ĐÁNH GIÁ CÁC PHÉP BIẾN HÌNH Á BẢO GIÁC LÊN MIỀN NGOÀI ĐƯỜNG TRÒN BỊ CẮT THEO CÁC CUNG TRÒN ĐỒNG TÂM
NGUYỄN THỊ LỆ HUYỀN
Trang nhan đề
Mục lục
Tổng quan
Chương1: Mở đầu và ký hiệu.
Chương2: Công cụ.
Chương3: Các đánh giá cho lớp hàm G
Chương4: Kết luận
Tài liệu tham khảo
22 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1697 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận văn Đánh giá các phép biến hình á bảo giác lên miền ngoài đường tròn bị cắt theo các cung tròn đồng tâm, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
26
CHU'ONG3
cAc DANH GIA CHO LOP HAM G
Trongchuongnay,chungWi danhgiacacd(;liluqngd~ctrungchomi~n
chufinda:neuclingnhumoduncuacachamthw?clOpG.
3.1Danhgia m*(oo,g),bankinh R](g)va Ig(w~
D!nhly3.1
V6i cacgillthietvakyhi~utrongm\lc2.2,v6imig E G, WEB (w-:f.00),ta
co:
K
(05)m*(00,g)5(:)2(51)
(3.1)
4K
( )
K
m*(00,g)<2P ; (3.2)
~ K
4P m*(oo,g)dK5R](g)5R(p,c-],OtK <4PcK (3.3)
K
R](g)>
r
PSI -2
1
2vo-is]>0
mn*(oo,g)K-s
(3.4)
~ K
4P m*(oo,g~wIK<lg(w~<R(p,lwl-],orK<4plwlK
D&ngthucxayraa(3.1)khivachikhi B=Bovag(w)=awIwlK-]vo-ilal=1.
(3.5)
ChUngminh:
Theocongthuc(2.18)tacov6imif =g-I,g E G, tucVf E F,
S'(oo,f)~~+ PSI >~2 - .
Ji - Ji
JiRK]
M~tkhactir(1.11)taco:
M'(00,f)2~S'(oo,f),Vf E F,
nen M'(oo,fY~~.
Ji (3.6)
Kethqpv6i(2.28),taco
27
-2 S
m*(00,f)K ~- ,
Ji
tuc CO(3.1).
Dogillthi~tv6bientrongC cua B, dangthuca (3.6)xayrakhivachikhi
I
w=f(Z)=g-I(Z)=bzlzIK-1 v6i Ibl=l, tuc la B=f(A)=Bo, dododangthuca (3.1)
xayrakhi vachikhi B =Bo va z =g(w)=f-I (w)=awlwlK-1, lal=1.
Theocongthuc(2.27)va(2.28)taco: Vf =g-I,g E G,
4 4
d - - -I
- <2P M'(oo,f)= 2P m*(oo,g)K
c
tudoco (3.2).
Tu (2.26),theodinhnghlacuahaihamphl;1T(p,r,s) va R(p,t,s) vatfnhdan
di~u(1.14),(1.17)cuachung,taco:
(
-1
J
-I
c-I s,T p,RIK,O =tl ~ R{ =R(p,tpO)~R(p,C-I,O).
Dodotacodanhgiach~trenchoRI(g)trong(3.3).
Tu(2.26)va(2.28)taco:
I I -I I-K- -1- - I - -
d 4 P m*(00,g)K d 4 P m*(oo,g)dK <RI
nentaco danhgiachiftndu6ichoRI(g)trong(3.3).
Do(1.11)va(2.28)congthuc(2.18)coth~bi~udi~nduaid~mgsau:
*
( )-2 S ps I / .m 00, g K >- + z VOl Sl > 0,Ji -
JiRIK
tudosuyra(3.4).
! I ! ~ I
Tu(2.25)taco:If(z~<4PM'(oo,f~zIK nen!wi<4P m*(oo,g)Klg(w~K
-K
=>Ig(w~> 4p m*(oo,g~wIK,
tuc co danhgia ch~fmduai cho Ig(w~trong(3.5).
28
Thea(2.25)taco: If(zfl $;T(p,lzl~,O)=t2~ Izl~ =R(P,t2'0)~R~,lf(zfl,o)
nenIg(w~$;R(p,lwl-I,OtK , tilecodanhgiachifmtrencha Ig(w~trang(3.5).
D~lamsitebondanhgia(3.1)tasechUngminh:
H~qua3.1:D~t
-4
D=psIR(p,c-l,or ~2P P~J20c
(3.7)
Ta co Vg EG
K K
m*(00,g)$;(S:D)2 $;(:)2($;1)
(3.8)
Dltngthilcxayrakhi vachikhi B =Bo va g(w)=awlwlK-1v6'ilal=1.
Chicngminh:
Thea(1.11)va(2.18),Vf =g-I,g E G, tile Vf E F, taco
M'(oo,fY ~S'(oo,f)~~+ PSI1i 2
1iRKI
Tu dothea(2.28)va(3.3)taco:
m'(oo,g)~~~+ ps~~~+ PSI -2 =~+PSIR(p,~~,or
1i - 1i 1iR(p C-] 0) 1i 1i1iRK , ,I
=>m*(oo,g)f $;
(
s +psIR(p,C-1,or
]
-1=
(
s+D
)
-I =~,
1i 1i s+D
tudotaco(3.8).
H~qua3.2:
TrangtruanghQ'pK =1, v6'i
m*(00,g) =limm(r,g) = lim Ig(zl~ =
I
g' (00~
r-4oo r Z,-400 IzII ~
thl (3.8)trathanh: Ig'(00~$;~ 1is+D
(3.9)
29
v6iD chobai (3.7),Vg E G,
ding thucxayrakhi vachikhi B =Bova g(w)=aw v6i lal=1.
Vi s ~TC,D ~0, batding thucnaysitebanbatding thucc6di~nIg'(00~ ~1v6i g E G
vaK =1(xem[91tr.217).
3.2Daubgiagocma2fJ(g)
D~ti~nchovi~ctrlnhbaydinhly taseIanluqtduavaocaekyhi~umaiva
chUngminhdinhly truac,saud6ph<itbi~udinhly sau.
Buac1:
Theo[6]t6n t<;tiham WI=~(w)v6i~(oo)=00 bienbaagiacclandi~pmienB
lenmienE, ={w,hl;, I}, chffit p nM! ci\! /, ={WI0<Co,;;IwII,;;do,argw,=2:}
saochobienC thanhIwll=1vacae6~tuangUngvaicaetAi =O..p-l).
G
.'
{
- Tc TC
}<;nBI =BI n p <argWI<P .
G9i B' =~-1 (B;).
G9i A' =g(B')
Tathvchi~nphepbienhinh;=If/(z)=1- bienmien A thanhAl namtrong
Z
1;1< 1. Lj cua A tra thanh 1'j cua AI, Do arg; =-argz,zEA neng6cmacuacling
L~bangg6cmacuacung Lj (bang213).
G9i A; =If/(A').
G9i s =s(;}am<)tPBHBG mienA;I len mien A2 v6i s(O)=0 c6bienngoai
laduangtroll Isl=1vabientrongIanh<iteM r =~O~Isl ~t',args=O}(hinhve).
30
G9i u=u(s)la mQtPBHBG mi~nA2lenmi~nAJ saocho {sllsl=I} thanh
{ullul=I}vanMI oit r Ifdthiinh{uliul~;<I} (hinh ve),
Ham rJ=InWI thvc hi~n PBHBG mi~n nh! lien B; len mi~n
B,={I/R(I/) >0,-; <1(1/) <;}\ HI/o ,; R(I/ ),; 1/" 1(1/) ~ 0) (hlnh vo) v6i 1/0;=In Co'
rJI =Indo.
Ham s =iprJ
2
thuc hi~n PBHBG mi~n B2 len mi~n
B, ={.91-2'"O)}\ {.9IR(.9)=0,.90,; I(.9)';.9,} (hJnh ve)vm:
S - iprJo - iP I S - iPrJI - iP I d0 - - nco, 1- - n O'2 2 2 2
Ham (; =sinS=-ishiS thvchi~nPBHBG mi~nBJ len mi~nB4lall11am~t
phltngtrencochuanhatciltthltng[(;0'(;] (hlnhve)vai:
(;0=sinSo=sinC~Inco)=iSh(~InCo} (;1=sinSI=sinC~Indo)=iSh(~Indo).
Ham t =K((;)=~:~:thvchi~nPBHBG mi~nB4 len mi~nBs v6'i
~-1
(;1- (;0- (;0t = -
1 (;1+(;0 ~+1
(;0
K(0)=0 cobienngoailaduOngtrollItI=1vabientronglanhMc:1t
r =~os It I s tpargr =o} vai
Sh(flndot
- Sh(f Inc,)
- Sh(~lndo)+1
Sh( ~ In Co)
(O<tl<1)
31
D h' h b' K' h ( )
x-I -,' 2 0 -" -' ( )
-
0 amt vc tent vc tl X =- co tl =
( )
2 > Vffix >1tuc tl x tangtrongx+l x+l
khoang(1,+00)vahamthvcbienthvcshxtangtrongkhoangxacdinh.
(do)f- (dof:- [(co)f- (cof:] (do)f- (co)f+(cof:- (dof:t - -
1 - p -p p -p - p p -p -p
(dO)2-(do)T +(CO)2-(co)T (dO)2+(CO)2-(co)T -(do)T
G9i Ji =Ji(t) Iam(>tPBHBGmi~nBslenmi~nB6saocho~lltl=I} thanh
JiIIJiI =1 vanh<itctttr trbthanh~IIJiI=rl <I}.
(3.10)
Do dophepbienhlnhmi~nB6lenmi~nA3co th~xemlahqpcuam(>ts6
- 1
PBHBG vOiPBHKABG z =g(w)nenlam(>tPBHKABG. Theo(1.2)thl r ~r?
-
G9i S Iadi~ntichcuaA;,dotfnhbaaloantfnhd6ixUngquaydip p quaPBHBG
lenmi~nchu~n(xem[171tr.l09)tacoS=1'( .
P
a) V6i p'?2:
Ap dungb6d~2,7,v6i D' =lJI(D),taco
f3
,D' , RI rs ,
[
RI t~ln1- t,2 J=arCSIn =-1~arCSIn~
~ arCSIn - -
2RI 1'( 2 P 1'(2
-In(1- tr2 )
R ~-ln(l-t'2)
f3~arcsin 1
2#
Theo(3.3)taco: RI ~R(p,C~I,OtK~R(p,C-I,OtK
Tu batdlmgthuccuaThao [171tr.110d6dangsuyfa:
-I 1
(
-I
)
-1 1 1
4P R?Z<T p,Rt,O ~co~c~d~do ~4PM'(oo,f)Rf,Vf=g-l,gEG
Theo(2,28)taco:
32
B A'
~B'W
A
1
;-)
\ ; z0
R-I
BI/
B'
( ))l0 I-
I
Z
Co
do
WI
17=In W
I
I
Azo---1-1
0
iT[-
u=U(S))p170 171
-iT[ 17 B- 2 @)
I) =ip17
P
I
I
1)1
2
B3 I 1)1
(;=sinI) -T[ I 1)0 IT[ 8-
2
- J1 1
(;1
2
pp) )B4 I
(; t=K((;)
(;0 G
-1 0 1
1
I1mh3.1
t
33
I I I I
do:::;4Pm'(oo,g)~R?(:::;4Pm'(oo,g)~R(p,C-1,at <4Pm'(oo,g)~c =do
1
Co;, T(P,R,.i',O r>4;R,* >4;(4-;m' (00,g}d Kr=4-: m'(oo,g)* d ~Co
sh(flnd,) 1 sh(flna;t
Sh(~Inco) Sh(~In~)
Vi v~y(I =
( )
<
( )sh~Indo +1 sh~Ind; +1
Sh(;Inco) Sh(;Inco)
(do)f- (co)f+(cof:- (dof: (do)f- (cop +(coff - (dor: -
( = < - - (
1 (do)f+(co)f-(raft -(daft (do)f+(cop-(coff -(dor: I
r, ~ R(I,t"O) t ~ T(1,r,~,O) <T(l,r,~,o)~ I'
D d' . R(p,c-l,atK~-In(I-?2) 130 0: 13<arCSIn C = 1
2 ;p
(3.11)
(3.12)
v6i (' xacd!nha(3.11).
b) V6ip=I:
Co th~xayfa 1T:::;213<21Tnen duOngkfnhD cuanhatd.t Li coth~kh6ng
phaiIakhoangcachcuahaimutcuaLi .D~kh~cph\lcdi~unaytalamnhusau:
Gqi w=h(w)v6ih(00)=00 bienbaagiacdondi~pmi~nB leumi~n
B ={wllwl~I},chuanhatc~tl ={wla<c:::;!WI:::;d,argw=a}saochobienC thanh
!w!=1.
Ta c~tmi~nB bairiaargw=1Tthltrongcacmi~nB, A secocacduOng
congtuonglingnoi Cv6iw=00ho~cIzl=1v6iz=00.
34
I~ ~,
B \,~ "
W ".
~
z =g(w) A
z'~Fz J~h(W)
1
r~
0;0
d
B
Hinh3.2
Dunghamph1;}z"=x(z)=...Jz(ch(;mnhcinhJ1 =1)th1Jchi~nphepbi€n mnh
mi~nA l~nmi~nA" (hinhve).Khi do:R"=x(Rj)=..jR;,L" =x(Lj )G<?igocroocua
cungL" la 2fJ", thi 2fJ"=fJ <Jr n~nduOngkinhD" cuanhatcAtL" chinhIa
khmingcachhaimutcuaL" . Hamz"=x[g(w)]th1Jchi~nPBHKABGmi~nB bi cAt
l~nmi~nA".
Tuongt1;tnhutr~ntaco:
D'" =If/(D"),R'" =If/(R")=~Rj-j .
(7r . ~-ln(1-t'2)D'" . V2 <arCSill
fiR:
fJ"- 2arcsin-:S;arcsill
~ 2 2R-- 2R'" Jr j2R'" -In(l- t,2)
. R(l,c-j,O)~~-ln(1-t'2).
:S;arCSill 2..[i
35
~ /3=2/3"::;2arcsinR(l,c-],o)f~-ln(l- ('2)
2-/2
Lamm9tcachtuongtVnhuphana tac6
. R(l,c-],o)f~-ln(1-(12)=/32
/3<2arCSIn 2-/2
(3.13)
v6'i(' xacdinhb (3.11).
Chli y: Trong(3.12)va(3.13),neumi~nB bandauc6d,:mgcuami~nB]
(hinh3.1),codinh d =do vacho c=Codandendo,khi d6 /3]~ 0,/32~ 0 v6'iVK
nendanhgia(3.12)va(3.13)kh6nghi~n hien.
BuO'c2:
D~chiami~nBthanhpmi~n hilienbtmgnhautathvchi~n husau
Ve m9tduemgcongJordanYon&mtrongB noi bien Ccua B v6'idi~m
W=OO.
Giyj Ia cac duemgc6 duqcdo Yo quaynhU'ngg6c 21lj(j =l..p-1). Cacp
duemgyj naychiami~nB thanhp mi~nnhi lienv6'icacbientrongla p thanh
phanbiengj cuaB. GiB] Iam9ttrongpmi~n hiliend6v6'ibientrongg].
Ky hi~uC(a,r) chiduemgtrolltiimt';lia,bankinhr.
GiC(wprJ Iam9tduemgtrollgi6'ih~ m9tt~pd6ngchuagl' GiC(w2,r2)
Iam9tduemgtrolln&mtrongB] (baod6ngcuaB]) baobcduemgtroll C(W]'r]) .
GiB2lami~nnhi lien gi6'ih';lnbbi c(WI'r]) vac(w2'r2)'Theotinhch~tdon
di~ucuam6dunmi~nnhi lientac6:
mod(B2)::;mod(B]) (3.14)
Dilt
;;] =mill ~wl,WE C( w2'r2)}tuc ;;] =IW21-r2';;2 =IW21+r2.
;2 =max~wl,WE C(W2,rJ}
(3.15)
36
vagiasu ;1 ;::::M tuchlnhvanhkhanB3 = {wi;}<Iwl<;z} nmntrongmi~nB.
T at!nhti€n vaquaymi~nBzr6iapd1;lllgb6d~2.9thl mi~nBzc6th~bi€n
baogiacdO'Ildi~pb<ris=s(w)leumi~nB4=~r<Isl<I}
v6i r =r(r r h)- rzz-hz +rIz-J~zz -hz -r I
z
)Z-4hz r
z
I' z, - I
21jrz .
(3.1-6)
trongd6h=lwz-WII.
~
z=g(w)
>=Inz)
27r
P
~
A3
M"
in--;-.
m
Hinh 3.3 p =4
37
D~t Al =g(BIXc A), Az=g(BzXc AI) vaig EG,
M~t khac t6n t(;li phep bi€n hlnh bao giac don di~p ~=~(w) mien
Az=g(Bz),gE Glen hlnh v~mhkhan Bs: r' <I~I <1. Vi phep bi€n hlnh hqp
]
~ogos-ImienB4 leu mien Bsla mQtPBHKABG nen theo(3.13) taco: r' ~rK
Ap dl;1ngtinh don di~u (1.14) cua ham phl;1 T(p,r,s), ta to:
I
t=T(1,r',O)~T(1,rK,O)yair duqcxacdinhbbi(3.16).
D~t m"=m(rpg),M" =M(r2,g) v6i gEG,
!£- K
Theo (3.5) ta co: M" <4p r 2 =M" , (3,17)
~ _K
m">4 Pm*(oo,g)Yl =m" gEG, (3,18)
G9i D la duemgkinh cuabientrongcua Az ' D la duemgkinhcuanhatcat
Lj(J=O..p-1), R6rangD>D,
* Dungbdde'2,7:
- N€u p =1, d~co quailh~D =2R]sin13c~nthi€t saunaytac~nthemgia
thi€t phl;1213<TC, vi n€u khangthl D =2R],Mu6nv~yd~tR]=4-Km*(00,g)dK(~RI)
Do D ~D thldieuki~ndud~213<TC IaD <2R]
2T(2,r~,0)M" <2.4-Km'(oo,g)dK
T(2,r+,0)M
Q 4Kd-K <m*(oo,g)
I - K
Q m*(oo,g» 2.4ZKrKd-K rz (3.19)
- N€u Vp ~2thl 213<2TC<TCdo do ta 1uanco D =2RI sin13'
p
38
V~yneuvp~2 ho~cneup =1thoa(3.19)thlapd\1ngb6d~2.7taco:
D =2R,sin fJ ,; D' ,; 2T( 2,r* ,0JM'
(
I
)
[
I~_K
}
M"T 2,rK,O 2r* M" . 2rK4P 12
. =arCSIn -K
. <arCSIn -. K
~ Ji'; arcsInI R, - (R') 4 ' m (oo,g}d
{
2K I K
}
,8~arcsin2.4P rK;2 d-K[m.«X),g)jl =,83
v6'ir xacdinha(3.16).
* Dungb6de'2.8.
Ham r;=Inz (laynhanhdontri In1=0) bien A2 thanhA3 la mi~nnhi lien
(3.20)
v6'ibientrongIa m(>tduangcongkin co duangkinh D" baob9Cnhatciit th~ng
A =[InRI-i,8,lnRI +i,8],tucd(>dai cua A la 2,8vabienngoaila m(>tduangcong
kin Damtrongtugiaccongv6'ihaic~nhla cacdo~nth~ngclingd(>dai 2ff Damtren
p
Rer;=In!Ji va Rer;=InM" vahaic~nhconl~ilahaicungco thech6ngkhitleD
nhaubOipheptinhtieDq=r;+i 2ff , tucdi~ntichgi6'ih~nbOibienngoaicuaA3Ia
p
M" m" " , 2ff M"m S ~-ln-
pm'"
Ap d\1ngb6d~2.8taco:
~ 1/2fflnM" I (
"
M" lfJ ,; D" ,; !" = ~ m" In(l- t') ,,- lln 1- t')In~.
In(1-t2) p -ff V p
-In(l- t2)InM,:'
,8~11 m
2p
tilc
39
!rong d6 rxac djnh II (3,16), t=T(l,r* ,0). M' xac dinh II (3,17), m' xac dint II
(3.18).
Mifltkhactaco:
( =T
(
I r* O
J
<4r* =t, , ,
dodoneu( <1thi
( 2)
1 1 1
-In 1- ( =In~ <In
(
-
r
=In 2 >0
1-( 1 ( -- 1-16r K
~ _K
4PY2 >0
va In -K - K
4P m*(oo,g)Yl
~ _K
1 4P Y2
V~y,8$;./1n 2In =!!... _K
1-16rK 4 P m*(oo,g)Yl
$; /In 1 2 In
{4'; [m'(oo,gW(r:- r; J }
=,84
1-16r K
1
{
2K 1
(
- K -K
J}
,84=./In 2In4p[m*(oo,g)[ Y2-Yl
1-16r K
(3.21).
Djnh IS'3.2:C~ntren cua,8(g)
V6'icaegiathietvaky hi~unhutrongffit;lC2.2:
- Neup =1 thi,8 $;,82.
- Neup;::::2hoiflcp =1va thoa(3.19)thi ,8$;min{,8p,83,,84}'
trongdo
a . R(p,c-I,Or~-In(~-?2) ~ -, 1 ,R(P,C-l,Or~-In(~-?2)1-'1=arcsm C ' neu « va C $;1.
2vp 2vp
40
fJ ° R(I,c-l,o)f~ ~ -, , R(I,c-l,0)fv'=!n(I-?2)2=2arcsm J,.. , nt::uI <1va J,.. ~12",2 2",2
{
2K 1 -
}
2; i
- . P K -K * 1 4 r Y2 1
fJ3 - arcsm 2.4 r Y2d [m (oo,g)j , nfu K *( ) ~-d m oo,g 2
2K
(
K K
J
j
4 P Y2 - Yl
fJ4 =JIn 1 ~In
{4': [mO(oo,g)t'(;;: -;;~)} "IOu mo(oo,g) >1
1- 16rK ~
16rK <1
V6i I' xacdinho(3.11), r xacdinh0(3.17) YpY2xacdinho(3.15).
Vi dlJ 3.1:
Chop =4
B2
Hinh3.4
Mi~n B ban<1ftuco bi~ntrong0 Iii duangtrOllC(O,I)vii P =4 thanhphAn
boA , 1
°
1, 5: C' ) /. . i~ Fz Th' h h' bo
leD con c;u a Vi = ,ai's VFz - an p an l~n2-1
00chinhIii duangtrOllC(ao,s)v6i ao=a,r1=s, v6i S du<1I1gdube.
Ta IffyduangcongJordanYoIii duangphfulgiaccuagocphAntUthatU.
41
Ve duemgtrollC(a,r2)saochobankinhr2lakhmmgeach1611nhattua den
duemgphangiaccuagocphflntuthunhat.
Khi domi~nB2 lami~nnhi liengiOih';U1bOiC(a,&)vaC(a,r2)'
M' . n: a A
a r2 =asm"4=.J2' rl =& nen
2 2 f( 2 2)2 f,...r2 +& -"\j r2 - & & &"1/2r= =-=-
2&r2 r2 a
. Theo(3.20):
{
2K I
}
/33 =arcsin 2.44 rK r2 d-K [m'(00,g)jl
Taco p =4,d=1
{
I
}
K f,...-
- &"1/2 K - I
f3 = arcsin 2.4 2( -;;-) r2[m'(00,g)j
K I
/3~arcsin2.42(.J2)KrJm' (00,g)jl ~. I -&KI--
a K
(3.22)
choa (>tJ c6 djnh, kha Ian. Ta (hay khi 8 -> 0 n€u m' (00,g) 0
thi /3~ 0 ,
Vi v~ytrong truemghqp nay danh gia /3~/331akh6ng hi~n nhien
(0<jJ <;) vati~m cijn dung.
. Theo(3.21):
Taco:
/3~_/In 1 ~ In
{4':[m'(oo,g)t'(r:- r~J}1-16r K
42
2 ~2 J 2a 2 a 2, r22+&2_~h2_&2Y 2+& - 2-& 2&2 _.J2&Mar- - -- -
- 2&r2 - .J2a& - .J2a& - a .
- a.J2 - a.J2 /" 1, / h ~r2 =a+r2=a+-=c2a, rl =a-r2 =a--=cla, VO'!CpC2a cac ang2 2
soduong.
fJ'; Iln 1 2 +';[m'(oo,g)t'aK(e;-en}
1-1{4q
1
{
2K 1
~/35, Iin 2 fIn4p[m*(oo,g)jlaK(c;-CIK)r
1-16(.J2)K~
aK
(
2
)
2 K 2K
Ii,; .I-In 1-16(,/2)< :f +'[m"(oo,gWaK(e;-en}
2 1 I
{
2K 1 1
fJ'; j16(.J2r a~t 4 P [m'(oo,g)raK(c; -cnr'" (3.23)
V& ffiQia(>fJ c6djnh,khi "->0 n6um'(""g)~o>OthlfJ->O. VI
v~ytrongtfuanghqp nay ta da chi fa danhgia /35,/34Iakh6nghi~nnhien
(0<P<;) valati~mcijndung.
43
lJinh Ii 3.3(C~nduOicua fJ(g) )
VOi caegicithi€t nhu trongb6 de 2.10 taco:
l
2K
°oK7rln 4 P d K
P~;_./ m'(oo,g)I~1]
2pln d
c
(3.24)
"
Chfrngminh: z=g(w)
~
Eo w
z/~>\ r\1~2~
'i.0 J ,"'-..' '
"~:::] ",", ,,-' ct'::
,
\"""-'-:"/""
"
0,1
T :', """'", """" ': L
"-1 ,'., ".., ",:: 0
"
, ", ",'
",
, ,
, ,
"' " '
Hinh3.5p =2
Apd~ngb6de2.10,xettugiaccong:
Eo =(w=re'"le~r ~d,r(r) ~e ~r(r)+n(r)}vffiO d:J(r),; no(,; ~)vap(z)= ~
taco:
Ip(Cr) =fp(z)ldzl=fldzl vOiCr=g(CJtrongdoCr={wllwl=r}n{wlwEBo}tuc~- Iz I
Cr Cr
~
Cr lam(}tclingnfuntrongA noiLovOi L].
44
- - - -
D~t z =; e1rpthl Idz I= Ie1rpd r+~r e1rpdipI= Idr+~r dipI~ Ii r ~ipI=1dipI
Iz I Ir I r r
n~n~lp( C}t -P J
G9i Ao=g(Bo) thl
(
-
)
2ff ~
-n - rp r +-
Sp(Ao)= ffp2(Z)dxdy = H~d; =Hrd~2dip = Hdr_dip ~Mfd_r fdip= 2TrIn M(d)
Ao Ao I I Ao r Ao r m(c) r rp(;) p m(c)
trongdoA c {z:m(c,g)~1z I~M(d,g)}tucla A c {z:m(c)~1z I~M(d)}
Do dotheo(2.17):
~
[
2
(
Tr - 13
J]
2 ~ Jdr ~2TrInM(d)K P °0 c r P m(c)
d~ta =(;- jJ J
/ 4 a2 d 2Tr M(d)taco --In-~-ln-
K °0 c P m(c)
llOoKlnM(d)
Q a ~ I m(c)
d
2pln-
c
K -K
tathay M(d)~ 4P Id IK, m(c)~4P m*(oo,g)1c IK vaotaco:
K
°oKTrln 4P IdlKK
4 P m*(oo,g)1 c IK
d -
2pln- -
c
2K
- K
4 P Id I
°oKTrln m*(oo,g)1c IK
d
2 In-
p c
a~
45
2K
vi 4' IdlK d Q"KJTln 4' IdlK
m'(oo,g)lcIK>0,-;:->0nen m'(oo,g)lcIKd2pln-c
2K
~O
2K
- K
4 P Idl
noKJrln m*(oo,g)lcIK
d
2pln-
c
A
fJ
Jr Jr
nen =--a ~--
p p
tiletaeo(3.24).
Nhfulxet:
N€u c=const,d=const,m*(oo,g)~canst>0,khi no ~ 0 tm a ~ 0, tile fJ ~ Jr ,
P
eonghiadauhgia(3.24)ti~me~ndung.Di~unaysedu<JeminhhQabm:
Vi du3.2:
Cho.P=2 ~
~ '~~ \r
r:~Qo
WGd
(~.Rl
~~1
R.
\;=h(w) Z=k(;)
Hinh3.6
46
GQi B Ia mi~n Iwl >1 bi khoet hai tIT giac cong dong
Vj ={we<; Iwl <; d,(j -I}n- +~o<; arg w<; j1T - ~o}o<no <1T, j ~ 0,1 lac cae Ihanh
phanbien (;1'(;2IacacbiencuaVb Vz (hlnh3.6).
Cho c,d co dtnhtITCIa c=const,d=canst.Khi °0 ~ o thl m*(oo,g)thay
~
d6i.TuynhientasechUngminhm*(00,g)kh6ngclanden0, khi °0 ~ o tilc chUng
minh m*(oo,g);:::mo=canst>0.
Theo[17]t6n t1bt
e~tdQcp clingtrolltam0 saDehoJwl =1 thanh1;1=1,h(00)=00 .Hannuakhaitri~n
Laurentcuah(w)quanhw=00 cod<:tilg:
( ) al a2 a3h w =aw+-+2+3+'"w w w
(3.25)
TITC Ia Ih'(oo~ =lim
l
h(w)
1
=la! * °
z->oo W
(3.26)
Vi Z =k(;)=;I;IK-J Ia m<)tPBHKABG nen z =g(w)=k[h(w)]dingIam<)t
PBHKABG.
VeduemgtrollIwl =r v6ir ratIOn.
Vi r IOndo(3.25)Ih(w~ ~ lal\wl tITeimh cua \wi=r baih galltrimgv6i duemg
troll 1;1=; vai ;=lair. V~ylmhcua \wi=r bbi g =kohgantrungv6i duemgtroll
_K
Izl =R vaiR =r =lalKrK.
Tudotaeo: m*(oo,g)=limm(r;g)=lim ~=lalK*°.
r->oo r r->oor
47
Neutab6 sung haiclingcuanhateMtrongmi~nA d~duqcduemgtroll
1;1=R] thltrongmi~nB clingsecohaiclingn6i6]va62,
Khi cho Qo-+0 vae6dtnhe,d,do tinhbatbieneuam6duncae mi~nnht
lienquaPBHBG h thlR]-+c
,r r r r h - c (
.;:: ?
h' h h' h ' h kh )va: - -+- =>- -+- ay r :::;r - mIentrO't an III van an
R d c d d]
Lucdotheo(3.26)co: ;:::; rlh'(ool
c
Dodo:
Ih'(oo~=lim Ih
l
(W
I
~= lim~=limr d =~=const>O
~ 1wI--'" W 1wI--'"r r--'" r d
V~y theo (3.24) trong truemghqp nay ta co f3-+; khi Qo -+0, trong khi
0<f3<; , tiledanhgia(3.24)ti~me~ndung.