Luận văn Điều khiển trượt bộ biến đổi DC-DC tăng áp

LUẬN VĂN THẠC SỸ KỸ THUẬT NGÀNH: THIẾT BỊ, MẠNG VÀ NHÀ MÁY ĐIỆN ĐỀ TÀI: ĐIỀU KHIỂN TRƯỢT BỘ BIẾN ĐỔI DC-DC TĂNG ÁP MỞ ĐẦU Trong lĩnh vực kỹ thuật hiện đại ngày nay, việc chế tạo ra các bộ chuyển đổi nguồn có chất lượng điện áp cao, kích thước nhỏ gọn cho các thiết bị sử dụng điện là hết sức cần thiết. Quá trình xử lý biến đổi điện áp 1 chiều thành điện áp một chiều khác gọi là quá trình biến đổi DC-DC. Một bộ nâng điện áp là một bộ biến đổi DC- DC có điện áp đầu ra lớn hơn điện áp đầu vào. Bộ biến đổi DC-DC tăng áp hay được sử dụng ở mạch một chiều trung gian của thiết bị biến đổi điện năng công suất vừa đặc biệt là các hệ thống phát điện sử dụng năng lượng tái tạo (sức gió, mặt trời). Cấu trúc mạch của bộ biến đổi vốn không phức tạp nhưng vấn đề điều khiển nhằm đạt được hiệu suất biến đổi cao và đảm bảo ổn định luôn là mục tiêu của các công trình nghiên cứu. Thêm vào đó, bộ biến đổi là đối tượng điều khiển tương đối phức tạp do mô hình có tính phi tuyến. Để nâng cao chất lượng điều khiển cho bộ biến đổi, với đề tài ”Điều khiển trượt bộ biến đổi DC-DC tăng áp” đã ứng dụng lý thuyết điều khiển hiện đại tạo ra bộ điều khiển để điều khiển cho bộ biến đổi DC-DC tăng áp, đảm bảo hiệu suất biến đổi cao và ổn định. Luận văn bao gồm 4 chương, nội dung cơ bản như sau: Chương 1: Mô hình bộ biến đổi DC-DC tăng áp Chương này thành lập các phương trình toán học mô tả bộ biến đổi. Chương 2: Nguyên lý điều khiển trượt Trong chương này trình bày các khái niệm về hệ thống cấu trúc biến, điều khiển tương đương, mặt trượt và tính tiếp cận được của các mặt trượt, từ đó đề xuất phương pháp để thiết kế bộ điều khiển trượt. Chương 3: Điều khiển trượt bộ biến đổi DC-DC tăng áp MỤC LỤC Mục lục . 1 Mở đầu 3 Chương 1: Mô hình bộ biến đổi 5 1.1 Giới thiệu các bộ biến đổi bán dẫn . 5 1.2. Phân loại các bộ biến đổi bán dẫn . 7 1.3 Các bộ biến đổi DC-DC . 8 1.3.1. Bộ biến đổi giảm áp (buck converter) 9 1.3.2. Bộ biến đổi đảo áp ( buck-boost converter) .11 1.3.3. Bộ biến đổi tăng áp (boost converter) .12 1.3.3.1. Mô hình của bộ biến đổi 14 1.3.3.2. Mô hình dạng chuẩn 15 1.3.3.3. Điểm cân bằng và hàm truyền tĩnh .16 Chương 2: Nguyên lý điều khiển trượt 20 2.1. Giới thiệu .20 2.2. Các hệ thống cấu trúc biến .20 2.2.1. Điều khiển đối với các hệ thống điều chỉnh bằng chuyển mạch đơn 21 2.2.2. Các mặt trượt 24 2.2.3. Ký hiệu .25 2.2.4. Điều khiển tương đương và trượt động lý tưởng .26 2.2.5. Tính tiếp cận được của các mặt trượt 29 2.2.6. Các điều kiện bất biến cho các nhiễu loạn tìm được 34 Chương 3: Điều khiển trượt bộ biến đổi DC-DC tăng áp .36 3.1 Đặt vấn đề 36 3.2. Điều khiển trực tiếp .37 3.3. Điều khiển gián tiếp .39 Chương 4: Mô phỏng kiểm chứng trên nền Matlab& Simulink .42 4.1. Mạch lực bộ biến đổi .43 4.2. Xây dựng bộ điều khiển .45 4.2.1. Bộ điều chỉnh dòng điện .45 4.2.2. Bộ điều chỉnh điện áp .54 4.2.2.1. Thử nghiệm các thông số hệ thống 58 4.2.2.2. Thử nghiệm tính điều chỉnh được của hệ thống 64 Kết luận 69 Tài liệu tham khảo 70

pdf76 trang | Chia sẻ: maiphuongtl | Lượt xem: 2691 | Lượt tải: 4download
Bạn đang xem trước 20 trang tài liệu Luận văn Điều khiển trượt bộ biến đổi DC-DC tăng áp, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
làm dòng điện trong điện cảm tăng dần theo thời gian. Khi khóa (van) ngắt, điện cảm có khuynh hướng duy trì dòng điện qua nó sẽ tạo điện áp cảm ứng đủ để diode phân cực thuận. Tùy vào tỷ lệ giữa thời gian đóng khóa (van) và ngắt khóa (van) mà giá trị điện áp ra có thể nhỏ hơn, bằng, hay lớn hơn giá trị điện áp vào. Trong mọi trường hợp thì dấu của điện áp ra là ngược với dấu của điện áp vào, do đó dòng điện đi qua điện cảm sẽ giảm dần theo thời gian. Với các giả thiết tương tự như các trường hợp trên, ở chế độ dòng điện qua điện cảm là liên tục, điện áp rơi trung bình trên điện cảm sẽ bằng 0. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 12 - Với cách ký hiệu T = T1 + T2 như trên, điện áp rơi trung bình trên điện cảm khi đóng khóa (van) là (T1/T)×Vin, còn điện áp rơi trung bình trên điện cảm khi ngắt khóa (van) là − (T2/T)×Vout. Điều kiện điện áp rơi trung bình trên điện cảm bằng 0 có thể được biểu diễn: (T1/T)×Vin − (T2/T)×Vout = 0 Như vậy: (T1/T)×Vin = (T2/T)×Vout ⇔ D×Vin = (1 − D)×Vout Khi D = 0.5, Vin = Vout. Với những trường hợp khác, 0 < Vout < Vin khi 0 < D < 0.5, và 0 < Vin < Vout khi 0.5 < D < 1 (chú ý là ở đây chỉ xét về độ lớn, vì chúng ta đã biết Vin và Vout là ngược dấu). Như vậy, bộ biến đổi này có thể tăng áp hay giảm áp, và đó là lý do mà nó được gọi là bộ biến đổi buck-boost. Xét cùng một loại bài toán thường gặp như những trường hợp trên, tức là: cho biết phạm vi thay đổi của điện áp ngõ vào Vin, giá trị điện áp ngõ ra Vout, độ dao động điện áp ngõ ra cho phép, dòng điện tải tối thiểu Iout,min, xác định giá trị của điện cảm, tụ điện, tần số chuyển mạch và phạm vi thay đổi của chu kỳ nhiệm vụ, để đảm bảo ổn định được điện áp ngõ ra. Phạm vi thay đổi của điện áp ngõ vào và giá trị điện áp ngõ ra xác định phạm vi thay đổi của chu kỳ nhiệm vụ D: Dmin = Vout/(Vin,max + Vout), và Dmax = Vout/(Vin,min + Vout). Lý luận tương tự như với bộ biến đổi buck, độ thay đổi dòng điện cho phép sẽ bằng 2 lần dòng điện tải tối thiểu. Trường hợp xấu nhất ứng với độ lớn của điện áp trung bình đặt vào điện cảm khi khóa (van) ngắt đạt giá trị lớn nhất, tức là khi D = Dmin. Như vậy đẳng thức dùng để chọn chu kỳ (tần số) chuyển mạch và điện cảm L giống như của bộ biến đổi buck: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 13 - (1 − Dmin)×T×Vout = Lmin×2×Iout,min Cách chọn tụ điện ngõ ra cho bộ biến đổi này cũng không khác gì so với những trường hợp trên. 1.3.3. Bộ biến đổi tăng áp (boost converter) Bộ biến đổi tăng áp là thiết bị được ứng dụng để biến đổi làm tăng điện áp đầu ra so với điện áp nguồn. Vấn đề điều khiển bộ biến đổi tăng áp là một vấn đề phức tạp vì nó có tính phi tuyến và dễ bị ảnh hưởng của các tác động bên ngoài. Mạch điện của bộ biến đổi tăng áp, còn được gọi là bộ biến đổi tăng như hình 1.3. Ta giả thiết rằng các thiết bị bán dẫn là lý tưởng, nghĩa là transistor Q phản ứng nhanh khi diode D có giá trị ngưỡng bằng 0. Điều này cho phép trạng thái dẫn và trạng thái khóa được kích hoạt tức thời không mất thời gian. Như đã biết, ta có: khi transistor ở trạng thái mở, diode D sẽ bị phân cực ngược. Do đó, sẽ hở mạch giữa nguồn áp E và tải R. Ta có thể thấy điều này trên hình 1.4(a). Mặt khác, khi transistor Q ở trạng thái khóa, diode D phân cực thuận, tức là D dẫn. Nó cho phép dòng năng lượng truyền từ nguồn E tới tải R, như hình 1.4(b). Hình 1.3: Bộ biến đổi tăng áp đóng cắt bằng thiết bị bán dẫn Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 14 - Hình 1.4: Sơ đồ thay thế của bộ biến đổi tăng áp Hai sơ đồ mạch ghép nối với bộ biến đổi có thể được kết hợp thành một sơ đồ mạch đơn bằng cách sử dụng ý tưởng của chuyển mạch lý tưởng như trên hình 1.5 Hình 1.5: Lý tưởng đóng cắt cho mạch tăng áp 1.3.3.1. Mô hình của bộ biến đổi Để xác định được mô hình động học của bộ biến đổi, ta áp dụng luật Kirchoff cho mỗi một sơ đồ mạch như là hệ quả của hai vị trí chuyển mạch. Sơ đồ mạch đầu tiên nhận được khi chuyển mạch lấy giá trị u = 1, sơ đồ mạch thứ hai nhận được khi chuyển mạch lấy giá trị u = 0, hai sơ đồ mạch này được biểu diễn trên hình 1.5. Khi vị trí chuyển mạch đặt u = 1, ta áp dụng luật Kirchoff điện áp và Kirchoff dòng điện, thu được hệ phương trình động lực học: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 15 - di L E dt dv v C dt R    (1.1) Khi chuyển mạch đặt u = 0, ta có hệ: di L v E dt dv v C i dt R      (1.2) Dạng động học của bộ biến đổi tăng áp được mô tả bởi hệ phương trình vi phân (1.1),(1.2) với dạng tổng quát dưới đây: Evu dt di L  )1( (1.3) R v iu dt dv C  )1( ( 1.4) 1.3.3.2. Mô hình dạng chuẩn Dạng chuẩn hóa của hệ phương trình mô tả bộ biến đổi tăng áp đạt được bằng cách định nghĩa lại các biến trạng thái và biến thời gian như dưới đây:                            v i E C L E x x 1 0 0 1 2 1 , LC t  (1.5) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 16 - 1 1 2 2 1 1 1 1 1 1 1 1 dxL L di di x i L E C dt E C dt E dtLC dx dv L dv x v C E dt E dt E C dtLC         . dt d dt LC d LC     Từ phương trình (1.3) ta có: 1 1 1 1 1 1 (1 ) di L u v E E dt E ELC LC LC      1 2 1 1 1 dx u x dt LC LC     1 21 1 dx u x d     Từ phương trình (1.4) ta có: 1 1 1 1 1 1 1 (1 ) L dv L L C u i v E C dt E C E C RLC LC LC     2 1 2 1 1 1 1 dx L u x x dt R CLC LC       2 21 2 1 1 1 . 1 dx xL u x x u x d R C Q       Ta được mô hình chuẩn hóa trung bình của bộ biến đổi tăng áp 1)1( 2 1  xu d dx av (1.6) 2 2 1(1 )av dx x u x d Q    (1.7) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 17 - Đặt u=1-uav, ta có: 1 2 2 2 1 1 dx ux d dx x ux d Q        (1.8) Trong đó tham số Q là nghịch đảo của hệ số chất lượng mạch, tính theo công thức Q= LCR / . Biến x1 là dòng điện cảm chuẩn hóa, còn x2 là điện áp ra chuẩn hóa. 1.3.3.3. Điểm cân bằng và hàm truyền tĩnh Một trong các mục tiêu điều khiển mà ta mong muốn đạt được khi sử dụng hoặc thiết kế bộ biến đổi công suất 1 chiều sang một chiều là điều chỉnh điện áp ra ổn định tới một giá trị hằng hoặc để tiếp cận tới 1 tín hiệu tham chiếu cho trước. Trong chế độ trạng thái ổn định, ứng với các giá trị cân bằng hằng, tất cả các đạo hàm theo thời gian của các biến trạng thái mô tả hệ thống được cho bằng 0. Vì vậy, đầu vào điều khiển cũng phải là hằng, nghĩa là uav=U=constant. Điều kiện này kéo theo một hệ phương trình mà nghiệm của nó mô tả điểm cân bằng của hệ. Từ phương trình(1.6),(1.7) ta có: 2 2 1 0 (1 ) 1 0 (1 ) av av u x x u x Q           (1.9) Mô hình trung bình chuẩn hóa của bộ biến đổi tăng áp ứng với giá trị hằng của đầu vào điều khiển uav=U, đưa ra hệ phương trình dưới đây cho trạng thái cân bằng: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 18 -                         0 1 1 )1( )1(0 2 1 x x Q U U (1.10) Giải ra ta được: 21 )1( 11 UQ x   , )1( 1 2 U x   (1.11) Dạng tham số hóa khác đạt được bằng cách biểu diễn giá trị cân bằng trong giới hạn của điện áp ra mong muốn của bộ biến đổi , kí hiệu bởi dVx 2 : 2 1 1 dV Q x  , dVx 2 , d d V V U 1  (1.12) Theo cách này, từ hệ thức (1.10) ta được hàm truyền chuẩn hóa tĩnh của bộ biến đổi tăng áp cho bởi: H(U)= )1( 1 2 U x   (1.13) Rõ ràng là hệ số khuếch đại của mạch bộ biến đổi luôn lớn hơn 1. Vì thế, bộ biến đổi được gọi là bộ biến đổi tăng hay bộ biến đổi tăng áp. Đặc tuyến của hàm truyền tĩnh của bộ biến đổi tăng áp đựợc minh họa như trên hình 1.6 . Dễ thấy thông qua sự biến thiên của chu trình hoạt động hay đầu vào điều khiển trung bình U, ta có thể đọc được giá trị của điện áp đầu ra ổn định của giá trị mong muốn v lớn hơn 1. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 19 - Hình 1.6: Đặc tuyến hàm truyền bộ biến đổi tăng áp Giá trị dòng điện và điện áp cân bằng của mạch là E v R i 21  , )1( U E v   (1.14) Trên đây là phương trình trạng thái của bộ biến đổi tăng áp. Điều khiển bộ biến đổi tăng áp có thể có nhiều phương pháp. Bài luận văn này tác giả trình bày phương pháp dùng bộ điều khiển trượt để điều khiển đối tượng. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 20 - Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 20 - CHƢƠNG 2 NGUYÊN LÝ ĐIỀU KHIỂN TRƢỢT 2.1 Giới thiệu Điều khiển trượt nổi tiếng với kỹ thuật phản hồi đã được đề cập đến trong rất nhiều bài báo và các công trình nghiên cứu của nhiều tác giả. Bản chất kỹ thuật này điều chỉnh các hệ thống thông qua điều khiển đóng ngắt như là các thiết bị điện tử công suất nói chung và các bộ biến đổi DC-DC nói riêng. Điều khiển trượt được nghiên cứu cơ bản bởi nền khoa học Nga xô viết được trình bày trong các cuốn sách của Emelyanov, Utkin, và một số tác giả khác. Điều khiển phản hồi gián đoạn được áp dụng cho các hệ thống vật lý cơ điện tử đã được thực nghiệm và đạt kết quả tốt. Trong chương này chúng ta nghiên cứu điều khiển trượt cho hệ thống điều chỉnh đóng ngắt phi tuyến. Ta quy ước và giải quyết các vấn đề trên cơ sở sử dụng ngôn ngữ biểu đạt của hình học giải tích vi phân. Chúng ta cùng xem lại các hệ thống một khoá chuyển mạch và hệ thống nhiều khoá chuyển mạch (hệ SISO và hệ MIMO). Chúng ta nghiên cứu tính chất nổi bật của lý thuyết cơ sở của điều khiển trượt: mặt trượt, sự tồn tại mặt trượt, định nghĩa mặt trượt , điều khiển tương đương, trượt động lý tưởng và cuối cùng là sự ổn định của hệ thống vòng lặp điều khiển trượt với các điều kiện nhiễu. 2.2 Các hệ thống cấu trúc biến Hệ thống cấu trúc biến là một hệ thống trong đó mô hình trạng thái động chịu ảnh hưởng lớn trên miền của không gian trạng thái, trên đó các phép toán của hệ được tìm thấy một cách tường tận. Bản chất không liên tục của mô hình chính là thông số đặc tính, và những thay đổi đột ngột gây ra hoặc do sự tác động tự ý lên các thành phần Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 21 - của toán tử, sự kích hoạt tự động của một hay nhiều bộ chuyển mạch trong hệ thống, hoặc do sự thay đổi các giá trị tạm thời của từng tham số hệ thống xác định. Lớp của các hệ thống cấu trúc biến tương đối rộng đối với các nghiên cứu chi tiết, hơn nữa lại ít được quan tâm trong lĩnh vực Điện tử Công suất (Power Electronics). Vì lý do này, ta sẽ chỉ nghiên cứu các hệ thống cấu trúc biến được điều khiển bởi một hoặc nhiều chuyển mạch. Vị trí của các chuyển mạch này sẽ cấu thành nên tập các đầu vào điều khiển. Ngoài ra, ta giới hạn thêm đối với các nhóm hệ thống mà các mô tả hoặc cấu trúc có điểm tương đồng về số chiều với hệ kết quả cũng như về bản chất của trạng thái mô tả trong hệ. 2.2.1 Điều khiển đối với các hệ thống điều chỉnh bằng chuyển mạch đơn Ta xét quá trình điều khiển các hệ thống được biểu diễn bởi các mô hình không gian trạng thái phi tuyến theo dạng:     . x f x g x u  ,  y h x (2.1) trong đó ,nx R [0,1]u , y R Các hàm véctơ f(x) và g(x) biểu diễn các trường véctơ trơn, nghĩa là các trường véctơ khả vi vô hạn, được định nghĩa trên không gian tiếp tuyến với nR . Hàm đầu ra h(x) là một hàm vô hướng trơn với biến x lấy giá trị trên trục thực R. Ta coi x như là trạng thái của hệ. Biến u được xác định như một đầu vào điều khiển hoặc dơn giản là lượng điều khiển. Còn biến y chính là đầu ra của hệ. Ta cũng thường coi f(x) như một trường véctơ sai lệch và g(x) như là trường đầu vào điều khiển. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 22 - Đặc điểm chính của hệ mà ta quan tâm là bản chất giá trị nhị phân của biến đầu vào điều khiển. Không làm mất tính tổng quát, ta giả sử đầu vào điều khiển này lấy giá trị trên tập rời rạc [0, 1] Chú ý rằng nếu tập các giá trị có thể nhận được của biến đầu vào vô hướng u là tập rời rạc [W1,W2] với iW R , i=1,2 thì theo phép biến đổi tọa độ khả đảo dưới đây ta có: 2 1 2 ( ) ( ) u W v W W    , và u=W2+v(W1`+W2) sẽ tạo ra biến đầu vào điều khiển mới v là một hàm đầu vào điều khiển giá trị nhị phân lấy giá trị trên tập [0, 1]. Ví dụ 2.1: Mạch điện dưới đây biểu diễn bộ biến đổi công suất từ một chiều sang một chiều (DC-to-DC Power Converter), còn gọi là Bộ biến đổi Boost (Boost Converter), được điều khiển bởi một chuyển mạch đơn. Hình 2.1: Bộ biến đổi Boost một chiều - một chiều chuyển mạch bằng khóa bán dẫn Lý tưởng hóa khóa đóng mở Q ta có sơ đồ được biểu thị trên hình 2.2 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 23 - Hình 2.2: Bộ biến đổi Boost một chiều - một chiều với chuyển mạch lý tưởng Phương trình vi phân điều khiển mô tả mạch là: 1 di L uv E dt dv C ui v dt R          Trong đó: i là dòng điện vào cuộn cảm, v là điện áp ra, và u là hàm vị trí chuyển mạch thỏa mãn [0,1]u Biểu diễn bằng ma trận, mô tả toán học của Bộ biến đổi Boost là: 0 0 1 0 0 v E i id L u L iv vdt RC C                                  Cho:    1 2 T T x x x i v  Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 24 - Ta có:   2 0 0 1 0 0 E E L f x x L x RC RC                            Và:   2 1 x L g x x C             2.2.2 Các mặt trƣợt Theo thuộc tính của chuyển mạch đơn, hệ thống n chiều, mặt trượt, ký hiệu là S, được biểu diễn bởi tập các véctơ trạng thái trong không gian véc tơ Rn, trong đó ràng buộc đại số h(x) = 0 được thỏa mãn, với h: nR R là một hàm đầu ra vô hướng trơn của hệ. Ta định nghĩa:   | 0nS x R h x   (2.2) Tập S biểu diễn một đa dạng trượt n-1 chiều trên nR Giả thiết chính là: Tồn tại một tác động điều khiển phản hồi u(x), có thể mang bản chất gián đoạn, sao cho điều kiện h(x) = 0 được thỏa mãn cục bộ bởi quỹ đạo trạng thái x(t). Các chuyển động của trạng thái hệ, x, trên mặt trượt S, một cách lý tưởng sẽ tạo ra toàn bộ các thuộc tính cục bộ mong muốn cho trạng thái của hệ thống điều khiển. Giới hạn về sự tiến triển các trạng thái đạt được do các tác động đầu vào điều khiển hợp lý, tức là giá trị của u thích hợp [0,1]u . Một trong các đặc tính căn bản trong thiết kế luật điều khiển phản hồi cho các hệ thống điều chỉnh bởi các chuyển mạch trong thực tế là đặc tính của hàm vô hướng trơn h(x) là một phần của vấn đề thiết kế. Việc lựa chọn hàm đầu ra h(x), và theo đó, là đa Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 25 - dạng trượt S, phụ thuộc hoàn toàn vào mong muốn của ta đối với từng mục tiêu điều khiển xác định trong hệ. Ví dụ 2.2: Trong ví dụ trước về Bộ biến đổi Boost, một mặt trượt có thể được đề xuất biểu diễn dưới dạng hàm đầu ra:   2 dh x v v x V    Với dv V là giá trị trung bình của điện áp cân bằng đầu ra mong muốn . Nếu ta buộc h(x) bằng 0, dẫu chỉ là cục bộ, dọc theo quỹ đạo điều khiển của hệ thống, thì điện áp đầu ra về lý tưởng sẽ đồng nhất với với điện áp mong muốn cũng mang tính cục bộ, một mặt trượt khác ta cũng quan tâm đến trong trường hợp riêng, được cho bởi:   1 dh x i i x I    Với  2 /d di I V RE  biểu diễn giá trị trung bình của dòng điện đầu vào cân bằng ứng với trung bình điện áp cân bằng đầu ra mong muốn Vd Mặc dù 2 mặt trượt trên đều biểu diễn thuộc tính mong muốn của đầu ra, nhưng chỉ một trong số đó có tính khả thi vì liên quan tới tính ổn định nội. 2.2.3 Ký hiệu Cho f(x), g(x) là các trường véctơ trơn xác định cục bộ trên mặt phẳng tiếp tuyến với Rn , đặt h(x) là một hàm vô hướng lấy giá trị trên R. Ta định nghĩa đạo hàm có hướng của h(x) theo phương f(x) là lượng vô hướng và ký hiệu bởi ( ) T h f x x   . Và ta định nghĩa gián tiếp Lfh(x) tương tự, ta ký hiệu Lgh(x) là đạo hàm có hướng của h(x) theo phương g(x). Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 26 - Trong hệ tọa độ cục bộ ta có: 1 2 ... T n h h h h x x x x              (2.3)         1 2 . . . n f x f x f x f x                     (2.4) Và:     1 n f i i i h L h x f x x     (2.5) 2.2.4 Điều khiển tƣơng đƣơng và trƣợt động lý tƣởng Giả thiết rằng nhờ việc chọn luật chuyển mạch [0,1]u hợp lý, khiến trạng thái x của hệ tiến triển cục bộ và được giới hạn trên đa dạng trượt S. Khi điều kiện x S được thoả mãn, ta giả thiết là điều đó đạt được với một đối tượng điều khiển xác định. Nói cách khác, giả sử rằng ta có thể đạt được tính bất biến của S theo các quỹ đạo của trạng thái hệ bằng cách cho các đảo mạch đầu vào điều khiển hợp lý u lấy giá trị trên tập [0,1], mà không cần quan tâm tới độ nhanh chậm khi các đảo mạch này được thực hiện như yêu cầu. Không quá khó để nhận ra rằng khi các quỹ đạo trạng thái cắt xiên với các mặc trượt, thì các đảo mạch đầu vào điều khiển cần thiết phải có tần số vô hạn, sở dĩ như vậy là vì các chuyển mạch tần số hữu hạn có thể khiến quỹ đạo bị lệch tạm thời ra khỏi mặt trượt. Sự tiến triển của trạng thái dọc theo mặt S diến ra sau đó như thể nó được tạo ra bời một đầu vào điều khiển trơn , thay vì đầu vào điều khiển chuyển mạch. Sự tương đương giữa đầu vào điều khiển chuyển mạch tần số vô hạn và điều khiển phản hồi trơn được biết đến như là ý tưởng điều khiển tương đương. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 27 - Hình 2.3: Minh họa điều khiển tương đương ueq Ta định nghĩa điều khiển tương đương như một luật điều khiển phản hồi trơn, ký hiệu bởi ueq(x) mà duy trì cục bộ sự tiến triển của quỹ đạo trạng thái được giới hạn một cách lý tưởng với đa dạng trơn S với trạng thái đầu của hệ x(t0)=x0 được xác định riêng trên S, tức là khi h(x)=0. Hàm tọa độ h(x) thỏa mãn điều kiện bất biến dưới đây:          . 0eq h h x f x g x u x x      (2.6) Nói cách khác:       0f g eqL h x L h x u x    Do vậy, điều khiển tương đương được biểu diễn dưới dạng duy nhất theo tỷ số:       f eq g L h x u x L h x   (2.7) Trường véctơ được điều khiển, f(x)+g(x)ueq(x) và sự tiến triển tương ứng của quỹ đạo trạng thái của hệ trên đa dạng trơn S, được biểu diễn dưới dạng: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 28 -         . f g L h x f x g x L h x x   (2.8) Chú ý rằng với bất kỳ điều kiện đầu nào, mà không vượt ra ngoài đa dạng trơn S, dưới tác động của ueq(x), theo cách mà hàm h(x) bằng hằng từ đạo hàm của y là đồng nhất và cục bộ bằng 0. Giá trị hằng của y = h(x) chỉ nhận giá trị 0 khi trạng thái đầu x0 được xác định trên S. Hệ vòng lặp kín được phản hồi bằng điều khiển tương đương có thể được biểu diễn theo một cách khác như mô tả dưới đây:           . 1 1 g h g x f x M x f x L h x x x           (2.9) Trong đó: ma trận vuông nxn chiều M(x), là một toán tử chiếu, qua không gian tiếp tuyến với S, dọc theo miền g(x). Toán tử M(x) sẽ chiếu bất kỳ trường véctơ trơn nào được định nghĩa trên không gian tiếp tuyến của Rn qua không gian tiếp tuyến con lên đa dạng S theo dạng song song với miền g(x) hoặc theo hướng của trường điều khiển đầu vào g(x). Thực ra, đặt v là một trường véctơ trong không gian tiếp tuyến với Rn sao cho v miền g(x), tức là v(x) có thể biểu diễn dưới dạng ( ) ( ). ( )v x g x x , với ( )x là một hàm vô hướng trơn. Sau đó ta có: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 29 -                                       1 1 1 0 g g g g h M x v x I g x g x x L h x x h g x g x g x x L h x x g x g x L h x x L h x g x g x x                                     (2.10) Thêm vào đó, véctơ hàng thứ n, / Th x  là trực giao với ảnh qua M(x) của các trường véctơ nằm trong không gian tiếp tuyến Rn. Điều này đủ để chỉ ra rằng bất kỳ dạng 1 trong miền của / Th x  sẽ triệt tiêu tất cả các véctơ cột của M(x). Dạng một trong miền của / Th x  được viết lại dưới dạng:   T h x x    với  x là một hàm vô hướng khác 0 tùy ý. Thực chất ra:                   1 1 1 0 T T T g g gT T T T h h h x M x x g x x x L h x x h h x L h x L h x x x h h x x x                                     (2.11) Ảnh qua M(x) của bất kỳ trường véctơ nào trong không gian tiếp tuyến với Rn sẽ nằm trong không gian rỗng của / Th x  Nói cách khác, chúng nằm trong không gian con tiếp tuyến với đa dạng S. Rõ ràng là:M 2 (x)=M(x) kéo theo M(x)G(x) =0. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 30 - 2.2.5 Tính tiếp cận đƣợc của các mặt trƣợt Cho x là một điểm đại diện trên quỹ đạo trạng thái, nằm trong một lân cận mở của đa dạng S (lân cận này bắt buộc chứa các giao điểm với đa dạng trượt). Không làm mất tính tổng quát, giả sử rằng tại điểm đó, hàm tọa độ mặt h(x) của đa dạng S là xác định dương, nghĩa là h(x) > 0. ta có thể xác định được trên mặt S. Mục tiêu của ta là đưa ra một tác động điều khiển hợp lý mà đảm bảo rằng quỹ đạo của hệ thống tới và cắt qua đa dạng S. Đạo hàm theo thời gian h(x) tại điểm x được cho bởi:           f g d h h x f x g x u L h x L h x u dt x         (2.12) Nếu ta giả thiết Lgh(x)>0 trong một lân cận của S (chẳng hạn Lgh(x)> là xác định dương, nằm “trên” và “dưới” S trong một lân cận với mặt này), tiếp đó ta cần buộc đạo hàm theo thời gian h(x) phải xác định âm tại điểm x. Vì có giả thiết rằng Lgh(x)>0 nên ta phải chọn một điều khiển làm triệt tiêu các hiệu ứng gia tăng dương khi nó vượt qua đạo hàm của h. Do đó ta phải cho u = 0. Đạo hàm theo thời gian của h(x) với đầu vào điều khiển này trùng hợp hoàn toàn với đạo hàm theo hướng Lfh(x). Để kéo theo Lgh(x)>0 trong một lân cận mở của S, Lfh(x) cần thiết phải xác định âm trong một lân cận của S. Nếu bây giờ ta giả thiết điểm x nằm phía “dưới” mặt phẳng, nghĩa là h(x) < 0, thì dễ thấy để quỹ đạo tới và cắt ngang qua đa dạng trượt S, đạo hàm thời gian của h(x) phải xác định dương. Nói cách khác, Lfh(x)+[Lgh(x)]u>0. Từ Lg(x)>0 và Lfh(x) <0, ta phải chọn u =1 tăng hiệu ứng gia tăng dương của Lgh(x) so với đạo hàm thời gian h(x). Nhưng, bên cạnh đó, cần thiết các hạng tử dương là đại lượng có thể vượt qua được các hiệu ứng gia tăng âm được biểu diễn bởi Lfh(x) theo đạo hàm thời gian. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 31 - Ta kết luận rằng, giả thiết Lfh(x) >0 trong một lân cận mở của S, điều kiện cần cho sự tồn tại của chế độ trượt trong S là Lgh(x)> -Lfh(x)>0. Nói cách khác, chia bất phương trình trên cho lượng xác định dương Lgh(x), cần phải thỏa mãn:     1 0 f g L h x L h x     Chú ý rằng bất phương trình này phải thỏa mãn trong một lân cận mở của Rn chứa một giao không rỗng với S. Trường hợp riêng, nếu bất phương trình này thỏa mãn với x S thì nó cũng thỏa trong một lân cận mở của S trong Rn, kéo theo các đặc tính trơn của trường véctơ liên quan và của hàm tọa độ mặt h(x). Theo giả thiết rằng Lgh(x)> 0 xung quanh S, dễ thấy rằng điều kiện cần vừa đưa ra ở trên cũng chính là điều kiện đủ. Thực chất ra, nếu điểm đại diện được xác định phía “trên” đa dạng trượt S, bất phương trình chỉ ra rằng Lfh(x)< 0, và nó đủ để cho u = 0 tiếp đó . ( ) 0h x  trong bất cứ lân cận mở nào của S. Quỹ đạo trạng thái do vậy tiến tới, cắt ngang đa dạng S từ bất cứ điểm lân cận nào nằm phía trên mặt S. Nếu điểm đại diện được định phía “dưới” S, bất phương trình thiết lập được Lf(x)+Lgh(x)>0và vì thế, việc chọn u =1 buộc điều kiện . ( ) 0h x  với bất kỳ điểm nào trong lân cận mở của S. Điều đó nói lên rằng quỹ đạo trạng thái đã tiến tới đa dạng S. Chú ý rằng nếu ta có Lgh(x)0 trong bất cứ lân cận nào của S. Sự thay đổi trong biểu thức trước với tính chất tiếp cận mặt chỉ được chiếu với lựa chọn u cho mỗi trường hợp. Trong trường hợp này, ta chọn u = 1 khi x nằm trên S và chọn u = 0 nếu nằm phía dưới mặt trượt. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 32 - Tuy nhiên, để tránh nhầm lẫn, ta chú ý nếu Lgh(x)<0 cục bộ, ta có thể định nghĩa lại S như một hàm tọa độ mặt trượt –h(x) thay vì h(x), khi này tất cả các phân tích phía trên đều hợp lệ. Điều kiện Lgh(x)>0 đặc biệt quan trọng và nó quyết định các cơ chế chuyển mạch nhằm đạt được một cách cục bộ lên chế độ trượt trên đa dạng trượt S. Ta coi điều kiện này như là một điều kiện ngang của trường đầu vào điều khiển g(x) liên quan đến đa dạng trượt S. Chú ý rằng: nếu Lgh(x)=0 trên một khoảng mở xung quanh đa dạng trượt, hệ thống là không thể điều khiển được và lượng . ( )h x không thể đổi dấu của nó xung quanh lân cận của S. Vì thế, điều kiện ngang là một điều kiện cần cho việc tồn tại cục bộ của một chế độ trượt. Dựa trên thực tế lượng –Lfh(x)/Lgh(x) trùng hợp với điều khiển tương đương đã nói đến, ta thấy rằng: Điều kiện cần và đủ cho việc tồn tại cục bộ của một chế độ trượt trên một đa dạng trượt S = {x |h(x) = 0} là điều khiển tương đương u thỏa mãn:  0 1equ x  , x S Điều kiện ngang Lgh(x)>0, hoặc tổng quát hơn, ( ) 0gL h x  chỉ ra rằng hàm tọa độ mặt trượt h(x) được coi như một hàm đầu ra của hệ, y = h(x), thì hàm này phải thỏa mãn bậc tương đối bằng một, xung quanh giá trị y = 0. Chú ý rằng, với y = 0 thì điểm "không động" hoàn toàn trùng hợp với trượt động lý tưởng cho bởi:               . f eq g L h x f x g x f x g x u x L h x x     (2.14) Dưới giả thiết điều kiện ngang thỏa mãn theo: Lgh(x)>0 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 33 - Trong một khoảng mở đủ rộng của mặt trượt S, luật điều khiển buộc các quỹ đạo trạng thái tiến tới mặt trượt và có thể “cắt ngang” được mặt này, cho bởi:     1 khi 0 0 khi 0 h x u h x     hay   1 1 2 u sign h x     (2.15) Hình 2.4: Minh họa điều khiển trượt Một cách hiển nhiên là, bất cứ một xâm nhập ban đầu nào của quỹ đạo trạng thái tới “hướng khác” của đa dạng trượt đều gây nên tác động điều khiển tức thời đòi hỏi Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 34 - cái chuyển mạch phải thay đổi vị trí của nó đến duy nhất một giá trị phù hợp khác. Hệ quả là, quỹ đạo bị buộc phải quay lại mặt và có thể cắt ngang nó một lần nữa kèm với sự thay đổi tương ứng vị trí của cái chuyển mạch. kết quả của chuyển động này kết quả nằm trong một lân cận nhỏ tùy ý của mặt trượt được đặc trưng bởi chuyển động “zig- zag” mà tần số của nó, về mặt lý thuyết, lớn vô hạn và được gọi là chế độ trượt hoặc chuyển động trượt. Hiện tượng đường đặc tính cắt qua mặt trượt được gọi là hiện tượng Chattering hay bang-bang. . 2.2.6 Các điều kiện bất biến cho các nhiễu loạn tìm đƣợc Một trong các đặc trưng chính của các chế độ trượt, hay điều khiển chế độ trượt, là tính bền vững của chúng đối với các đầu vào nhiễu loạn bên ngoài tác động tới thuộc tính của hệ thống. Trong phần này, chúng ta sẽ tìm hiểu các loại điều kiện cần phải thỏa mãn bởi các nhiễu loạn để chúng có thể tự động bị loại trừ từ các mô tả của trượt động lý tưởng. Xét hệ phi tuyến kèm nhiễu dưới đây:       . f x g x u xx     Hệ được điều khiển bởi một chuyển mạch đơn, thêm đó, cho S là một mặt trượt trơn mà trên đó ta có thể tạo ra một chế độ trượt cục bộ bất kể sự có mặt của các nhiễu loạn. Trường nhiễu được giả thiết là một hàm trơn chưa biết của trạng thái x và các giá trị của nó bị chặn. Giả sử tiếp ta có thể tạo ra một chế độ trượt trên mặt trượt S bất kể sự có mặt của trường nhiễu ( )x . Sự tồn tại của một chế độ trượt đồng nghĩa với sự tồn tại của một điều khiển tương đương ueq, mà lý tưởng hóa, hoặc có thể cục bộ, đảm bảo các quỹ đạo Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 35 - trạng thái nằm trên đa dạng trượt S. Điều khiển tương đương này cần phải là một hàm số của trường nhiễu chưa biết và được cho bởi:         f eq g L h x L h x u x L h x    Động lực học trượt lý tưởng, với x S , sẽ đạt được là:                         . 1 1 1 1 f g T T g g L h x L h x f x g x x L h x h h g x f x g x x L h x x L h x x x                            Toán tử chiếu M(x) dọc theo không gian tiếp tuyến với S, dọc theo miền của g(x), cũng thực hiện được đối với phép cộng hai trường véctơ ( ) ( )f x x , trong quá trình tạo ra chế độ trượt cục bộ trên S. Rõ ràng là, trượt động lý tưởng là hoàn toàn độc lập với ảnh hưởng của véctơ nhiễu loạn ( )x , nếu và chỉ nếu trường véctơ ( )x nằm trong không gian rỗng của M(x), nghĩa là:       1 1 0 T g h g x x L h x x          Hay nói cách khác, các chuyển động trượt là bất biến với ảnh hưởng của nhiễu loạn nếu và chỉ nếu trường véctơ nằm trong miền của g(x), tức là tồn tại một hàm vô hướng khác 0 sao cho:      x x g x  Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 36 - Trường nhiễu loạn ( )x do đó được sóng hàng (aligned) với trường véctơ điều khiển g(x). Các nhiễu loạn như vậy mang tên các nhiễu loạn tìm được và điều kiện:  span g  được biết đến như là điều kiện tìm được nhiễu loạn. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 36 - CHƯƠNG 3 ĐIỀU KHIỂN TRƯỢT BỘ BIẾN ĐỔI DC-DC TĂNG ÁP 3.1 Đặt vấn đề Mô hình bộ biến đổi tăng áp đã được làm rõ trong chương 1, ta thấy rằng cấu trúc mạch của bộ biến đổi vốn không phức tạp, việc điều khiển khóa chuyển mạch u để đạt được điện áp ra đạt yêu cầu là hết sức khó khăn do tính phi tuyến của các phần tử trong mạch. Mặc dù vậy với những gợi mở của lý thuyết điều khiển phi tuyến, cụ thể là điều khiển trượt mang lại cho ta hướng điều khiển bộ biến đổi trên. Hình 3.1. Bộ biến đổi tăng áp Với bộ biến đổi trên, hệ phương trình vi phân mô tả hệ thống là: 1 2 2 2 1 1 dx ux d dx x ux d Q        (3.1) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 37 - Trong đó tham số Q là nghịch đảo của hệ số chất lượng mạch, tính theo công thức Q= LCR / , LC t  . Biến x1 là dòng điện cảm chuẩn hóa, còn x2 là điện áp ra chuẩn hóa. Tại điểm cân bằng của bộ biến đổi, thông số của điện áp ra mong muốn 2 dx V , và ta tính toán được: 2 1 1 1 d d d x V Q V U V        (3.2) Theo các định nghĩa và ký hiệu trình bày ở chương 2 ta có:   2 1 1f x x Q          ,   2 1 x g x x        Đối tượng điều khiển được hướng tới là điện áp ra đạt tới giá trị điện áp ra cân bằng trung bình 2x , đầu tiên chúng ta đưa ra phương pháp điều khiển trực tiếp, trong đó giá trị ra x2 được sử dụng để tổng hợp một mặt trượt tương ứng với mục tiêu mong muốn. 3.2 Điều khiển trực tiếp Theo lý luận trên, ta xây dựng hàm tọa độ mặt trượt: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 38 - 22 ( )h x x x  Cho h(x) tiến đến 0 bằng điều khiển gián đoạn nghĩa là điện áp ra trùng với điện áp cân bằng mong muốn, mặt khác ta cần xây dựng được đặc tính và tính ổn định của sự tồn tại mặt trượt động lý tưởng hoặc là điểm "0 động"         2 1 1 f T g T h L h x f x x x Q h L h x g x x x          (3.3) Điều khiển tương đương là:       2 1 1f eq g L h x x u x L h x Q x          (3.4) Trượt động lý tưởng xảy ra khi  equ x tác động đến hàm phản hồi hệ thống khi hệ thống thỏa mãn điều kiện 22x x , ta có: 2. 2 1 1 1 1 x Q x x           (3.5) Ta thấy rằng trạng thái động của hệ thống có một điểm cân bằng không ổn định, ta chứng minh được điều này thông qua các phương pháp: Phương pháp xấp xỉ tuyến tính, phương pháp áp dụng lý thuyết Lyapunov, Phương pháp mặt phẳng pha.. Sau đây ta áp dụng phương pháp lý thuyết Lyapunov: Ta viết lại phương trình trạng thái "0 động" tương ứng với h(x)=0 là: 2 1 2 1 1 1dx x x d x Q          (3.6) Xem xét theo hàm Lyapunov với không gian biến x1 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 39 -   2 2 2 1 1 1 2 x V x x Q          (3.7) Đạo hàm hàm trên với miền x1>0   2 2 . 2 1 1 1 1 0 x x x x Q V           (3.8) Do đó hệ không ổn định vì V không tiến đến 0 khi x1 tiến đến vô cùng. 3.3 Điều khiển gián tiếp Thay đổi cách chọn mặt trượt, hàm trượt, khi đạt tới điểm 0 tạo ra giá trị cân bằng mong muốn của dòng điện trên cuộn cảm, khi đó tương ứng với điện áp ra đạt giá trị mong muốn Ta đề xuất :  1 1 1h x x x  Để xác định hàm này, để đạt được điện áp ra mong muốn, ta tính toán điểm cân bằng của hệ thống trong điều kiện trượt lý tưởng, giá trị cân bằng của dòng trên cuộn cảm theo giá trị cân bằng điện áp đầu ra là: 2 11 1 2 1 ( )h x x x x x Q     Các đạo hàm hướng: 2 1 2 1 x x Q  Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 40 -         2 1f T g T h L h x f x x h L h x g x x x          (3.9) Điều khiển tương đương là       2 1f eq g L h x u x L h x x    (3.10) Trượt động lý tưởng tương ứng h(x)=0, nghĩa là x1= 1x là: . 2 2 2 2 2 x x Qx Q x   (3.11) Dễ dàng thấy điểm cân bằng duy nhất của trạng thái "0 động" là một điểm cân bằng ổn định tiệm cận. Xét theo hàm Lyapunov trong không gian trạng thái x2 mô tả trượt động lý tưởng hoặc "0 động"     2 2 2 2 1 2 V x x x  (3.12) Đạo hàm hàm trên ta có:          . 222 2 2 2 2 2 2 2 2 2 2 1 1 x x x x x x x x x Qx Qx V         (3.13) Hiển nhiên là hàm trên xác định âm quanh giá trị cân bằng 2x , cụ thể hơn là với x2>0 quanh giá trị cân bằng Trượt động lý tưởng thể hiện là một điểm ổn định tiệm cận cho bởi giá trị điện áp mong muốn. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 41 - Theo sự định lý , mặt trượt có thể chạm tới hoặc vượt qua có nghĩa là theo luật đóng mở: 1 1 ( ) 0 ( ) 0 khi h x u khi h x         Tức là: 11 11 0 0 khi x x u khi x x            (3.14) Ta có thể thiết lập hàm điều khiển u như sau:  1 1 1 1 2 u sign x x      (3.15) Theo cách điều chỉnh mong muốn với sự ổn định toàn cục của hệ thống, với cách thể hiện theo dòng và áp thì:   1 1 2 refu sign i I     (3.16) Với i là dòng điện thực tế trên cuộn cảm và Iref=i Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 42 - CHƯƠNG 4 MÔ PHỎNG KIỂM CHỨNG TRÊN NỀN MATLAB & SIMULINK Với sự phát triển của khoa học máy tính, phương pháp mô phỏng ngày càng chứng tỏ ưu thế của nó. Trong công tác phục vụ nghiên cứu, phân tích và thiết kế hệ thống của các nhận định cũng như các kết quả khoa học, phương pháp mô phỏng đã đóng góp một vai trò to lớn, nó cho phép giảm chi phí, hạn chế rủi ro, tăng cường các ưu điểm của sản phẩm nghiên cứu để từ đó chúng ta có thể đánh giá, rút ngắn thời gian và hạ giá thành thử nghiệm. Phần mềm mô phỏng Matlab & Simulink là một công cụ mô phỏng mạnh với giao diện, khả năng lập trình linh hoạt, cùng với các công cụ có sẵn để phục vụ mô phỏng cho công việc nghiên cứu cho các ngành kỹ thuật như : Điện, điện tử, điều khiển tự động…Trong đó Simulink là công cụ dùng để mô phỏng và phân tích hệ thống động học được tích hợp sẵn trong chương trình Matlab/ Simulink cho phép chúng ta mô phỏng hệ thống điều khiển trên cả miền thời gian liên tục và gián đoạn. Các thư viện sẵn có trong Simulink bao gồm các khâu cơ bản trong ngành kỹ thuật điều khiển tự động đáp ứng đầy đủ yêu cầu mô phỏng, phân tích cũng như tính mở cho người sử dụng nếu người sử dụng muốn định nghĩa thêm một khâu mới. Ngoài ra Simulink còn Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 43 - tương thích với các chương trình được lập trình trên Matlab là M-file. Điều này làm cho quá trình mô phỏng thêm linh hoạt. 4.1 Mạch lực bộ biến đổi Thiết kế bộ điều khiển cho bộ biến đổi DC-DC tăng áp với các thông số bộ biến đổi 15.91 , 50 , E=12V, R=52L mH C F     Hình 4.1: Sơ đồ bộ biến đổi tăng áp Mô tả toán học bộ biến đổi: Evu dt di L  )1( R v iu dt dv C  )1( Mô hình hóa mạch động lực bộ biến đổi trên Plecs Matlab-Simulink: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 44 - Hình 4.2: Mô hình bộ biến đổi trong khối Subsystem Hình 4.3: Bộ biến đổi tăng áp mô hình hóa trên PLECS Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 45 - Thu gọn các phần tử trong subsystem: - Đầu vào của khối là tín hiệu u, nhận 1 trong 2 giá trị 0 và 1 - Đầu ra là các tín hiệu dòng điện, điện áp Các thông số được thiết lập thông số ngay trên mạch Plecs 4.2 Xây dựng bộ điều khiển 4.2.1 Bộ điều chỉnh dòng điện Sử dụng bộ điều khiển trượt với mặt trượt _ ( )S h x i i   , luật điều khiển _ _ 0 0 khi i i u khi i i          1 [(1 ( )] 2 u sign i i    Trong đó i là giá trị dòng điện thực trên cuộn cảm, _i là giá trị dòng điện cân bằng theo tính toán.Tuy nhiên khi tiến hành chạy mô phỏng ta cũng cần đặt lại ngưỡng tác động cho u _ _ 0 0 khi i i u khi i i              Trong đó  là giá trị tác động theo ngưỡng nhạy của “rơ le”, về lý thuyết  càng nhỏ càng tốt, hiện tượng chattering sẽ giảm nhưng tần số đóng mở phải tăng lên, Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 46 - mặt khác tần số đóng mở làm ảnh hưởng đến tốc độ tính toán khi mô phỏng và tần số đó cũng bị giới hạn bởi các thiết bị chuyển mạch công suất trong thực tế. Do vậy ta lựa chọn  ở mức hợp lý trên phần tử Relay1 Hình 4.4: Điều chỉnh ngưỡng tác động”Rơ le” Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 47 - Ta thực hiện luật điều khiển cho u như sau: 1 [(1 ( )] 2 u sign i i    Hình 4.5: Luật điều khiển trượt xây dựng trên Matlab-Simulink Ghép lại với mạch lực bộ biến đổi ta có sơ đồ mô phỏng: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 48 - Hình 4.6: Điều khiển trượt cho bộ biến đổi tăng áp Theo cách tính toán đã trình bày ở chương 2, khi giá trị điện áp ra _ 24v V ,mạch đạt tới trạng thái cân bằng thì giá trị dòng cân bằng trên các cuộn cảm _ 0.923 ;i A  ta chạy chương trình cho kết quả thể hiện trên các giản đồ sau: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 49 - 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0 0.2 0.4 0.6 0.8 1 1.2 1.4 time(s) A dong dien qua cuon cam L Hình 4.7: Dòng điện qua cuộn cảm L Dòng điện i nhanh chóng tiến đến giá trị cân bằng đặt 0.923i A và trượt qua giá trị dòng điện cân bằng này, quan sát trên khoảng thời gian nhỏ để thấy rõ hiện tượng “chattering” của i Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 50 - 0 0.5 1 1.5 2 2.5 3 3.5 4 x 10 -3 0 0.2 0.4 0.6 0.8 1 1.2 1.4 time(s) A Dong thuc Dong can bang Hình 4.8: Hiện tượng “Chattering” của dòng điện qua L Tín hiệu điều khiển u là một chuỗi xung được tạo ra từ bộ điều khiển trượt có mối liên hệ với mặt trượt _ ( )h x i i  và 1 [(1 ( )] 2 u sign i i    , trong thực tế mô phỏng mối liên hệ đó được thể hiện rõ trong giản đồ trên hình 4.9. Khi bắt đầu, dòng điện i bằng không, do _ ( )h x i i  >0 và tín hiệu điều khiển u =1, khóa FET mở dẫn dòng qua cuộn cảm L vào bộ biến đổi, dòng điện qua L tăng lên trong khoảng thời gian ngắn, đến khi _ i i thì _ ( )h x i i  <0 do đó u=0 làm khóa FET khóa lại, dòng điện qua L lúc Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 51 - này chỉ còn là dòng điện do năng lượng tích lũy trên điện cảm gây ra và giảm dần cho đến khi nhỏ hơn giá trị cân bằng đặt thì _ ( )h x i i  >0 và u=1, khóa FET lại được mở. Quá trình trên lại lặp lại tạo nên hiện trượng trượt của dòng điện thực qua giá trị dòng điện cân bằng qua cuộn cảm L Hình 4.9: Mối liên hệ giữa hiện tượng trượt và tín hiệu điều khiển u Khi ta tăng ngưỡng tác động của phần tử rơ le của bộ điều khiển  làm cho biên độ trượt tăng lên Tín hiệu điều khiển u Dòng điện i Time(s) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 52 - 0 1 2 3 4 5 6 7 8 x 10 -3 0 0.5 1 1.5 time(s) 0 1 2 3 4 5 6 7 8 x 10 -3 0 0.2 0.4 0.6 0.8 1 1.2 1.4 time(s) a) 0.025  b) 0.3  Hình 4.10: Biên độ trượt của dòng điện i phụ thuộc và ngưỡng đặt cho rơ le Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 53 - Hình 4.11: Tín hiệu điều khiển u cho bộ biến đổi Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 54 - 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0 5 10 15 20 25 V time(s) Dien ap ra Hình 4.12: Điện áp ra trên C Điện áp ra trên tụ C được biểu thị bằng đường đặc tính trên hình 4.12 với quá trình quá độ rất nhỏ t < 0.005s, và bám sát giá trị cân bằng theo yêu cầu. Từ đây ta có thể kết luận rằng bộ điều khiển trượt đã đạt yêu cầu chất lượng động và tĩnh, khi thay đổi các giá trị dòng đặt i* khác nhau ta đều nhận được dòng i bám sát theo giá trị dòng yêu cầu, đạt được các chỉ tiêu chất lượng hệ thống. Tuy nhiên, với bộ biến đổi điện áp nói chung và bộ biến đổi tăng áp nói riêng thì việc điều chỉnh điện áp ra thông qua việc điều chỉnh dòng điện trên các cuộn cảm là hết sức bất tiện, không phù hợp với nguyên tắc điều khiển. Do vậy, hệ thống cần phải có bộ điều chỉnh thỏa mãn: khi cần điện áp ra Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 55 - Vra đạt giá trị mong muốn thì chỉ cần thay đổi điện áp đặt và điện áp ra sẽ bám theo giá trị điện áp đặt này, đồng thời các quá trình quá độ cũng phải đạt các chỉ tiêu chất lượng. 4.2.2 Bộ điều chỉnh điện áp Bộ điều chỉnh điện áp sử dụng mạch vòng phản hồi điện áp, sử dụng bộ điều chỉnh PID tuyến tính, đầu vào bộ điều chỉnh là giá trị sai lệch điện áp ra và điện áp đặt e = V-V*, đầu ra là tín hiệu i*. Như vậy hệ thống lúc này có hai mạch vòng phản hồi: - Vòng trong là phản hồi dòng điện có tác động rất nhanh, bộ điều khiển là điều khiển trượt. - Vòng ngoài: phản hồi điện áp đặt có tác động chậm hơn phản hồi dòng điện, sử dụng bộ điều khiển PID. Khi điện áp ra Vra đạt giá trị mong muốn thì e = Vra – V*=0, khi đó dòng điện mong muốn trên cuộn cảm L đạt giá trị cân bằng i* Ta có sơ đồ cấu trúc như sau Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 56 - Hình 4.13: Sơ đồ khối hệ thống Ta có sơ đồ cấu trúc trên Simulink như sau: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 57 - H ìn h 4 .1 4 : T ổ n g h ợ p b ộ b iế n đ ổ i t rê n S im u li n k Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 58 - Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 59 - Hình 4.15: Bộ điều chỉnh PID và cửa sổ nhập dữ liệu Bộ điều khiển PID (Proportional–Integral–Derivative controller bộ điều khiển tỷ lệ tích phân vi phân) phải có các thông số được lựa chọn thỏa mãn các yêu cầu động: - Lượng quá điều chỉnh nhỏ - Thời gian quá độ nhỏ - Số lần dao động nhỏ Bộ thông số: hệ số tỷ lệ, hệ số tích phân, hệ số vi phân chọn được là bộ thông số tối ưu làm cho đặc tính hệ thống thỏa mãn các yêu cầu động trên. Với bộ điều chỉnh PID, các thông số được của bộ điều chinh được chọn theo phương pháp thực nghiệm thông qua việc thử nghiệm trên mô hình mô phỏng và điều chỉnh theo sự đánh giá tính chất đặc tính hệ thống. 4.2.2.1 Thử nghiệm các thông số hệ thống Để đánh giá chi tiết hơn về tác dụng của bộ điều chỉnh và chất lượng động của hệ thống, trong quá trình mô phỏng ta cho hệ thống làm việc với sự biến động của tải: Thời gian (s) 0 - 0.15 0.15 - 0.25 0.25 - 0.4 Tải 90%P P 110%P R (ohm) 57 52 47 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 60 - Các kết quả mô phỏng: Trên hình 4.16 là đáp ứng dòng điện i* khi mô phỏng với sự thay đổi tải. Trong đoạn 0-0.15s, hệ thống làm việc non tải, dòng điện i* khởi động và đạt đến trạng thái xác lập. Tại t=0.15s bắt đầu tăng tải cho mạch làm việc với chế độ tải định mức, dòng điện tăng lên và xác lập sau một khoảng thời gian quá độ nhỏ. Khi t=0.25s, hệ thống làm việc quá tải 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 0.2 0.4 .6 0.8 1 1.2 1.4 time(s) A dap ung dong i* Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 61 - Hình 4.16: Đáp ứng dòng điện i* của hệ thống Hình 4.17: Dòng qua cuộn cảm L khi có bộ điều chỉnh PID Do tác dụng của bộ điều khiển dòng điện (bộ điều khiển trượt), dòng điện qua cuộn cảm i bám rất sát dòng i*, kết quả là dòng i chạt theo i* với hiện tượng chattering đặc trưng của điều khiển trượt được thể hiện trên hình 4.17, 4.18 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 62 - Hình 4.18: “Chattering” của dòng qua cuộn cảm L khi có bộ điều chỉnh PID Với khoảng thời gian nhỏ ta cũng quan sát được tín hiệu điều khiển u và mối liên hệ giữa i, i* và u Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 63 - Hình 4.19: Mối liên hệ giữa i*, i và tín hiệu điều khiển u khi có bộ điều chỉnh PID Hình 4.20: Tín hiệu điều khiển u khi có bộ điều chỉnh PID Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 64 - Hình 4.21: Điện áp ra khi có bộ điều chỉnh PID Mục tiêu của bộ biến đổi là có được điện áp ra mong muốn đạt yêu cầu, Quan sát trên hình 4.21 ta thấy đặc tính điện áp ra của bộ biến đổi với quá trình khởi động từ 0V lên điện áp yêu cầu 24V trong khoảng thời gian xấp xỉ 0.06s, lượng quá điều chỉnh bé . Khi tải biến động, kéo theo sự thay đổi thông số hệ thống thì điện áp này vẫn được Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 65 - giữ ổn định, thời gian quá độ bé (xấp xỉ 0.05s) và độ sụt áp tức thời nhỏ. Hệ thống đạt các chỉ tiêu chất lượng động và tĩnh, điện áp ra thỏa mãn yêu cầu. 4.2.2.2 Thử nghiệm tính điều chỉnh được của hệ thống Ở phần trên, bộ biến đổi đã được thử nghiệm khi điều khiển điện áp ra theo điện áp đặt u=24V theo thiết kế ban đầu. Tuy nhiên, nếu trong quá trình làm việc với tải nào đó có yêu cầu điện áp khác thì hệ thống cần phải được điều chỉnh bám theo giá trị điện áp ra yêu cầu mới bằng cách thay đổi điện áp mẫu. Sau đây ta tiến hành thử nghiệm mô phỏng với một số giá trị điện áp mẫu khác nhằm đánh giá khả năng điều chỉnh của hệ thống trong dải điều chỉnh cho phép Thay đổi U* đặt giá trị này tại khối step, sau khi mô phỏng nhiều lần trên mô hình Simulink với các giá trị điện áp mẫu, ta thấy rằng dải điều chỉnh của bộ biến đổi tăng áp với các thông số mạch lực đã cho ban đầu có dải điều chỉnh 20-24V cho ta điện áp ra đạt yêu cầu chất lượng. Kết quả mô phỏng được trình bày trong hình 4.22, 4.23, 4.24, 4.25 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 66 - Hình 4.22: Điện áp ra bộ biến đổi khi đặt U*=18V Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 67 - Hình 4.23: Điện áp ra bộ biến đổi khi đặt U*=20V Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 68 - Hình 4.24: Điện áp ra bộ biến đổi khi đặt U*=22V Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 69 - Hình 4.25: Điện áp ra bộ biến đổi khi đặt U*=24V Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 69 - KẾT LUẬN Sau khi lập được mô hình mô phỏng cho bộ biến đổi, tính toán bộ điều khiển dùng phần mềm Matlab& Simulink khảo sát các kết quả ta nhận thấy dùng bộ điều khiển trượt nâng cao hiệu suất biến đổi và ổn định điện áp cho bộ biến đổi, bộ điều khiển trên có khả năng áp dụng vào trong thực tế. Trên cơ sở nghiên cứu thiết kế bộ điều khiển trượt cho bộ biến đổi và cụ thể ở đây là áp dụng cho bộ biến đổi DC-DC tăng áp, luận văn đã đưa ra được thuật toán xây dựng bộ điều khiển và mô phỏng đạt được các kết quả sau đây: - Đưa ra được mô hình toán học cho bộ biến đổi DC-DC tăng áp. - Thiết kế bộ điều khiển cho bộ biến đổi tăng áp trên cơ sở áp dụng nguyên lý điều khiển trượt, khảo sát tính ổn định. - Đưa ra được cấu trúc của các bộ điều khiển. Như vậy, với các kết quả thu được có thể khẳng định rằng sử dụng bộ điều khiển trượt cho bộ biến đổi hoàn toàn nâng cao hiệu suất biến đổi và ổn định điện áp. Để hoàn thiện về lý thuyết mô hình hóa đầy đủ hệ thống điều khiển bộ biến đổi cần có hướng nghiên cứu tiếp theo, cụ thể là mô hình hóa vòng trong để từ đó tìm ra hàm truyền đạt, đó chính là đối tượng cho bộ điều khiển PID. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 70 - TÀI LIỆU THAM KHẢO [1] Hebertt Sira-Ramírez, Ramón Silva-Ortigora: Control Design Techniques in power Electronics Devices, spinger London, 2006 [2] Nguyễn Doãn Phước, Phan Xuân Minh, Hán Thành Trung: Lý thuyết điều khiển phi tuyến. NXB KH&KT Hà Nội, tái bản lần 2 có bổ xung, 2006 [3] Nguyễn Phùng Quang: MATLAB – Simulink dành cho kỹ sư điều khiển tự động. NXB KH&KT Hà Nội, 2006 [4] Lê văn Doanh, Nguyễn Thế Công, Trần Văn Thịnh: Điện tử công suất. NXB KH&KT Hà Nội, 2004

Các file đính kèm theo tài liệu này:

  • pdf19LV09_CN_TudonghoaDoThiLoan.pdf
Tài liệu liên quan