KHẢO SÁT PHƯƠNG TRÌNH PARABOLIC PHI TUYẾN TRONG MIỀN HÌNH CẦU
Trang nhan đề
Mục lục
Chương1: Phần tổng quan.
Chương2: Các kết quả chuẩn bị, các không gian hàm.
Chương3: Sự tồn tại và duy nhất nghiệm của phương trình nhiệt với điều kiện đầu.
Chương4: Sự tồn tại, duy nhất và ổn định nghiệm T - Tuần hoàn của phương trình nhiệt phi tuyến.
Kết luận
Tài liệu tham khảo
14 trang |
Chia sẻ: maiphuongtl | Lượt xem: 2011 | Lượt tải: 1
Bạn đang xem nội dung tài liệu Luận văn Khảo sát phương trình parabolic phi tuyến trong miền hình cầu, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
KhilOsatphuongtrinhparabolicphi tuyin
trangmi~nhinhcdu
trang28
CHUONG4
sV TONT~I,DUYNHA.TvA ONDJNHNGHl~MT-TUANHoAN
CUAPHUONGTRINH NHIET PHI TUYEN.
Trongchuangnay,chungt6inghienClmnghi~mT-tu~nhoancua
baitoangiatribienphituySnsauday
(4.1)
(4.2)
(4.3)
(4.4)
Ut-(Urr+~Ur)+F(U)=f(r,t), O<r<l, O<t<T,
I
lim rur(r,t)
!
<+00,ur(l,t) +h(t){u(l,t)- uo)=0,r~O+
u(r,O)=u(r,T),
II
P-z
F(u) =u u,
trongd6 2~p <3, Uo lelcach&ngs6chotruac,h(t),f(r,t) lelcachams6
chotruacT-tu~nhoantheot,thoacacgiii thiStsau
(Hz)
(H;)
(H~)
UoE JR,
hE wi""(O,T),h(O)=her),h(t)~ho>0,
f E CO([0,T}H), f(r,O) =f(r,T).
Nghi~mySucuabaitoan(4.1)-(4.4)duQ'cthanhl~pnhusautu baitoan
biSnphansau:
Tim u ELZ(O,T;V)nL'"(O,T;H) saocho u' E LZ(o,T;H)vau(t)thoaphuang
trinhbiSnphansau:
(4.5)
T T
f(u'(t),vet)dt+J[(ur(t),vr(t))+h(t)u(l,t)v(l,t)}it
0 0
T
+ f(F(u(t)),v(t))dt°
T T
= f(f(t), v(t))dt+uofh(t)v(l,t)dt,'\IvE LZ(O,T;V),
0 0
vadi@uki~nT-tu~nho~m
H9CvienNguyln ViiDzilng
Khaosatphuongtrinhparabolicphi tuyin
trongmi~nhinhcdu
trang29
(4.6) U(O)=u(T).
Trong ph~nmlY,chungtoi sechungminhbai tmln(4.1)-(4.4)co
duynhatmQtnghi~my~uT-tu~nhoanvanghi~mnayclingemdinhd6ivai
I, h,uo.
4.1.S1}'tAnt~ivaduynhAtcuanghi~my~uT-tuftnhoan
Lienquaild~ns\l't6nt~ivaduynhatnghi~my~uT-tu~nhoancua
baitmln(4.1)-(4.4)tacodinhly sau.
Dinh If 4.1.ChoT>0 va(H), (H~),(H~)dung.Khi do,hai loan(4.1)-
(4.4)co duynhdtmr}tnghi?myiu T-tudnhoanU E L2(0,T;V)nL"'(0,T;H),
saDcho
u'EL2(0,T;H),rI/PUELP(Qr).
Chung minh.Chungminhg6mnhiSubuac.
Bmyc1. PhU'O'ngphap Galerkin. Ky hi~ubai {Wj},j=1,2,...la mQtcO'sa
tr\l'cchu~ntrongkhonggianHilberttachduQ'CV. Ta tim Urn (t) theod~ng
(4.7)
rn
urn(t)=LCmj(t)Wj'
j=l
trongdo Crnj(t), 1::;j ::;m thoah~phuO'ngtrinhvi phanphituy~n
(u~(t),Wj) +(urnr,Wjr) +h(t)urn(1,t)w/1) +(F(urn(t)), Wj)
=(/(t), Wj)+uoh(t)wj(l),1::;j::; m,
(4.8)
vadiSuki~nT-tu~nhoan
(4.9) Urn (0)= Urn(T).
f)~utien,taxeth~phuO'ngtrinh(4.8)vadiSuki~nd~u
( 4.9') Urn(0)=UOrn'
trongdo UOrn la hamtrongkhonggian m chiSusinh bai cac ham
Wj' j =1,2, Khi do, ta thuduQ'cmQth~m phuO'ngtrinhvi phanthuemg
H9CvienNguyln ViiDziing
Khaosatphuongtrinhparabolicphi tuyin
trongmiJn hinhcdu
trang30
phi tuySnv6i cac~nhamCmj(t),1<5,j <5,m,vacacdiSuki~nd~u(4.9').DS
th~yr~ngt6nt~ium(t) co d~ng(4.7)thoa(4.8)va (4.9')v6i h~ukhApnO'i
tren0<5,t <5,Tm'v6imQtTm'0<Tm<5,T.Cacdanhgiatiennghi~msaudaycho
pheptal~yTm=T v6i mQim.
Bmyc2.Danh gia tH~nghi~m.
NhanphuO'ngtrinhthu j cuah~(4.8)b6i Cmj(t),vasaudol~ytfmgtheoj,
taduQ'c
1
~llum(t)112+21IUmr(t)112+2h(t)u;(l,t)+2Jr2Ium(r,t)IPdr
(4.10) dt 0
=2(f(t),um(t))+2uoh(t)um(l,t).
Tir giii thiSt(H~) vab~td~ngthuc(2.9),tasuyrar~ng
(4.11) 211umr(t)112+2h(t)u~(l,t) ~CiliUm(t)II~,
v6i CI =mill{I,ho}.
Do do,tasuytir (4.10),(4.11)r~ng
:tllum(t)112+CIIIUm(t)II~+2fr2Ium(r,t)IP dr0
<5,2(f(t),um(t))+2uoh(t)um(l,t)
<5, ~llf(t)112+51IUm(t)112+;Iuonh[ +51IUm(t)II~
=~llf(t)112+;Iuonhll: +251IUm(t)II~,'15>0.
(4.12)
ChQn5>0 saocho
(4.13) CI-25=C2>0.
Do do,tir(4.12),(4.13)tathuduQ'c
H9CvienNguyln ViiDziing
Khao satphuongtrinhparabolicphi tuyin
trangmiJn hinhcdu
trang31
~llum (t)112+ C211um(t)112dt
I
~ ~llum(t)112+C21Ium(t)II~+2fr2Jum(r,tWdr
0
~;luol21lhll:+~Ilf(t)112=~(t).
Nhanb~td~ngthuc(4.14)b6i eCz! vasaudol~ytichphantheot tathu
(4.14)
duQ'c
!
(4.15) Ilum(t)112~lIuomI12e-Cz!+e-Cz! f~(s)eczsds.
0
Cho T >0, taxethams6sau
~
{
(eel!-It f~(s)eczSds,O<t~T,(4.16) R(t)= 0
hi (0) / C2, t = O.
KhidoRE Co[O,T].Ta d~tR =max~R(t).Ta thuduQ'ctir(4.15),(4.16)r~ngo,;,!,;,r
nSu lIuomll~R, khido
(4.17) Ilum(t)11~R, i.e.,Tm=T v6i mQi m.
GQi Bm(O,R)la quac~udongtam0, bankinh R trongkhonggianm chiSu
sinhb6i cachamWj' j =1,2,...,d6iv6i chu~n11.11.
Xet anhXI;!Fm :BJO,R) ~ BJO,R)chob6icongthuc
(4.18) Fm(Uom)= Um(T).
TasechungminhdngFm lamQtanhXI;!co.
Giasu UOm'VOmEBJO,R) vad~tm(t)=um(t)-vm(t),trongdo um(t)va vm(t)
la cacnghi~mcuah~(4.8)tren [O,T]thoacacdiSuki~nd~uum(O)=UOmva
Vm(0)=VOm'l~nluQ't.Khi do, m(t) thoah~phuangtrinh vi phansauday
H9CvienNguyln ViiDziing
Khaosatphuongtrinhparabolicphi tuyin
trongmiJn hinhcdu
trang32
«D~ (t), Wj ) + «D mr(t), Wjr) + h(t)<Dm(1,t)Wj (1)
(4.19) / p-z p-z \.
=-\lum(t)1 um(t)-lvm(t)1vm(t),Wj/'l~J~m,
vadiSuki~nd~u
(4.20) <Dm(O)=Uam-v am'
B~ngcachtinhtoangi6ngnhu6 chuang3,tathuduQ'c
~II<Dm (t)llz + 211<Dmr (t)llz+2h(t)l<Dm(l,t)lz
(4.21) dt
= -2(lum(t)IP-zUm(t) -Iv m(t)IP-zVm(t),um(t) - vm(t)) ~ 0
Nhavao(4.11),tasurtir(4.21)r~ng
(4.22) ~11<Dm(t)llz+C111<Dmr(t)II~ O.dt
Tich phanb~td~ngthuc (4.22),ta thu duQ'c
-.!.TC[
(4.23) IIUm(T)-vm(T)II~eZ IIUam-vamll,
i.e.,Fm:Bm(O,R)~ BJO,R) laanhx'ilco.Dodotant'iliduynh~tUamE Bm(O,R)
saocho Uam= Fm(uam)= Um(T).
Do do, v6i mQi m, tan t'ili m9t ham UamE Bm(O,R)saochonghi~mcuabai
toangiatrj band~u(4.8),(4.9')la m9tnghi~mT-tu~nhoancuah~(4.8).
Nghi~mnayclingthoab~td~ngthuc(4.17)v6i h~uhStt E [o,T]vanha
(4.14),tasurra
t t 1
(4.24) IIUm(t)llz+Cz filum(s)lI~ds+2fds frzlum(r,s)IPdr ~C3,
a a a
trongdo C3lam9th~ngs6d9Cl~pv6i m.
M~tkhac,b~ngcachnhanphuangtrinhthu j cuah~(4.8)b6i c~,l~ytlmg
theoj vasaudol~ytichphand6iv6i biSnthaigiantir0 dSnT, tathu
duQ'c
H(JcvienNguyin VflDzflng
KhilOsatphlfO'ngtrinhparabolicphi tuyin
trongmiJn hinhcdu
trang33
T ITd IT d
fllu~(t)112dt+-f-llumr(t)112dt+- fh(t)-u~(l,t)dt
0 2 0 dt 2 0 dt
T
(4.25) +f(lum(t)IP-2Um(t),u~(t)}dt
0
T T
= f(J(t),u~ (t))dt+Uofh(t)u~(l,t)dt.
0 0
Tir (4.9') tath~yr~ng
Td
f-Ilumr (t)112dt =0,
0dt
T 1
f( )f(lum(t)IP-2um(t),u~(t)}dt=~fr2dr ~Ium(r,tr t0 P 0 0 dt
= ~fr2 ~um(r,T)IP -Ium (r,O)IP ~r = O.
Po
Do do,d~ngthuc(4.25),nhaitchphantUngph~n,tathuduQ'c
T T IT d T
(4.26) fllu~(t)112dt=f(J(t),u~(t))dt+- fh'(t)-u~(l,t)dt-uofh'(t)um(I,t)dt.
0 0 2 0 dt 0
Sail cling, nha VelO(4.24),(4.26),tasuyrab~td~ngthucsail
T T T T
2 fllu~(t)112dt ~ fIIJ(t)112dt + fllu~ (t)112dt +IIh'll",fu~(I,t)dt
0 0 0 0
T
(4.27) +21uolllh't]um(l,t)~t
0
T T T
~ fllu~(t)1I2dt +]IJ(t)1I2dt+411h'tfilum(t)II~dt
0 0 0
T
+41UolIlh'IL filum(t)lIvdt
0
T T T
~ fllu~(t)1I2dt +fIlJ(t)112dt +411h'tfilum(t)II~dt
0 0 0
+4v'Tlil, Illh'll.(~~m (')II~dtr
T
~ fllu~(t)112dt +C4 ,
0
KhilOsatphuongtrinhparabolicphi tuyin
trongmiJn hinhcdu
trang34
trongdo C4la ill9th~ngs6d9Cl~pv6'im.
V~y
T
(4.28) ~Iu~(t)112dt~C4, v6'i illQi m.
0
M~tkhac,tir(4.24)tacodanhgia
(4.29) Ids flr2!p'IUrn(r,s)IP-2Urn(r,sf' dr = Ids fr21urn(r,s)IPdr ~!C3'
0 0 0 0 2
BU'o-c3. Qua gio-ih~n.
Do (4.24),(4.28),(4.29)tasur ra r~ng,tfmt<;liill9t dayconcuaday {uJ,
v~nky hi~ula {urn}saocho
(4.30) Urn~ U trong LOfO(O,T;H)ySu*,
(4.31) Urn~u trong L2(0,T;V)ySu,
(4.32)u~~u' trongL2(0,T;H)ySu,
(4.33) r2!Purn~r2!putrongY(QT) ySu.
Tru6'chSt,tanghi~illl<;lir~ng
(4.34) u(O)=u(T).
V6'iillQi vEH, tacotir(4.9)r~ng
T
(4.35) f(u~(t),v)dt=(urn(T) - Urn(0),v)=o.
0
Tasurtir(4.32)va(4.35)r~ng
T T
(4.36) f(u~(t),v)dt~ f(u'(t),v)dt=0,khi m~ +00,
0 0
Tinh toantuongt\1'nhu(4.35),taclingcod~ngthuc
T
(4.37) (u(T)-u(O),v)=f(u'(t),v)dt=O,VvEH,
0
vadodo(4.34)dung.
H9CvienNguyln ViiDziing
KhilOsatphuongtrinhparabolicphi tuyin
trangmi~nhinhc6u
trang35
Dungb6dS2.11vStinhcompactcuaLions [3],apd\1ngvao(4.31),(4.32)
tacothStrichratirday{urn}mQtdayconv§,nkyhi~ula {urn}saocho
(4.38) Urn -) U m~nhtrong L2(O,T;H).
Theodinhly Riesz-Fischer,tir(4.38)tacothStrichramQtdayconcuaday
{urn}v§,nkyhi~ula{uJ saocho
(4.39) Urn(r,t) -) u(r,t) a.e.(r,f) trong QT=(0,1)x(O,T).
Do Uf-7IUIP-2u lien t\1C,taco
(440)
21'
I I
P-2 21 '
I I
P-2
. r P Urn(r,f) Urn(r,f) -) r P u(r,f) u(r,f) a.e. (r,f) trong QT'
Ap d\1ngb6dS2.12vSS\lhQit\1ySutrongLq (QT) v6i
, 2/' 2/' II P-2 2/' 2/' II P-2N=2,q=p,Grn=r PF(urn)=r Purn urn,G=r PF(u)=r Pu u.
Tir (4.29),(4.40)r~ng
(4.41) r2IP'lurnIP-2urn-)r2IP'luIP-2utrongy'(QT) ySu.
Ky hi~ug;(f)=~sinC:).i =1,2,...lamQtccysa tf\lCchu~ntrongkhong
gianHilbertth\lc L2(0,T).Khi dot~p{g;Wj:i, i=1,2,...}cfingthanhl~pmQt
ccysatr\lcchu~ntrongkhonggianL2(0,T;V).
Nhanphucyngtrinhthil i cua(4.8)cho g;(f),vasaildol~ytichphand6iv6i
biSn thai gian f, 0~f ~T, tathu duQ'c
T T
f( u~(f), Wj ;g; (f)<if+f( urnr(f), Wjr;g; (f)df
0 0
(4.42)
T T
+ fh(t)urn(1,f)w/1)g; (f)df +f(lurn(f)IP-2Urn(f), Wj)g; (f)df
0 0
T T
=f(f(f), Wj ;g;(f)df+fuoh(f)W/1)g;(f)df,Vi =1,2,...,m,Vi E N.
0 0
DSnghiencUuvSvi~cquagi6ih~ncuas6h~ngphituySnlurn(f)IP-2 Urn(f)
trong(4.42),tasud\1ngb6dSsail
H9CvienNguyin VfiDzfing
Khao satphuongtrinhparabolicphi tuyin
trongmiJn hinhcdu
trang36
BBd~4.1.
T T
J~~oof([urn(t)IP-2Urn(t), wi )gi(t)dt = f\lu(t)IP-2U(t),Wi)gi(t)dt, Vi, j =1,2,...
0 0
ChungminhbBd~4.1.
Chuyr~ng(4.41)tuO'ngduO'llgv6i
TIT 1
fdt fr2/P'[urn(t)IP-2urn(t)(r,t)dr~ ffr2/P'lu(t)la-lu(t)(r,t)dt
(4.43) 0 0 00
VE (U' (QT))=LP(QT).
M?t khac,taco
T T 1
f(lurn(t)IP-2Urn(t),Wi)gi(t)dt = f fr21urn(t)IP-2Urn(t)w/r)gi(t)drdt
(4.44) 0 00T 1
(= ffr2/p'IUrn (t)IP-2Urn (t)Xr2/PWi(r)g;Ct)}irdt.
0 0
Do (4.44),b6dS4.1seduQ'chUngminhnSutakhAngdinhduQ'cr~ng
(r,t)= r21 PWj (r)q:>(t) E U (QT)'Th~tv~y,dobfitdAngthuc(2.7),taco
TJ T 1
f f[(r,t)IPdrdt = f ~r2w/r)q:>(tfdrdt
0 0 0 0
1 T
= fr2-PIrw/rf dr flq:>(t)IPdt
0 0
(4.45)
1 T
~(FsIIWillvr fr2-Pdr]q:>(tWdt
0 0
T
~~(Fsllwill r nq:>(t)la+Jdt<+00.3- P v l'
V~yb6dS4.1duQ'chUngminhhmlntfit.
Cho m~ +00 trong(4.42),tasuyratll (4.30),(4.31),(4.32)vab6dS4.1,
r~ngu th6aphuO'ngtrinhbiSnphan
Khao satphuongtrinhparabolicphi tuyin
trongmi~nhinhcdu
trang37
(4.46)
T T
f(U'(t),wi )g;Ct)dt+ f(u,(t), Wi')g;Ct)dt
a a
T T
+ fh(t)u(l,t)Wi(l)gj(t)dt + f(lu(t)IP-2u(t),Wi)gj(t)dta a
T T
=f(/(t),Wi )gj(t)dt +Uafh(t)w/l)g;Ct)dt, Vi, j E N.
a a
V~y,tasuytu(4.46)r&ngphuangtrinhsaildaydung
T T T
f(u'(t),v)dt+f(u,(t),v,)dt+fh(t)u(l,t)v(l)dt
a a a
T
+ f\lu(t)IP-2u(t),v)dta
(4.47)
T T
=f(/(t),v(t))dt+uafh(t)v(l,t)dt, Vv E L2(O,T;V}
a a
V~ys\l't6nt~inghi~mduQ'chUngminhxong.
Bmyc4.Tinh duynh~tnghi~m.
Giasuu vav lahainghi~mySucuabaitmin(4.1)-(4.4).Khi do w=u-v
thoabaitoanbiSnphansailday
T T
f(w'(t), lp(t))dt + f[(W,(t),lp,(t)) +h(t)w(l, t)lp(1,t)}it
a a
T
(4.48) +f(lu(t)IP-2u(t)-lv(t)IP-2vet),lp(t)dt=0,
a
VlpE L2(0,T;V),
(4.49) w(O)=weT),
v6i u, VE L2(0,T; V)nD'(O,T;H), u', V'EL2(0,T;H), r2lpu,r21pvEH(QT}
T
L~y lp =w trong(4.48)va chuy r&ngf(w'(t),w(t))dt=o. Khi do su d\lng
a
(4.11)va(4.49),tathuduQ'c
Khao satphLfangtrinhparabolicphi tuyin
trongmi~nhinhcdu
trang38
(4.50)
1 r r
2C11Iw(t)II~2(o,r;v)~ fllwr(t)112dt +fh(t)w2(1,t)dt° 0
r
= - f(lu(t)1p-2 u(t) -lv(t)IP-2 vet),u(t) - vet))dt ~O.
0
DiSunaydfindSnw=0,i.e.,u=v.Dinhly 4.1dugcchUngminhhoant&t.
4.2.S1}'Andinb cuangbi~my~uT-tuftnboan
Trong phanll<lYchungt6i sekh~lOsattinh 6n dinh d6i v6i f, h,Uocua
nghi~mySuT-tuanhoancuabaitmin(4.1)-(4.4).
Tuang ung v6i f, h,uo, Ian lugt thoacacgia thiSt(H2), (H~),(H~),bai
loan (4.1)-(4.4) co duy nh&t mQt nghi~m ySu T-tuan hoan
u E L2(0,T;V)nL"'(0,T;H), saochou' E L2(0,T;H), r21puE LP(Qr)' Nghi~mnay
ph\!thuQcvaou=u(f,h,uo)Tasechungminhnghi~mnay6ndinhd6iv6i
f, h,UotheoillQtnghlamatasequidinhsau.
Tru6chSttad~t
H ={hE wi"" (O,T), h(O)=her),h(t)? ho>a},
y ={JE CO([O,T];H),f(r,O) =f(r,T)}.
Khi do,tacodinhly saudaylienquaildSntinh6ndinhcuanghi~mySu
Binb Iy 4.2.
Nghi<?mu=u(f, h,uo)6ndtnhdr5ivai f, h,uo,theongh'ia
Niu (fk,hk,uOk)'(f,h,uo)EYxHxJR, saocho
fk ~ f trong CO([O,T];H),
(4.51) hk~h trong w1""(0,T),
UOk~ u trong JR,
thi
(4.52) Uk~u trongL2(0,T;V)va r21puk~r2lputrongLP(Qr),
trongdo Uk=U(fk,hk,uOk)'u =u(f,h,uo).
Khaosatphuongtrinhparabolicphi tuyin
trongmiJn hinhcdu
trang39
Chung minh.
TruachSttad~themcackyhi~u
Vk=Uk-u, Jk =fk - f, hk=hk-h, UOk=UOk-uo.
ChovE L2(O,T;v) tllY y,truhaid~ngthucsau:
(4.53)
T T T
f(u~(t),vet))dt + f[(Ukr(t),Vr(t)) +hk(t)Uk(1,t)v(1,t)]dt+ f(F(Uk (t)),vet))dt
0 0 0
T T
= f(fk (t),v(t))dt+UOkfhk(t)v(l,t)dt,
0 0
Uk(0) =Uk(T),
(4.54)
T T T
f(U'(t),vet)dt+ f[(ur(t),Vr(t))+h(t)u(l,t)v(l,t)]dt+ f(F(u(t)), vet)dt
0 0 0
T T
=f(f(t),v(t))dt+UOk fh(t)v(l,t)dt,
0 0
U(O)=u(T),
tathuduQ'c
(4.55)
T T
f(v~(t),vet))dt + f[(Vkr(t),Vr(t)) + (hk(t)Uk(l,t) - h(t)u(l, t))v(1,t)]dt
0 0
T
+f(F(Uk(t))-F(u(t)),v(t))dt
0
T T
=f((Jk(t)}v(t))dt+f(UOkhk(t)-uoh(t))v(1,t)dt.
0 0
Chnv=Vk'trong(4.55)vasaukhi chuy r~ng
T 1Td 1 1
(4.56) f((v~(t)),Vk(t))dt=- f-lIvk (t)lldt=-llvk(T)II--llvk(0)11=0,
0 20 dt 2 2
tathuduQ'c
Khaosatphuangtrinhparabolicphi tuyin
trongmi~nhinhcdu
trang40
(4.57)
T T
fllvkr(t)112dt + f(hk(t)Uk(l,t) - h(t)U(l,t))vk(l,t)dt
0 0
T
+ f(F(Uk(t))- F(u(t)),Vk(t))dt
0
T T
= f(Jk (t),Vk(t)}dt+ f(UOkhk(t) - uOh(t))vk(l,t)dt,
0 0
hay
T T T
flhr (t)112dt+ fhk(t)vi (l,t)dt +fhk(t)u(l,t)vk(l,t)dt
0 0 0
T
+f(F(Uk(t))-F(u(t)),Vk(t))dt
0
(4.58) T T
= f(Vk (t)) Vk(t)}dt+UOkfhk (t)Vk(l,t)dt
0 0
T
+uo fhk(t)vk(l,t))dt.
0
Chu y r&ng
T T T
(4.59) ]IVkr(t)112dt+ fhk(t)vi (l,t)dt ~ C) ]h(t)II~dt=c)llvkll~2(O,T;V)'
0 0 0
trongd6 C)=mill{1,ho}.Dung bfitd~ngthuc
(4.60) '\Ip~2,3Cp>O:~XIP-2X-lxIP-2XXX-y)~cplx-yIP'\Ix,yeIR,
tasuyra
T T )
(4.61) f(F(Uk(t))- F(u(t)),Vk(t))dt~Cpfdt fr21uk(t) - u(t)IPdr =Cp IIr2/PVkII;p(Qr)'
0 0 0
B&ngeachsird\lngbfitd~ngthuc(4.60),tasuyratll (4.58)-(4.61)r&ng
c)llvkll~2(O,T;V)+Cpllr2/Pvkll;p(Qr)
(4.62)
T T
~ - fhk(t)u(l, t)vk(1,t)dt + f\Jk (t),Vk(t)}dt
0 0
T T
+UOkfhk (t)Vk(l,t)dt +Uofhk(t)Vk(l,t)dt
0 0
H9CvienNguyln ViiDzilng
Khaosatphuongtrinhparabolicphi tuyin
trongmiJn hinhcdu
trang41
T T
S 411hkt fllu(t)llvIlvk(t)llvdt + Illkllco([O,T];H) fllvk (t)llv dt
T T
+ 21uOkIllhkt ~h (t)llv dt + 211hkt Iuol fllvk (t)IIv dt° °
S 411hkIIJuIIL2(O,T;V) IlvkIIL2(O,T;V)+ Illk Ilco([o,T];H)Frllvk t2(O,T;V)
+ 21uOkIllhkt Frllvk t2(O,T;V) + 211hkt IUDIFrllvk IIL2(O,T;V)
=[2(21Iut2(O'T;V)+Frluolllhkt +Frlllkllco([O,T];H)+2FrllhkIUuOkl]lvkt2(O,T;V)
==8k IIVkt2(O,T;V)'
tfongdo
(4.63) 8k =2(21IuIIL2(O'T;V)+Frluol)llhkt +Frlllkllco([O,T];H)+2FrllhktluOkl.
Ta Suyfa tu (4.62)dng
1
(4.64) Ilvk(t)112( . ) S-8k'L O,T,V C )
2 ~
II
21
li
P 1 82
(4.65) c)llvkIIL2(O,T;V)+CprPVkLP(QT)SC) k'
1 821P
11
21p
II SD~k'
(4.66) r Vk LP(QT) ~C)Cp
1 1 821P
II II
21pV
II <-8k + D~ k .
(4.67) Ih L2(O,T;V)+ r k LP(QT)- C) ~C)Cp
Tu giathiSt(4.51),taco
Il
hk
II
~ 0,
Il
lk
II
~ 0, IUOk I ~ 0,
00 CO([O,T];H)
vadays6~Ihkt } bi ch~n,nen8k ~ O.
V~y
1 1 821P ~ o.
I II II
21pV
II <-8k + D~ k
IVk L2(O,T;V)+ r k LP(QT) - c) ~C)Cp
Dinh ly 4.2duQ'chungminhhoant~t.