Luận văn Khảo sát phương trình parabolic phi tuyến trong miền hình cầu

KHẢO SÁT PHƯƠNG TRÌNH PARABOLIC PHI TUYẾN TRONG MIỀN HÌNH CẦU Trang nhan đề Mục lục Chương1: Phần tổng quan. Chương2: Các kết quả chuẩn bị, các không gian hàm. Chương3: Sự tồn tại và duy nhất nghiệm của phương trình nhiệt với điều kiện đầu. Chương4: Sự tồn tại, duy nhất và ổn định nghiệm T - Tuần hoàn của phương trình nhiệt phi tuyến. Kết luận Tài liệu tham khảo

pdf14 trang | Chia sẻ: maiphuongtl | Lượt xem: 1983 | Lượt tải: 1download
Bạn đang xem nội dung tài liệu Luận văn Khảo sát phương trình parabolic phi tuyến trong miền hình cầu, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
KhilOsatphuongtrinhparabolicphi tuyin trangmi~nhinhcdu trang28 CHUONG4 sV TONT~I,DUYNHA.TvA ONDJNHNGHl~MT-TUANHoAN CUAPHUONGTRINH NHIET PHI TUYEN. Trongchuangnay,chungt6inghienClmnghi~mT-tu~nhoancua baitoangiatribienphituySnsauday (4.1) (4.2) (4.3) (4.4) Ut-(Urr+~Ur)+F(U)=f(r,t), O<r<l, O<t<T, I lim rur(r,t) ! <+00,ur(l,t) +h(t){u(l,t)- uo)=0,r~O+ u(r,O)=u(r,T), II P-z F(u) =u u, trongd6 2~p <3, Uo lelcach&ngs6chotruac,h(t),f(r,t) lelcachams6 chotruacT-tu~nhoantheot,thoacacgiii thiStsau (Hz) (H;) (H~) UoE JR, hE wi""(O,T),h(O)=her),h(t)~ho>0, f E CO([0,T}H), f(r,O) =f(r,T). Nghi~mySucuabaitoan(4.1)-(4.4)duQ'cthanhl~pnhusautu baitoan biSnphansau: Tim u ELZ(O,T;V)nL'"(O,T;H) saocho u' E LZ(o,T;H)vau(t)thoaphuang trinhbiSnphansau: (4.5) T T f(u'(t),vet)dt+J[(ur(t),vr(t))+h(t)u(l,t)v(l,t)}it 0 0 T + f(F(u(t)),v(t))dt° T T = f(f(t), v(t))dt+uofh(t)v(l,t)dt,'\IvE LZ(O,T;V), 0 0 vadi@uki~nT-tu~nho~m H9CvienNguyln ViiDzilng Khaosatphuongtrinhparabolicphi tuyin trongmi~nhinhcdu trang29 (4.6) U(O)=u(T). Trong ph~nmlY,chungtoi sechungminhbai tmln(4.1)-(4.4)co duynhatmQtnghi~my~uT-tu~nhoanvanghi~mnayclingemdinhd6ivai I, h,uo. 4.1.S1}'tAnt~ivaduynhAtcuanghi~my~uT-tuftnhoan Lienquaild~ns\l't6nt~ivaduynhatnghi~my~uT-tu~nhoancua baitmln(4.1)-(4.4)tacodinhly sau. Dinh If 4.1.ChoT>0 va(H), (H~),(H~)dung.Khi do,hai loan(4.1)- (4.4)co duynhdtmr}tnghi?myiu T-tudnhoanU E L2(0,T;V)nL"'(0,T;H), saDcho u'EL2(0,T;H),rI/PUELP(Qr). Chung minh.Chungminhg6mnhiSubuac. Bmyc1. PhU'O'ngphap Galerkin. Ky hi~ubai {Wj},j=1,2,...la mQtcO'sa tr\l'cchu~ntrongkhonggianHilberttachduQ'CV. Ta tim Urn (t) theod~ng (4.7) rn urn(t)=LCmj(t)Wj' j=l trongdo Crnj(t), 1::;j ::;m thoah~phuO'ngtrinhvi phanphituy~n (u~(t),Wj) +(urnr,Wjr) +h(t)urn(1,t)w/1) +(F(urn(t)), Wj) =(/(t), Wj)+uoh(t)wj(l),1::;j::; m, (4.8) vadiSuki~nT-tu~nhoan (4.9) Urn (0)= Urn(T). f)~utien,taxeth~phuO'ngtrinh(4.8)vadiSuki~nd~u ( 4.9') Urn(0)=UOrn' trongdo UOrn la hamtrongkhonggian m chiSusinh bai cac ham Wj' j =1,2, Khi do, ta thuduQ'cmQth~m phuO'ngtrinhvi phanthuemg H9CvienNguyln ViiDziing Khaosatphuongtrinhparabolicphi tuyin trongmiJn hinhcdu trang30 phi tuySnv6i cac~nhamCmj(t),1<5,j <5,m,vacacdiSuki~nd~u(4.9').DS th~yr~ngt6nt~ium(t) co d~ng(4.7)thoa(4.8)va (4.9')v6i h~ukhApnO'i tren0<5,t <5,Tm'v6imQtTm'0<Tm<5,T.Cacdanhgiatiennghi~msaudaycho pheptal~yTm=T v6i mQim. Bmyc2.Danh gia tH~nghi~m. NhanphuO'ngtrinhthu j cuah~(4.8)b6i Cmj(t),vasaudol~ytfmgtheoj, taduQ'c 1 ~llum(t)112+21IUmr(t)112+2h(t)u;(l,t)+2Jr2Ium(r,t)IPdr (4.10) dt 0 =2(f(t),um(t))+2uoh(t)um(l,t). Tir giii thiSt(H~) vab~td~ngthuc(2.9),tasuyrar~ng (4.11) 211umr(t)112+2h(t)u~(l,t) ~CiliUm(t)II~, v6i CI =mill{I,ho}. Do do,tasuytir (4.10),(4.11)r~ng :tllum(t)112+CIIIUm(t)II~+2fr2Ium(r,t)IP dr0 <5,2(f(t),um(t))+2uoh(t)um(l,t) <5, ~llf(t)112+51IUm(t)112+;Iuonh[ +51IUm(t)II~ =~llf(t)112+;Iuonhll: +251IUm(t)II~,'15>0. (4.12) ChQn5>0 saocho (4.13) CI-25=C2>0. Do do,tir(4.12),(4.13)tathuduQ'c H9CvienNguyln ViiDziing Khao satphuongtrinhparabolicphi tuyin trangmiJn hinhcdu trang31 ~llum (t)112+ C211um(t)112dt I ~ ~llum(t)112+C21Ium(t)II~+2fr2Jum(r,tWdr 0 ~;luol21lhll:+~Ilf(t)112=~(t). Nhanb~td~ngthuc(4.14)b6i eCz! vasaudol~ytichphantheot tathu (4.14) duQ'c ! (4.15) Ilum(t)112~lIuomI12e-Cz!+e-Cz! f~(s)eczsds. 0 Cho T >0, taxethams6sau ~ { (eel!-It f~(s)eczSds,O<t~T,(4.16) R(t)= 0 hi (0) / C2, t = O. KhidoRE Co[O,T].Ta d~tR =max~R(t).Ta thuduQ'ctir(4.15),(4.16)r~ngo,;,!,;,r nSu lIuomll~R, khido (4.17) Ilum(t)11~R, i.e.,Tm=T v6i mQi m. GQi Bm(O,R)la quac~udongtam0, bankinh R trongkhonggianm chiSu sinhb6i cachamWj' j =1,2,...,d6iv6i chu~n11.11. Xet anhXI;!Fm :BJO,R) ~ BJO,R)chob6icongthuc (4.18) Fm(Uom)= Um(T). TasechungminhdngFm lamQtanhXI;!co. Giasu UOm'VOmEBJO,R) vad~tm(t)=um(t)-vm(t),trongdo um(t)va vm(t) la cacnghi~mcuah~(4.8)tren [O,T]thoacacdiSuki~nd~uum(O)=UOmva Vm(0)=VOm'l~nluQ't.Khi do, m(t) thoah~phuangtrinh vi phansauday H9CvienNguyln ViiDziing Khaosatphuongtrinhparabolicphi tuyin trongmiJn hinhcdu trang32 «D~ (t), Wj ) + «D mr(t), Wjr) + h(t)<Dm(1,t)Wj (1) (4.19) / p-z p-z \. =-\lum(t)1 um(t)-lvm(t)1vm(t),Wj/'l~J~m, vadiSuki~nd~u (4.20) <Dm(O)=Uam-v am' B~ngcachtinhtoangi6ngnhu6 chuang3,tathuduQ'c ~II<Dm (t)llz + 211<Dmr (t)llz+2h(t)l<Dm(l,t)lz (4.21) dt = -2(lum(t)IP-zUm(t) -Iv m(t)IP-zVm(t),um(t) - vm(t)) ~ 0 Nhavao(4.11),tasurtir(4.21)r~ng (4.22) ~11<Dm(t)llz+C111<Dmr(t)II~ O.dt Tich phanb~td~ngthuc (4.22),ta thu duQ'c -.!.TC[ (4.23) IIUm(T)-vm(T)II~eZ IIUam-vamll, i.e.,Fm:Bm(O,R)~ BJO,R) laanhx'ilco.Dodotant'iliduynh~tUamE Bm(O,R) saocho Uam= Fm(uam)= Um(T). Do do, v6i mQi m, tan t'ili m9t ham UamE Bm(O,R)saochonghi~mcuabai toangiatrj band~u(4.8),(4.9')la m9tnghi~mT-tu~nhoancuah~(4.8). Nghi~mnayclingthoab~td~ngthuc(4.17)v6i h~uhStt E [o,T]vanha (4.14),tasurra t t 1 (4.24) IIUm(t)llz+Cz filum(s)lI~ds+2fds frzlum(r,s)IPdr ~C3, a a a trongdo C3lam9th~ngs6d9Cl~pv6i m. M~tkhac,b~ngcachnhanphuangtrinhthu j cuah~(4.8)b6i c~,l~ytlmg theoj vasaudol~ytichphand6iv6i biSnthaigiantir0 dSnT, tathu duQ'c H(JcvienNguyin VflDzflng KhilOsatphlfO'ngtrinhparabolicphi tuyin trongmiJn hinhcdu trang33 T ITd IT d fllu~(t)112dt+-f-llumr(t)112dt+- fh(t)-u~(l,t)dt 0 2 0 dt 2 0 dt T (4.25) +f(lum(t)IP-2Um(t),u~(t)}dt 0 T T = f(J(t),u~ (t))dt+Uofh(t)u~(l,t)dt. 0 0 Tir (4.9') tath~yr~ng Td f-Ilumr (t)112dt =0, 0dt T 1 f( )f(lum(t)IP-2um(t),u~(t)}dt=~fr2dr ~Ium(r,tr t0 P 0 0 dt = ~fr2 ~um(r,T)IP -Ium (r,O)IP ~r = O. Po Do do,d~ngthuc(4.25),nhaitchphantUngph~n,tathuduQ'c T T IT d T (4.26) fllu~(t)112dt=f(J(t),u~(t))dt+- fh'(t)-u~(l,t)dt-uofh'(t)um(I,t)dt. 0 0 2 0 dt 0 Sail cling, nha VelO(4.24),(4.26),tasuyrab~td~ngthucsail T T T T 2 fllu~(t)112dt ~ fIIJ(t)112dt + fllu~ (t)112dt +IIh'll",fu~(I,t)dt 0 0 0 0 T (4.27) +21uolllh't]um(l,t)~t 0 T T T ~ fllu~(t)1I2dt +]IJ(t)1I2dt+411h'tfilum(t)II~dt 0 0 0 T +41UolIlh'IL filum(t)lIvdt 0 T T T ~ fllu~(t)1I2dt +fIlJ(t)112dt +411h'tfilum(t)II~dt 0 0 0 +4v'Tlil, Illh'll.(~~m (')II~dtr T ~ fllu~(t)112dt +C4 , 0 KhilOsatphuongtrinhparabolicphi tuyin trongmiJn hinhcdu trang34 trongdo C4la ill9th~ngs6d9Cl~pv6'im. V~y T (4.28) ~Iu~(t)112dt~C4, v6'i illQi m. 0 M~tkhac,tir(4.24)tacodanhgia (4.29) Ids flr2!p'IUrn(r,s)IP-2Urn(r,sf' dr = Ids fr21urn(r,s)IPdr ~!C3' 0 0 0 0 2 BU'o-c3. Qua gio-ih~n. Do (4.24),(4.28),(4.29)tasur ra r~ng,tfmt<;liill9t dayconcuaday {uJ, v~nky hi~ula {urn}saocho (4.30) Urn~ U trong LOfO(O,T;H)ySu*, (4.31) Urn~u trong L2(0,T;V)ySu, (4.32)u~~u' trongL2(0,T;H)ySu, (4.33) r2!Purn~r2!putrongY(QT) ySu. Tru6'chSt,tanghi~illl<;lir~ng (4.34) u(O)=u(T). V6'iillQi vEH, tacotir(4.9)r~ng T (4.35) f(u~(t),v)dt=(urn(T) - Urn(0),v)=o. 0 Tasurtir(4.32)va(4.35)r~ng T T (4.36) f(u~(t),v)dt~ f(u'(t),v)dt=0,khi m~ +00, 0 0 Tinh toantuongt\1'nhu(4.35),taclingcod~ngthuc T (4.37) (u(T)-u(O),v)=f(u'(t),v)dt=O,VvEH, 0 vadodo(4.34)dung. H9CvienNguyln ViiDziing KhilOsatphuongtrinhparabolicphi tuyin trangmi~nhinhc6u trang35 Dungb6dS2.11vStinhcompactcuaLions [3],apd\1ngvao(4.31),(4.32) tacothStrichratirday{urn}mQtdayconv§,nkyhi~ula {urn}saocho (4.38) Urn -) U m~nhtrong L2(O,T;H). Theodinhly Riesz-Fischer,tir(4.38)tacothStrichramQtdayconcuaday {urn}v§,nkyhi~ula{uJ saocho (4.39) Urn(r,t) -) u(r,t) a.e.(r,f) trong QT=(0,1)x(O,T). Do Uf-7IUIP-2u lien t\1C,taco (440) 21' I I P-2 21 ' I I P-2 . r P Urn(r,f) Urn(r,f) -) r P u(r,f) u(r,f) a.e. (r,f) trong QT' Ap d\1ngb6dS2.12vSS\lhQit\1ySutrongLq (QT) v6i , 2/' 2/' II P-2 2/' 2/' II P-2N=2,q=p,Grn=r PF(urn)=r Purn urn,G=r PF(u)=r Pu u. Tir (4.29),(4.40)r~ng (4.41) r2IP'lurnIP-2urn-)r2IP'luIP-2utrongy'(QT) ySu. Ky hi~ug;(f)=~sinC:).i =1,2,...lamQtccysa tf\lCchu~ntrongkhong gianHilbertth\lc L2(0,T).Khi dot~p{g;Wj:i, i=1,2,...}cfingthanhl~pmQt ccysatr\lcchu~ntrongkhonggianL2(0,T;V). Nhanphucyngtrinhthil i cua(4.8)cho g;(f),vasaildol~ytichphand6iv6i biSn thai gian f, 0~f ~T, tathu duQ'c T T f( u~(f), Wj ;g; (f)<if+f( urnr(f), Wjr;g; (f)df 0 0 (4.42) T T + fh(t)urn(1,f)w/1)g; (f)df +f(lurn(f)IP-2Urn(f), Wj)g; (f)df 0 0 T T =f(f(f), Wj ;g;(f)df+fuoh(f)W/1)g;(f)df,Vi =1,2,...,m,Vi E N. 0 0 DSnghiencUuvSvi~cquagi6ih~ncuas6h~ngphituySnlurn(f)IP-2 Urn(f) trong(4.42),tasud\1ngb6dSsail H9CvienNguyin VfiDzfing Khao satphuongtrinhparabolicphi tuyin trongmiJn hinhcdu trang36 BBd~4.1. T T J~~oof([urn(t)IP-2Urn(t), wi )gi(t)dt = f\lu(t)IP-2U(t),Wi)gi(t)dt, Vi, j =1,2,... 0 0 ChungminhbBd~4.1. Chuyr~ng(4.41)tuO'ngduO'llgv6i TIT 1 fdt fr2/P'[urn(t)IP-2urn(t)(r,t)dr~ ffr2/P'lu(t)la-lu(t)(r,t)dt (4.43) 0 0 00 VE (U' (QT))=LP(QT). M?t khac,taco T T 1 f(lurn(t)IP-2Urn(t),Wi)gi(t)dt = f fr21urn(t)IP-2Urn(t)w/r)gi(t)drdt (4.44) 0 00T 1 (= ffr2/p'IUrn (t)IP-2Urn (t)Xr2/PWi(r)g;Ct)}irdt. 0 0 Do (4.44),b6dS4.1seduQ'chUngminhnSutakhAngdinhduQ'cr~ng (r,t)= r21 PWj (r)q:>(t) E U (QT)'Th~tv~y,dobfitdAngthuc(2.7),taco TJ T 1 f f[(r,t)IPdrdt = f ~r2w/r)q:>(tfdrdt 0 0 0 0 1 T = fr2-PIrw/rf dr flq:>(t)IPdt 0 0 (4.45) 1 T ~(FsIIWillvr fr2-Pdr]q:>(tWdt 0 0 T ~~(Fsllwill r nq:>(t)la+Jdt<+00.3- P v l' V~yb6dS4.1duQ'chUngminhhmlntfit. Cho m~ +00 trong(4.42),tasuyratll (4.30),(4.31),(4.32)vab6dS4.1, r~ngu th6aphuO'ngtrinhbiSnphan Khao satphuongtrinhparabolicphi tuyin trongmi~nhinhcdu trang37 (4.46) T T f(U'(t),wi )g;Ct)dt+ f(u,(t), Wi')g;Ct)dt a a T T + fh(t)u(l,t)Wi(l)gj(t)dt + f(lu(t)IP-2u(t),Wi)gj(t)dta a T T =f(/(t),Wi )gj(t)dt +Uafh(t)w/l)g;Ct)dt, Vi, j E N. a a V~y,tasuytu(4.46)r&ngphuangtrinhsaildaydung T T T f(u'(t),v)dt+f(u,(t),v,)dt+fh(t)u(l,t)v(l)dt a a a T + f\lu(t)IP-2u(t),v)dta (4.47) T T =f(/(t),v(t))dt+uafh(t)v(l,t)dt, Vv E L2(O,T;V} a a V~ys\l't6nt~inghi~mduQ'chUngminhxong. Bmyc4.Tinh duynh~tnghi~m. Giasuu vav lahainghi~mySucuabaitmin(4.1)-(4.4).Khi do w=u-v thoabaitoanbiSnphansailday T T f(w'(t), lp(t))dt + f[(W,(t),lp,(t)) +h(t)w(l, t)lp(1,t)}it a a T (4.48) +f(lu(t)IP-2u(t)-lv(t)IP-2vet),lp(t)dt=0, a VlpE L2(0,T;V), (4.49) w(O)=weT), v6i u, VE L2(0,T; V)nD'(O,T;H), u', V'EL2(0,T;H), r2lpu,r21pvEH(QT} T L~y lp =w trong(4.48)va chuy r&ngf(w'(t),w(t))dt=o. Khi do su d\lng a (4.11)va(4.49),tathuduQ'c Khao satphLfangtrinhparabolicphi tuyin trongmi~nhinhcdu trang38 (4.50) 1 r r 2C11Iw(t)II~2(o,r;v)~ fllwr(t)112dt +fh(t)w2(1,t)dt° 0 r = - f(lu(t)1p-2 u(t) -lv(t)IP-2 vet),u(t) - vet))dt ~O. 0 DiSunaydfindSnw=0,i.e.,u=v.Dinhly 4.1dugcchUngminhhoant&t. 4.2.S1}'Andinb cuangbi~my~uT-tuftnboan Trong phanll<lYchungt6i sekh~lOsattinh 6n dinh d6i v6i f, h,Uocua nghi~mySuT-tuanhoancuabaitmin(4.1)-(4.4). Tuang ung v6i f, h,uo, Ian lugt thoacacgia thiSt(H2), (H~),(H~),bai loan (4.1)-(4.4) co duy nh&t mQt nghi~m ySu T-tuan hoan u E L2(0,T;V)nL"'(0,T;H), saochou' E L2(0,T;H), r21puE LP(Qr)' Nghi~mnay ph\!thuQcvaou=u(f,h,uo)Tasechungminhnghi~mnay6ndinhd6iv6i f, h,UotheoillQtnghlamatasequidinhsau. Tru6chSttad~t H ={hE wi"" (O,T), h(O)=her),h(t)? ho>a}, y ={JE CO([O,T];H),f(r,O) =f(r,T)}. Khi do,tacodinhly saudaylienquaildSntinh6ndinhcuanghi~mySu Binb Iy 4.2. Nghi<?mu=u(f, h,uo)6ndtnhdr5ivai f, h,uo,theongh'ia Niu (fk,hk,uOk)'(f,h,uo)EYxHxJR, saocho fk ~ f trong CO([O,T];H), (4.51) hk~h trong w1""(0,T), UOk~ u trong JR, thi (4.52) Uk~u trongL2(0,T;V)va r21puk~r2lputrongLP(Qr), trongdo Uk=U(fk,hk,uOk)'u =u(f,h,uo). Khaosatphuongtrinhparabolicphi tuyin trongmiJn hinhcdu trang39 Chung minh. TruachSttad~themcackyhi~u Vk=Uk-u, Jk =fk - f, hk=hk-h, UOk=UOk-uo. ChovE L2(O,T;v) tllY y,truhaid~ngthucsau: (4.53) T T T f(u~(t),vet))dt + f[(Ukr(t),Vr(t)) +hk(t)Uk(1,t)v(1,t)]dt+ f(F(Uk (t)),vet))dt 0 0 0 T T = f(fk (t),v(t))dt+UOkfhk(t)v(l,t)dt, 0 0 Uk(0) =Uk(T), (4.54) T T T f(U'(t),vet)dt+ f[(ur(t),Vr(t))+h(t)u(l,t)v(l,t)]dt+ f(F(u(t)), vet)dt 0 0 0 T T =f(f(t),v(t))dt+UOk fh(t)v(l,t)dt, 0 0 U(O)=u(T), tathuduQ'c (4.55) T T f(v~(t),vet))dt + f[(Vkr(t),Vr(t)) + (hk(t)Uk(l,t) - h(t)u(l, t))v(1,t)]dt 0 0 T +f(F(Uk(t))-F(u(t)),v(t))dt 0 T T =f((Jk(t)}v(t))dt+f(UOkhk(t)-uoh(t))v(1,t)dt. 0 0 Chnv=Vk'trong(4.55)vasaukhi chuy r~ng T 1Td 1 1 (4.56) f((v~(t)),Vk(t))dt=- f-lIvk (t)lldt=-llvk(T)II--llvk(0)11=0, 0 20 dt 2 2 tathuduQ'c Khaosatphuangtrinhparabolicphi tuyin trongmi~nhinhcdu trang40 (4.57) T T fllvkr(t)112dt + f(hk(t)Uk(l,t) - h(t)U(l,t))vk(l,t)dt 0 0 T + f(F(Uk(t))- F(u(t)),Vk(t))dt 0 T T = f(Jk (t),Vk(t)}dt+ f(UOkhk(t) - uOh(t))vk(l,t)dt, 0 0 hay T T T flhr (t)112dt+ fhk(t)vi (l,t)dt +fhk(t)u(l,t)vk(l,t)dt 0 0 0 T +f(F(Uk(t))-F(u(t)),Vk(t))dt 0 (4.58) T T = f(Vk (t)) Vk(t)}dt+UOkfhk (t)Vk(l,t)dt 0 0 T +uo fhk(t)vk(l,t))dt. 0 Chu y r&ng T T T (4.59) ]IVkr(t)112dt+ fhk(t)vi (l,t)dt ~ C) ]h(t)II~dt=c)llvkll~2(O,T;V)' 0 0 0 trongd6 C)=mill{1,ho}.Dung bfitd~ngthuc (4.60) '\Ip~2,3Cp>O:~XIP-2X-lxIP-2XXX-y)~cplx-yIP'\Ix,yeIR, tasuyra T T ) (4.61) f(F(Uk(t))- F(u(t)),Vk(t))dt~Cpfdt fr21uk(t) - u(t)IPdr =Cp IIr2/PVkII;p(Qr)' 0 0 0 B&ngeachsird\lngbfitd~ngthuc(4.60),tasuyratll (4.58)-(4.61)r&ng c)llvkll~2(O,T;V)+Cpllr2/Pvkll;p(Qr) (4.62) T T ~ - fhk(t)u(l, t)vk(1,t)dt + f\Jk (t),Vk(t)}dt 0 0 T T +UOkfhk (t)Vk(l,t)dt +Uofhk(t)Vk(l,t)dt 0 0 H9CvienNguyln ViiDzilng Khaosatphuongtrinhparabolicphi tuyin trongmiJn hinhcdu trang41 T T S 411hkt fllu(t)llvIlvk(t)llvdt + Illkllco([O,T];H) fllvk (t)llv dt T T + 21uOkIllhkt ~h (t)llv dt + 211hkt Iuol fllvk (t)IIv dt° ° S 411hkIIJuIIL2(O,T;V) IlvkIIL2(O,T;V)+ Illk Ilco([o,T];H)Frllvk t2(O,T;V) + 21uOkIllhkt Frllvk t2(O,T;V) + 211hkt IUDIFrllvk IIL2(O,T;V) =[2(21Iut2(O'T;V)+Frluolllhkt +Frlllkllco([O,T];H)+2FrllhkIUuOkl]lvkt2(O,T;V) ==8k IIVkt2(O,T;V)' tfongdo (4.63) 8k =2(21IuIIL2(O'T;V)+Frluol)llhkt +Frlllkllco([O,T];H)+2FrllhktluOkl. Ta Suyfa tu (4.62)dng 1 (4.64) Ilvk(t)112( . ) S-8k'L O,T,V C ) 2 ~ II 21 li P 1 82 (4.65) c)llvkIIL2(O,T;V)+CprPVkLP(QT)SC) k' 1 821P 11 21p II SD~k' (4.66) r Vk LP(QT) ~C)Cp 1 1 821P II II 21pV II <-8k + D~ k . (4.67) Ih L2(O,T;V)+ r k LP(QT)- C) ~C)Cp Tu giathiSt(4.51),taco Il hk II ~ 0, Il lk II ~ 0, IUOk I ~ 0, 00 CO([O,T];H) vadays6~Ihkt } bi ch~n,nen8k ~ O. V~y 1 1 821P ~ o. I II II 21pV II <-8k + D~ k IVk L2(O,T;V)+ r k LP(QT) - c) ~C)Cp Dinh ly 4.2duQ'chungminhhoant~t.

Các file đính kèm theo tài liệu này:

  • pdf5.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf2.pdf
  • pdf3.pdf
  • pdf4.pdf
  • pdf6.pdf
  • pdf7.pdf