Luận văn Khai khoáng dữ liệu gia tăng các mẫu tuần tự theo thời gian

KHAI KHOÁNG DỮ LIỆU GIA TĂNG CÁC MẪU TUẦN TỰ THEO THỜI GIAN BÙI VĂN THÀNH Trang nhan đề Lời cám ơn Mục lục Chương_1: Tổng quan. Chương_2: Khảo sát các thuật giải cho bài toán khai khoáng dữ liệu. Chương_3: Nghiên cứu thuật giải khai khoáng gia tăng ISE. Chương 4: Xây dựng hệ thống. Chương_5: Ứng dụng. Chương_6: Kết luận và hướng phát triển. Tài liệu tham khảo

pdf38 trang | Chia sẻ: maiphuongtl | Lượt xem: 1919 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận văn Khai khoáng dữ liệu gia tăng các mẫu tuần tự theo thời gian, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
10 --------------------------------------- ChU'O'ng2 KHAo SAT cAc THUATGIAICHO BAI ToAN. KHAI KHoANG DO'LIEU. 2.1 TONG QUAN cAe NGHIENcO'u Nhfmgnamd~ucuath~pnien90,baitoankhaikhoanglu~tk~thqpd~utien dugcgi6ithi~uvasaudophatri~nrOngrai.Baitoankhaikhoanglu~tk~thqpban d~uthuangchid~nnhulabaitoan"khachhang-muGsam",baivi duli~ugiaotic muabandugcchQnlQctircaccirahangbanIe chiramOtllnhVl,l'CUngdl,mgtieu bi~uchovi~ckhaiphatri thuc.Khaikhoangduli~u,clingdugcbi~tnhula Imam phi trithuctrongCSDL,dugcnhinnh~nhulamOtllnhVl,l'Cm6id~yhuah~ncho vi~cnghienClmCSDL.LinhVl,l'Cnaycoth~dugcxacdinhnhulaSl,Imamphihi~u quacacm~uthuvi tirCSDL100.M~utu~ntvth~hi~ncacy~ut6quailh~v6inhau theethaigian. Baitoankhamphilcaem6utwintl!,dugcgi6ithi~ud~utiennam1995[11], la bai toanImamphi cacm~uph6bi~ntheethaigian,v6i dOh6 trgt6i thi~u minsuppdonguaisird\mgxacdinh,madOh6trgcuamOtm~utu~ntvlatYl~ph~ tramcuacacday-duii~uchuatrongmftudo.Baitoannayband~udugcthucdAy bai cacUngdl,mgtrongcongnghi~pbanIe,baag6mthutindinhkern,buonban khuy~nmaivath6amanthihi~ucuakhachhang.Saudonhfmgk~tquanayl~i dugcUngdl,mgtrongnhi~ullnhVl,l'ckhoahQCvathuangm~i.Vi dl,l,tronglinhVl,l'C Y khoa,chamsacsuckh6e,nocoth~dugcsirdl,mgd~dl,Ideanphatb~nhill mOt chu6icactri~uchUng,trongcongnghi~ptaichinh-nocoth~dl,IdeanSl,Irtiirov~ d~utudl,IatrenmOtchu6icacSl,Iki~nv~thitwangv6nc6ph~,... j 11 2.2 cAe THU~T GIAI KHAI KHOANG TiNH Ph~nnayt6ngquathoabai tmlnkhaikhoangm~utu~ntt,r,ill thu~tgii!i AprioriAllt6'ithu~tgiciiGSPvaPSP,saudoseneubaitoankhaikhoang iatang v6'ieachti€p c~nSPADEd€ dit6'imohinhdugcchQncualu~ vannay. Bili toaDkhaikhmingmftutu§nt1!: GQi: 8 DB laCSDLband~ubaag6mt~pcacgiaotaccuakhach ang,m6igiaotacT baag6mmakhachhang,thaigiangiaotacvat~pcacm~thangcotronggiao taco 8 I={iJ.iz,...,im}:t~pcacm~thangi (items). 8 itemset1at~pm~thangkhacr6ng,ky hi~u:'Sj,j E loon. 8 Dayslat~pdic itemsetdugcs~ptheothutt,rthaigian. 8 Day-k ladaycok m~thanghaydaycodQdailak.Vi d\lmQtkhach angmua cacm~thang1,2,3,4,5theothaigiannhugall: s = trongdom~thang2 va3 dugcmuacimgmQthIe,trongsu6tgiaotacchung, cacm~thangdugcmuatheotrinhtt,r,v~ys 1amQtday_5. 8 Day 1amQtdayconcuadayn€u t6nt~it~ps6nguyen i1<iz<...<insao cho S'IC SiJ. S'2C Si2, , S'nC Sin' Vi du 2.1:days' =1adayconcuas vi (2)C (2,3)va(5)C (5). Tuynhien,khongladayconcuasvi cacm~thangnaykhongdugcmua trongclingmQtgiaotaco if 8 T~teelnhfmggiaotacill clingmQtkhachhangdugcnhoml~iv6'inhauva dugcs~px€p theothutt,rtangvadugcgQilamQtmJu tudntf!dftli~u(gQit~t la day-dftli~u). 12 . DQh6tr(J'supp(s)las61anxufithi~nth\IccuadaystrongDB.Noidch khac, aQh6tr(J'cuamOtday1atYs6cuatoanbOcacdayduli?umachungchuas: supp(s)=s61anxufithi~n(s)/ IDBI . Ranhgiai am1at~ptfitcacacdaymachungkh6ngph6bi~nnhungtfitcacac dayconcuano 1aph6bi~n.Ranhgi6iamtrongCSDL DB duqcghichu b~ngNBD(DB),v6iNBD(DB)={a I a E CDB- LDB , CDB:cacdaytrng vien trong DB, LDB: cac day ph6 bi~ntrong DB, va supp(a)> Min_nbd_supptrongDB},v6iMin_nbd_supp1angu5TIgcuaranhgi6ifun trongDB.R5rangMin_nbd_supp<minsupp,dodovlingh6trq(NBD(DB)) 1a[Min-nbd- supp,minsupp]. . MOtdaydu fi?uchuadaysn~us 1adayconcuadayduli?u do.D~quy~tdinh daycophai1aph6bi~nhaykh6ng,v6idOh6trqminsuppdonguaisird\mg xacdinh,n~udi~uki~nsupp(s)~rhinsuppduQ'cthoa. . Cho mOtdays =vadayconc. c la dayconk~cuas n~uthoamOt trongnhfmgdi~uki~nsau: 0 c xufitphattirsbkg cachrutramOtm~thangho~cill S1ho~cill Sn' 0 c xufitphatill sb~gcachrutramOtm~thangill thanhphanSimano coitnhfit2m~thang. 0 cladayconk~cuac',vac' 1adayconk~cuas. Bcdtoimkhaikhoimgmdutwintl!nhiimm¥ca£chtimttitcanhfcngmdu(ciing g9i fa dayph6 biin) maaQh6 tr(J'cuachungfan hO1lngufingminsuppchotrnac trongmrt CSDLcacgiaolaccuakhachhang. BaitoancodOphuct~plaO(mk2k-1),khi khaosatmOtlugngrfit100nhUngday. . , ph6bienv6i dOdaik comthuOctinh. Tru6ctien, thu~tgiaiAprioriAll [11]duQ'cluQ'tquav6i cacchiti~tchuy~u. 13 ---------..---.-.--.-.-----..------.--. 2.2.1 AprioriAl1 a)M6 tathuatgiai:Nhi~uthu~tgiaiduQ'cd~xu~td~ulamQtd~ngbi~nth~cua AprioriAll,nam1995,[11].AprioriAllIathu~tgiai3buac: Bmyc1:Timcact~pm~thangph6bi~n. Tim t~tcacact~pcacm~th.:mgcodQh6trQ'minsupp.E>i~unayclingphuhqp vai cacm~utu~nt\1'co chi~udaiIa 1 (mQtm~thang).B~tkY thu~tgiainaod~tim caet~pm~thangph6bi~nclingd~usud\mgduQ'cbuacnay. Bmyc2:Bi~nd6idfrli~u. Caet~pm~thangph6bi~nduQ'canhx~vaocaes6nguyen.SaudoCSDL duQ'cbi~nd6i,vaim6igiaotacduQ'cthayth~b&ngt~pcuat~tcacaet~pm~thang ph6bi~nduQ'echuatronggiaotacoPhepbi~nd6inayduQ'cth\1'chi~nm6ilk thu~t giaiduy~ttrenduli~utrongphatu~n1\1',ho~cladUngngayvalUlltrlr.S\1'l\1'achQn saukh6ngth~lamduQ'ctrongnhi~ulrngd\mgth\1'c,khimadfrli~ubi~nd6icoth~ IanhanCSDLband~u,nh~tlat~icacdQh6trQ'comucth~p. M6i day-aftli?ubaygialamQtdanhsachcuat~pcacs6nguyen,vaim6is6 nguyenth~hi~nmQt~pm~thangph6bi~n.Cacm~utu~nt\1'baygiacoth~duQ'c xemnhuladanhsachcaes6nguyen,hanla danhsaehcaet~pm~thang.(B~tkY thanhph~neuamQtm~utu~n1\1'codQh6trQ'minsupphailamQt~pm~thangph6 bi~n). Bmyc3:Tim caem~utuk 1\1'. C~utructinhtoancO"baneuabuaenaybAtd~uvaimQth~tgi6ngcuacacday duQ'ctimth~ytrongbuacduy~ttruaedo(timth~ytrongbuactimt~pm~thangeua buacduy~td~utien),thu~tgiait~oracaelrngvien,th\1'chi~nbuaeduy~ttrendfr li~ud~t1ms6d~mdQh6trQ'euacaelrngvien,vasudl,mgcaclrngviennayvaidQ h6trQ'minsuppnhulamQt~ph~tgi6ngd~t~ocact~plrngvienti~ptheo. 14 ~ ..-.--..-.---.-- Thu~tghiiAprioriAll Mii f!iii: Ck:Day_kUngvien. Lk:Day-k ph6bi~n. 1={day_lph6bi~n}; for (k=2;Lk!=0;k++)do begin Ck=lJ'ngvient~oratirLk-l; for eachdaydfrli~uctrongCSDL do Tangs6UngvientrongCkmachungcotrongC end K~tqua=Dayt&id~~iUkLk; T~o tfugvieD Buo'ck~tn6i: ../ CkduQ'Ct~orabingeachLk-l tv k~tn6ivai nhau ../ ChenvaoCk ../ Selectp.litemseq,..., p.litemsetk-bq.litemsetk-l FromLk-Ip,Lk-Iq Wherep.1itemsetl=q.litemseq,..., p.litemsetk-2=q.litemsetk-2 BU'(\c!\J'.<I.tbo: Lo~ibedaycon_(k-l) cuadays_kkhongph6bi~n Vi du 2.2: {1,2,3}X {1,2,4}={1,2,3,4}va{1,2,4,3}. v~caban,khitrinhbaynhfmgdayph6bi~n,yellc~utruactienlanitratfttca nhfrngday{mgvien.Be>h6trQ'cuaOOfrngday(mgviennayduQ'ct£OOtoaubing ca.chduy~tquaCSDL.Nhfrngdaykhongthoadi€u ki~nminsuppsebi lo~ibe.K~t quaco duQ'cIa t~pcac dayph6bi~n. 15 ----.-------------..-.---..- b)Vi dlJminhhoa: a CID=LQ elO-2@ e G L r:~ Q~ G I CO'S6'Dii'Lieu nhap: t ... (ID ° 60 70 I t. CID=3a CID=42 CID=5 ... (1,4) (2,4) ?Kh6ng MinSupp=40o/o,C62khach ang: Hinh 2.1:DCPIi~umaudU'Q'cbi~nd6i IT~p~tbi"8IBilndil Bmycbi~ndBi t ... Danhsaeh tj.pm~thang CID=2 .t (JD-' @ G (\ 40 - ~, 0 .t CIO=4 n \90* yCIO=5 Hinh2.2:DCPIi~umaudU'Q'cbi~nd6i Ma KHang TG giaome Mthang 1 1 ::0 1 2 9J 2 1 10,20 2 2 ::0 2 3 40,00,70 3 1 ::0,9],70 4 1 30 4 2 40,70 4 3 90 5 1 90 G G tCIO=1 .. @ g I70 .0,1C!D=2 I t.. .. @! C!D=3 I ..t G @ G " 70 I 40,7 CIO=4 C!D=5 e t .. 16------------------------------ Bmycbi~nd8i Hlnh2.3:DiPli~umaubi~nd6iti~ptheo D~xayd\l11gnhungday(mgvienvaph6bi~n,thu~tgiftiduy~tquanhi~ubuac trenCSDL. Khi hoanthanh,nhfrngdayph6bi~n(nghiala,thoaminsupp)duqc khampha.ChungdugcgQilacacday_1ph6bi~n(daymacomQtm~thang,ehinh notrathanhsingleton).T~peuanhfrngday- 2(mgviendugcxayd\l11gtheegiftthi~t gall:nhfrngday_2 (mgviencoth~lamQtc~pnhfrngm~thangph6bi~nbAtkY,duqc duavaoclingmQtgiaotaehaykhong.Nhfrngday- 2 ph6bi~ndugcxetbfugcach tinh<1Qh6trg.Tir quaildi~mnay,caeday-k (mgvienduqct~oraill day_(k-1)ph6 bi~ncodugctrongbuGC(k-1). Y twYngchinhcuavi?ctc;lOt'mgvienla,gifranh~ day_(k-l), lwltb6cijpday (s,s')saoclIologib6phdntirilducuadayt~acvaphdntircu6i'cuakit quasau. Nhuth~,khiti~nhanhchoe~p(s,s'),mQtday(mgvienmaidugehinhthanhbfug (--\ ( (ID-l 0) 0\ IV t tCIO=1 '" '" tlQ\ ) Q CD .t Oanhsach } p mtM.ng---j tcm=2 CTO=2 (I (!)\7 I -+-\. . CIO=3 I tot CIO=3 I ",t (\ (\I (\ (0 (f1 \ -:0) 10 . \ 9/9J 5 j CIO=4 (' '-T./ t cm=4'" /-\ 0cm=5 () t cm=5 t.. ... 17 cachthemvaom\lCsaucimgcua.s'vaos.SaudotinhdQhe;trqchoOOUngungvien nayvachungITathanhnhUngdayph6bi~nm6iv6idQh6trq,006OO~t.Ti~ntrioo nayduqcI~pI~ichot6ikhikhongcondaytmgviennao. c)Nhfmxet: - Thu~tgiai nay duqcxemOOula n€n tangcho S1,l'phMtri6ncacthu~tgiai duqctrinhbaya cacph§nti~ptheogall,chuy~ula d1,l'avaocacky thu~t5i uu'hoa trongthu~tgiaid6caiti~nhi~usu~tth1,l'chi~nbaitoankhaikhoangnay. - Cohaivftnd€ theocachti~pc~n ay.Bdulien,coS1,l'tieuphimQtcachdang k6d6th1,l'chi~nvi~cbi~nd6idangdi€n rasu5tm6ibu6cduy~ttrongkhitimcac m~utuftnt1,l'.B~ngcachnay,d6bi~nd6iCSDLngayvaluutrUCSDLdabi~nd6i, sekhOngth1,l'chi~nduqcd5iv6iOOi€utmgdl,mgkhidungluqngiliaphaic§ngftn nhugftpdoichoCSDL 100.Thuhai,trongkhinguaitacoth6marQngthu~tgiai nayd6giaiquy~trangbuQcthaigianvaS1,l'phanlo~i,nhungkhongkhathid6k~t hqpch~tchegifracackhoangthaigiangiaotac(nghlala,coS1,l'diOOnghlac(rng nh~ccuamQtgiaotac). 2.2.2 GSP a)Motathuatgiai: Cftutruccobancuathu~tgiaiGSP (GeneralizedSequentialPattern)[10]d6 timm~utuftnt1,l'duqctrinhbaynhusauday. Ytliifng,: . Dftutiencacm~thang(I_day)trongDB duqcxemlalmgvien. . T~im6imuc(tinhtheochi€udaik cuaday): 0 QuetCSDLd6tiOOminsuppchocacdaylmgvien. L...... 0 Phatsinhcacday(rngviencochi€udai(k+1)ill cacdaycochi€udai k (sird\lngAprioriAll) 18 .------...----..........--- . U~pl?i chot6ikhikhongtimduQ'cdayph6bi~n aokhac,- Thu~tgHlit?OOOi~ubu6cduy~tquadftli~u,Bu6ed~utieDxacdiM de>h6trQ' chom6im~thang,nghlala,s6day-duli~ubaahamm~thang.Cu6ibu6cnay,thu~t gi,Hchobi~tm~thangnaolaph6bi~n,nghlalacode>h6trQ'006oofitminsupp,M6i m~thangnhuth~come>tdayph6bi~nI-thaOOph~nbaag6mm~thangd6,M6i bu6cti~ptheosaub~td~uv6ime>tt~ph?tgi6ng:cacdayph6bi~ntimthfiytrong bu6ctru6cdo.T~ph?tgi6ngnayd~t?Oracaet~pph6bi~n(mgvienmm,duQ'cgQi la cacdayzmgvien,M6i day(mgvienconhi~um~thanghalldayh?tgi6ng;OOu th~tfitcacacday(mgvientrongme>tbu6ccocimgs6m~thang.Be>h6trQ'chocac day(mgviennayduQ'ctimthfiyquacacbu6eduy~tdftli~u,T?i cu6ibu6cnaythu~t giaixacdiOOdaynaola dayph6bi~nth~tS1,I,Cacdayph6bi~nnaytrathaOOh?t gi6ngchocacbu6cti~ptheo.Thu~tgiaik~tthuckhikhongco'dayph6bi~nnao cu6ibu6cduy~t,ho~ckhongcoday(mgviennaoduQ'ct?Ofa. Co 2 chiti~tmaGSP thlJchi~n: 1. T~oU-DgVieD:cacday(mgvienduQ'ct?Ora OOuth~naotru6ckhi bu6c duy~tb~td~utrongkhiduytri tinhtoanVyn. 2. f)~mdQh8 trQ' euaeaell'ngVieD:vi~etiOOtoande>h6 trQ'chocacday (mgvienduQ'cxacdiOOOOuth~nao, Vi~ct?O(mgviencuaGSP thiclingtuangtlJ OOucuaAprioriAll OOungv~chi ti~thicokhac,nhuvi d\l2.3HiOO2.4. Vi du2,3: 19--------------- Hinh2.4:Vi d...t~o(Pngvien Hinh2.4chiraL3vaC4saubuack€t n6ivanitgQn.Trongbuack€t n6i,day n6ivaid~t~o,van6ivai d~t~o.Cacdayconl~ikhongn6ivaibftt10'mQtdaynaotrongL3' Vi d\l,khongn6ivaibftt10'daynaokhimakhongcodaynaocod~g hay.TrongbuacnitgQn,duqcnitb6 vidayk~v&ino1akhongcotrongL3' vudi~mcuaasp sovaiAprioriAllchinh1aphuangphapchQnlmgvien. PhU'O11~ chon ITn2vieDciIa GSP: § Lamgiams6lingvienki~mtra: ~Luutrfrt~plmgvientrencftutnicciiyhash ~Nuttrai(Leftnode)chliadanhsacht~pm~thangvas6lmgvien ~Nutgiita(Interiornode)chliabanghash ~Hamhasht~pcon:d~timtfttcacaclmgviencotronggiaotaco § Ki~mtralmgvienth6adQh6trqminsupp PhuangphapchQnlmgviencuaGSPduqchi~unhusau: Trong khith1Jchi~nbuacduy~t,asp dQcquadiiy-dfrli?ut~imQthaidi~m " - ~ vatangsodemhotrqnhfrnglmgvienchuatrongdiiy-dfrli?u.Dopo,chotruaemQt t~pnhfrngdaylmgvienC vaday-duli~ud,asp cantimtftteanhfrngdaytrongC machungduQ'chuatrongd.GSPsird\lng2kythu~td~giaiquy€tvftnd~nay: Day-3pho Day-4Un vienC4 bin L3 saukhinot saukhirutgQn «1,2)(3» 20 1. Si'rd\mgcAlitrucdfrli~ucay-hashd€ lamgiiims6(mgvientro~gC ma chungduQ'cki€m ITatrongday-aili?u,theoHinh2.5trinhbayxaydl,ffig cAutrUccaylUlltrfrHash. Giaotac Hamhash "~6'9 2,5,8 Hinh 2.5: cAu true cayHash 2. Bi~nd6ith€ hi~ncuaday-aili?ud d€ machungtacoth€ timthAymQt cachhi~uqua(mgvienC\lth€ naoladayconcuad,theoHinh2.6lavi d\l th€ hi~ncuadayduQ'cbi~nd6i. 21 Hlnh 2.6:Day-dli'li~umAuva th~hi~nthayd6i DochinhlaIy dot1;lisacGSPthl,fchi~nt6thanAprioriAll:thienhdt,GSPd~m s6lingvienit hanAprioriAll.AprioriAlllUQ1:b6cacdaylingvienbingcach101;li b6 thanhphdncodQh6trQ'nh6hanminsupp,trongkhiGSPki~mtracacdayco duQ'cbingcach101;lib6m(zthangcodQh6trQ'nh6hanminsupp.Dodo,GSPluon luond~mcaelingvienithanAprioriAll.Sl,fkhacnhautrongs6cac(rngviencoth~ tranenkha1611chocacday(rngvienv6i2 thanhphftn.AprioriAllphaithl,fchi~n mQtsanphdm-cheocact~pm~thangph6bi~nduQ'ctimthiytrongbu6ctimt~p m~thang.GSPtru6ctiend~mcacdaycoduQ'cbingcachthl,fchi~nmQtsanphdm- chiDtrencacm~thangph6bi~n,vat1;lOracaclingvien2-thanhphftnv6inhi€uhan 2 m~thangsaudo.N~us6m~thang1611thinh6hannhi€u s6t~pm~thang1611, khoangeachhi~usuitcoth~tranent6it~.Thiehai,AprioriAll(phienbankhong- hIDtrlr)tru6ctienphaitimcact~pm~thangph6bi~nnaGla duQ'cth~hi~ntrong m6ithanhphftncuaday-duli~utrongsu6tquatrinhbi~nd6iduli~u,vasaudotim cacdaylingviennaGduQ'.cth~hi~ntrongno.Di€u naychothiymQtcachd~ctrung lacophftnch~mbanvi~ctimcacdaylingvienmQtcaclTtfl,fcti~pcuaGSP. b)Nhanxet: Thaigian-giaotac Mt hang 10 1,2 25 4,6 45 3 50 1,2 65 3 90 2,4 95 6 Mt hang Thaigian 1 1O 50 NULL 2 10 50 90 NULL 3 45 65 NULL 4 25 90 NULL 5 NULL 6 25 95 NULL 7 NULL 22 Hai Iy dochinhgiaithicht?i saoGSP OOaOOhO1lAprioriAll : M9t la,GSP d€m cacUngvienit hO1lAprioriAll;Hai la,vi~ctimUngvientrongGSPIamQt cachtrl;l'Ctiip trongkhi AprioriAllconphaith\Ichi~nvi~cchuy€nd6iill timt~p m~thangsaudom6itimcacUngvienduQ'cth€ hi~ntrongno.GSPbi€n thienmQt cachtuy€n tiOOtheos6 day-dftIi~u,vaco cactiOOch~ttangcuangr~tt6tphilhQ'P v6i day-dftIi~ucokichthu6ctrungbinh. Bi€m y€u cuaGSPIav~ d€ "thlttcdchat': . S6 IuQ'llgcacUngvien Ian. . S6lfinquetCSDLIan. . V~nd€ th~tS\Ixayrakhiphaikhaikhoangcacm~udai:s6cacm~utufin 1\l'Ungvientangtheohammil. 2.2.3 PSP a)M6tathuatgiai: Tuang1\l'OOuGSP, cachti€p c~nPSP [4] thitahuemgmQtcachdfiydu cac nguyenIy chinhcuaGSP. TiOOm6imecuano Ia su d\lngc~utrucphancApkhac hO1lIatrongGSP d6iv6i vi~ct6chuccacdayUngvien,do Ia cdutruc-cay-tiJnt6, d€ caiti€n hi~uquachovi~ctimki€m. . T?i m6ibu6cthuk, CSDL DB duQ'cduy~td€ d€m dQh6trQ'cuacacUngvien hi~nt?i (thut\lCKiim tra-imgvien).V~ythi t~pdayph6bi~nLk co th€ duQ'cxay d\l'TIg.Tit t~pnay,cacUngvienm6iduQ'cduarad€ th\Ichi~nbu6ck€ ti€p (thuWC Tgo-imgvien).Thu~tgiaidUngkhi cacdayph6bi€n dainh~t,daduavaoDB duQ'c Imamphadodothuwc t?OUngviencoduQ'cmQt~p(c?n)r6ngcacUngvienmm. C~utruccay,duQ'cthu~tgiaisud\lngIadiy-tiJnt6(prefix-tree).T?ibu6cthu k,dlYcochi€usauIak.Nob~tgiftdt cacacdiiy-kUngvientheocachsauday:t?i b~tkYmQtnhanh,titg6Gd€nffiQtIathayth~choffiQtdayUngvien,vakhaosatmQt OOanhdan,m6inutt?i chi€usauthul (k~l) b~tgiftm~thangthul cuaday.HO1l 23 th€ nua,songsongv6i m~t-hang,nutcu6icungc~pdQh6trQ'cuadayill g6ct6ila dangkhaosat(baoham).Vi~cc~tgiaotacduQ'cb~tgiftb~ngcachsud\mgcacbien duQ'cdanhnhan.Chinhxacban,hayquansat2nut,mQtnutlaconcuanutkia.N€u cacm~thang,duQ'cnhungvaotrongcacnut,xu~thi~nbandAtitrongsu3tcacgiao tackhacMall, cacnutduQ'cn6ibiennhauduQ'cdanhnhanb~g '-', nguQ'cl~ino duQ'cdanhnhan'+'(duang/ trongHinh2.7).Giftsur~g chUngtacot~pcacdiiy- 2ph6bi~n: L2={«~to)(30»,«10) (40»,«30) (20»,«30 40», «40 to»~}. No duQ'ct6chuctheec~utruccaynhuHinh2.7.M6i mQtnutk€t thucchua mQtm~thangva giahi d~m.N€u chungtaquansatnutcom~thang40,giahi tuanglrngla 2,nghiala co2 IAnxu~thi~ncuaday{«10) (40»}duCJctimth~y ngay. root 10 40 A /............. 301 402 202 402 103 Hinh2.7:Cc}utrue cay diPli~u Thu~tghiiKIEM TRA UNG VIEN (CANDIDATE VERIFICATION) Nh~p:CayT chuat~tcftcacdayph6bi€n valrngvien,day-duli~ud vachi danhdaycuanoidseq.Bu6cthukcuathu~tgiftit~o.day. Xuftt:T t~pt~tcftcaedaylrngvienchuatrongd. J Thu~tgiftiKIEM TRA-UNGVIEN dungd€ sosanhcaclrngvienvacacday- du li~u.Day-duli~uduQ'cduy~tmQtcachtangdAnb~tdAtill m~thangdAtitien. 24 NhanthaigiancuanoduQ'clUllgifttrongbi~nfa.Cacm~th~ngk~ti~ptrongdduQ'c ki~mITavabi~nUalanhan-thaigiancuam~thanghi~nt~i.DI nhien,n~uUa-la =0, thic~pm~thangchinh(vat~tcacacm~thangcoth~co giftachung)xu~thi~n trongmQtgiaotacdan.Khi Uatranenkhacla,di~unayconghialam~thangduQ'c chQnh,ram6'iph\!thuQcvaomQtgiaotackhac.Tuynhien,chungtakhongth~cho r~ngdi~udothu~tghiidaphathi~nt~pm~thangdAtitiencuaddobaicirasf>truQ't. Dodo,vi~cki~mtraphaiduQ'cti~pWcchot6'ikhim~thangduQ'cki~mtracachxa m~thangth~tS\ldAtitiencuad.E>i~uki~nUa- la~wskhongcondungnfta.Luc nay,chungtaduQ'cclingc~pmQtt~pm~thang(Ip).E>6iv6'im6im~thangphf>bi~n trongIp (no tuangUngv6'imQtnutt~ichi~usau1)hamFIND SEQUENCE duQ'c th\lcthi d~till t~tcacacUngvienduQ'che;trQ'bai t~pm~thangduQ'cruttrichdAti tien.Ti~ntrinhmotasaudoduQ'ctrinhbaychovi~cl~yrat~pm~thangthuhaico th~co.faduQ'cd~tv6'inhan-thaigiancuat~pm~thangdAtitienduQ'cb~tg~pvamQt IAnnftaUaduQ'ctangdAntheotoanbQvi~cki~mtra.Ti~ntrinhduQ'cl~pl~ichot6'i khi t~pm~thangcu6icungcuacacdayduQ'cgiaiquy~t. Thu~tghiiTIM DAY (FINDSEQUENCE) Nh~p:2 s6nguyendungchokichthu6'ct~pm~thang,N: nutcuaT, i: m~t hangtrongd,depth:chi~usauill trencuacay. Xu§t: T duQ'c~pnh~theothaigianrangbuQc. HamFINDSEQUENCEduQ'egQiti~pWcbaithu~tgiaitru6'cdochovi~ctim ki~meaedayUngviendAtitienb~tdAtiv6'it~p-concuam~thangcuad,saudola m~thangthuhai,vacuth~ti~pWe.Khi g~pnutla,thu~tgiaiseki~mtradQh6trQ' cuaday-eonUngvienvatanggiatrid€m cuano. 25 Khi t~tca.cacirngviendugcki€m ITadagi::ii-quy€t,caydugclugcbatd€ t6i thi€u h6akhonggianbOnh6'dugcyellcdu.T~tcacacla khongthOadOhe)trg minsuppbi lo<;tibe.Khi vi~cx6abohofmthanh,cayseb~tgiftngaycacdayirng vienthayvi cacdayph6bi~n. b)Vi duminhboa: Hinh2.8motac~utrUcdfrli~udugcdungtrongcachti~pc~ cuaPSP (cay belltrai)vatrongGSP(caybellphai),dugcquanly dmgmOtbu6'ccuathu~tgiai t<;today.Chinhxachan,ill cacdCiy-2ph6bi~nchotrongvi d\lHinh2.8,cacdCiy-3 irngviencodugc.Do d6,chungtacoC3=«10) (4010» «10) (30)(20» «10) (3040»«40 10)(30)«40 10)40». root 10~ f\ 30 40 F, 40 20 '40 10 root 10 40 20 10 1\ 30 40 Hinh2.8:CacminhhQacacc~utruccay-hashvacay-ti~nto c)Nhanxet: C~utruccaytiJn t6cuaPSPduarac6caethu~19itheengfrnghiacuanod€ tranhSlJtinhtoant6nkernvavoichkhiki€m ITacacirngvien.Hannfra,c~utrUc naydugctrinhbaydapirngyellcdubOnh6'ithannhutrongGSPd€ lUlltrfrcaeday irngvienvaph6bi~ntrencayhash. 2.3 cAe THU~T GIAI KHAI KHOANG GIA TANG it Bai toankhamphacaedayph6bi~ntrongCSDL theethill'gianlamOtbai toankhaikhoangdfrli~uquantrQng.Hduh~tcaecongvi~chi~n ayd€u ti~nhanh 26 trenCSDL Ia tInh,vavi~cc~pnh~tCSDL seyeticftuti€n hanhI?i tfttcacacmfiu bfutgcachquetoanbQCSDL cilvamaLKhamphatfttcacacdayph6bi€n trong CSDL Iandoih6ikh6iIuQ11gdnhtoanIanvat6nkernnhi6uthaigianbOivi kich thuackhonggiandugcduy~tchuy€u tangtheos6milcuachi6udaidaygiaomc dainhfttcotrongno.T6nphitinhtoancaonaycoth~chftpnh~dugckhiCSDLla tlnh,khimaS\lkhamphadugcth\lchi~nchimQtIftn,vamQts6cachti€p c~ v6bai toannaydadugctrinhbayphftntren.Tuynhien,nhi6uIInhV\fCchkfugh?llnhu thUO1lgmC;lidi~nill, phandchv6nc6phftn,phfiuthu~tthinghi~m,...phaichillcac rangbuQcthaigian-th\lctrongti€n trinhkhaikhoang.TrongcacIInhV\fCnhuth€, maCSDL dugcc~pnh~trencasakhongd6ivaS\ltuO1lgtaccuanguaisird\mg chinhsiracacthams6nghienciru,ch?ychuO1lgtrinhkhamphaquatoanbQIftnnua Ia khongth~lamdugc.V~ythi,yeticAlld6ivai cacthu~tgiaiIa duytri nhimg thongtinkhaikhoimgdanggiaqua:i) c~pnh~tCSDL,vaii) tuO1lgtaccuanguffisir d\mg(suad6i/rangbuQckhonggiannghienciru). Bili toaDkhaikhoanggiatangeaemill tuftnt1}': GQi: . DB IaCSDLbandAti. . minsuppIa dQh6trgnh6nhftt~ . dbIa CSDL giatang(b6sungmQtluQ11gnh6)khiconhUng iaotacmm vanhUngkhachangmmthemvitodb.Giasirrfutgm6igiaotactrendb dugcs~px€ptheomakhachangvathaigianthaotaco . U =DB u db: CSDL dugcc~pnh~tchuatfttcanhUngdaycuaDB vadb. . L DB Ia t~pcacdayph6bi~ntrongDB. Bid loankhaikhoanggia tangcacmdutwint~rnhamtimnhimgmduph6biin . trongU,kYhi?uLu,vaidmgaQh6tr<1nh6nhdtminsuppkhiCSDi alr<1Cc(1pnh(1t.I - 27 - - Cachti~pc~ giatangnaylQ'id\mgnhUngthu~lqi euavi~cImamphadfrli~u tru6cdod€ tranhchgy_lgi (re-run)khidfrli~uduQ'c~pnh~t. Bai toancodQphuct~plaO(mk),khikhaosatmQtlugngrfit16nnhUngday ph6bi~nv6idQdaik comthuQctinh.Vi th~,d€ giaibaitoannaytmcachti~pc~ SPADE,dlJatrendim(Lattice),t6rarfithi~uqua. 2.3.1 SPADE a)M6tathuatgiai: Trongphfmnay,v6i cachti~pc~ SPADE[12],trinhbaymQthu~tgiaieho vi~cImamphanhanhcacdayph6bi~nmanot~ocasaehothu~tgiaikhaikhoang giatangti~ptheosau. ../ Danday(SequenceLattice): DinhnghTa:V6i quailh~thutlJ "~" trent~pcacm~thangph6bi~nLu, thi (Lu,~)duQ'cgQiladaTIdaycact~pm~thang. SPADE sud\lngquailh~daycon ~ xacdinhSlJs~px~ptimgphfmtren t~pcacday,nghlala,n~u~lamQtdayph6bi~n,thitfitcacacdaycon~ ~ clingph6bi~n.Thu~tgiainghienClrumQteachh~th6ngmQtdimdayduQ'c marQngbai qUailh~daycon,ill caem~thangt6ngquatnhfit(caem~thang dan)d~ncaedayph6bi~nrarangnhfit(dayt6id~i)theolo~ichi~usau-dau tien.Vi d\l,trongHinh2.9,duangnetd~ tuanglIngv6idflnchot~pdfrli~u mati. -,-" 28 -CSDL Ranhgi61fun CID I TID 10 2 3 4 Danday T~pph6bi~n:{A,Ar-7A,BHA, B,AB,AHB, BH, ABHB} Hjnh2.9:CSDL bandau ./ D€m uQh6 trQ': HAuh~tcacthu~tgiaikhaikhoangdayhi~nt;;lichod.ng CSDL ngangvi d\l nhuCSDL trongHinh2.9.Theodinhd;;lngngang, CSDLbaag6mt~pcackhach ang(cid's).M6ikhachhangcomQt~pcac giaotac(lid's),tuO'llgUngvai cacm~thangduqcchuatronggiaotaco Nguqcl;;li,chungtasud\lngCSDLd9C,machungtak~thqpvaim6im~t hangX trongdandaydanhsachchidanhidUstcuano,kY hi~uL(X), l3. danhsachcuat~tcacacc~pkhachhang(cid)vachidanhgiaotac(tid) chuam~thang.Vi d\l,idUstchom~thangC trongCSDL bandAti(Hinh 2.9)coth~baag6mcaclo;;li{,}. Chos~ncacidUstschom6im~thang,chungtacoth~xacdinhmQtcachl~pdi l~pl;;lidQh6trqcuab~tleYday-kill cacidUstscuab~tleY2 trongcacday-(k-l)cua no. C\l th~,chungta k~thqp2 daycon-(k-l) dungchungh~ut6 chung(cacday duqct;;lO)d~tinhtoandQh6trqcuaday-kmal.MQtki~mtradO'llgiantrendQh6trq cuadanhsachchidanhk~tquaidUstchochungtadaymm1aph6bi~nhaykhong. 20 B 30 AB 20 AC 30 ABC 50 B 10 I A3 B 40 A 30 AB 40 A 50 B 29 -------- - - N~uchungtakhongdubQnhO'chinh,chungtacoth6d~mtfttcacacdayph6 bi~nb~ngcachduy~tquadim,vath\lchi~ncacdi6mgiaonhaud6coduQ'cacdQ h6 trQ'day.Trenth\lct~,tuynhien,chungtachi co mQtluQ'llggiO'ih~ bQnhO' chinh,vatfttcacacdanhsachchidanhtrunggianidlistsekhongviladutrongbQ nhO'.SPADEchiakhonggiannghienClruIannayThanhnhi€udo~nh6,d€ quanII' IDacoth6xuII' IDQtcachdQcI~ptrongbQnhO'.Di€u nayduQ'choanthanhnhacac lOptlfO1lgalfO1lgdvatren-hgut6(ill naygQila lOp).Chungtanoir~g 2 diiy-ka trongcungmQtlapn~uchungdungchungh~ut6chungchi€udai(k-l).S\lquailsat chinhm6ilapla IDQtdan-concuadandayband~uvacoth6duQ'cxu II' mQtcach dQcI~p.M6i mQtlaph~ut6thidQcI~ptheonghialanocothongtinhoanhaocho vi~ct<;10ratfttcacacdayph6bi~nmachungdungchungcungh~ut6.Vi d\l,n~u mQtlap[XJcocacthanhph~nY f-7X,vaZH X nhulacacdayduynhftt,hicac dayph6bi~nchicoth6cot<;1ibuO'ck~ti~pcoth6laY H Z H X, Z H Y H X va (Y Z) H X R5rang,khongcom~thangQ naokhaccoth6din d~nmQtdayph6 bi~nvO'ih~ut6X,tm(QA)hayQH X thiclingatrong[X]. 30 - ----- .-- --.---------------------------------- Ranhgi6iam Dfmday 3 40 ~10 ' -120 tit-: 30 / '" I 0 '- \A->A->A->~)' / ... 4 40 50 AA BB CG,.,"", T~pph6biSn: {A,B, C, AI-)A, B I-)A, AB, ~B, BI-)B, AI-)C, BI-)C,AI-)AI-)B, ABI-)B, AI-)BI-)B, AI-)AI-)C, AI-)BI-)C} 140 "".."'.~.':" ,"" Hinh 2.10: CSDL bandAu+giatangvaDan CSDLDL CIDID I TIDID Mt hang 20 BB 30 AA BB 100 AA,CC 2 L 20 AA CC 30 AA BB CC 50 BB 10 AA I ' 30 BB I CSDL giatang 31 SPADE phantieh<l~quicaedayt~im6imuemaithelnhcaelapeh~ndQel~p nh6ban.Vi dl,l,t~imue1nosudl,lngcaelaph~ut6ehi~udeli1(X y),t~imuc2no sudl,lngcaelaph~ut6ehi~udeli2(XH Y,XY),V..v.Chungtachiramuccaclap1 h~ut6nhulacaelapchaoCaelaph~ut6nelyduQ'exuly tuAnDJ.Hinh2.8choma- gia(trinhbelydangian)ehothutl,lcchinheuathu~tgiaiSPADE.Iri nh~pleilap, tuangtrngvai idUstehom6imQtrongcaethelnhphAneuano.Caedayph6bi€n , ,!II duQ'et~orabangeachgiaonhaucaeidUsteuatateacaee~pdayphanbi~trong m6ilapvelki~mtra<lQh6trQ'euaidUstk€t quad\Iavelominsupp.Caeday<luQ'ctim th~ytrathelnhph6bi€n t~imuehi~nt~icaelapt~oraehomuek€ ti€p. Ti€n trinh mue-eaonelyduQ'el~pmQteachd~qui ehotai khi t~teacaedayph6bi€n duQ'c d€m. Theothu~tngftquailly bQnha,d~delngth~yr&ngchungtacAnbQnhad~lUll trftcaeidUsttrungianehot~i2mueli~nk~nhaunh~t.Ngaykhit~teacaedayph6 bi€n ehomuek€ ti€p duQ'et~ofa,caedayt~imuehi~nt~icoth~bi xoa. BEGIN Enumerate-Frequent-Seq([S]): for all elementsAi E [S]do [Ai]=0; for all elementsAj E [S]do R =Aj u Ai; /* cacdayR ati9'chinhthanhbiingcach tgocacdayconAi vaAj vaiAi nhtito.m9th(iut6*/ idUst(R)=idUst(Aj) (\ idUst(Ai); if support(idUst(R))2:min-supthen [Ai] =[Ai] u {R}; for all [Ai]* 0 doEnumerate-Frequent-Seq({Ai]); END Enumerate-Frequent-Seq([S]); .. H1NH2.11: Magiathu~tgiaid~mcaedayphObi~n 32 MQtthu~tghiiv6khaikhOangiatangduQ'ed6xu~thi ISM (Incremental SequenceMiining)d\Tatrencachti6pc~nSPADE [12],khic~pnh~tnhUngiaotac m6ivanhfmgkhaehhangm6iduQ'cthemVaGCSDL.D\Tatrenme>tdim(Lattice) chuacaem~utuftnt1Jtangg6meam~utuftnt1Jph6bi6nvacacm~utufuIt1Jcotren ranhgiOiam(negativeborder),vi dl,lnhuHinh2.9vaHinh2.10.Ranhgi6'iamIa t~phqpg6mcaem~ukhOngph6bi6nnhungcacdayphl,lmachungt~oraIaph6 bi6n.Han th6nfta,de>he>trQ'cuadayphl,lclingduQ'cgiftI~itrongdaTInay.Ytuang chinhcuathu~tgiainayIakhidftIi~udanggiatang,ph~ngiatangduQ'cduy~tqua ngayd~satnh~pv6inhfmgthongtinm6iVaGdaTI.Saudo,dftli~um6inayduQ'c k6thqpv6inhfmgdayph6bi6nvaranhgi6iamd~xacdinhcacthanhph~ncua CSDLband~ue~nduQ'cduy~tl~i. PHA1: 1. computeD'(i),D "(i)forallitemsi 2. for allitemsi in l' 3. Q.enqueue(S); 4. while(Q :;t.0) 5. p=Q.dequeueO; Compute- Support(p); 6. if (support(p)~min-sup) 7. k=length(p); 8. if (p ENBD) 9. NB-to-FS[k].enqueue(p); 10. elseif (D'(P);z!:0) 11. forall k+I-sequencesSin ISL that are 12. generatingascendentsofp 13. Q.enqueut;:(S); PHA2: 1. foreachitemi inNB-to-FS[1] 2. constructsuffixclass[i]; 3. NB-to-FS[2].enqueue([i]); 4. for (k=2to...) 5. foreachclassC inNB-to-FS[k] 6. Enumerate-Frequent-Seq(C); Compute- Support(p): 1. A =generating_subsequencel(p); 2. B =generating_subsequence2(p); 3. supportD'(p)=intersect(D'(A),D '(B)); 4. supportD"(p)=intersect(D"(A), D "(B)); 5. support(p)=support(p)+supportD'(p) -supportD"(p); Hlnh2.12:Magiftthu~tgiftiISM Thu~tgiaiISM baag6m2phatheoHinh2.12.Fhalia d~c~pnh~tde>he>trQ' cuacaethanhph~ntrongNB (ranhgi6iam)vaFS (t~peuat~teacacdayph6bi6n trongCSDL c~pnh~t)vapha2 lad~themVaGNBvaFS ngoaicaiduQ'cth\Tchi~n ;~ trongpha1.CSDL D va dayex,£16h6trQ'hayph6biin cuaextrongD, Icyhi~u '" , suppartD(a), Ia sokhachhangtrongD macaedaychuaexnhulame>tdaycon.Be> 33 h6trQ't6ithi~uminsup,Iangu5'ngdonguaisud\mgxacdinhthuemgduQ'cxacdinh "caedayph6biin":mQtdaylaph6bi€n trongD Iacominsupnh6nh§t.Lu~tA B lienquaildayA vadayB duQ'choIacoaQtinCl;lYcn€u c%cuakhach imgma nochuaA clingchuaB. Giasur~ngdftli~um6i8 IaduQ'cthemvaoCSDLD. Thi chungtagQiD Ia CSDL banaduva8 Ia CSDL gia tang.CSDL duQ'c~pnh~tIaD +8.V6i m6ik ;;::1,Fk la t~pchQnIQccuat§t cacacdayph6bi€n chi€u daik trong CSDL c~pnh~t.C', T' val' Ia t~pcuat§tcacid's,tid'svacacm~thang,tuong(mg, xu§thi~ntrongphfingiatang8.D' Iat~pcuat§tcam~utin(trongD u 8) vaicid trongC' vaD "=D' \ 6. b)Vi duminhboa: Theovi d\ltrongHinh2.9vaHinh2.10,caethanhphfinsaucodQh6trQ'c~p nh~t:AHA HA, B HA HA, A HA HB, B HA HB, A HB HB vaC.Trong nhftngthanhphfinnay,cacdaysausedichuy~nill ranhgi6iamsangt~pph6bi€n: A H A H B,A H B H BvaC. Fha2 gi6ngnhuFha1,t~icu6iFha1NB-to-FSIamQtdanhsach(ho~cmQt mang)cuacacbanghashchuacacthanhphfindadichuy~nill NBsangFS.Dayla caclapchidvatren-h~ut6machungtacfinki~mtra.D6iv6it§tcaday-1machUng dadi chuy~n,chungtak€t giaonov6icaeday-1ph6bi€n khaccoth~co.Chungta themt§tcacacday-2ph6bi€n nhuth€ vaohangdQ'iNB-to-FS[2]choti€n trinhti€p theo.Theovi d\lch~ytrongHinh2.11vaHinh2.12,A He vaB He duQ'cthem vaobangNB-to-FS[2].ClingIucnayt§tcacacday-2danggiakhaclienqUailt6iC machungkhongph6bi€n duQ'cd~tvaotrongNBD+o.Dodo,C H A, C H B,AC, BCvaCH C duQ'cd~trongNBD+o.Bu6ck€ ti€p trongFha2 la,b~tdfiuvai bang hashchuacacday-2,d~I§y thanhphfinmakhongduQ'cxu Iy vad~t~odanhsach cact~p h6bi€n,theoclingvaicaeMUstduQ'ck€t hqpill D u 8,.tronglaptuong duO1lgcuan6~Bu6c k€ ti€p la duy~tlap tuO1lgduO1lgk€t quabkg Enumerate- Frequent-Set,manothemb§tkYdayph6bi€n haythanhphfinranhgiai amroainao 34 vacacthanhph~nduQ'ck~thqpv6'iISL. Chungtil l~pbu6'cnaychot6'ikhit~tca cacbangNB-to-FSlading.Nhuvi d\l,haykhaosatlapwangduangduQ'ck~thqp v6'iA H C . TirHinh2.11vaHinh2.12,chungtath~yr~ngdayph6bi~nduyOO~t khaccualaph~ut6cuanoIaB H C . Khi cahaidaytrenlaph6bi~n,chungduQ'c d~tvaoFSD+(j.Me>teachd~quili~tkecact~pm~thangph6bi~ndand~ncacdayA H A H C vaA H B H C duQ'cthemvaoFSD+o'Tuangtv,cacdayAB H C, B H A H C, B H B H C,A H A H A H C vaA H A H B H C duQ'cthemvaoNBD+(j c)Nhfmxet: V6'icachti~pc~nsir d\lngdimday,thu~tgiai ISM nayto rar~thi~uquav€ thaigianth1,Icthi duQ'cgiamme>tcachdangk~khi tranhvi~cchgy-lc;dchovi~ckhai khoangdu li~ukhi co giaotacm6'ihaykhachhangm6'iduQ'cthemvaoCSDL ban d~u.Nhungthu~tgiainayth1,Ichi~nvi~cduytri ranhgi6'i~mthir~tt5nkernbQ006' vakh6ngthichnghichoCSDL r~tIan. 2.3.2 ISE a)M6tathuatgiai: Thu~tgiai ISE '.'Trichmatitu~nt1,Igia tang" (IncrementalSequence Extraction)[5],duQ'cd€ xu~td~tinhtoancacmautu~ntv ph6bi~ntrongCSDL duQ'c~pOO~t,khi themcacgiaotacm6'ivakhachhangm6'ivaoCSDLband~u. ISE lamgiamt5idachiphitiOOtoanb~ngcachsird\lngl~inhUngthongtinkhai khoangtru6'cdotirnhUngmauph6bi~ncu.Caim6'iOO~tcuaISE lalamgiamdang k~t?Pcacmau(mgvienc~nduQ'cki~mtra;ISE t~oracac(mgvientrongtoanbe> CSDLb~ngcachgcincacmautu~ntv giatangvaomautu~ntvph6bi~nband~u. Nhuth~notraOOduQ'cvi~cgilll~icacraOOgi6'iamvatinhtoanl~icacmaunaykhi . duli~utrongCSDL band~uduQ'c~pnh~t. 35 --....----...-.- Thu~tgiaiISE coth~chiathanh3bu6'c: 0 BmycHipd~utieD:Tir t~pday_1ph6bi~n,thu~tgiaitimduQ'cact~p day_2 ph6bi~n.V6'icact~plingvienm6-re>ngthu~tgiaitimrat~phC;ttgi6ng d~ill dotimti~ptheonhUngdayph6bi~ncode>dainh6hO'IlhaybAng(k+1). 0 BmycHipthif i, v6i i ~(k+l):Timcaet~pcacdayph6bi~nt6idC;ticokich thu6'c~(k+1)ill t~pcaedaylingvienm6-re>ng. 0 BmycHipthif i, v6i i >(k+l):Timcaet~pcaedayph6bi~nt6idC;ticokich thu6'c>(k+1). Chi tiStcuathu~tgiaiseduQ'ctrinhbaytrongehuO'Ilg3. b)Vi duminhboa: Trongbaitoankhai khoang iatangcaemfiutu~ tv,dftutienkhaosatbai toankhiconhunggiaotacm6'iduQ'cthemvaonhUngkhachhangdat6ntC;titrong CSDL r6i.f)~minhhQabaitoannay,haykhaosatCSDLbandftuDB cho6-vi d\l 2.4,Hinh2.13co4 khaehhangchinh.M6i giaotic duQ'cs~pxSptheothutv thai glan. Vi du2.4: M~thang 506070 5060 80100 8090 (db) (DB) iHinh2.13:CSDL bandAuDBvaCSDL giatangvai nhCPnQgiaotilemai .. db. . Ma KH Mt hang C1 1020 20 5070 C2 1020 30 40 C3 1020 40 30 C4 60 90 ----------- 36 - - Vi dl,l,daykhachhangC31a.Giii sirminsupp=50%,do dodayph6bi~nphiiico it nh~t2 khachhang.T~pnhUngdayph6bi~nduqcdua vaotrongCSDLnhusau:LDB ={,}.SaumOtvai thaotacc~pnh~t,hayquansatCSDLgiatangdb(Hinh2.13),a donhUng iaotac m6iduqcthemvaonhUngkhach angC2vaC3.Giiisirr~ngdOh6trq1anhuMall, haidaydirli~usauvaITanenph6bi~nsaukhi CSDLduqcc~pnh~tk~tirkhichungco00h6trqd~yduoHayquansatdayd~u. Daynaykh6ngph6bi~ntrongDB khiminsuppkh6ngth6a( nochixu~thi~nd6i v6ikhachhangcu6icung). V6iCSDLgiatang,daynayITathanhph6bi~nkhino xu~thi~ntrongnhUngdaycuanhUngkhachhangC3vaC4.Daycoth~ duqcphathi~nd6iv6ikhachhangC1,C2vaC3trongCSDLband~u.Theoph~n gi6ithi~uCSDLgiatang,dayph6bi~nm6iduqckhamphabai vi nohqpv6i nhUnggiaotacC1va C2.Hanth~nira,nhUnggiaotacmmduqc khampha:va,<(5060) (80)>Iadayph6bi~ntrongdbvakhiduy~tDB chungtatimth~yr~ngnhUngday ph6bi~ntrongLDB Iadayditru6c. Vi du2.5: (DB) (db) J Hlnh2.14:CSDLband~uDBvaCSDLgiatangv&inhlPnggiaotacmaiva ., nhCPngkhachhangm&idb. Ma KH Mt hang C1 1020 20 5070 C2 1020 30 40 C3 1020 40 30 C4 60 90 C5 Mt hang 506070 80100 5060 8090 1040 7080 37 . Baygiachungtakhfwsatbaitoankhinhfmgkhachhangm6'ivanhfmg iao tacm6'iduQ'cthemVaGCSDLband~u(Hinh2.14).V6'idQh6trQ'minsuppchicon 50%,dodovi~ckhaosatxemnhuIaph6bi~nchomQtdayphaiduQ'ckhaosatit nhftt3 khachhangkhikhachhangm6'iC5duQ'cthemVaG.Theodi~uki~nnay,t~p cacdayph6bi€n duQ'cduaVaGCSDLITathanhLDB={}khinhfmgday va.chixuftthi~nd6iv6'ikhachhangC2vaC3. Tuynhien,day<(1020» Iaph6bi€n khinoxuftthi~ntrongnhUngdaycuakhach hangCl, C2,C3.Theogi6'ithi~u,CSDLgiatang,t~pcacdayph6bi€n trongCSDL duQ'c~pnh~tIaLU= {,,,, }.Hayquailsatkyday.Daynaycoth~duQ'cphathi~nd6i v6'ikhachhangCI trongCSDL band~unhungnokhongIa dayph6bi€n. Iuy nhien,khim\lC50trathanhph6bi€n v6'iCSDL giatangthidaynayclingphilhgp v6'inhfmggiaotaccuaC2vaC3.MQtcachtuangtl,l',dayITathanh ph6bi€n v6'isvgiatang,khinoxuftthi~ntrongC1,C3vakhachhangm6'iC5. Theo[5],thu~tgiaithvchi~ntrencaet~pdfrli~um~usau: Bang 2.1:Cac t~pdCPIi~um~u Vi~cdanhgiahi~usufttISE phaithvchi~nv6'inhfmgthVCnghi~msov6'i nhfmgI~nthvchi~ncuaGSPtrennhUngcaid~tdfrli~ukhacv6'idQh6trQ't6ithi~u thayd6i.NhUngthvcnghi~mtrenhinh2.15duQ'Ckhaosattrenhaidfrli~uC9-14- N2K-DI00KvaC20-14-N2K-D800KduQ'caid~tv6'i10%va5%khachhangda duQ'cb~sungtuanglmg.Nh~thftyISErftthi~uquangaycakhinhfmgkhach ang duQ'cb6sungvag~n hunhanhbanGSPgftpdoL Ten tp dii'liu [C] [IJ N [DJ s5giaotactb kichca tbtp mi;ithang , s5KHsomi;ithang C9-14-N2K-DlOOK 9 4 2,000 100,000 C20-14-N2K-D800K20 4 2,000 800,000 1800 1600- 1400 ~ 1200c .~ 1000 .~ 800 ~ 600 I- 400 200 0 18000 16000 14000 ~12000 c .~10000OJ :;: 8000I- 6000 4000 2000 0 38 ..----.-.-------.-- C9-14-N2K-D100K 00 ~ 00 ~ ~ ~ ~ M N ~ ~ a ~ ~ ~ ~ ~ ~ ~ ~ ~ a a a a <min~PJ1a a a C20-14-N2K-D800K I : GPSI!---ISE or ~n.,~r-v~~ ~ ~~ ~~ ~ ~ minsupp~. ~. \)' \). \).~. ~. \)'9 \)~ Hlnh2.15:Tho; gianth\fcthikhithem100/0va5%KHvao CSDLband§u 2.3.3 IUS- DUS Thomasvacaec6ngS\1',nam 199ti1,dftutiend~nghimOthu~tghii,duqcgQila ULI (UpdateLargeItemset),dvatrent~pranhgi6iam.Tuynhien,thu~tgi:iiULI dakh6ngtinhd~nS\1'c~pnh~tgiatangcaem~utuk 1\1'. 39 SlJ khacnhaugiftaIUS vaULI dirqcmotftnhusailday.Thitnhcit,thu~tgifti ~~~~~~~~~lli~~~~~~~~ mftuk€t hQ'P.Thuhai,haithu~tgiftisird\mgdayranhgi6iamchom\lCdichkhac nhau.TheoSlJthayd6icuat~pranhgi6iamtrongCSDLbandAti,thu~tgiftiULI quy€tdinhnghienCUlltoanbQCSDLhaykhong.Thu~tgiftiIUS lamgiamthaigian nghienCUllCSDLbandAtib~ngcachgiftl~icacdayranhgi6iam.Ranth~nfta,khi CSDLbandAtibi xoab6,mQtvaidaytrongranhgi6iamsetrathanhdayph6bi~n trongCSDL c~pnh~t.Do doDDSsird\lngcacdayranhgi6iamkhicacimgvien m6itrongCSDLbixoa. SlJ khacnhaugiftathu~tgiftiIUS vathu~tgiftiISM (IncrementalSequence Mining)duqcgiaithichnhusail:D€ ki€m tradungluqngbQnh6maraOOgi6iam tieuphi,thu~tgiaiIUS xacdiOOngu5'ngt6ithi€uchoranhgi6iam:Min-nbd_supp. Chin€u dQhe;trqcuadaytrongCSDLIaIanbanMin- nbd_suppthidaynaysetra thanhmQt day trong ranh gi6i am. B~g eachsira d6i kich thu6ccua Min_nbd_supp,chungtacoth~la~ib6mQtvaidayd~ti€t ki~mbQ006.Nhung thu~tgiaiISM segiftl~itfitcacacdayranhgi6iam,nghialanokhongth€ ki€m scatduqcSlJhacphibQnh6cuacacdayranhgi6iam. SlJ khcicnhaugifta thu~tgiaiIUS vathu~tgiaiISE d:uqcgiftithichla:Dt1u lien,thu~tgiaiIUS marQngcaphfu1dAtilftnphAnduoicuadayph6bi~ntrang CSDLbandAtid€ t~oracacimgvienm6itrangCSDLc~pOO~t,trangkhithu~tgifti ISE chikhaasatSlJmarQngphk duoicuadayph6bi€n trangCSDLbandAti.Thit hai,thu~tgiaiIUS lqid\lllgcacdayranhgiaiam,trangkhithu~tgiaiISEthikhong. 2.3.3.1IUS (IncrementallyUpdatingSequences): a) Motathuatgiai: ;~ MQtthu~tgiftihi~uquft,duqcgQila IUS [9],d~tinhdayph6bi~nkhidftli~u maiduqcthen/vaGCSDL bandAti.Thu~tgiftiIUS lamt6ithi€uhoat6nphitinh taanb~ngeachsird\lngl~idayranhgi6iamvadayph6bi€ntrongCSDLbandAti. 40 Thu~tgiaiIUS, coth~duQ'cphanchia.thanh2 ph~n.Ph~nthunh~tsird\mg cacdayranhgi&iamvaph6bi~n.trongDB vadbnhula cacUngviend~tinhcac dayraubgi&iamvacacdayph6bi~nm&itrongCSDL c~pnh~tU. Ph~ thuhai, IUS k~thqpcacdayph6bi~ntrongLDBmanolaph6bi~ntrongCSDL c~pnh~tU vakhongduQ'chuatrongLdbvmcacdayph6bi~n!tongLdbmanolaph6bi~n trongU vakhongduQ'chuatrongLDB,nghlala,LDBXLdbvaLdbxLDB,d~t~oracac Ungvienm&itrongCSDL c~pnh~tU, vatinhduQ'cdQh6trQ'cilacacUngvienmm trongCSDLc~pnh~tU (Thu~tgiaiRobust_search). DB Db Bang 2.2:Ghichuvacaedinhnghia CSDL band~uchuaduli~uclllienqUailt&ithaigian. dd U CSDLgiatangchuaduli~um&ilienquailt&ithaigian. CSDLgiamtuDB chuaduli~ubixoalienquailtmthaigian. Support(F,X) CSDL c~pnh~t.Khi CSDL duQ'c~pnh~tang,toanbQt~p du li~ubfuIgv&iDB +db.Khi CSDL duQ'c~pnh~tgiam, toanbQt~pduli~ubfuIgv&iDB - dd. DQh6trQ'dayX trongCSDL,v&iX E {db,dd,DB,U}. Min_supp NguanghotrQ'toithieuciladayphobien. Min_nbd_suppI NguanghotrQ'toithieuciladayraubgimam. ex I CacdayUngvientrongCSDLX, v&iX E {db,dd,DB,U}. NBD(X) Caedayph6bi~ntrongCSDLX, v&iX E {db,dd,DB,U}. =ex - Lx, v&iNBD(X) baag6mcacdaytrongCSDLx la cac t~pcon sub_sets LX Thu~tgiaiRobust_searchth\Ichi~ntinhdQh6trQ'cilacacdaytrongmQt daycacS\Iki~nbaadQng,nh~tla,coth~duy~tdQh6trQ'cilacacdayill dayS\Iki~n- it baadQngchuatrongduli~ut~pnhieu.NhungdochungtanghiencUuchinhlabai toanc~pnh~Ucacmftutu~ t1,I,thichungtachiqUailtamd~ndi~uki~nladaybaa dQngkhongchuaduli~ut~pnhi~u. 41 Thu~tgiaik~thgpcacdaytrongLDBv6i cacdaytrongLdbd~coduQ'cranh gi6'ifunm6'iNDB(U) trongCSDL c~pnh~tU. Thu~tgiaiIUS sechocacdayph6 bi~ntrongCSDL c~pnh~tU, bingcachchftpnh~ncacdaytrongLDBvaLdbnhula cac(mgvientrongCSDL c~pnh~tU. Thu~tgiaiIUS coth~t~oracac(mgvienmai b::. , h d;:..h' tu2d- h- 1, LDB Ldb , Ldb LDBangcac traG01t u. ay,ng la a, x va x . Thu~tgiai xacdinhngu611gcuaranhgiai am:Min-nbd- Stipp.Bing cach chinhsuagiatri cuaMin-nbd- Stipp,chungtacoth~ki~mtras6cacdayranhgi6'i amd~gifttrongb(>nh6'.Do do,chungtacoth~ti~tki~mngu6ncuamaytinhbing cachd~tchodunggiatrichoMin_nbd_supp. b)Viduminhboa: Vi d\lnayseminhhQati~ntrinhcuathu~tgiaiIUS. CSDL banddulaDB, CSDLgiatangladb,vaCSDLc~pnh~tlaU. 1. DB \:::tang I: 1:1: I~ I: I: I~ I~ I~ 1 Min_count =2, s6d~mt6ithi~ucuadayd~trathanhdayph6bi~ntrongDB. LIDB ={,,,} L2DB= {,,} L3DB= {}+ NBDI(DB)=,,,,} NBD2(DB)={,,} NBD3(DB)= {} 2. db 1:::Mng I~ I: I~ I~ I: I: I~ I: I~ I Min_count=2,s6dsmt6ithi~ucuadayd~trathanhdayph6bi~ntrongdb. Lldb ={,,} L2db= {,} NBDI(db)=,,,,} NBD2(db)= {,} 42-.--------------- LJ db={} 3. U=DB+db l~::hang I~ I: I: I: I; I~ I~ I: I~ I Min_count=4,s5d~mt5ithi~ucuadayd~trathanhdayph6bi~ntrongU. Ll u={,,,} L2u={,} NBD1(U)={,,,,} NBD2(U)={,,,,} NBDJ(U) ={} 2.3.3.2DUS (DecreasinglyUpdatingSequences) a)M6 1<1thuatgiai: Trongh~uh~tcactinhhu5ng,du li~uxu£thi~nr£tlauseconhUnganhhuang d~nk~tquacuavi~ckhaikhoangdaytu~ntv. £>~baadamk~tquacuakhaikhoang dfrli~ucoth~phananhtheethaigianthvct~,mQtvaidfrli~uCllc~nduQ'cxoaill CSDL band~u.Nhu th~chungt6i d~nghimQtthu~tgiai,duQ'cgQila DUS [9] (DecreasinglyUpdatingSequences),lienquaild~nbaitoannay.Thu~tgiaiDUS chQnIvamQtdayill cacdayranhgi6'iamvacacdayph6bi~ntrongCSDLband~u khicaclmgvientrongCSDL c~pnh~tcoduQ'cacdayph6bi~nvacacdayranh gi6'iamtrongCSDLc~pnh~t. £>inhly I chodi~uki~nc~ d~b£tkYdaynitotrongCSDLband~utrathanh IDQtdayph6bi~ntrongCSDLc~pnh~t. DinhtV1:BiiitDB litCSDLband~u,dblitCSDL giatang,thiCSDL c~pnh~tU = DB+db.Chos~nseqrnlitdayb£tkYtrongCSDLband~uDB, di~uc~ d~dayseqrn laIDQtdayph6bi~ntrongCSDLU lit: ~ support(seqrn,DB)~Min_freq, 43 . IDBI-Idblv6i Min freq =Min Stipp x . - - IDBI Chifngminh: f)~tD =occur(seqrn,DB), d =occur(seqrn,db),thioccur(seqrn,U)=D -d. N€u dayseqrnla dayph6bi€n trongCSDL DB, thichungtaco: \DBI-Idbl support(seqrn,DB)= \DB! ~Min_supp Tir congthuctIeDvadinhnghiacuasupport(seqrn,DB),chungtaco: support(seqrn,DB) =~ ~Min Stippx ~ x IDBI-Idbl IDB I - D - d IDB\' Tirdinhnghia,d~0,co~ ~1.Dodo,chungtaco: D -d . IDBI-Idb\ support(seqrn,DB)~Mm_freqx IDB! 'nghiala, support(seqrn,DB)~Min_freq. Chtrngminhxong. NhUngdayv6idQh6trQ'trongCSDLbandftula100hO1lngu5TIgph6bi€n t6i thi€u:Min_freq,coth€ tr&thanhdayph6bi€n trongCSDLc~pnh~tU.Nhuth€ n€u Min-nbd- Stipp:::;Min- freq,thithu~tgiaiDUSchidungchocacdaytrongTanhgim amva cacdayph6bi€n co de>h6trQ'la 100hO1lMin- freqnhukhi cactrngVieD trongU. N€u Min_nbd_supp>Min_freq,thithu~tgiaiDUS sird\lIlgtI1Jcti€p cac daytrongn cacdayTanhgi6ifunvacacdayph6bi~nnhukhicactrngVieDtrong CSDL U, d€ tlnhcacdayTanhgi6ifunvacacdayph6bi€n mmtrongCSDLc~p nh~tU. Toml~i,thu~tgiaiDUS duQ'chiathanh2 trm'mghQ'Pdumday: . ~ .N€u Min_nbd_supp :::;Min_freq, 'if seqmE NBD(DB) l) LDB va Support(Seqrn,DB) ~Min+freq,thU?tgiai tiOOsupport(seqrn,U) dequyet dinh rfuJgdayseqrncoph1,lthuQcNBD(U) hayLu(U =DB - db). 44 . N~uMin_nbd_supp>Min_freq,V seqmE NBD(DB)u LDB,thu~tgicii tinhsupport(seqrn,U) d€ quy~tdinhdng dayseqrncophl,lthuQcNBD(U) hayLu(U=DB - db). Tronglmgdl,lng,chungtacoth€ dgdminsgphanb6cuangu5TIgphi>bi~nt6i thi€u:Min_freq.Khi chungtachQngiatri choMin_nbd_supp,t6thanIii chungta chQngiatfi nayb~ngv6iMin_freq.N~uMin_nbd_suppnh6hanMin_freq,chung tabi~tr~ngTanhgi6iamNBD(U)coth€ chuanhi~udaymachungkhongth€ tra thanhmQtdayphi>bi~ntrongCSDL c~pnh~t.M~ckhac,n~uMin_nbd_supp100 banMin- freq,theoDinhIy 1,mQtvaidaysebi lo~ib6trongNBD(U),m~cdumQt trongnhfmgs6daydosetrathanhdayphi>bi~ntrongCSDLc~pnh~t. 2.3.4 PPCT MQtthu~tgiaidungd€ phanlo~im~udgatrencaydimmdudu(1cphanhor;rch PPCT (PartitionedPatternCountTree)[8]sirdl,lngtrongkhaikhoangdftli~ugia tangd€ luutrfrCSDL. Thu~tgiaid~nd~nk~tquala lamgicimkhonggiannghien cuu,thaigianphanlo~ivadQchinhxacphanlo~imas6m~uduQ"cluutrUtrong cayPPC mytheodi~uki~nphanlo~im~u. Vi du 2.6:T~pm~uduQ'chotheoBang2.3du6idayvanoduQ"cphanlo~i trencayPPCnhuhinh2.16vahinh2.17: Bang2.3:Cacm&uvi d~ ." Miu Mt himg 1 a b c x y z 2 abdxy.z 3 a e c x y u 4 f b c x y v 45 Hinh2.16:Cay PC CayPC phanho~eh1 CayPCphanho~eh2 Hinh2.17:Cayphanho~chPC 2.4 NH~NXET ChuangnayehoIDQts6nh~xetsau: ./ Quatrinhkhaikhoangdftli~uehinhlati€n trinhkhaiphatrithuethgehi~n quacaebu6enhusau: 1. Xeicdjnh m\lcdich L::" khai P khoeing CSDL 3. Ti€n L...J xu19 ~ r7f dit li~up (bi~n d6i) 2. Phan1o~i CSDLva hinhthuc khai khoeing 4. W . 5. W 6. Chon . Khai Luutrit thu~t"gilii khoeing mftu,ph6 ditli~u bien 7. Ung -?I dl,lngtrithuc khai khoeing if 46 - Bu6'cti~nxu Iy CSDL anhhuemgnhi~ud~nhi~usufitcuathu~tgiai.Qua trinhbi~nd6inayclingd.nth1,Ichi~ntheophuangthuc11,IcchQntbichhqpnhfttd€ coth€ d~tduqchi~uquacaD. ./ Vi~cnghienCUucacthu~tgiaitrenclingcftpm9tcainhint6ngquailv~ti~n trinhkhaikhoangdfrli~utheohinh2.18nhugall: Phanlo~i CSDL L1!achQnthu~tgicii thichhQ'P L1!achQnthu~tgicii thichhQ'P Khaikhming dii'li~ugiatang Hinh 2.18:SO'd6 tom~t ti~ntrinh khai khoangd~li~u. - TUngthu~tgiaicom~tm~ m~ty~ukhacMali,chungconphl,lthu9cvao d~ctinhcuaCSDLkhikhaikhoang.Vi~cphanlo~iCSDLmytheod~ctinhphan b6cacm~utu~ntvph6bi~n,coth€ Iii "dayd~c"hay"thuathat"v6'ichi~udaicua m~uph6bi~nkhacMali.N~utaxacdinhduqcd~ctinhband~ucuaCSDLthico th€ 11,IachQnm9tthu~tgiaikhaikhoangthichhqp. 47 - vfind€ lUlltril'dfrli~utruacvasaukhikhaikhmingrfitquantrQng.Vi~cc~p nh~tcacdfrli~uhfruichlavfind€ d.nphaikhaosatnhi€u,khimacaedfrli~ukhai khoangkhilUlltril'coconthichhgphaykhong. ./ Bang2.4trinhbaydumdaytomtAtcacthu~tgiaiduQ'cnghienctruv~bai toankhaikhoangdfrli~umalu~ vannayd~c~pd€n: Bang2.4:BangtomtAtcaethu~tgiai STT Tenthuat iai 1 MiningSequentialPatterns: AprioriAll 2 MiningSequentialPatterns: Generalizationsand PerfonnanceImprovements: GSP ThePSP Approachfor MiningSequentialPatterns (SimilartoGSP) IncrementalndInteractive SequenceMining:SPADE 3 4 5 IncrementalMiningof SequentialPatternsinLarge Databases:ISE EfficientlyMiningMaximal FrequentI emsets:GenMax 6 Tacfiii -Nam R.Srikant&R. Agrawal-1995 R. Srikant& R. Agrawal-1996 F.Masseglia,F. Cathala,andP. Poncelet1999. S.Parthasarathy,M. J. 2aki,M. Ogihara,and S.Dwakadas1999. F.Masseglia- P. Poncelet- M. Teisseire2000 K. GoudaandM. J. 2aki 2001. DataMining Conceptsand I 1.Geng,Duke Techniques University,Cs. Department-2001. 7 8 TheAlgorithsofUpdating Sequentialpatterns:IUS - DUS 9 An efficientincremental miningalgorithmfor compactrealizationof prototypes:PC-tree,PPC- tree Q.Zheng,K. Xu,S. Ma,W.Ly_2002 P. Viswanath,M.)L Murty- 2003 Dacdiem Khai khoangdiI li~u tIOO:thu~tgiailinnCC7sa d~utien cho cacthu~t giaisan Khai khoangdiI li~u tiOO:sir d\lIlgciiyhash lUlltrUdiI li~u Khai khoangdiI li~u tiOO:sird\lIlgcayti~nt5 lUlltrUdiIli~u Khai khoimggia tang: sird\lIlgclan(lattice)luu tmdiIli~u Khai khoanggia tang: trich m~udiI li~ugia tang Timt~pph5bient5id~ my theophfu1lo~ d~c tiOOCSDL T5ngqUailv~caekhai ni~mva ky th~t khai khoangdiIli~u Khai khoanggia tang tlOOd~nearanhgiOifun ehovi~elUll trUvac~p OO~tCSDL Luu trUdiI li~utrenciiy d~mm~udugc phfu1 ho'ilch:PPCT

Các file đính kèm theo tài liệu này:

  • pdf4.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf2.pdf
  • pdf3.pdf
  • pdf5.pdf
  • pdf6.pdf
  • pdf7.pdf
  • pdf8.pdf
  • pdf9.pdf
Tài liệu liên quan