
Z+: Llli ~ .1.28)hEB.1.)h,Vh E H2(U)
sail iliac tri€n tuy~nt£OOlien h;1c1atoan111ddnnguyentUkhonggian .1.H2(U)
1enkhonggian .1.2H2(U2) EB .1.1H2(U1);
trongtrlidnghQptoan111
*
Z-: .1.*h~.1.2*hEB.1.1*82h,hE 1"2(V)
sail iliac tri€n tuy~ntiOOlien h;1c1atoan111ddn nguyentU khong gian
.1.*1"2(V) 1en.1.2*1"2(V 2) EBL11*L2(VI) ; vdi .1.*(eit)=(I - 8(eit)8(eit)*)112,
.1. (eit) =( 1-8 (eit)8 (eit) *)112k=12'k* k k " ,
thi OOan111hoahamtoan111dtrendllQCgQila (-) chiOOquy.
.
SaildaylamQtvaik~tquadllQCdUngtrong1u~an.
DiM 1y1.Choh~a 1alienk~tn6iti~pcuahaih~ddngian,ddnnguyen,di~u
khi€n dllQCa) va 0.2'Khi doh~a la di~ukhi€n dllQCn~uva chi n~uOOan111
hoahamtruy~n8a(z)= 8aj(Z)8a2(z)1a(-) chiOOquy.
DiM 1y2. Choa) vaa21acach~bi dQngt6ithi€u.N~uOOan111hoaham
truy~n8a(z)=8aj(Z)8a2(z)1a(:1:)chiOOquythih~a=~aj1ah~t6ithi€u.
4.Caeviin d~nghienetfutrong lu~nan.
Ti~ph;1chlldngnghiencootren,d6ivdi cach~dQngh;fctuy~ntioordi
f?Cbi dongvdihamtruy~n1ahamcactoan111cogiaitichtrendratrimddnvi,
14
m9t10<;1tcacbailoanmaiduqcd~traho~cdj thi~ncack~tquacuacaclac
gianeutren.Nguqcl<;1ivaivfu1d~lienk~tcach~,chUngtoixetbailoantach
m9th~thanhn6icuahaih~ddngiand~nghiencootUngh~rieng.Trongbai
loannay,chungtoidatimduqcd?llgWongminhcuacach~thanhphftnvada
tachh~theohaihl1dng: hudngthllOO~tla tachh~theorinhchiOOquycua
hamtruy~n,huangthllhailatachh~theokhonggianconb~tbi~ncualoantV
chiOOA. ChUngtoi clingdatimduqcm6ilienh~gi11ahaicachkhaitri~nnoi
tren.Cac k~tquanayduqctriOObaytrongchudng2 cualu~ anva daduqc
congb6 trong[25].K~ d~n,chUngWi clingxet d~ncacriOOch~tdinhriOO
cuacach~vo h<;1nchi~uvavfu1d~lienk~tcach~Dhungphudngphapnghien
cood daychuy~ula dUngkhaini~mhamnont6tOO~tcuahamtruy~n.Cho
8(z): U ~ V lahamcacloantVcogiairichtrendlatrimddnvi qj).Nagy-
FoiasdachUngmiOOduqct6nt<;1im9thamngoai<p(z)trenqj),oo~ giatri la
cacloantVcotU khonggianU vaokhonggianF saocho
,
<p(eit)*<p(eit) < 1- 8(eit)*8 (eit) a.e. tren ff!))
,
va
n~u~(z)lahamgiairichcacloantVcosaocho
~(eit)*~(eit)< 1- 8(eit)*8(eit) a.e.thi ~(eit)*~(eit) < <p(eit)*<p(eit) a.e.
Ham<p(z)duqcxacdiOOduyOO~tsaikhacm9tloantVh~g ddnnguyenOOan
v~belltraivaduqcgQilahamnont6tOO~tcuahamI - 8(z)*8(z).
15
Theodinhnghla,hamcactoantUco giai richtrendla trimddnvi
cp(z):U~Fdl1<;5cgqi la hamngoain~u<pH2(U)=H2(F),trongdo cp: H2(U)
~H2(F), (cpu)(z)=cp(z)u(z),uEH2(u);va cp(z)dl1<;5cgQilahamtrongn~u
cpla mQtd&ngclJ.
Ham non t6tnhfttcp(z)nay da co nhi~uvai tra trongvi~ckhao satcac h~ddn
nguyen: khaosatcackhonggiancon b:ltbi~n,thanhphfu1khongqUailsat
dl1<;5c,khongdi~ukhiSndl1<;5ccuah~...[9J,[dinhly 3.4,chl1dng3J; xflydt;fng
mohinhcach~bi dQngt6i00, t6ithiSu[35J... Do k~tqua: n~uh~a larich
n6iti~pcuahaih~exIvaa2thihamtruy~ncuah~exlaeiz) =eal(Z)8a2(z).
NenmQtbaitoandl1<;5cd~trachochUngWi laxflydt;fnghamnont6tnhfttcua
ham8(z)=8iz)8I(z)tUcachamnont6tnhfttcua8I(z) va 8iz). Cac k~tqua
thudl1<;5cdl1<;5ctrinhbaytrongmQtphfu1nQidungcuachl1dng3 va da dl1<;5c
congb6trong[26J.K~tquanaydadl1<;5csitdlJIlgdSchUngminhdinhly baa
toantinht6i00 cua h~n6i.DlJatrenkhaini~mhamnont6tnh:lt,chUngWi
clingtimdl1<;5cdi~uki~ndSmQth~bi dQnglat6i00, d6it6i00;di~uki~ndS
mQth~bi dQngla ddnnguyen...Cack~tquanaydl1<;5ctrinhbaytrongchl1dng
4va dadl1<;5Ccongb6trong[28J.Clingtrencdsdhamnont6tnh:lt,chUngtoi
dathi~tl~pcacdi~uki~ncfu1vadudSbaatoantinht6i00, tinht6ithiSu,tinh
hoantoankhongqUailsatdl1<;5c... trongquatrinhlienk~tcach~bi dQng.Cac
k~tquathu dl1<;5Cdl1<;5ctrinh bay trongchl1dng5 cua lu~ an va da dl1<;5ccong
b6 mQtphfu1trong[27J va mQtphfu1sedl1<;5Ccongb6 trong[20J.
16
Gia sV CP1(z), CP2(z) va cp(z)Ifm lu<jtla cachamnont6tnhfttling vdi
, ,
«
P2(Z)8I(Z)
)
, ,
81(z),8iz) va8(z),8(z)=82(z)81(z).Ta luonco la hamnon
<PI(z)
, ,.
8( ) v
:. d~ dXt 1
,
kh
. ,
«
P2(Z)8I (Z»
)
-
1
,
h' :. nh
:.
VngVOl z. an e <:;tra a 1nao se a amnontot at,
<PI(z)
nghlalakhinaotrongbfttd~g thUG
«
P2(Z)8I (Z)
J
'"
«
P2(Z)8I (Z»
)
::;;cp(z)*cp(z)
<PI(Z) <PI(Z)
codftubfu1gxayfa.Bfu1gcacphuongphapkhacMati, chUngtoithudu<JcmQt
s6k~tquav~vftnd~nayxettrencach~mohinhkhacMati.ChUngdu<Jctrinh
baytrongchuang3va5cilalu~ anvadadu<JCcongb6trong[26]va [27].
Ngoaifa,chUngWiclingtimdu<JCdi~uki~nd€ haih~t6il1Uco cUngham
truy~n;k~tquaco du<JCdu<Jctrinhbaytrongchuang4 va sedu<jcGongb6
trong[20].
17