ĐÁNH GIÁ CÁC PHÉP BIẾN HÌNH Á BẢO GIÁC LÊN HÌNH TRÒN BỊ CẮT THEO CÁC CUNG TRÒN ĐỒNG TÂM
NGÔ TRẤN VŨ
Trang nhan đề
Lời cảm ơn
Mục lục
Chương1: Tổng quan.
Chương2: Mở đầu và ký hiệu.
Chương3: Công cụ.
Chương4: Các đánh giá lớp hàng G.
Chương5: Một bài toán tối ưu cho PBHKABG.
Kết luận
Tài liệu tham khảo
17 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1696 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Luận văn Đánh giá các phép biến hình á bảo giác lên hình tròn bị cắt theo các cung tròn đồng tâm, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
CHu'ONG 4
"" "'"
CAC DANH GIA LOP HAM G
Trongchuangnay,chungWi danhgia caed'.lilu<;1ngd~ctru'ngchomien
chu§nclingnhumoduncua caeham g E G. Vi~cdanhgia banldnh R(g),
g E G theocaed'.lilu<;1ngdfibie'tgill mQtvai troquantr<;mgtrongvi~cdanhgia
caed'.lilu<;1ngkhac.Do do,tab~tdffub~ngdanhgia R(g) vacaed'.lilu<;1nglien
quan.
4.1 DanhgiabankinhR(g)va Ig(w)1
DfnhIy 4.1
Vdicdcgiathie'tvakYhifucuam~c2.3,vdimQig E G, WEB (w*O), taco:
K
M*(O,g)2(;)2 (~1),
(4.1)
4K K
M*(O,g» 2-p( ~) ,
(4.2)
K
R(g»
[
ps 2
]
2 ne'us>O,
ps+S-1! M*(O,gtK
(4.3)
K K- -
4 P dK <R(p,d,Ot ::;R(g)::::;4P M*(O,g)CK, (4.4)
K K
4-Plw1K<R(p,lwl,ot ::;lg(w~::;4PM*(O,g)HK. (4.5)
Ddngthact{Ii(4.1)xayrakhivachikhiB =Bovag(w}=a»i»iK-lvdilal=1.
Chungminh
22
GQi 1 =g-],gE G,theoc6ngthuc(2.3)trong[18,tr.l046],taco
8'(0,f)~8 .1r
M~tkhac,tudinhnghlacackyhi~ud ffi1,1C2.3taco
m'(0,f)2~8'(0,f).
V~y
m'(0,f)2~81r
(4.1.a)
Ke'th<;1pvdi (3.30),suyfa:
M*(O,gt~ ~8 ~ (4.1).1r
f)~ngthuc d (4.1.a)xay fa khi va chi khi I(z) =hzlzli-l, Ihl=1, tuc
B=f(A) =Bo, do do d~ngthuc d (4.1) xay fa khi va chi khi B=Bo va
z=g(w)=f-1(w)=a~wIK-],lal=1.
M~tkhac,tuc6ngthuc(2.13)trong[18,tr.l046],taco
d i
( )
-1 i *
( )
~
( )- <2Pm' 0,f =2PM 0,g K ~ 4.2 .c
Tuc6ngthuc(2.4)trong[18,tr.l046]vab6de3.5taco:
2
ps =[8]-lr 8'(0,f)]iK
KK
]
-
- 2
ps 2 ps
=> R(g)<=(S,-.-s'(o,f)] <=[s,-.-m'(O,f)'
~
K
r ]
2
R(g)2 ps 2
8] -lr M*(O,ftK
ke'th<;1pvdi 81=8+ps tasuyfa (4.3).
M~tkhac,tuc6ngthuc(2.16)trong[18,tr.1O46],
23
tac6
d,,;~p,Rk,m)";T(P'Rk.O)=t.
TheodinhnghlavaHnhdondi~ucuacachamT(p,r,s)vaR(p,t,s)suyra
I _!
RK =R(p,t,O)~R(p,d,O»4Pd.
Titd6tanh~ndu'<Jcc~ndu'dicuaR=R(g)trong(4.4).
Mi,Hkhac,titcongthuc(2.16)trong[18,tr.l046]tanh~ndu'<Jc
_! I
4 P m'(O,f)RK~c
~
I I
RK ~c4Pm'(O,ft1
Tit d6tanh~ndu'<Jcc~ntrencuaR =R(g), Vg E Gtrong(4.4).
Tit congthuc(2.15)trong[18,tr.l046],tadu'<Jc
m=4-;m'(O,f~zl~:5lf(z~:5T(p,lzl~,m)<4;lzl~
Ke'th<Jpvdi(3.30)vachungminhtu'ongtl!nhu'(4.4)tac6(4.5).
H~ qua4.1
VgE G, fa (4.3)suyra
K
(1» R(g)>[p::sr
lacntu (tr » ps ;:::canst>0 va S ~ 0 thiR(g) ~ 1.
HelnmIa,ktth(lp(4.4)v(ji(3.17)tacokhi d ~ 1
Ktr2
I-R(g) <l-RK (p,d,O) ~K[I-R(p,d,O)] ~ 8
2pIn-
p (1- d)
nghfaiakhid ~ 1thiR(g) ~ 1nhltngratchqm.
24
H~qua4.2
Khi K=I, M*(O,g)=lg'(O~nenta (4.1)taco
Ig'(O~~~(~1) (g E G) (4.6)
Ddngthacxiiyrakhivachikhi B =Bovag(w)=aw WYila!=1.
H~qua4.3
4
Dl tlmm(JtddnhgidcothlsiichCln(4.1),d(itC =2-; P: (~O),Vg E G,tacoc
M'(O, g) ,{';,c)f (4.7)
Ddngthacxiiyrakhivachikhi B =Bovag(w)=a~wIK-l wYi lal =1.
Chungminh
Theo(2.1)trong[18,tr.l046],Vf =g-', g EG, taco:
2 2
-- 2--
s, (f) ~1rS'(0,f) +psR K ~1rm'(0,f) +psR K.
2 -~ 2
Tu (4.4): R-i( ~4 PM* (O,gfK c-2k€t h<Jpvdi (3.30)
Suy fa
2 -~ 2
8, ~1rM* (O,gfK +4 PM* (O,gfK c-2ps =>(4.7).
H~qua4.4
Trangtn{(Jngh(lpK=1,khi do M* (0,g) =Ig'(0)1,(4.7)triJthanh:
Ig' (0)1 :?o~1r+ C (:?o')8,
(g E G) (4.8)
DdngthacxiiyrakhivachikhiB =Bovag(w)=awwYilal=1.
25
Ddnhgid naycungv{Jiddnhgid (4.6)sachl1nddnhgid cddiln Ig'(0)1~1, g E G
v{Ji K = 1 (xem[10, tr.352]).
4.2 Daubgiag6cmdP(g)
R5rangta1uonco 0 <fJ(g) < 2" ,Vg E G. Tuynhien,tamu6ndanhgiat6t
p
hdn trong nhung tntong h<Jpnao do.
Djnh Iy 4.2(c~ndumcuaP(g)
V{Jinhilnggill thiefnhutrongm1:tc2.3,taco:
p>(d~Crz;
K 7r
ntu (0 <)M*(O,g)cK ~ 4 PeP (4.9.a)
( )
K K 7r K
13> d-c 21n!i. 1 ntu4-Pe-P<M*(0,g)cK<4-P(4.9.b)
4 4PM* (0,g) cK
Chungminh:
- TheoThao[13],tr.1O9t6nt~iduynha"tPHBBGu mi€n BIen mi€n E 1ahlnh
tron lul<1 trir P nMt dt theo ban kinh l j ={u 0 <Co,; lul,; do,a:rgu~ 2:}
sao cho u(0) =0, bien C thanh lul=1 va cae CYj tu'dngling voi cae f j
(j =O,l,...,p-1) (hlnh4.1).
- D~tk =gu-1. V~yk 1aPBHKABGmi€n E 1enmi€n A saocholul=1thanh
Izi=1,caenhatdittheobankinhf j thanhcaenhatdit theoclingtrolld6ngtam
Lj (j =0,1,...,P - 1)vak(0)=0.
f)~ t A ~ A n {z IIzl >R'}, Ao ~ A n {z-; <arg z <;}, ]3= g -,(A),
Eo=g-I(Ao), C'={wllgcw)1=R2} (hlnh4.1).
26
GQi C" =u(C'), E =u(B), Eo=u(Bo)(hlnh4.1).
R5rangAo =k(Eo)(hlnh4.1).
- GQi Z =h(z) =Inz Ia PBHBGmi6nAo Ienmi6nmi6nnhilienAl cobien
ngoaiIa hlnhchli'nh~tcokichthu'oc.~, 2In ~ vabientrongla nh:Hdt theo
do£.lnth~ngr n6iZI=InR - i ~ voi Z2=InR +i ~ tiler codQdai j3 (hlnh
4.1).
Tit mi6nAl cohaitru'C1ngh<;1pxayraho~ctaco thetImdu'<;1CmQtmi6nnhilien
A2, co bienngoaila du'C1ngtrODHim J (InR,0) (trungdiemcua r), banklnh
b ~ min {In ~,;}vabien !rang la r (mnh 4.1) ho~ckhong thl! urn d1f(1cmi;;n
A2 nhu'tren.Do do, ta xet2 tru'C1ngh<;1psau:
.Tru<tnghfjp1:Giasat6nt£.limi6nA2 thoacaetlnhchffttren.
Khido:
mod(AI)=mod(Ao) (4.10)
Theotlnhddndi~ucuamodun(3.3),taco
mod(A2)~mod(AI) (4.11)
- PBHBG h =i(Z -In R) bienmi6nA2 tenmi6nnhilien A3 cobienngoaila
dliC1ngtroDtam0 banklnh1vabientrongIa nhatdt th~ngr' =[
- ~,~
]2b 2b
(hlnh4.1).
- GQi p la PBHBG mi6n A3 tenhlnh vanhkhan A4 ={ph<Ipl <I} (hlnh 4.1)
saocho Ihl=I tu'dngilngvoi Ipl=I vaP(
~
) =ro thl ro=R(
2,~,0
)
dodinh
2b 2b'
27
nghlahamphl;1R(p,t,s).
Khi d6:
1
mod(A2)=mod(A3)=mod(A4)=
(
p
)
.
R 2,2b'0
(4.12)
- GQi EI Ia mi~nnhi lien chuami~nEo c6 bienngoaila du'Ctngtroll lul=1va
bientronglanhatdt £0=[co,dJ. Khi d6theotinhddndi~ucuamodun
mod(Eo)<mod(E1). (4.13)
- D6dangthtlydingt = u - Co laPBHBG mienEI lenmiennhilien E2c6bienl-uc
0
ngoai la du'Ctngtroll It1=1 va bientrongIa nhatdt th~ngn6i di~m0 vdi
tJ = do- Co (hinh4.1).
I-d C0 0
- GQis la PBHBG mi~nE2lenhinhvanhkhanEJ ={sII(<Isl<I} saochoIt1=1
tu'dngungvdiIsl=1 va s(tJ)=s
(
do-Co
J
=1( thil( =R
(
I, do-co ,o
J
dodinh
I-dc I-dc0 0 0 0
nghlahamphl;1R(p,t,s) (hinh4.1).
Khi d6:
1
mod(EJ)=mod(E2)=mod(EJ)=
(
d - -
)
.
R I, 0 co, 0
1- doco
(4.14)
Vi phepbie'nhinhk =gu-1tumi~nEo lenmi~nAo nhu'dffneula mQtPBHKA
BGnen
mod(Ao)~[mod(Eo)T.
Ke'th<Jpvdi (4.10),(4.11),(4.12),(4.13)va(4.14),tac6
28
K1
l
1
R(2,L,0 )~ R(1 do - CO OJ2b 'l-dc'0 0
~ R
(
l, do-co ,O
J
K ~R
(
2,L,0 )<L.1- doco 2b 2b
Dodo:
(do(3.24»
fJ >2bR
(
I, do - CO,O
J
K >2b
(
4-I do - CO
J
K
I-dc I-dc
0 0 0 0
( J
K
2b d - c
~ fJ>- 0 0 =A.
4K 1- d c I0 0
M~tkMc, tit (4.4), b =mill {In ~, :} tasnyfa:
(do(3.24»
(4.15)
b2::min
{
ln ~ 1 ,Jr
}
=a
4PM* (O,g)cK P
(4.16)
Tli ba"td£ng thuc cua Thao[13], tr.ll0 0 <Co~C <d ~ do<1 (ba"td£ng thuc
d ~dola tru'dngh<Jpd~cbi~tcuachu'dng5voiK =1)ke"th<Jp(4.15)va(4.16)ta
co
(
d - C
)
K
P >PI >2a 4 =P2.
. Truitngh«jp2:Gia sa khongtant;;Limi€n A2 thoacaetinhcha"ttren,khido
(
Jr
J
P 1 1 1
- > - 2::-In- P2::21n-
P 2 2 R2 R
ke"th<Jpvoi(4.4)va(4.16),suyra
P >21n ~ 1 =2a>2a(
d - C
)
K
4P M* (O,g)cK 4
V~y,tlihaitru'dngh<Jptrentaluonluonco
29
~~ ;-----
" I ,' I "
" I ,
' I ,,/
00
' C' \!
~ 11I ,I ,, ,\ , - ,
'- B , Bo ", I ,
", ,,/' '
Kabg
z =gM I
I '
I
K9)I
1
/~
/kmnm lZ=ln' i 1£,,
E ,/
~O~UI -
:E
, 0,,,
£1
£0
0 Co
0 t1
s
o~
1
1
Hinh 4.1
30
AI
{:
p
0
------------------------------- 1£-i-
PIn R2 -i TC
P
A, r
z,
p
-2];
Oro
t-
O
1
b+InR
P
2b
1
p
(
d ~c
)K vdi a =mill fIn '£ . 1 K ';
}/3>2a 4 l 4PM (0,g) c
K Jr
- Ntu (0<)M*(O,g)cK~4-Pe-Pthla=ff ,khidotaco(4.9.a).
p
~ -~ -~ 1 ff
-Ntu 4 PeP <M*(O,g)cK <4 P ~ln K <-
4PM* (0,g) cK P
thla =In K 1 lientaco(4.9.b).
4PM* (0,g) cK
Chu y4.1:Theochungminhtatha'yntu la'yc=co'd =dothltakhongdn thay
/3, bdi /32« /31)dodotrongdanhgiad dinhly 4.2coth~thay(d ~cr bdi
( J
K
d -c ,:? "., ~
4-K 0 0 de du<;lccacdanhgla sacbon.
1-d c
0 0
? ,
Bode4.1(Kiihnau)
Trongm(itphdngzchomQtmiinnhtlienA gicJih(lnbiJi dui1ngtrim Izi=1va
nhatcdtL(t) ={ziO~Izi ~t(<l),argz=O}.GQiFl LaleJptatcacachamw=fez)
co tinhchat:m6ihamf E Fl bienbaagiacdelndi~pmiinA LenmQtmiin Bf co
bienngoaiC(f) va bientrongc(f) saGchoL(t) thanhc(f) vcJiD(f) =1,
Vf EFJ trangdoD(f) LaduiJngkinhcuac(f). GQiS(f) Ladi~ntichtrangcua
miindobienngoaiC (f) baabQc.Khi do,mQthamIv EF1thoamiin:
S(f)~ S(fJ= So' Vf EFl'
, ( ) 1n(1-tz) , -ff
cod(lng fa z = ( 2)vaSo= (
2
)1n1-t In 1-t
31
1
~ C(/)
w ~~/OC)l, c(7J
10
Hinh 4.2
Chungminh:(xem[12,tr.288]).
Chu y4.1:Voi nhG'nggiiithie'tcuab6de4.1nhu'ngD(/) (>0)bfftkythinho
phepcodan,taco
8(/)
D'(J) ?S. hayD'(J),; S(J)80
voi 80=80(1)xacdinhnhu'trongb6de4.1.
DfnhIy 4.3(c~ntrencuaP(g)
Viti cackYhi~unhl1trangm1:lc2.3,diJ,t:
d -
(
.!.. ~
J
fo = ~ 1 ' do=T p,4PM (0,g)K c,O ,
4PM' (0,g)K
1; ~ [(d.)~-~][l +c~(d.)~]
(di+£1)[1- cf (do)fJ ,i' =R(I,~,O),T =T(I,i'~,O}
UA' ~-ln(l-t) 1lVeu <l' 0 d ? ? - 1
2JPR(P,d,ot - vac> ubede 4PM' (O,g)Kc <1thi:
p<2arcsin)-10(1-/) -
2JPR(p,d,Ot =PI vitiP ~2,
(4.17.a)
32
,8<4arcsin )-In(1-"f) -
2-J2pR(p,d,O)~=,82voi P =I.
(4.17.b)
Chungminh:
- GQi WI=If/(W) yoi If/{0)=° la PBHBGmienBIen mienB giOih~nbdi
duilng trim Iwd=I va p nMt dt l j ={w, 0 <Co,; Iw,l,; do'argw, ~ 2;j}sao
chobienC thanhIwll=1 yacae (J"jtu'dngungyoi cae f!/j =0,1,...,p - 1).D~
thffyding:
- Hams=InWI th\ic hien PBHBG Drien nhi li~n Ii, = Ii n {-;<arg w,<;}
len mienB2(hinh4.3) yoi So= In do'S)= In Co'
- Hamv =-i ~S thgchi~nPBHBG mienB21enmienB3(hinh4.3)yoi:
.p .P I d .p ,P Iv =-1 - S =-1- n v =-1 - S =-1- nc .
0 20 20') 21 20
- Hamu =sinv thgchi~nPBHBG mienB3lenmienB4(hinh4.3)yoi:
Uo=sinVo=sin(-i ~Indo), UI=sinVI=sin( -i ~InCo).
- Ham r =k(u)=u-uo thgchi~nPBHBG mienB41enmienB5(hinh4.3)yoi
u+uo
k(uo)=0cobienngoailadu'ongtrOllIt I =1yabientrongla nhatdit
y={tl°::S;lrl::s;tl<1,argr=O}
,. Ul -uVOl t - 01-
ul +uo
- sin (-i fm c} sin(-i fIn d.) - ish(fIn t) - ish(fIn ;j-J
- sin(-; ~Inc} sin(-; ~Ind.) - irh(~In:} irh(~In~J
33
- Sh(flnt)-Sh(fln*)- (t)f -(trf _[(*)f-(*fJ
- s{~ill c~)+Sh(~In:J - (:j - (:.t+uj- u. r~
1 E 1 E
--C 2 --+d 2 P P P P
(
P P
)E 0 E 0 do2 -Co2 +co2do2 do2 -Co2= Co2 do2 =
1 pIp p p p P
(
P P
)E -Co2 +E-do2 do2 +Co2-co2do2 do2 +Co2
Co2 do2
(dof - Cof)(1+Cofdof) ,=>tl=
(
E. E.
)(
E. E.
)
tucO<tl<l.
d2+C21-C2d20 0 0 0
- GQi r;; =r;;(t)lamQtPBHBG mi€n Bstenmi€n B6(hlnh4.3)saocho{tlltl=I}
(4.18)
thanh {r;;IIr;;1=I} vanhatdt r trdthanh{r;;IIr;;1=r <I}.
I
-Ham';=h(r;;)=r;;K lamQtPBHKABGmi€nB61enmi€nB7(hlnh4.3).
- GQi J1=~(,;)lamQtPBHBG mi€n B71enmi€n Bs(hlnh4.3)saochokll,;1=I}
tMob tullpl=I}vii {4' 14'1=r~} thiinb y'~ tulo ,; Ipl ,; t,argp =O}.Then dinb
ngliiacuahai hamphoT(p,r,s)va R(p,t,s)thl t=r(l,p,O) =r( 1.rk,0) vdi
r =R(I,tl'O).
- GQicPlaPBHBG mi€n Bslenmi€n AI(c A) vdi Al =g-l [1fI-1 (HI)]vagQis*
la di~ntfchcuami€n Al dotfnhdolxungquayp IgnnenS*::;7r.
P
GQiD Ia du'ongklnhcuanhatdt L j (j =0,1,...,p -I). BeHmquah~gifi'aD va
34
Bz
B4
1r
2
S(
B3
Uo
I
I
I
I
: WI
I
: f!j
0'-:Co
I
I
I
:13B
I I I
I
I
do ,I
So
v
VI
Vo
0 1r
2
u
/ / ~I// )if / )( / /
0
to
r
t
tl
WI =ljI'(w)
~
p .V =--S.I
2
}"'ill'
\T-~
J U+Uo
1
~
bg
Hinh4.3
35
I ,
I "
I ,
JI! : W \.
BU/~O./
' ,I ,: B( ", ", "---------- z =g(w)
,I
, ,
A
(
-..
)
z
I
I
0:
f {O
I
'-,AI,
I,
010
rp
}=In".1r
s}:-1-
p
f.l
r'
t
1
fjJ bg
BOp
1
B6
h K abg
,
Or 1
f3 tac§nxethaitntongh<jp:
a)Vdi p ;:::2 thl f3<2tr<tr dod6 D chfnhlakhoangeachhaifiut cuaL.. Khi
p J
d6 D =Rsinf3vanhochuy4.1,suyra:2 2
D . # ...r;
f3
=2arcsin- ~2arCSIn .JS: ~2arCSIn cc.s2R 2R o 2R" plJo
tr
vdi So= (1 2)-In -{
dod6
(4.19)
~-In(l- (2) . ~-In(l- (2)
f3~2arcsin .JP <2arCSIn C ( d O)
K
2R 2vpRp, ,
vdi I ~ Tl1,r ~,0). r =R(I,I, ,0) trongdo I, dtt<!cxac djnh ohtt trong (4.18).
M~tkhac,theocongthuc(2.16)trong[18,tr.1O46]va(3.7),tac6
m'~1f) :>co:>c:>d:>d.:>T(P,Rk,oJ
keth<jpvdi(4.4),(3.16),(3.26)va(4.3),suyra:
do., T(P,4J; M" (O,g)~c,O)=do<4~M" (O,g)L,
m'(0,f) R ( d 0)
m'(0,f) d - d -
Co;::: I p" > 2 - 2 -fo- - - 1
4P 4P 4P M* (O,g)K
do d6
, =(d,~-cJ)( I+c,k~) <[(d,)f-£!][I +c~(d,)~]=TI
(
p P
)(
P P
) (
1'- !'.
)[
1'- - 1'-
]
1
dol +Col 1-coldol d2 +f~ I-C2 (do)2
suyra:
36
r =R(1,1,,0) 1=T(1,r~,O)<T(V~,o)=T-
V~ytaco(4.17.a).
b)Vdi P =1coth~xayra 1r<P <21rDendu'ongkfnhD cuanhatcfitLj coth~
kh6ngphaila khoangcachhaimutcuaLj' £)~khficph1;1Cdi~udo tadungham
ph1;1Z = If/ (Z) = ..rz (chQnnhanh.Jf=1)tht!chi~nPBHBG mi~nA leDmi~nA
(hlnh4.4). Khi do: R=If/(R)=.JR.,L =If/(Lj)' jJ =~ vahamZ=If/og(w)
tht!chi~nPBHKABG mi~nB leDmi~nA.
z =g(w)
~~~ ~
",~~~ ---'-,
C
, ,, ,
I '
I '
I '
I '
J j ,
I \
I ', . I
'. 0 :1
, I, ', '
, I, I, '
"-- """~~~-
Z=If/ (z)
~
~~~====~-==:::10 R 1 ,~/o""""" -" Z"""II
Z=If/og(w)
Hlnh4.4
GQi jj Iadu'ongkfnhcuanhatdt L, tu'dngtt!nhu'trentaco:
p=2arcsin ~,; 2arcsin -1s.
2R 2R pSo
Den
Fr
P :::;; 4arcsin2-J2pRSo
37
vdi Soduqcxacdinhbdi(4.19).
Dodo:
~-ln(l-t2) . ~-ln(l-t2)
. <4arCSIn !5.-
p::;;4arCSIn 2.J2pR 2.J2pR(p,d,0)2
Chungminhtu'dngtvnhutrongph~na)taco(4.17.b).
ChtiY 4.2:Trong(4.17.a)va(4.17.b),ne'umi€nBcod~ngB(hlnh4.3),c6dinh
C=Cova cho d =dod~nde'nco'khi do l1.~ 0,712 ~ 0 vdimQiK nentaco
p<l1. <21rvap<712 <21rtucdanhgia(4.17.a)va (4.17.b)khongphiiihi€n
p p
nhien.