Table of Content
Introduction 1
Chapter 1. The Problem of Modeling Text Corpora and Hidden Topic Analysis .3
1.1. Introduction .3
1.2. The Early Methods 5
1.2.1. Latent Semantic Analysis .5
1.2.2. Probabilistic Latent Semantic Analysis 8
1.3. Latent Dirichlet Allocation 11
1.3.1. Generative Model in LDA 12
1.3.2. Likelihood .13
1.3.3. Parameter Estimation and Inference via Gibbs Sampling 14
1.3.4. Applications 17
1.4. Summary 17
Chapter 2. Frameworks of Learning with Hidden Topics 19
2.1. Learning with External Resources: Related Works 19
2.2. General Learning Frameworks 20
2.2.1. Frameworks for Learning with Hidden Topics 20
2.2.2. Large-Scale Web Collections as Universal Dataset .22
2.3. Advantages of the Frameworks .23
2.4. Summary 23
Chapter 3. Topics Analysis of Large-Scale Web Dataset 24
3.1. Some Characteristics of Vietnamese .24
3.1.1. Sound 24
3.1.2. Syllable Structure .26
3.1.3. Vietnamese Word .26
3.2. Preprocessing and Transformation 27
3.2.1. Sentence Segmentation .27
iv
3.2.2. Sentence Tokenization 28
3.2.3. Word Segmentation 28
3.2.4. Filters 28
3.2.5. Remove Non Topic-Oriented Words .28
3.3. Topic Analysis for VnExpress Dataset .29
3.4. Topic Analysis for Vietnamese Wikipedia Dataset 30
3.5. Discussion 31
3.6. Summary 32
Chapter 4. Deployments of General Frameworks 33
4.1. Classification with Hidden Topics 33
4.1.1. Classification Method .33
4.1.2. Experiments 36
4.2. Clustering with Hidden Topics 40
4.2.1. Clustering Method 40
4.2.2. Experiments 45
4.3. Summary 49
Conclusion 50
Achievements throughout the thesis .50
Future Works 50
References 52
Vietnamese References 52
English References .52
Appendix: Some Clustering Results .56
67 trang |
Chia sẻ: maiphuongtl | Lượt xem: 2033 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Luận văn Hidden topic discovery toward classification and clustering in vietnamese web documents master thesis hanoi -, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
President) 0.0084
Đất nước (Country) 0.0070
Quyền lực (Power) 0.0069
Dân chủ (Democratic) 0.0068
Chính quyền (Government)0.0067
Ủng hộ (Support) 0.0065
Chế độ (System) 0.0063
Kiểm soát (Control) 0.0058
Lãnh thổ (Territory) 0.0058
Liên bang (Federal) 0.0051
Động vật (Animal) 0.0220
Chim (Bird) 0.0146
Lớp (Class) 0.0123
Cá sấu (Crocodiles) 0.0116
Côn trùng (Insect) 0.0113
Trứng (Eggs) 0.0093
Cánh (Wing) 0.0092
Vây (Fin) 0.0077
Xương (Bone) 0.0075
Phân loại (Classify) 0.0054
Môi trường (Environment)0.0049
Xương sống (Spine) 0.0049
Topic 8 Topic 9 Topic 17
Nguyên tố (Element) 0.0383
Nguyên tử (Atom) 0.0174
Hợp chất (Compound) 0.0172
Hóa học (Chemical) 0.0154
Đồng vị (Isotope) 0.0149
Kim loại (Metal) 0.0148
Hidro (Hidro) 0.0142
Phản ứng (Reaction) 0.0123
Phóng xạ (Radioactivity) 0.0092
Tuần hoàn (Circulation) 0.0086
Hạt nhân (Nuclear) 0.0078
Điện tử (Electronics) 0.0076
Trang (page) 0.0490
Web (Web) 0.0189
Google (Google) 0.0143
Thông tin (information) 0.0113
Quảng cáo(advertisement)0.0065
Người dùng(user) 0.0058
Yahoo (Yahoo) 0.0054
Internet (Internet) 0.0051
Cơ sở dữ liệu (database) 0.0044
Rss (RSS) 0.0041
HTML (html) 0.0039
Dữ liệu (data) 0.0038
Lực (Force) 0.0487
Chuyển động (Move) 0.0323
Định luật (Law) 0.0289
Khối lượng (Mass) 0.0203
Quy chiếu (Reference) 0.0180
Vận tốc (Velocity) 0.0179
Quán tính (Inertia) 0.0173
Vật thể (Object) 0.0165
Newton (Newton) 0.0150
Cơ học (Mechanics) 0.0149
Hấp dẫn (Attractive) 0.0121
Tác động (Influence) 0.0114
3.5. Discussion
The hidden topics analysis using LDA for both VnExpress and Vietnamese Wikipedia
datasets have shown satisfactory results. While VnExpress dataset is more suitable for
daily life topic analysis, Vietnamese Wikipedia dataset is good for scientific topic
32
modeling. The decision of which one is suitable for a task depends much on its domain of
application.
From experiments, it can be seen that the number of topics should be appropriate to the
nature of dataset and the domain of application. If we choose a large number of topics, the
analysis process can generate a lot of topics which are too close (in the semantic) to each
others. On the other hand, if we assign a small number of topics, the results can be too
common. Hence, the learning process can benefits less from this topic information.
When conducting topic analysis, one should consider data very carefully. Preprocessing
and transformation are important steps because noise words can cause negative effects. In
Vietnamese, focus should be made on word segmentation, stop words filter. Also,
common personal names in Vietnamese should be removed. In other cases, it is necessary
to either remove all Vietnamese sentences written without tones (this writing style is quite
often in online data in Vietnamese) or do tone recovery for them. Other considerations
also should be made for Vietnamese Identification or Encoding conversions, etc., due to
the complex variety of online data.
3.6. Summary
This chapter summarized major issues for topics analysis of 2 specific datasets in
Vietnamese. We first reviewed some characteristics in Vietnamese. These considerations
are significant for dataset preprocessing and transformation in the subsequent processes.
We then described each step of preprocessing and transforming data. Significant notes,
including specific characteristics of Vietnamese, are also highlighted. In the last part, we
demonstrated the results from topics analysis using LDA for some dataset in Vietnamese.
The results showed that LDA is a potential method for topics analysis in Vietnamese.
33
Chapter 4. Deployments of General Frameworks
This chapter goes further into details of the deployments of general frameworks for the
two tasks: classification and clustering for Vietnamese Web Search Results. Evaluation
and Analysis for our proposals are also considered in the next subsections.
4.1. Classification with Hidden Topics
4.1.1. Classification Method
Figure 4.1. Classification with VnExpress topics
The objective of classification is to automatically categorize new coming documents into
one of k classes. Given a moderate training dataset, an estimated topic model and k
classes, we would like to build a classifier based on the framework in Figure 4.1. Here,
we use the model estimated from VnExpress dataset with LDA (see section 3.3. for more
details). In the following subsections, we will discuss more about important issues of this
deployment.
a. Data Description
For training and testing data, we first submit queries to Google and get results through
Google API [19]. The number of query phrases and snippets in each train and test dataset
are shown in Table 4.1 Google search results as training and testing dataset.
The search phrases for training and test data are designed to be exclusive. Note that, the
training and testing data here are designed to be as exclusive as possible.
b. Combining Data with Hidden Topics
The outputs of topic inference for train/new data are topic distributions, each of which
corresponds to one snippet. We now have to combine each snippet with its hidden topics.
34
This can be done by a simple procedure in which the occurrence frequency of a topic in
the combination depends on its probability. For example: a topic with probability greater
than 0.03 and less than 0.05 have 2 occurrences, while a topic with probability less than
0.01 is not included in the combination. One demonstrated example is shown in Figure
4.2.
Table 4.1 Google search results as training and testing dataset.
The search phrases for training and test data are designed to be exclusive
Training dataset Testing dataset
Domains #phrases #snippets #phrases #snippets
Business 50 1.479 9 270
Culture-Arts 49 1.350 10 285
Health 45 1.311 8 240
Laws 52 1.558 10 300
Politics 32 957 9 270
Science –
Education
41 1.229 9 259
Life-Society 19 552 8 240
Sports 45 1.267 9 223
Technologies 51 1.482 9 270
c. Maximum Entropy Classifier
The motivating idea behind maximum entropy [34][35] is that one should prefer the most
uniform models that also satisfy any given constraints. For example, consider a four-class
text classification task where we told only that on average 40% documents with the word
“professor” in them are in the faculty class. Intuitively, when given a document with
“professor” in it, we would say it has a 40% chance of being a faculty document, and a
20% chance for each of the other three classes. If a document does not have “professor”
we would guess the uniform class distribution, 25% each. This model is exactly the
maximum entropy model that conforms to our known constraint.
Although maximum entropy can be used to estimate any probability distribution, we only
consider here the classification task; thus we limit the problem to learning conditional
distributions from labeled training data. Specifically, we would like to learn the
conditional distribution of the class label given a document.
35
Figure 4.2 Combination of one snippet with its topics: an example
Constraints and Features
In maximum entropy, training data is used to set constraints on the conditional
distribution. Each constraint shows a characteristic of the training data and the class
should be present in the learned distribution. Any real-valued function of the document
and the class can be a feature: . Maximum Entropy enables us to restrict the model
distribution to have the same expected value for this feature as seen in the training data,
. Thus, we stipulate that the learned conditional distribution (here, c stands for
class, and d represents document) must have the below form:
),( cdfi
D )|( dcP
( ) ( )⎟⎟⎠
⎞
⎜⎜⎝
⎛= ∑
i
ii cdfdZ
dcP ,exp1)|( λ (4.1)
Where each is a feature, ( cdf i , ) iλ is a parameter which needs to be estimated and ( )dZ is
simply the normalizing factor to ensure a proper probability: ( ) ( )∑ ∑=
c c
ii cdfdZ ,exp λ
There are several methods for estimating maximum entropy model from training data
such as IIS (improved iterative scaling), GIS, L-BFGS, and so forth.
36
Maximum Entropy for Classification
In order to apply maximum entropy, we need to select a set of features. For this work, we
use words in documents as our features. More specifically, for each word-class
combination, we instantiate a feature as:
⎩⎨
⎧ ==
otherwise 0
contains d and ' if 1
),(',
wcc
cdf cw
Here, c’ is a class, w is a specific word, and d is current document. This feature will check
whether “this document d contains the word w and belongs to the class c’ ”. The predicate
which states that “this document d contains the word w” is called the “context predicate”
of the feature.
4.1.2. Experiments
a. Experimental Settings
For all the experiments, we based on hidden topics analysis with LDA as described in the
previous chapter. We then conduct several experiments: one for learning without hidden
topics and the others for learning with different numbers of topic models of the
VnExpress dataset which are generated by doing topic analysis for VnExpress dataset
with 60, 80, 100, 120, 140 and 160 topics.
For learning maximum entropy classifier, we use JMaxent [39] and set the context
predicate and feature thresholds to be zero; the other parameters are set at defaults.
b. Evaluation
Traditional Classification use Precision, Recall and F-1 measure to evaluate the
performance of the system. The meanings of such measures are given below:
Precision of a classifier with respect to a class is the fraction of the number of examples
which are correctly categorized into that class over the number of examples which are
classified into that class:
c class as classified examples#
c class as classifiedcorrectly examples#Precisionc =
Recall of a classifier with respect to a class is the fraction of the number of examples
which are correctly categorized into that class over the number of examples which belong
to that class (by human assignment):
c class tobelong examples all#
c class as classifiedcorrectly examples#Recallc =
37
To measure the performance of a classifier, it is usually used F-1 measure which is the
harmonic mean of precision and recall:
cc
cc
c RecallPrecision
RecallPrecision2
1-F +
××=
c. Experimental Results and Discussion
62
64
66
68
70
72
74
Wi
tho
ut
To
pic
s
60
to
pic
s
80
to
pic
s
10
0 t
op
ics
12
0 t
op
ics
14
0 t
op
ics
16
0 t
op
ics
Precision Recall F1-measure
Figure 4.3. Learning with different topic models of VnExpress dataset; and the baseline (without topics)
62.02
70.86
72.45
72.25
71.91 72.26
65.94
66.41
67.08
66
56
58
60
62
64
66
68
70
72
74
1.3
5
2.7 4.0
5
5.3
52
6.5
52
7.7
52
8.8
59
9.9
09
10
.72
11
.13
Size of labeled training data (x1000 examples)
F1
m
ea
su
re
(%
)
w ith hidden topic inference
baseline (w ithout topics)
Figure 4.4. Test-out-of train with increasing numbers of training examples. Here, the number of topics is set at
60topics
38
Table 4.2. Experimental results of baseline (learning without topics)
Class Human Model Match Pre. Rec. F1-score
Business 270 347 203 58.50 75.19 65.80
Culture-Arts 285 260 183 70.38 64.21 67.16
Health 240 275 179 65.09 74.58 69.51
Laws 300 374 246 65.78 82.00 73.00
Politics 270 244 192 78.69 71.11 74.71
Science 259 187 121 64.71 46.72 54.26
Society 240 155 106 68.39 44.17 53.67
Sports 223 230 175 76.09 78.48 77.26
Technologies 270 285 164 57.54 60.74 59.10
Avg.1 67.24 66.35 66.79
Avg.2 2357 2357 1569 66.57 66.57 66.57
Table 4.3. Experimental results of learning with 60 topics of VnExpress dataset
Class Human Model Match Pre. Rec. F1-score
Business 270 275 197 71.64 72.96 72.29
Culture-Arts 285 340 227 66.76 79.65 72.64
Health 240 256 186 72.66 77.5 75
Laws 300 386 252 65.28 84 73.47
Politics 270 242 206 85.12 76.3 80.47
Science 259 274 177 64.6 68.34 66.42
Society 240 124 97 78.23 40.42 53.3
Sports 223 205 173 84.39 77.58 80.84
Technologies 270 255 180 70.59 66.67 68.57
Avg.1 73.25 71.49 72.36
Avg.2 2357 2357 1695 71.91 71.91 71.91
39
50
55
60
65
70
75
80
85
90
95
100
Bu
sin
es
s
Cu
ltu
re
-A
rts
He
alt
h
La
ws
Po
liti
cs
Sc
ien
ce
So
cie
ty
Sp
or
ts
Te
ch
no
log
ies
Av
er
ag
e
F1
-M
ea
su
re
Without Topics With Hidden Topics Inference
Figure 4.5 F1-Measure for classes and average (over all classes) in learning with 60 topics
Figure 4.3 shows the results of learning with different settings (without topics, with 60,
80, 100, 120, 140 topics) among which learning with 60 topics got the highest F-1
measure (72.91% in comparison with 66.57% in baseline – see Table 4.2 and Table 4.3).
When the number of topics increase, the F-1 measures vary around 70-71% (learning with
100, 120, 140 topics). This shows that learning with hidden topics does improve the
performance of classifier no matter how many numbers of topics is chosen.
Figure 4.4 depicts the results of learning with 60 topics and different number of training
examples. Because the testing dataset and training dataset are relatively exclusive, the
performance is not always improved when the training size increases. In any cases, the
results for learning with topics are always better than learning without topics. Even with
little training dataset (1300 examples), the F-1 measure of learning with topics is quite
good (70.68%). Also, the variation of F-1 measure in experiments with topics (2% - from
70 to 72%) is smaller than one without topics (8% - from 62 to 66%). From these
observations, we see that our method does take effects even with little learning data.
40
4.2. Clustering with Hidden Topics
4.2.1. Clustering Method
Figure 4.6. Clustering with Hidden Topics from VnExpress and Wikipedia data
Web search clustering is a solution to reorganize search results in a more convenient way
for users. For example, when a user submits query “jaguar” into Google and wants to get
search results related to “big cats”, s/he need go to the 10th, 11th, 32nd, and 71st results. If
there is a group named “big cats”, the four relevant results can be ranked high in the
corresponding list. Among previous works, the noticeable and most successful clustering
system is Vivisimo [49] in which the techniques are kept unknown. This section considers
deployment issues of clustering web search results with hidden topics in Vietnamese.
a. Topic Inference and Similarity
For each snippet, after topic inference we get the probability distribution of topics over
the snippet. From that topic distribution for each snippet, we construct the topic vector for
that snippet as following: the weight of a topic will be assigned zero if its probability less
than a predefined ‘cutt-off threshold’, and be assigned the value of its probability
otherwise. Suppose that weights for words in the term vector of the snippet have been
normalized in some way (tf; tf-idf; etc), the combined vector corresponding to snippet i-
th has the following form:
{ }||121 ,...,,,...,, VKi wwtttd = (4.2)
41
Here, ti is the weight for topic i-th in K analyzed topics (K is a constant parameter of
LDA); wi is the weight for word/term i-th in vocabulary V of all snippets.
Next, for 2 snippets i-th and j-th, we use the cosine similarity to measure the similarities
between topic-parts as well as between term-parts of the 2 vectors.
∑∑
∏
==
=
×
=−
K
k
kj
K
k
ki
K
k
kjki
ji
tt
tt
partstopicsim
1
2
,
1
2
,
1
,,
, )(
∑∑
∏
==
=
×
=−
||
1
2
,
||
1
2
,
||
1
,,
, )( V
t
tj
V
t
ti
V
t
tjti
ji
ww
ww
partswordsim
We later propose the following combination to measure the final similarity between them:
( ) parts)-word(1)partstopic(),( simsimddsim ji ×−+−×= λλ (4.3)
Here, λ is a mixture constant. If 0=λ , we calculate the similarity without the support of
hidden topics. If 1=λ , we measure the similarity between 2 snippets from hidden topic
distributions without concerning words in snippets.
b. Agglomerative Hierarchical Clustering
Hierarchical clustering [48] builds (agglomerative), or breaks up (divisible), a hierarchy
of clusters. The traditional representation of this hierarchy is a tree called dendrogram.
Agglomerative algorithms begin with each element as a separate cluster and merge them
into successively larger clusters.
Cutting the tree at a given height will give a clustering at a selected precision. In the
example in Figure 4.7, cutting after the second row will generate clusters {a} {b c} {d e}
{f}. Cutting after the third row will yield clusters {a} {b c} {d e f}, which is a coarser
clustering, with a smaller number of larger clusters.
The method builds the hierarchy from the individual elements by progressively merging
clusters. In our example, we have six elements {a} {b} {c} {d} {e} and {f}. The first step
is to determine which elements to merge in a cluster. Usually, we want to take the two
closest elements, according to the chosen similarity.
Optionally, one can construct a similarity matrix at this stage, where the number in the i-
th row j-th column is the similarity/distance between the i-th and j-th elements. Then, as
42
clustering progresses, rows and columns are merged as the clusters are merged and the
similarities updated. This is a common way to implement this type of clustering, and has
the benefit of catching distances between clusters.
Figure 4.7. Dendrogram in Agglomerative Hierarchical Clustering
Suppose that we have merged the two closest elements b and c, we now have the
following clusters {a},{b,c},{d},{e}, and {f}, and want to merge them further. To do that,
we need to measure the similarity/distance between {a} and {b c}, or generally similarity
between two clusters. Usually the similarity between two clusters A and B can be
calculated as one of the following:
- The minimum similarity between elements of each cluster (also called complete
linkage clustering):
( ){ }ByAxyxsim ∈∈ ,:,min
- The maximum similarity between elements of each cluster (also called single
linkage clustering):
( ){ }ByAxyxsim ∈∈ ,:,max
- The mean similarity between elements of each clusters (also called average linkage
clustering):
( )∑∑
∈ ∈Ax By
yxsim
BA
,
||||
1
Each agglomerative occurs at a smaller similarity between clusters than the previous
agglomeration, and one can decide to stop clustering either when the clusters are too far
apart to be merged (similarity criterion) or when there is a sufficiently small number of
clusters (number criterion).
43
c. Labeling Clusters
Given a set of clusters for a text collection, our goal is to generate understandable
semantic labels for each cluster. We now state the problem of cluster labeling similarly to
the problem of “topic labeling problem” [27] as follows:
Definition 1: A cluster ( ) in a text collection has a set of “close” snippets (here, we
consider snippets are small documents), each cluster is characterized by an “expected
topic distribution”
Cc∈
cθ which is the average of topic distributions of all snippets in the
cluster.
Definition 2: A “cluster label” or a “label” l for a cluster Cc∈ is a sequence of words
which is semantically meaningful and covers the latent meaning of cθ . Words, phrases,
and sentences are all valid labels under this definition.
Definition 3 (Relevance Score) The relevance score of a label to a cluster cθ , ( )cls θ, ,
measures the semantic similarity between the label and the topic model. Given that both
and are meaningful candidate labels, is a better label for c than if 1l 2l 1l 2l
( ) ( cc lsls )θθ ,, 21 >
With these definitions, the problem of cluster labeling can be defined as follows: Let
be a set of N clusters, and },...,,{ 21 NcccC = { }siiii lllL ,2,1, ,...,,= be the set of candidate
cluster labels for the cluster number i in C. Our goal is to select the most likely label for
each cluster.
Candidate Label Generation
Candidate label is the first phrase to label clusters. In this work, we generate candidates
based on “Ngram Testing” which extract meaningful phrases from word n-grams based
on statistical tests. There are many methods for testing whether an n-gram is meaningful
collocation/phrase or just co-occur by accidence. Some methods depend on statistical
measures such as mutual information. Others rely on hypothesis testing techniques. The
null hypothesis usually assumes that “the words in an n-gram are independent”, and
different test statistics have been proposed to test the significance of violating the null
hypothesis.
For the experiments, we use the n-gram hypothesis testing (n <=2) which depend on chi-
square test [11] to find out meaningful phrases. In other words, there are two types of
label candidates: (1) non-stop words (1-gram); and (2) a phrase of 2 consecutive words
(2-grams) with its chi-square value calculated from a large collection of text is greater
than a threshold - the “colocThreshold”.
44
Table 4.4. Some collocations with highest values of chi-square statistic
Collocation (Meaning in Enlish) Chi-square value
TP HCM (HCM city) 2.098409912555148E11
Monte Carlo (Monte Carlo) 2.3750623868571806E9
Thuần_phong mỹ_tục (Habits and Customs) 8.404755120045843E8
Bin Laden (Bin Laden) 5.938943787195972E8
Bộ Vi_xử_lý (Center Processing) 3.5782968749839115E8
Thép_miền_nam Cảng_Sài_gòn (a football club) 2.5598593044043452E8
Trận chung_kết (Final Match) 1.939850017618072E8
Đất_khách quê_người (Forein Land) 1.8430912500609657E8
Vạn_lý trường_thành (the Great Wall of China) 1.6699845099865612E8
Đi_tắt đón_đầu (Take a short-cut, Wait in front) 1.0498738800702788E8
Xướng_ca vô_loài 1.0469589600052954E8
Ổ cứng (Hard Disk) 9.693021145946936E7
Sao_mai Điểm_hạn (a music competition) 8.833816801460913E7
Bảng xếp_hạng (Ranking Table) 8.55072554114269E7
Sơ_yếu lý_lịch (Curiculum Vitae) 8.152866670394194E7
Vốn điều_lệ (Charter Capital) 5.578214903954915E7
Xứ_sở sương_mù (England) 4.9596802405895464E7
Windows XP (Windows XP) 4.8020442441390194E7
Thụ_tinh ống_nghiệm (Test-tube Fertilization) 4.750102933435161E7
Outlook Express (Outlook Express) 3.490459668749844E7
Công_nghệ thông_tin (Information Technology) 1587584.1576983468
Hệ_thống thông_tin (Information System) 19716.68246929993
Silicon Valley (Silicon Valley) 1589327.942940336
Relevance Score
We borrowed the ideas of simple score and inter-cluster score from [27]. Simple score is
the relevance of a label and a specific cluster without concerning the other clusters. Inter-
cluster score of a label and a cluster, on the other hand, look at not only the interesting
cluster but also other clusters. As a result, the labels chosen using inter-cluster score
discriminate clusters better than simple score.
In order to get relevance between a label candidate (l) and a cluster (c) using simple
score, we use 3 types of features including the topic similarity (topsim) between topic-
distribution of the label candidate and the “expected topic distribution” of the cluster, the
length of candidate (lenl), number of snippets in the cluster c containing this phrase
(cdfl,c). More concretely, given one candidate label lwwwl ...21= , we first inference the
45
topic distribution lθ for the label also by using the estimated model of the universal
dataset. Next, the simple relevance score of l is measured with respect to a cluster cθ by
using cosine similarity for topic similarity [48]:
(4.4) lclclc lencdflsplscore θ ×+×+×α θ βθ= ,|(cosine),( ) γ
A good cluster label is not only relevant to the current cluster but also help to distinguish
this cluster to another. So, it is very useful to penalize the reference score of a label with
respect to the current cluster by the reference scores of that label to other clusters
( and ). Thus, we get the inter-cluster scoring function as follows:
c 'c
Cc∈' cc ≠'
∑
≠∈
×−=
ccCc
ccc lsplscorelsplscorelscore
','
' ),(),(),( θμθθ (4.5)
The candidate labels of a cluster are sorted - in descending order - by its relevance and the
4 most relevant candidates are then chosen as labels for the cluster.
d. Ranking within Cluster
We reorganize the order of documents in each cluster by the relevance between its topic
distribution and the “expected topic distribution” of the cluster. If the relevant measures
of 2 snippets within one cluster are the same, their old ranks in the complete list
determined by Google are used to specify the final ranks. In other words, if the 2 snippets
have the same relevant score, the one with higher old rank has higher rank in the
considered cluster.
4.2.2. Experiments
a. Experimental Settings
For experiments, we first submit 10 ambiguous queries to Google and get back about 200
search result snippets [Table 4.5]. The reason why we choose these queries is that they are
likely to contain multiple sub-topics. Thus, we will benefit more from clustering search
results.
Table 4.5. Queries submitted to Google
Types Queries
General Terms Sản phẩm (products), thị trường (market), triển lãm (exhibition), công
nghệ (technology), đầu tư (investment), hàng hóa (goods)
Ambiguous Terms Ma trận (matrix), tài khoản (account), hoa hồng (rose/money), ngôi
sao (star)
46
For each query, we cluster search results using HAC and hidden topics which are
discovered from the collection of Vnexpress and Wikipedia data (see previous chapter)
with 200 topics. Parameters for clustering are shown as in the following table.
Table 4.6. Parameters for clustering web search results
Parameters Meaning Values
Normalized Method for constructing word-part vector of the snippet TF
Similarity between
Clusters
How to calculate similarity between 2 clusters based on
similarites between pair of snippets
Average
Linkage
Cut-off A topic with its probability less than this value will be
weighted as zero in topic-part vector of the snippet
0.01
Lamda Mixture of topic-part and word-part in the vector of the
snippet
0.4
mergeThreshold The smallest similarity with which two clusters can be
merged (similarity criterion) [see 4.2.1. b. ]
0.13
Anpha Weight of topic-similarity feature in the simple scoring
method [Eq.4.4]
10
Beta Weight of the “cdf” feature in the simple scoring method
[Eq.4.4]
2
Gama Weight of the “len” feature in the simple scoring method
[Eq.4.4]
2
Muy Parameter in the inter-cluster scoring method [Eq.4.5] 0.35
colocThreshold The smallest chi-square value that 2-grams can be get to form
a collocation (a meaningful phrase for labeling)
2500.0
b. Evaluation
In order to evaluate the clustering method, for each query, we specify “good clusters”,
which are clusters with snippets telling us about a coherent topic. We count the number of
snippets in good clusters for each query and calculate the ‘coverage’ as following:
query for this snippets ofnumber
clusters" good" selectedover snippets ofnumber cov =erage (4.6)
For each good cluster of some query, we evaluate both the quality of the cluster as well as
the ranking policy by calculating P@5, P@10 and P@20 which are the precision at top 5,
top 10, and top 20 snippets respectively.
c. Experimental Results and Discussions
47
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
công
nghệ
đầu tư hàng
hóa
hoa
hồng
Ma trận Ngôi sao sản
phẩm
tài
khoản
thị
trường
triển lãm
queries
pr
ec
is
io
n
P@5 P@10 P@20
Figure 4.8 Precision of top 5 (and 10, 20) in best clusters for each query
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
công
nghệ
đầu tư hàng
hóa
hoa
hồng
ma trận ngôi
sao
sản
phẩm
tài
khoản
thị
trường
triển
lãm
queries
co
ve
ra
ge
(%
)
Top 5 Coverage Top 10 Coverage
Figure 4.9 Coverage of the top 5 (and 10) good clusters for each query
Figure 4.8 shows the precision of top 5 (and 10, 20) in best clusters for each query.
Although the performance depends heavily on search results returned by the Web search
engine, the overall quality is satisfactory (the precision is above 80% on average). For
some queries such as “công nghệ” (technology), the returned snippets focus mostly on the
topic of “information technology”, thus making the clustering system depends heavily on
the word similarities to determine clusters. As a result, the clustering quality is not as
good as for other queries. For queries such as “ma trận” (matrix), the search results vary
in multiple domains (movie, game, mathematics, technology – like matrix in cameras)
making topic information become really beneficial, the performance for them is quite
good (for “ma trận”, P@5, P@10 and P@20 are of 100%, 98%, and 96% respectively).
48
The coverage of the best 5 (and 10) clusters for each query is demonstrated in the figure
4.9. From this figure, we can see that the coverage of 10 best clusters for each query is
around 40 – 50 % (of about 250 snippets). This means that these clusters can help users to
navigate efficiently through about 10 pages returned from Google (suppose that the
number of snippets per page is 10 – the default number of snippets per page of Google).
0
0.5
1
1.5
2
2.5
3
3.5
Phát
hiện
hành
tinh
mặt trời nhà
khoa
học
quỹ
đạo
sao Hải
vương
trắng trạng
thái
vũ trụ vật
chất
lùn khối
lượng
Snippet 3
Snippet 2
Snippet 1
\
0
5
10
15
20
25
30
35
40
Topic 107 Topic 141 Topic 9 Topic 185
W
ei
gh
t (
sc
al
ed
a
nd
ro
un
de
d)
Snippet 3
Snippet 2
Snippet 1
Topic 107
(astronomy):mặt_trời
trái_đất hành_tinh
quỹ_đạo vệ_tinh
quan_sát quay
mặt_trăng ngôi_sao
vũ_trụ vật_thể
thiên_thể thiên_văn
khối_lượng
Although there is still a lot of work to verify our method, these results have partly proved
its effect. The most advantage of our clustering method is that not only snippets which
share a lot of word choices are considered similar, but also those sharing the hidden
topics. As a result, it goes beyond the limitations of different word choices (see Figure
4.10).
Snippet 3 =
Bên_trong các sao
lùn trắng vật_chất ở
trạng_thái siêu_đặc
như_vậy
Snippet 2 = Sao lùn
cực nhẹ là những có
khối_lượng nhỏ hơn
0,3 lần khối_lượng
mặt_trời Trong
vùng lân_cận
mặt_trời hiện còn
vô_số sao lùn có
khối_lượng cực
Snippet1 = Phát
hiện 28 hành_tinh
mới ngoài hệ
mặt_trời Tin_tức
sự_kiện Trong_số
28 hành_tinh mới
các nhà_khoa_học
phát_hiện một
hành_tinh
ố
Figure 4.10. Word and Topic sharing among 3 snippets of the same cluster about astronomy
49
4.3. Summary
This chapter describes details of the deployments of general frameworks in classification
and clustering in Vietnamese. From experiments, good results have been observed in both
tasks. We can get the improvement of about 8% for the task of classification with sparse
data. The topic-oriented clustering method has shown its efficiency in both improving the
quality of clustering search results, labeling and re-ranking clusters. These results can be
seen as practical evidences for our arguments in the previous chapters.
50
Conclusion
Achievements throughout the thesis
The main contributions of this thesis lie in the following folds:
- Chapter 1 summarize some major text modeling and hidden topic models with
particular attention to LDA which has recently shown its success in many
applications such as entity resolution, classification, feature selection and so on.
These models are milestones for our proposals in the subsequent chapters.
- In chapter 2, two general frameworks have been proposed for learning with the
support of hidden topics. The main motivation is how to gain benefits from huge
sources of online data in order to enhance quality of the Text/Web clustering and
classification. Unlike previous studies of learning with external resources, we
approach this issue from the point of view of text/Web data analysis that is based
on recently successful latent topic analysis models like LSA, pLSA, and LDA. The
underlying idea of the framework is that for each learning task, we collect a very
large external data collection called “universal dataset”, and then build a learner on
both the learning data and the rich set of hidden topics discovered from that
collection.
- In chapter 3, we discuss important issues and results of topic analysis with LDA
for two datasets: VnExpress (199MB) and Wikipedia (270M). Significant
considerations about preprocessing and transformation in Vietnamese as well as
topic analysis have been highlighted. From the experimental results, we see that
LDA is a suitable method for topic analysis in Vietnamese.
- Chapter 4 describes two deployments of general frameworks for 2 tasks which are
classifying and clustering search results in Vietnamese. Significant improvement
for classification and clustering has shown the success of our proposed methods.
Future Works
Topic Analysis is attractive to many researchers because of its widespread applications in
various areas as well as it potentially contains different research trends. In the future, the
following research directions could be taken into considerations:
- Deployments of general frameworks for Page Rank and Summary in Search
Engine. In the task of Page rank, we consider a query as a short document and infer
topic distribution for it. Based on the topic distributions of returned pages, we then
order them with respect to their relevance to the topic distribution of the query,
51
thus providing user with topic-oriented ranking. In the Summary problem, for each
page result, we can take sentences which are closest in topic-distribution with the
query and contain keywords as the summary for that page. For the
implementations, the topic inference can be done offline for all the web pages
stored in the search engine so that reduce the online computations.
- Tracking Online News over time using Dynamic Topic Models: DTM is an
extension to Latent Dirichlet Allocation and has proposed by Blei et. al. (2006).
This is a useful tool for tracking and visualizing the development of topics over
time. One application of this is to track news about business so that one can answer
the questions like “during which time, attentions will be paid to some business
field”. This can help much for stockbroker to make their investment decisions.
52
References
Vietnamese References
[1]. Mai, N.C., Vu, D.N., Hoang, T.P. (1997), “Cơ sở ngôn ngữ học và tiếng Việt”, Nhà
xuất bản Giáo dục
English References
[2]. Andrieu, C., Freitas, N.D., Doucet, A. and M.I. Jordan (2003), “An Introduction to
MCMC for Machine Learning”, Machine Learning Journal, pp. 5- 43.
[3]. Banerjee, S., Ramanathan, K., and Gupta, A (2007), “Clustering Short Texts Using
Wikipedia”, In Proceedings of ACL.
[4]. Bhattacharya, I. and Getoor, L. (2006), “A Latent Dirichlet Allocation Model for
Entity Resolution”, In Proceedings of 6th SIAM Conference on Data Mining,
Maryland, USA.
[5]. Blei, D.M., Ng, A.Y. and Jornal, M.I. (2003), “Latent Dirichlet Allocation”, Journal
of Machine Learning Research 3, pp.993-1022
[6]. Blei, D. and Jordan, M. (2003), “Modeling annotated data”, In Proceedings of the
26th annual International ACM SIGIR Conference on Research and Development in
Information Retrieval 127–134. ACM Press, New York, NY.
[7]. Blei, M. and Lafferty, J. (2006), “Dynamic Topic Models”, In Proceedings of the
23rd International Conference on Machine Learning, Pittsburgh, PA.
[8]. Blei, M. and Lafferty, J. (2007), “A Correlated Topic Model of Science”, The
Annals of Applied Statistics. 1, pp. 17-35
[9]. Blum, A. And Mitchell, T. (1998), “Combining Labeled and Unlabeled Data with
Co-training”. In Proceedings of COLT.
[10]. Bollegala, D., Matsuo, Y., And Ishizuka, M. (2007), “Measuring Semantic
Similarity between Words using Web Search Engines”. In Proceedings of WWW.
[11]. Christopher, D.M., Hinrich, S. (Jun, 1999), Foundations of Statistical Natural
Language Processing.
[12]. Chuang, S.L., and Chien, L.F. (2005), “Taxonomy Generation for Text Segments: a
Practical Web-based Approach”, ACM Transactions on Information Systems. 23,
pp.363-386.
[13]. Deerwester, S., Furnas, G.W., Landauer, T.K., and Harshman, R.(1990), “Indexing
by Latent Semantic Analysis”, Journal of the American Society for Information
Science. 41, 391-407.
[14]. Dhillon, I., Mallela, S., And Kumar, R. (2002), “Enhanced Word Clustering for
Hierarchical Text Classification”, In Proceedings of ACM SIGKDD
53
[15]. Erosheva, E., Fienberg, S. and Lafferty, J. (2004). Mixed-membership models of
scientific publications. Proc. Natl. Acad. Sci. USA 97 11885–11892.
[16]. Gabrilovich, E. and Markovitch, S. (2007), “Computing Semantic Relatedness using
Wikipedia-based Explicit Semantic Analysis”, In Proceedings of IJCAI
[17]. Girolami, M. and Kaban, A. (2004). “Simplicial mixtures of Markov chains:
Distributed modelling of dynamic user profiles”. In Advances in Neural Information
Procesing Systems 16 9–16. MIT Press, Cambridge, MA.
[18]. Griffiths, T., Steyvers, M., Blei, D. and Tenenbaum, J. (2005), “Integrating topics
and syntax”, In Advances in Neural Information Processing Systems 17 537–544,
MIT Press, Cambridge, MA.
[19]. Google Search, 2007.
[20]. Heinrich, G., “Parameter Estimation for Text Analysis”, Technical Report.
[21]. Hofmann, T., “Probabilistic Latent Semantic Analysis”, In Proceedings of UAI
[22]. Hofmann, T., (2001), “Unsupervised Learning by Probabilistic Latent Semantic
Analysis”, Machine Learning. 42, pp. 177-196
[23]. Lawrie, D. J. and Croft, W.B. (2003), “Generating Hierarchical Summaries for Web
Searches”, In Proceedings of ACM SIGIR.
[24]. Letsche, T. A. and Berry, M. W. (1997), “Large-Scale Information Retrieval with
Latent Semantic Analysis”, Information Science. 100, pp. 105-137
[25]. Liu, B., Chin, C. W., and Ng, H. T., “Mining Topic-Specific Concepts and
Definitions on the Web”, In Proceedings of WWW
[26]. Latent Semantic Analysis,
[27]. Mei, Q., Shen, X., And, Zhai, C., “Automatic Labeling of Multinomial Topic
Models”. In Proceedings of ACM SIGKDD, 2007
[28]. Modha, D.S. and Spangler, W.S., “Clustering Hypertext with Applications to Web
Searching”, In Proceedings of the 11th ACM on Hypertext and Hypermedia
[29]. Mccallum, A., Corrada-emmanuel, A. And Wang, X. (2004). “The author–
recipient–topic model for topic and role discovery in social networks: Experiments
with Enron and academic email”, Technical report, Univ. Massachusetts, Amherst.
[30]. Nigram, K., McCallum, A., Thrun, S., and Mitchell, T., “Text Classification from
Labeled and Unlabeled Documents using EM”, Machine Learning. 39, pp. 103-134
[31]. Nguyen, C.T., Nguyen, T.K, Phan, X.H., Nguyen, L.M. and Ha, Q.T., “Vietnamese
Word Segmentation with CRFs and SVMs: An Investigation”, In Proceedings of the
20th Pacific Asia Conference on Language, Information and Compuation
(PACLIC20), pp.215-222, Wuhan, China, 1-3 November 2006
[32]. Nguyen, C.T., “JVnSegmenter: A Java-based Vietnamese Word Segmentation
Tool”, 2007
54
[33]. Nguyen, C.T., Tran, T.O., Ha, Q.T., Phan, X.H, “Named Entity Recognition in
Vietnamese Free-Text and Web Documents Using Conditional Random Fields”, The
Workshop on Asian Applied NLP and language resource development, Sirindhorn
International Institute of Technology, Pathumthani, Thailand, March 13, 2007.
[34]. Nguyen, V.C., Nguyen, T.T.L., Ha, Q.T.., Phan, X.H. (2006), “A Maximum Entropy
Model for Text Classification”, In Proceeding of International Conference on
Internet Information Retrieval, pp. 143-149, Korea.
[35]. Nigam, K., Lafferty, J., McCallum, A. (1999), “Using Maximum Entropy for Text
Classification”, In Proceeding of the International Joint Conference on Artificial
Intelligence.
[36]. Nutch: an open-source search engine,
[37]. Phan, X.H, “JWebPro: A Java-based Web Processing Toolkit”
2007
[38]. Phan, X.H, “GibbsLDA++: A C/C++ and Gibbs Sampling based Implementation of
Latent Dirichlet Allocation (LDA)”, 2007
[39]. Phan, X.H, “JTextPro: A Java-based Text Processing Toolkit”,
[40]. Papadimitriou, C., Tamaki, H., Raghavan, P., and Vempala, S., “Latent Semantic
Indexing: A probabilistic analysis”, pages 159-168, 1998
[41]. Popescul, A., Ungar, L., Pennock, D., and Lawrence, S., (2001) “Probabilistic
Models for Unified Collaborative and Content-based Recommendation in Sparse-
data environments”, In Uncertainty in Artificial Intelligence, Proceeding of the
Seventeenth Conference.
[42]. Rosen-zvi, M., Griffiths, T., Steyvers, M. and Smith, P. (2004), “The author-topic
model for authors and documents”, In AUAI’04: Proceedings of the 20th Conference
on Uncertainty in Artificial Intelligence 487–494. AUAI Press, Arlington, VA.
[43]. Sahami, M., and Heilman, T.D. (2006), “A Web-based Kernel Function for
Measuring the Similarity of Short Text Snippets”, In Proceedings of WWW
[44]. Sato, I. and Nakagawa, H., “Knowledge Discovery of Multiple-Topic Document
using Parametric Mixture Model with Dirichlet Prior”, In Proceedings of ACM
SIGKDD, 2007
[45]. Schonofen, P., “Identifying Document Topics using the Wikipedia Category
Network”, In Proceedings of IEEE/WIC/ACM International Conference on Web
Intelligence, 2006
[46]. Sivic, J., Rusell, B., Efros, A., Zisserman, A. and Freeman, W. (2005), “Discovering
object categories in image collections” Technical report, CSAIL, Massachusetts
Institute of Technology
[47]. VnExpress: the online Vietnamese news,
[48]. Vector Space Model,
55
[49]. Vivisimo Web Search,
[50]. Wikipedia: the free encyclopedia, 2007
[51]. Zamir, O. and Etzioni, O., “Grouper: a Dynamic clustering interface to Web search
results”, In Proceedings of WWW.
[52]. Zeng, H.J., He, Q.C., Chen, Z., Ma, W.Y., And Ma, J., “Learning to Cluster Web
Search Results”, In Proceedings of ACM SIGIR, 2004
56
Appendix: Some Clustering Results
Clustering results for the query “ma trận” (matrix)
1 hệ_phương_trình(18)
tuyến_tính, đại_số,
định_thức, số_phức,
bài_toán, thuần_nhất,
lượng_giác, số_ảo, khả,
1. Bửu_bối giúp đậu mấy môn toán đại_cương
phương_pháp tính hŕm ... lấy giới_hạn ma_trận số_thực
ma_trận số_ảo lượng_giác thực lượng_giác ảo
2. Đại_số Diễn_Đàn Sinh_Viên Quy_Nhơn Bài_4 Cho
ma_trận vuông có các phần_tử trên đường_chéo chính là
2007 các phần_tử Giải hệ_phương_trình tuyến_tính
thuần_nhất với là ma_trận cột
3. Đề_cương môn_học Biết cách biểu_diễn các đồng cấu
bởi ma_trận đồng_thời biết sử_dụng các phép_toán trên
ma_trận và biết cách giải một hệ_phương_trình đại_số
tuyến_tính ứng
2 phim(12)
bộ phim, diễn_viên, vai
diễn, điện_ảnh thế_giới,
ngôi_sao điện_ảnh, phim
ăn_khách, phim_truyện,
ngôi_sao, diễn,
1. phim truyen han_quoc ma tran tai_hien dvd Những
khách_hàng mua Phim_Truyện Hàn_Quốc Ma_Trận
Tái_Hiện DVD HQ_Pro cũng mua những món_hàng
sau_đây
2. 24h.com.vn Giới_thiệu các ngôi_sao điện_ảnh thế_giới
và Việt_nam Với vai diễn Neo trong The_Matrix Ma_trận
1999 Reeves đã đưa bộ phim trở thành_bộ phim
ăn_khách và được nhiều người săn_lùng
3. Ma_Trận I Ii Iii Tổng_Hợp 3 Phần Của_Phim VN
Zoom_forum Phim The_Matrix quả_là một phim_hay
không_chỉ bởi diễn_viên bởi kỹ_xảo hình_ảnh âm_thanh
3 game(8)
game, game trực_tuyến,
game nhập_vai,
trò_chơi, game online,
picachu, phiêu_lưu, tải
game, giải_trí
trực_tuyến, chơi game,
1. Game Online Cuộc Chiến Ma_Trận Cuộc Chiến Ngoài
Hành_Tinh Cuộc Phiêu_Lưu Của Chó_Con
Cướp_Biển_Caribê Dap_Tho Đi Tìm Cún_Con
Lau_Kính
2. Giới_thiệu các trò_chơi mới hướng_dẫn chơi game
Thất_bại vẫn tiếp_tục đeo_bám Ma_Trận khi The
Matrix_Online game nhập_vai trực_tuyến đầy tham_vọng
3. game_online tải game game_flash game_mini game hay
game trực_tuyến Tên_Game Ma_trận Description
Chúng_ta đang ở trong ma_trận hãy tiêu_diệt hết bọn
nhân_bản nào
4 led(5)
led, máy_ảnh, cảm_biến,
nét, tat ca, kiểu ma_trận,
linh_kiện, tu van, đo,
sáng,
1. ĐIỀU_KHIỂN MA_TRẬN LED VÀ BÀN_PHÍM HEX
LED MATRIX_
2. Nội_dung các con chíp_LED nguyên_vật_liệu đèn
phát_quang các thiết_bị năng_lượng cao linh_kiện
điện_tử có độ_phân_giải cao điểm ma_trận
3. Nikon D2Xs Máy_ảnh chuyên_dụng tốt nhất DIỄN_ĐÀN
CÔNG_NGHỆ VIỆT_NAM Nikon còn trang_bị mạch đo
sáng kiểu ma_trận 3D
5 máy_in(2)
máy_in, đòi_hỏi,
ứng_dụng rộng_rãi, hóa
đơn, http, môi_trường,
series, tốc_độ, in_nhanh,
raovat,
1. MÁY_IN HÓA ĐƠN POSIFLEX_PP 5600_SERIES
Mua_ban rao_vat Raovat Tốc_độ in_nhanh in theo
phương_pháp ma_trận điểm
2. Các máy_in ma_trận dòng_T6212 T6215 và T6218 là
những máy_in tốc_độ cao phù_hợp trong môi_trường
đòi_hỏi in_ấn với số_lượng lớn Tốc_độ tương_ứng
57
Clustering results for the query “ngôi sao” (star)
1 điện_ảnh(23), ngôi_sao
điện_ảnh, điện_ảnh
thế_giới, phim, bộ phim,
nữ diễn_viên, ngôi_sao
phim, thế_giới điện_ảnh,
diễn_viên, thế_giới,,
1. Giới_thiệu các ngôi_sao điện_ảnh thế_giới và Việt_nam
Khi công_bố nữ diễn_viên chính sẽ đóng cặp với
ngôi_sao điện_ảnh xứ_Hàn Bae_Yong_Joon là
Lee_Ji_Ah khiến ai cũng ngỡ_ngàng
2. Hai ngôi_sao võ_thuật của Trung_Quốc góp_mặt trong
bộ phim mới Hai ngôi_sao võ_thuật của Trung_Quốc
góp_mặt trong bộ phim mới King of_Kungfu
3. phim nhiều thể loại thế_giới điện_ảnh với các thông_tin
nóng_hổi Phim đời_tư các ngôi_sao điện_ảnh của
thế_giới và việt_nam Phim bình_luận về các bộ phim hay
Lịch chiếu_phim trên_HBO CINEMAX STAR_MOVIE
2 ca_nhạc(12), ngôi_sao
ca_nhạc, ban_nhạc,
nhạc pop, thể_thao,
yêu_mến, mariah,
mariah_carey, nhạc_sĩ,
pop,
1. Các ngôi_sao ca_nhạc ban_nhạc nổi_tiếng Trang
chân_dung nghệ_sĩ ca_sĩ nhạc_sĩ và ban_nhạc nổi_tiếng
2. Năm 2005 Eva ký hợp_đồng với Oréal hãng mỹ_phẩm
nổi_tiếng của Pháp hợp_đồng đã đưa cô lên ngang_hàng
với các ngôi_sao như ca_sĩ da_màu Beyonce
3. Các ngôi_sao ca_nhạc ban_nhạc nổi_tiếng Mariah
Tuy_nhiên lợi_thế trẻ_trung của teen_star vẫn chưa
đủ_sức làm lu_mờ một số ngôi_sao gạo_cội trong_đó có
Mariah_Carey Người_ta gọi cô là Diva quên tuổi
3 bóng_đá(10)
sân_cỏ, ngôi_sao
sân_cỏ, premiership,
vòng chung_kết, vòng
thi, trung_tâm, tphcm,
giải, ronaldo,
1. Milan chưa từ_bỏ ý_định mua_Ronaldinho Chủ_tịch
Milan Silvio_Berlusconi cho_biết ông sẵn_sàng nối_lại
đàm phám với Barca về trường_hợp của Ronaldinho khi
đội_bóng chủ sân
2. Tin nhanh bóng_đá Ngôi_sao sân_cỏ Cháy_mãi Ronaldo
24h.com.vn Tin nhanh bóng_đá
3. 24h.com.vn Tin nhanh bóng_đá Ngôi_sao sân_cỏ
Premiership 24h.com.vn Tin nhanh bóng_đá Ngôi_sao
sân_cỏ Các tin khác của mục Ngôi_sao sân_cỏ Tổng_hợp
24H
4 mặt_trời(5)
quỹ_đạo, quanh,
thiên_hà, địa_cầu,
hành_tinh, get the, lùn,
single_network,
vietnamkhoa_học,
1. Phot hiện 28 hành_tinh mới ngoài hệ mặt_trời
2. Người góp_chìa Sao lùn cực nhẹ là những ngôi_sao có
khối_lượng nhỏ hơn 0,3 lần khối_lượng mặt_trời
3. an binh hanh_phuc Kích_thước của các ngôi_sao vŕ
khoảng_cách của chúng đối_với trái_đất vượt Mặt_trời
của chúng_ta lŕ ngôi_sao gần chúng_ta nhất cách địa_cầu
độ_chừng
5 mặc đẹp(3)
mặc, thời_trang, mot so,
nhat, beyonce knowles,
tạp_chí life,
biên_tập_viên, knowles,
nữ_ca_sĩ,
1. VnExpress Anh 10 ngoi sao thoi trang nhat the_gioi
Nữ_ca_sĩ Beyonce Knowles được các biên_tập_viên của
tạp_chí Life Style Mỹ bầu chọn là ngôi_sao mặc đẹp và
cá_tính nhất năm_nay
2. 10 Ngôi_Sao Quyến_Rũ Nhất Trung_Quốc eVietBay 10
Ngôi_Sao Quyến_Rũ Nhất Trung_Quốc Tin_Tức về
Thời_Trang Điện_Ảnh
58
Clustering results for the query “thị trường” (market)
1 otc(29)
thị_trường otc, niêm_yết,
cổ_phiếu otc, cổ_phiếu,
một_số cổ_phiếu,
công_ty niêm_yết,
1. Chứng_khoán Ngân_hàng THÔNG_TIN THỊ_TRƯỜNG
NGHIÊN_CỨU PHÂN_TÍCH TIN VCBS
2. Vietstock Vietnam Stock Market News and_Information
Thong_tin Thị_trường bất_động_sản Cơ_hội vàng cho
các nhà đầu_tư
3. Chứng_khoán Biển_Việt Báo_Cáo Tổng_Quan
Thị_Trường Cổ_Phiếu
2 kinh_tế thị_trường(20)
nền kinh_tế, tăng_trưởng
kinh_tế, tốc_độ
tăng_trưởng,
tăng_trưởng mạnh_mẽ,
động_thái, ,
1. Làm điếm trong nền kinh_tế thị_trường H-A O
2. Các chuyên_gia phân_tích thị_trường nhận_định
thị_trường ĐTDĐ trong năm_nay sẽ không duy_trì được
tốc_độ tăng_trưởng hai con_số như trong quý_IV
3. Chính_phủ và thị_trường Diễn_đàn X cafe Vận_hành nền
kinh_tế thị_trường có_nghĩa là nhiều vấn_đề sẽ
3 đất(17)
đất, thị_trường
bất_động_sản,
bất_động_sản, căn_hộ
chung_cư, đất dự_án,
từ_liêm, quy_hoạch,
lô_đất, giá đất, nhà_ở,
1. Saigon bất_động_sản Bất_động_sản Nhà_đất Địa_ốc
Xây_dựng Bước vào quý_
2. Thị_trường bất_động_sản Thành_phố Hồ_Chí_Minh vẫn
đang sôi VietNamNet_Bridge
3. hị_trường BĐS TP.HCM Vùng ven lên_giá Cotec Group
Website Đất các quận_huyện vùng ven_như Thủ_Đức
Cần_Giờ Bình_Chánh
4 điện_thoại di_động(11)
điện_thoại di_động, fpt,
viễn_thông di_động,
công_nghệ cdma,
dịch_vụ điện_thoại
1. MOBILENET Mobile Online Magazine Cú đột_phá trên
thị_trường điện_thoại Năm 2006 khi E Com dịch_vụ
điện_thoại cố_định
2. Thị trường viễn thông di động sẽ có sự thay đổi lớn kể từ
năm 2006
3. Thị trường di động Việt Nam nửa đầu năm 2007
Các file đính kèm theo tài liệu này:
- MSc08_Nguyen_Cam_Tu_Thesis_English.pdf