ĐÁNH GIÁ CÁC PHÉP BIẾN HÌNH Á BẢO GIÁC NHỮNG MIỀN NỘI TIẾP TRONG HÌNH VÀNH KHĂN
NGUYỄN LA THĂNG
Trang nhan đề
Mục lục
Chương1: Mở đầu và ký hiệu.
Chương2: Định nghĩa phép biến hình K-Á bảo giác và một số công cụ.
Chương3: Đánh giá cho phép biến hình bảo giác g lên miền chuẩn.
Chương4: Đánh giá lớp hàm F.
Chương5: Đánh giá lớp hàm H.
Chương6: Hệ quả suy ra từ các đánh giá.
Kết luận
Tài liệu tham khảo
14 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1966 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Luận văn Đánh giá các phép biến hình á bảo giác những miền nội tiếp trong hình vành khăn, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ChU'O11g2.DINH NGIDA PREP BIEN HINH K-A BAo
GIAC vA MOT s6 CONGCD. .
2.1Mo duncuami~n hilien.
B6 d~2.1.(T.Carleman[4,tr.212])
, ,
Gia sir w=fl(z) lamotPBHBGdandiep hinhvanhkhan~=K ~ lenmotmien. . b' b .
nhilienG khongchuadi~m0Ci saochobientrongc cuaGtuangirngv6iduemg
trimIzl=r. GQis la di~ntich(ngoai)cuat~pdongdoc baabQc,S la di~ndch
(trong)cuat~pmadoC baabQc.Khi dotacoquailh~sau:
s~(:)'s,
(2.1)
trongdodingthucxayrakhivachikhif(z)=az+bv6ia,b lacachfuIgs6va
a:;tO.
Tir b&dStasuyra cach~quasau:
H~qua2.1.(Binb ngbiamodunmi~nnbi lien)
N@umiSnnhilienG quacacPBHBGdandi~pf va fl IAnluQ'thanhhaihinh
VaMkhan:H: r <Iwl< R va HI :rl <IWI1<RI .
thi: R=RI
f fl
(2.2)
DlililuangR duQ'cdinhnghlalamaduncuamiSnnhiliennoitrenkYhi~ular
m(G)=R.r
7
Ron mranSu Gila anhcuaG b6imQtPBHBG dondi~pthi m(G1)=m(G), do
la tinhb~tbiSncuama dunmiennhi lien.
H~qua2.2(tinbdondi~uctiamodunmi~nnbilien)
NSucacmiennhilienG vaG' v6icacmadunlftnluotR va R' cotinhch~t
. . r r'
Gc G'vaG ngfmcachhaithanhphftnbiencuaG'thi R::;;R' , D~ngthucxayr r'
rakhivachikhi: G ==G' .
2.2 Binb ngbiapbepbi~nbinbK-a baGgiac
Binb ngbia2.1
PhepbiSnhinhmQtmQtw =f(z) tirmienA trongm~tph~g z lenmienB trong
m~tph~ngw'lien t\lChai chieuva baatoanchieuduongtrenbienduQ'cg9i la
PBHKABGnSum9iill giaccongQc A comadunla m(Q)thiill giaccong
Q'=f(Q)comadunlam(Q')seth6ab~td~ngthuc:
~m(Q)::;;m(Q')::;;Km(Q) (K ~1)
K
(2.3)
SaildaylamQts6tinhch~tcuaphepbiSnhinhK-a baagiac:
1. K=1thiphepbiSnhinhtr6thanhbaagiac
2. RQ'PcuahaiphepbiSnhinhK}-a baagiacvaphepbiSnhinhK2-a baa
giaclamQtphepbiSnhinhK}.K2-a baagiac.
3. PhepbiSnhinhnguQ'cuaphepbiSnhinhK-a baagiaclaphepbiSnhinh
K-a baagiac.
8
4. NSuQ lahinhchfrnh~tABCDcocacc~ laa,b,Q' lahinhchfrnh~t
A'B'C'D'co cacc~nha',b'songsongv6i cactf\lCto~dQ.Giasir[ la
PBHKABGmi~nQ leuQ' saDchob6ndinhtuangUngv6iMall.Khi do:
,
:' =K: khivachikhi[cod~g[(x+iy)=a(Kx+iy)+p, ~
a' 1a
kh' , h' kh
.
[
, d f(
'
) (
1 '
) A- =-- 1va c 1 1 co ang x +lY =a - x+lY +1-',
b' Kb . K
v6icach~ngs6a >0, f3phuc.
SaudaylamQts6b~td~ngthucmarQngchoPBHKABG.
B8d~2.2
GiasirG lami~nhilienv6imodunla m(G) duQ'cbiSnK-abaagiacleumi~n
G' v6imodunm(G').Khi do:
1 K
[m(G)JK~m(G')~[m(G)J . (2.4)
Trang truanghQ'PG ={z,q<Izi<I} va G' ={w,q'<Iwl<I} thi (2.4)trathanh:
1
qK ~q'~qK . (2.4a)
1 1
Ran nfraq'=qK [( z) =aIzIK-lz, la!=1,va q =qK f (z) =aIzIK-l,lal=1.
B8d~2.3(SoyrQngbAtdingthueCarlemanehoPBHKABG)
Giasir[la PBHKABG hinhVaM khan(0<)r<Iz 1<R « 00)lenmi~nnhi lienG
khongchuadiSm00 v6i bientrongc, bienngoaiC saDcho 1 z 1=R tuangUng
9
v6ibienngoaiC. GQiS la di~ntich(trong)cuat~pmadobienngoaiC bao
bQc,sladi~ntich(ngoai)cuat~pdongdocbaobQc.Khi do:
s~(~)%s,
(2Ab)
trongdodfuIgthucxiiyrakhivachikhi:
~~ .,
w=f(z)=alzIK z+b v6i cachangso a:;t:Ovab.
ChUngminh:(XemThao[14,tr.55-56]ho~cLuong[11,tr23]).
B&d~2.4 (Bit ding thu-cdi~ntich cho mi~nda lien)
Giii sir A la hinh vanh khan (0<)r <Iz 1<R (<00)v6i p nhat c~t
Lj(j =O,I-,...,p-1) n~mtrendUOngtrOlldangtamI z1=Rl (r<Rl <R). GQiflit
PBHKABG miSnA lenmiSnB cuam~tphfuIgw saochoduOngtrOllI z 1=R
tuongUngv6i bienngoaiC cuaB, cacnhatc~tLj biSnthanhcacbien
o)j =O,I,...,p-1). Khi dotaco:
S(R, f) >S(r, f)
(
~
J
Yrc +i>
(
~
J
~
r . J 'R 'J=1 1
(2.5)
trongdo S(R,f) 1ftdi~ntich(trong)cuat~pmadobienngoaibaobQc,S(r,f) la
di~ntich(ngofti)cuat~pdongdobientrongbaobQc,Sj la di~ntich(ngoai)cua
t~pdongdo cac ITj baobQc.
1. --1. ,
Bangthucxiiyrakhi vachikhi fez)=a I z IK +b vaia,b lacachangso,
a:;t:O.
10
ChUngminh:XemThao[14,tr.56]ho~cThao[13,tr.522].
2.3 Caehamsapht}T(p,r,s)vaR(p,t,s)
Gia su hiOOvaOOkhan r <Iz 1<1 tuangduangbaogiacv6i hiOOvaOOkhan
s<Iw 1<1bi c~tp do~ndoctheobankiOO:
Pj={wl s~lwl~t,argw=j21t},(j=O,1,...,p-l)(xem hiOO2.1), do tiOOdon
p
di~ucuamadunmiSnOOilien(h~qua2.2)taco 0~s~r <t <1.Han nuat la
d~iluangxacdiOOduyoofittheor va s, r la m<)td~ilugngxacdiOOduyoofit
theotvas.
BG
Or 1
1
z
HiOO2.1(v6iP =2)
Tir dotadiOOnghiacaehams6:
t=T(p,r,s)v6ip=1,2,...;O~s<r<l,
r=R(p,t,s) v6ip= 1,2,...;O~s<t<1.
Clingdotinhdondi~ucuamadunmiSnnhi lientacocaetiOOchfitcuacaeham
T(p,r,s) va R(p,t,s) OOusau:
1.r<T(p,r,s)<I(O~s<r<l) (2.6)
2.T(p,r,sl)>T(p,r,sz)(0~Sl<Sz<r <1) (2.7)
3.T(p,rps)<T(p,rz,s)(0~s<r1<rz<1) (2.8)
(2.9)4. s<R(p,t,s)<t (O~s<t<l)
5.R(p,tpS)<R(p,tz,s)(0:5;t1<tz<1) (2.10)
6.R(P,t,SI)<R(p,t,sz)(O~SI<sz<t<l) (2.11)
7.R(p,t,s)>R(1,t,s)(0~s<t <1,p~2) (2.12)
Nha caecongthuctrongNehari[10,tr.280-295],Thao[12,tr.100-107] va
Luang[11,tr.15-18]diichiracongthuccuahamR vaT OOusau:
R(P,t,s)=exp
(
-JrKf(U»
)
,voiu=1+h-.Jh(2+h), trongd6:
, 2pK(u)
(l-k)(l-ak) 00
[
1+s4pj
]
h= ,k=4spfI "
k(1+a) j=l 1+S4PJ-Zp
(
i2pb t
)a=sn b+ ;-In;,k ,b=K(k),
6 daysn(z,k)chisinelipticv6ithamsak.
.!. 00
[
1+r4pj
]
~
T (p,r,O)=4PrfI 4 '-2 (O<r<l,pEN) ,
j=l 1+r PJ P
(
. a dx
JT(p,r,s)=sexp2;:;k)!~(1-x')(1-k'x') ,
0<s<r <1,pEN, voi K(k) 0011'tren
12
I-m k(l-h )
2 00
[
l+r4pj
]
a= m= h=4rP
k +m' 2h(1- k)' U 1+R4pj-2p.
Tir d6surracaet£OOeh~tkhaeeuahamR(p,t,s),T(p,r,s):
-1
8. R(p,t,s)~4Ptkhit~0, (2.13)
1{2
9. l-R(p,t,s)~ 8 khi t~l
2pln
p(1- t)
(2.14)
-1
10.4Pt<R(p,t,s)<t, O:5;s<t<l, \:fp, (2.15)
1
11.T(p,r,0)~4Pr,khi r~O (2.16)
8
(
1{2
J
12.1- T(p,r,s)~ -exp khir ~ 1,
P 2p(l- r)
(2.17)
1
13.r<T(p,r,s)<4Pr,0:5;s<r<I,\:fp. (2.18)
2.4Cacb6d~khac:
B6d~2.5(BAtding thtfcGrotzschl)
Giasirtrongm~tph~ngz ehotruaemienEo ehotruae,giaih~ b6i Izl=1,
Izl=q,O<q<1va p(l:5;p<oo)thanhphAnbien cr1,cr2,...,crpnb trong
q<Izi<1. Gia sirhamw =f(z) bi~nbaagiacdandi~pmienEo lenmienBo
ehuatrongmQthiOOvaOOkhanq'<Iwl<1 saoehoIzi=1ehuy~nthanhIwl=1,
Izi=qehuy~nthanhIwl=q', crjthanhcrj'(j =1,2,...,n).N~ut~tea crj'laOOung
13
nhatc~theobankinhthitaviStfo,qothayvi f,q', trail~inSut~tca crj' la
nhUngnhatc~theocaccungirond6ngtamt~i0 taviStfl,Qothayvi f,q'.
GrOtzschdffchiraquanh~sail:
< '<Qqo- q - 0, " (2.19a)
trongdo q'=qof =fovaq'=Qof =fl .
ChUngminh:xem[6,tr.372].
Bay gia nSumiSnEo noi trenduQ'chamw =<p(z)biSnK-a baagiaclenmiSn
BI chuatrongq"<Iwl<1 saocho Izl=1 chuySnthanhIwl=I, Izi=q chuySn
thanhIwl=q:'. Khi do
I
q~~q"<QK, (2.19b)
trong do q"=q~<p(z)=<Po(fo(z)) v6i <Po(u) =alulK-Iu, lal=I,
I I
q" =QK <p(z) =<PI (fl (z)) v6i <PI(u) =alulK-I u, lal= 1.
va
ChUngminh:XemThao[14,tr.58]ho~cLuang[ll, tr.29].
BBd~2.6(Mo- rQngbAtding thuc Grotzsch2)
GiasirD lahinhvanhkhanR <Iz1<1v6ipn(p=1,2,...,n=O,I,2...)nhatc~tn~m
trencac duangd6ngtam 0 sao cho D trimgv6i chinhno b6i phepquay
.21t
1-, '"
Z=e P z, f la phepbienhinhK-a baagiacmienD lenmienEl namtrong
0<Iw 1<1sao cho duang iron 1 z 1=R tuanglIngv6i bientrongCI, saochot~p
donggi6i h~ b6i CIchuag6ctQadQ,duangiron I z 1=1 tuanglIngv6ibien
14
.27t
1-
ngoaiC2.Han111lagiil sirEl trimgv6'ichinhnoquaphepquayW =e P W .Khi
dotacodanhgiadung
M}::;T(p,RX ,m}), (2.20)
v6'iM}=max{lwl,WEC}}, m}=min{lwl,wEC}}(~O),va T(p,r,s) 1ahamph\l
du<;ycdinhnghTatrong2.3.
. ~
Dangthucxilyraa (2.20)fez) =fo(z)=ah(t),1 a 1=1,t =biz IK z,1b 1=1, h 1a
1
phepbi@nhinhbilogiachinhvanhkhanRK <I t 1<1 1enmiSnnhilienP saocho
}
Itl=1 tuang'Ungv6'iIwl=1 va 1 t 1= RK tuangUngv6'ic trongdoc du<;ycdinh
nghTanhusau:
c={w,1w 1=m}}u {w,m}::;1w I::;Mpargw =j 21t},j=O, ,p-1.
P
ChUngminh:XemThao[14,tr.63],ho~cLuO'ng[19,tr.33].
DBd~2.7(M6'rQngbit dingthucGrotzsch2)
Giil sir Dl 1ahinhvanhkhanQ<Izi<Rv6'ipn (p=I,2,...;n=0,1,2...)nhatc~t
n&mtrencacduangtrOlld6ngtam0 saocho Dl trUngv6'ichinhno quaphep
.2J1:
quayZ =e1--;z, f 1aPBHKABG miSnD}1enmiSnEzn&mtrong0<Iwl<00 sao
choduangironIzi=Q thanhbientrongC}baogBctQadQ,duangtrOllIzi=R
thanhbien ngoai C2, Han nua E2 trimgv6'i chinhno quaphepquay
.2J1:
1-
W =e P w .Khi dotacodanhgiadUng
15
rnt
)
'rn> t
2 - Q K rnt
T[P.(R) 'M,
(2.21)
rnj=min{lwllwECj},j =1,2va M2=rnax{lwllwECz}'v6i T(p,r,s)lahamph\!
duQ'cdjnhnghi'atrong2.3.
t
D~ngthuc Kay ra ~f(z)=fo(z)=aH(t),lal=l,t=blzIK-tz,lbl=l,H la
t t 1
PBHKABG hinhVaMkhanQK <It 1<RK tenmiennhjlienP saochoItI=RK
tuangli'ngv6i
c ={wllwl=M,}u {ill, ,;;1wI:,;M" argw=j 2; },j =O,...,p-1. It I =Qk wang
t'mgv6i c ={wII w 1=rnt}.
ChUngminh:B6 de2.7sur ill b6 de2.6nhacacphepbiSnd6i Z=Q vaz
w =rnt, xernThao[14,tr.64].
w
2.5 Ly thuy~tdQditic1}'ctrj
B8d~2.8
Trongrn~tphkg z chohinh chftnh~tD ={z=x +iy I 0 <x <a,O<y <b}.
Giasirhams6 w =f1(z) th\lchi~nPBHKABG hinhchftnh~tD tenrnQtill giac
congH cuarn~tphkg w saochocacdinh0,a,a+ibvaib cuaD lfu1lugttuang
16
tmgv6i cacdinh WI' W2' W3'va W4 cuaH. GQi r lahQcacclingytrongH n6i
c~nhWIW2 v6i c~nhW3W4 cuaH.
Gia sir co ham dQ do p=p(w)~0lien t\1c trong H sao cho
O<lp(Y)=Ipldwl~oo,VYErva
y
0 <Sp(H) =ffp2dudv<00,W=u +iv t6nt~itheonghiaLebesgue
H
D~t Ip=inf Ip(y) Khi dotaco Sp(H) ~~~l~
YEr K b
(2.22)
Chuy : DAngthuccothSxayra.
ChUngminh: Trong truemghqpK =1
D~tcrx=Dn{zliRz=x}vayx=f(crx),O<x<a.
TheogiathiSttaco
a
S p (H) = II p2dudv=II p2If;(z)12dxdy= I dx I p2If;(z)12Idyl.D ax
H 0
TheobfitdAngthucSchwarzltanh~nduqcVx E(O,a)
Lx P 2 If'(z)12 Idy I Lx Idy I ~ (Lx If'(z)lldyIf
vado i Idyl=b >0 nencoax
2
Lx p2If' (z) 12IdY I ~ ~ (L xcrIf' (z) lidY I)
dSY YxEr taco
17
1 a
( )
2 1 a
( )
2
Sp(H)~-f i plf'(Z)lldyldX=-f IpldWI dxb 0 crx b 0 Yx
~ ~12 afdX = ~12.b P b P0 (2.22a)
TruemghQ'PK>1.
Xet hI(w)1aPBHBG H 1enhinhchfrnh~tD' , v6i D' dugcdinhnghianhusau:
D'={11=s+itlO<s<a',0<t <b'},hiSnnhienh1il 1aPBHKABG ill D 1enD'
dodo
a' 1 a->--
b'- K b. (2.22b)
Apd\mg2.22achophepbiSnhinhh~1taco:
a '
S p (H )~ b'1~
(2.22c)
ThaykStquatfong(2.22b)vao(2.22c)tadugcSp(H) ~~: 1~.
,
Dfiu bimg co thS Kay fa tfong truemghQ'PH trimg vdi D', pew) =1,va : =K :' .
khido~~12=~~(b,)2 =a'b'=S (H).KbP Kb P
BBd~2.9
Trangm~tph~ngz chotu giac cong E ={zIfI 12(< 7t)}
18
Giasirhams6W=fez)thgchi~nPBHKABG miSnE IenmQtill ghiccongH cua
matPhtmgw saDchocacdinhz =r ei<p2 Z =1",eicp\z =r eicp\z =r eiCP2cuaE. I 1'21'32'42
I~nluqt tuang(rugv6i cacdinh WI'w2'W3'W4cuaH.
V6i cackyhi~up, Ip(Y),Y E r,Sp(H)nhu trongb6dS2.8taco:
Sp(H)2 1 2-112K r p'In ---L
rl
(2.23)
Chuy: f)~ngthuccothSxayfa.
ChWzgminh:
DungphepbiSnhinht=Inz biSnbaagiacmiSnE Ienhinhchunh~tD v6icac
dinhtuang(rugsaudoapd\lngb6dS2.8tadugckStqua(2.23).
B8d~2.10
Gia sir trongm~tph~ngz chotru6cmiSnA2 tuyY saDchov6i mQir ma
(0 <)<r1<r <r2« 00)co
01<~(~ 2n), trong do <p=argzvaYr=A2 (\ {z:1z 1=r}.
Yr
Hams6w=f(z)thgchi~nmQtPBHBG dondi~pmiSnA2 IenmiSnB2cuam~t
ph~ngw.Ta d~t:
A21 =A2 n {z:rl<Iz 1<rJ va
-
B 21 =f (A 21)va y =f (y), rl < r <r2.
Hanllliagiasir p=p(w) ~0 dugcxacdinhtrongB21saDcho
19
f P 2 dud v « 00 ), r1 < r < r2
y
(0 <)Sp(B 21)=ffP2dudv « 00), w =u +iv, t6n t~i
BZ1
Lebeguevav6imQir, r1< r < r2 c6 1p I dw I ~ 1p
Yr
. TZ d
khi dota co: (1p ) 2 J ~ < sp (B 2 1 )T ra r)I
ChUngminh:xem[12,tr 124-125].
20
theo nghia
(2.24)